Chapter 2
Small-Gain and Passivity for Input—-Output
Maps

In this chapter we give the basic versions of the classical small-gain (Sect.2.1) and
passivity theorems (Sect. 2.2) in the study of closed-loop stability. Section 2.3 briefly
touches upon the “loop transformations” which can be used to expand the domain of
applicability of the small-gain and passivity theorems. Finally, Sect.2.4 deals with
the close relation between passivity and L,-gain via the scattering representation.

2.1 The Small-Gain Theorem

A straightforward, but very important, theorem is as follows.

Theorem 2.1.1 (Small-gain theorem) Consider the closed-loop system G| ;G»
given in Fig. 1.1, and let q € {1,2,...,00}. Suppose that G| and G, have
Lg-gains v,(Gy), respectively v,(G2). Then the closed-loop system G|l G, has
Sfinite L,-gain (see Definition1.2.11) if

Y4(G1) - 74(G2) < 1 2.1)

Remark 2.1.2 Inequality (2.1) is known as the small-gain condition. Two stable sys-
tems G and G, which are interconnected as in Fig. 1.1 result in a stable closed-loop
system provided the “loop gain’ is “small” (i.e., less than 1). Note that the small-gain
theorem implies an inherent robustness property: the closed-loop system remains sta-
ble for all perturbed input—output maps, as long as the small-gain condition remains
satisfied.

Proof By the definition of ~,(Gi), 7,(G2) and (2.1) there exist constants
Yig» V2q> b1gs bog With 14 - v24 < 1, such that forall T > 0
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”(Gl(ul))T”q = 71q||u1T||q +b1q ’ Vul € Lqe(Ul)

2.2
1Ga)rlly < vaglluarlly +brg o Vs € Lye(U) 2.2)

For simplicity of notation we will drop the subscripts “g.” Since u;r = e;r —
(G2 (u2))r

izl < llewr |l + 1[(G2u2)) 7|l < llerr |l + y2lluzr |l + b2
lluzr [l < llear || + G @) 7ll < llear |l + yillurr |l + br.

Combining these two inequalities, using the fact that v, > 0, yields

lurrll < yellurrll + (leir |l + 72llear [ 4+ bz 4+ 72b1).

Since 717, < 1 this implies

llurrll < (1 =m92)~ Ulewr]l + vallear |l + b2 + 72b1). (2.3)

Similarly we derive

lluarll < (1 =72~ learll + villeir| + by + vib2). (2.4)

This proves finite L,-gain of the relation R,,, and thus by Lemma1.2.12 finite
Lgy-gain of G|y G». O

Remark 2.1.3 Note that in (2.3) and (2.4) we have actually derived a bound on the
L ,-gain of the relation R,,. Substituting y; = G1(u1), y2 = G2(u3), and combining
(2.2) with (2.3) and (2.4), we also obtain the following bound on the L,-gain of the
relation R,,:

izl < =) ' yidleir]l + v2llexr || + by + v2b1) + by 2.5)
lyor | (1 =) ' (llear |l + villerr |l 4+ by +7162) + by. '
Remark 2.1.4 Theorem?2.1.1 remains valid for relations R, ,, and R,,,,, instead of
maps G| and G».

Note that in many situations, e; and e, are given and u;, u, (as well as y;, y;)
are derived. The above formulation of the small-gain theorem (as well as the def-
inition of L,-stability of the closed-loop system G|l ;G», cf. Definition1.2.11)
avoids the question of existence of solutions u; € Ly.(Uy),us € Ly (U) to e =
uy + Gz(uz), €) = Uy — Gl(ul) for given e] € Lqe(El), (S Lqe(Ez). As we will
see, a stronger version of the small-gain theorem does also answer this question, as
well as some other issues. First, we extend the definition of L ,-gain to its incremental
version.

Definition 2.1.5 (Incremental L,-gain) The input—output map G : L, (U) —
L. (Y) is said to have finite incremental L,-gain if there exists a constant I'; > 0
such that
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G — (GW)rlly < Tyllur —vrlly, YT =0, u,v € Ly (U) (2.6)

Furthermore, its incremental L,-gain I'y(G) is defined as the infimum over all such
ry,.

The property of finite incremental L,-gain is seen to imply causality.

Proposition 2.1.6 LetG : L, (U) — Ly (Y) havefinite incremental L,-gain. Then
it is causal.

Proof Letu,v € L, (U) be such that ur = vy. Then by (2.6)

(Gw)r — G)rlly = Tyllur —vrlly =0,
and thus (G (u))r = (G(v))r, implying by Lemma 1.1.4 causality of G. O

Remark 2.1.7 Hence, finite incremental L,-gain for causal maps is the same as
requiring that forall 7 > 0

(G ur)r — (Gr)rlly = Tgllur —vrllg, Yu,v e Le(U)  (27)

Theorem 2.1.8 (Incremental form of small-gain theorem) Let Gy : Ly (Uy) —
Ly (Y1), Gy : Lye(Uz) = Lyo(Y2) be input—output maps with incremental L ,-gains
Iy (G1), respectively I'y(G»). Consider the closed-loop system G| ;G. Then, if
I, (G1) - Ty(Gy) < 1,

(i) Forall(ey, ez) € Lye(E1 X E3) there exists a unique solution (uy, uz, yi, y2) €
Lqe(Ul X U2 X Y] X Yg)
(ii) The map (e, e2) — (u1, uz) is uniformly continuous on the space Ly (E; X
E)).
(iii) If the solution (uy,uz) to ey =ex =0 is in Ly(U; x U,), then (e, er) €
Ly (E\ x Ey) implies that (uy, up) € Ly(Uy x Us).

Proof First we note that since I'; (G) - I';(G) < 1, there exist constants I'y,, 'y,
with Iy, - I's4 < 1 such that for all 7 > 0 and for all u;, vy € Ly(Uy), uz, v5 €
Ly (Ur)

(G — (G1(wv))rlly < Tigllurir —virlly

1(G2(u2))r — (G2(va))7llg < Toglluar — varlly 28)

Furthermore, by Proposition2.1.6 G, G, are causal. The statements (i), (ii) and (iii)
are now proved as follows.
(i) Since up, = e; + G1(e; — G, (u)) it follows that

uyr = ear + [Gi(er — Ga(u2))lr

Using causality of G| and G, this yields
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urr = ear +{Gileir — (Ga(uar))7l}r (2.9)

For every ey, e, this is an equation of the form u,r = C(up7). We claim that C is
a contraction on L 10,71(U>) (the space of L,-functions on [0, T']). Indeed for all
usrr, Va1 € Ly j0,71(U2)

IGileir — (G2(uar))r] — Gileir — (G2 (var))7llg, 10,77
< Tl (G2(var)r — (Ga(uar))rlly < Tig - Toglluar — varlly

by (2.8). By assumption I'j, - I'y, < 1, and thus C is a contraction. Therefore, for
all T > 0, and all (ey, ez) € Ly (E; x E), there is a uniquely defined element of
urr € Lg 10,71(U2) solving usr = C(up7). The same holds trivially for u;7 since

uir = eir — (Ga(uar))r
Thus for all (e, ey) € Ly(E; x E;) there exists a unique solution (up,us) €
Ly (Uy x Us) to (1.30).

(ii) Since u 7 = ey — (Ga(uar)) 7, U}y = €\7 — (Ga(uyy))r We obtain by sub-
traction and the triangle inequality

luir —uiz |l < lleir — €7l + Toglluar — uby||
for all (ey, e2), (e}, ¢) and corresponding solutions (uy, uz), (u}, u5). Similarly
lluar — uhr|l < llear — eypl| + Tigllurr — izl
and thus
lurr —uipll < (1 =T14Tag) " (leir — €j7ll + Togllear — €7D, (2.10)
and similarly for ||up7 — u)||. This yields (ii).
(iii) Insert e} = ¢}, = 0 in (2.10) and in the same inequality for the expression
o — usp |l O
Remark 2.1.9 For a linear map G, property (2.6) is equivalent to

G @)rlly < Tyllurlly

and thus to the property that G has L,-gain < I';, (with zero bias). Note also that in
this case the solutiontoe; = e, = 0isu; = up = 0, and thus (iii) is always satisfied.
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2.2 Passivity and the Passivity Theorems

While the small-gain theorem is naturally concerned with normed (finite-
dimensional) linear spaces V and the corresponding Banach spaces L, (V) for every
q=1,2,...,00,passivity is, at least in first instance, independent of any norm, but,
at the same time, requires a duality between the input and output space.

Indeed, let us consider any finite-dimensional linear input space U (of dimension
m), and let the output space Y be the dual space U* (the set of linear functions
on U). Denote the duality product between U and U* =Y by <y |u > for y €
U*,u € U.(Thatis, < y | u > isthelinear functiony : U — Revaluatedatu € U.)
Furthermore, take any linear space of functions u : R*™ — U, denoted by L(U),
and any linear space of functions y : Rt — Y = U*, denoted by L(U*). Define
the extended spaces L.(U), respectively L.(U*), similar to Definition 1.1.2, that is,
uelL,U)ifur e LWU)forallT >0andy € L, (U*)ifyr € L(U*)forall T > 0.
Define a duality pairing between L.(U) and L.(U*) by defining foru € L,(U), y €
L.(U")

T
<ylu >T:=/ < y(@) | u() >dt, (2.11)
0

assuming that integral on the right-hand side exists. In examples, the duality product
< y(t) | u(t) > usually is the (instantaneous) power (electrical power if the compo-
nents of u, y are voltages and currents, or mechanical power if the components of
u, y are forces and velocities). In these cases, < y | u >7 will denote the externally
supplied energy during the time interval [0, T'].

Definition 2.2.1 (Passive input—output maps) Let G : L,(U) — L.(U*). Then G
is passive if there exists some constant 3 such that

<Gw)|u>7> —0, VYuelL,(U), VYT >0, (2.12)

where additionally it is assumed that the left-hand side of (2.12) is well defined.

Note that (2.12) can be rewritten as
—<Gw)|u>r < B, YuelL,(U), VT >0, (2.13)

with the interpretation that the maximally extractable energy is bounded by a finite
constant 3. Hence, G is passive iff only a finite amount of energy can be extracted
from the system defined by G. This interpretation, together with its ramifications,
will become more clear in Chaps. 3 and 4.

Definition2.2.1 directly extends to relations.

Definition 2.2.2 (Passive relation) A relation R C L,(U) x L,(U*) is said to
be passive if <y |u >y > —3, for all (u,y) € R and T > 0, assuming that
<y | u >7 is well defined for all (#, y) € Rand all T > 0.
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Remark 2.2.3 In many applications L, (U) will be defined as L,,(U) for some norm
|| |lg onU. Then L,(U*) can be taken to be L,,(U*), with || ||y« the norm on U*
canonically induced by || ||y, that is,

Iyl <ylu>
yllys ;= max ——
0 |lully

This implies | < y | u > | < ||yllu= - |lu||v, yielding

| <G lu>r =[] <G |ut)>dr| <

3 3 (2.14)
(J 16 @ ®IRdr)* - (] e ar)”

Hence, in this case the left-hand side of (2.12) is automatically well defined. The
same holds for a passive relation R C L, (U) X Ly, (U*)

Remark 2.2.4 For a linear single-input single-output map the property of passivity
is equivalent to the phase shift of an input sinusoid being always less than or equal
to 90° (see e.g., [343]). This should be contrasted with the L,-gain of a linear input—
output map, which deals with the amplification of the input signal.

Similarly to Proposition 1.2.3 we have the following alternative formulation of pas-
sivity for causal maps G.

Proposition 2.2.5 Let G : L, (U) — L.(U*) satisfy (2.12). Then also
<Gu)lu> > —0, YuelLU), (2.15)

if the left-hand side of (2.15) is well defined. Conversely, if G is causal, then (2.15)

implies (2.12).

Proof Suppose (2.12) holds. By letting T — oo we obtain (2.15) for u € L(U).

Conversely, suppose (2.15) holds and G is causal. Then for u € L,(U)

<G)|u>r=<Gw)r |ur >=<(G(ur))r |ur >

=<Gur) lur > = —p0.

We are ready to state the first version of the Passivity theorem.

Theorem 2.2.6 (Passivity theorem; first version) Consider the closed-loop system
Gl sGyin Fig. 1.1, with Gy : L,(Uy) — L.(U{) and G, : L.(Uy) — L.(UJ) pas-
sive,and Ey = Uy = U, E, = U{ = U,.

(a) Assume that for any ey € L.(U}), e, € L.(U,) there are solutions u; € L,(U;)
and uy € L,(Us). Then G|l fG, with inputs (ey, ez) and outputs (yi, y2) is
passive.
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(b) Assumethat foranye, € L,(U;) and e, = Othere are solutionsu, € L,(U}), u,
€ L.(U). Then G|l y G2 with e; = 0 and input ey and output y, is passive.

Proof The definition of standard negative feedback, cf. (1.30), implies the key
property
<wyilur>r+ <y luz>r
=<yilet=yn>r+<ymle+y >r (2.16)
=<yle>+<nle>r,

and thus for any e; € L.(U;), ey € L.(Uy) andany T > 0

<yi|lur>r+<y2|uy>r

2.17
=<yileir>r+<y|e>r ( )

with y; = G(u1), y2 = G2(u2). By passivity of G| and G,, < y| | u; >7 > —[31,
< y2 | uz >1 > —[, and thus by (2.17)

<viler>r+<wmle>r=>-03—05 (2.18)

implying part (a). For part (b) take e, = 0 in (2.17). O

Remark 2.2.7 Theorem?2.2.6 expresses an inherent robustness property of passive
systems: the closed-loop system G|l sG> remains passive for all perturbations
of the input—output maps G, G, as long as they remain passive (compare with
Remark2.1.2).

In order to state a stronger version of the Passivity theorem we need stronger notions
of passivity. First of all, we will assume that the input space U is equipped with an
inner product <, >. Using the linear bijection

uelUvr—<u, > U*, (2.19)

we may then identify Y =U* with U. That is, Y =U*=U, and
<y |u >=<y,u >. Furthermore, for any input function u € L,.(U) and corre-
sponding output function y = G(u) € L, (U) we will have <y |u>r=
fOT < y(t), u(t) > dt, which will be throughout denoted by < y, u >7.

Definition 2.2.8 (Output and input strict passivity) Let U =Y be a linear space
with inner product <, > and corresponding norm || - ||. Let G : Ly, (U) — L. (Y)
be an input—output map. Then G is input strictly passive if there exists § and § > 0
such that

<G, u>r = dllurll; — B, Yu € Ly (U), VT = 0, (2.20)
and output strictly passive if there exists § and £ > 0 such that

<Gu),u>r > 5||(G(u))T||% — 0B, YuelLyU), VYT > 0. (2.21)
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Furthermore, G : Ly, (U) — L,.(Y) is merely passive if there exists § such that
(2.21) holds for ¢ = 0 (or equivalent (2.20) for § = 0). Whenever we want to empha-
size the role of the constants ¢, ¢ we will say that G is §-input strictly passive or
e-output strictly passive. In the same way we define (d-)input and (e-)output strict
passivity for relations R C Ly, (U) x L. (Y).

Remark 2.2.9 Note that by Remark 2.2.3 the left-hand sides of (2.20) and (2.21) are
well defined.

Remark 2.2.10 Proposition?2.2.5 immediately generalizes to input, respectively, out-
put strict passivity.

‘We obtain the following extension of Theorem2.2.6.

Theorem 2.2.11 (Passivity theorem; second version) Consider the closed-loop sys-
tem G ||fG2 in Fig.].], with Gy : Ly, (Uy) — Lo, (Uy), Gy : Ly, (Uy) = Ly (U»),
and E| = U, = U, = E, =: U an inner product space.

(a) Assume that for any ey, ey € L. (U) there are solutions uy,u, € Ly, (U). If
G and G are respectively - and e;-output strictly passive, then G|l yG»
with inputs (e1, e;) and outputs (y, y2) is e-output strictly passive, with ¢ =
min(ey, 7).

(b) Assume thatforanye; € Ly, (U) ande, = Othere are solutionsuy, uy € Ly.(U).
If G is passive and G, is d-input strictly passive, or if Gy is e1-output strictly
passive and G, is passive, then G1|| y G for e; = 0, with input ey and output yi,
is 6p-input, respectively e-output strictly passive.

Proof Equation (2.17) becomes
<yLuL>r + < yuuy>r=<y,e >+ <y,e>r (2.22)
(a) Since G| and G, are output strictly passive (2.22) implies
<Y, er>r + <y,e>r=<y,uU >7 + <y Uy >7
> eillyirll3 + ellyarll3 — B — B2

> e(llyirlls + llyarl3) — Bi — Ba

for e = min(eq, &) > 0.
(b) Let G be passive and G, be d,-input strictly passive. By (2.22) with e; =0

< yi,e1 >r=<Yy, Uy >7 + <y, Up >r

> =01 + &lluar|ls — B = Sllyirll3 — B — B

If G, is ;-output strictly passive and G, is passive, then the same inequality
holds with §, replaced by ¢. ]
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Remark 2.2.12 A similar theorem can be stated for relations R, and R».

For statements regarding the L,-stability of the feedback interconnection of passive
systems a key observation will be the fact that output strict passivity implies finite
L,-gain.

Theorem 2.2.13 Let G : Ly, (U) — L. (U) be c-output strictly passive. Then G

. 1
- < =
has Ly-gain < -.

Proof Since G is e-output strictly passive there exists 3 such that y = G (u) satisfies

ellyrll} < < v,u>r +3

A

<y.u>r +B+ 3llzur — Jeyrll3 (2.23)
= B+ Allurl3 + §lyrli3,

whence £||yr|13 < 3 |lurl3 + B, proving that 1,(G) < 1. 0

Remark 2.2.14 As a partial converse statement, note that if G is J-input strictly
passive and has L,-gain < -, then

)
<G),u> >dlull3-p8 > ;IIG(M)H%—B,

implying that G is %—output strictly passive.

Combining Theorems?2.2.11 and 2.2.13 one directly obtains the following.

Theorem 2.2.15 (Passivity theorem; third version) Consider the closed-loop system
G1||fG2 n Fig.].], with G1 . Lze(Ul) e LQE(UI), G2 . LZE(UZ) e Lze(Uz), and
E\ = E;, = U; = U, =: U an inner product space.

(a) Assume that for any e, e; € Ly, (U) there exist solutions uy, uy € L. (U). If
G, is g;-output strictly passive, i = 1,2, then G|l y G, with inputs (e, e;) and
outputs (y1, y2) has L,-gain < é with € = min(ey, ;). For ey, e, € Lr(U) it
follows that uy, uy, y1, y» € Lo(U).

(b) Assumethatforanye; € Ly, (U)ande, = Othere are solutionsuy, uy € Ly.(U).
If G| is passive and G, is dy-input strictly passive, or if G is £1-output strictly
passive and G, is passive, then G| yG, for e; = 0 with input ey and output
y1 has Ly-gain < %, respectively < L. Furthermore, if e; € Ly(U) then also

S]'
yi =uy € Lry(U).

Remark 2.2.16 Suppose G| and G, are causal. Then by Propositions 2.2.5 and 1.2.14
we can relax the assumption in (a) to assuming that for any e, e; € L,(U) there
exist solutions u, uy € Ly, (U). Similarly, we can relax the assumption in (b) to
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assuming that for any e; € L,(U) and e, = 0 there exist solutions uy, uy € Ly (U).
If G, and/or G, are not causal, then this relaxation of assumptions will guarantee at
least L,-stability.

Example 2.2.17 Note that in Theorem2.2.15 (b) it is not claimed that u; and y, =
G, (uy) are in Lo(U). In fact, a physical counterexample to such a claim can be
given as follows. Consider a mass moving in one-dimensional space. Let the mass
be subject to a friction force which is the sum of an ideal Coulomb friction and a
linear damping. Furthermore, let the mass be actuated by a force u; = e; — y,, where
e; is an external force and y, is the force delivered by a linear spring. Defining y,
as the velocity of the mass, the input—output map G; from u; to y; for zero initial
condition (velocity zero) is output strictly passive, as follows from the definition of
the friction force. Furthermore, let G, be the passive input—output map defined by
the linear spring for zero initial extension, with the spring attached at one end to
a wall and with the velocity of the other end being its input u, and with output y,
being the spring force (acting on the mass). Now let e;(-) be an external force time
function with the shape of a pulse, of magnitude /4 and width w. Then by taking
h large enough the force e; will overcome the total friction force (in particular the
Coulomb friction force), resulting in a motion of the mass and thus of the free end
of the spring. On the other hand by taking the width w of the pulse small enough
the extension of the spring will be such that the spring force does not overcome the
Coulomb friction force. As a result, the velocity of the mass y; will converge to zero,
while the spring force y, will converge to a nonzero constant value (smaller than the
Coulomb friction constant). Hence, y, and u; will not be in L, (RR).

A useful generalization of the Passivity Theorems2.2.11 (a) and 2.2.15 (a), where
we do not necessarily require passivity of G| and G, separately, can be stated as
follows.

Theorem 2.2.18 Suppose there exist constants €;, 9;, B;,i = 1, 2, satisfying
€1+(52>0, €2+51 >0 (224)

such that
< Gi(w),ui >7 > &ll(Giw)rl3+ &illuir|3 — Bi s (2.25)

forallu; € Ly,(U;) and all T > 0,i =1, 2. Then G || G has finite L,-gain from
(e1, €2) 10 (y1, y2).
Proof Addition of (2.25) with y; = G;(u;) fori = 1, 2 yields

< yi,uUy >1 + <y, Uy >r

2.26
> el I3 + 8 lurr 1B + eallyar |2 + S2lluar I — Bi — B (2.26)
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Substitution of the negative feedback u; = e; — y,, up = e, + y; results in

<yer>r +<y,es>r +61 + 5

2.27
S el I3+ Siller — yal2 + exllyald + Saller + vl 3D

Writing out and rearranging terms leads to

—dillerr|l3 — dallear |3 + B + 32
> (e1 + ) lyirl3 + (&2 + ) llyar Il
=201 <y, e1 >1 =200 < yi,er>7r — < yi,e1 >r — < y2,€ > .
By the positivity assumption on a% =1 + 0o, a% := g7 4+ §; we can perform “com-
pletion of the squares” on the right-hand side of this inequality, to obtain an expression

of the form
aryir eir | 2 2| €Lr |2
—A <c + 61 + 52, 2.28
[ [am} [QT] 3=l [m] 13+ 61 + 6> (228)
foracertain2 x 2 matrix A and constant c. In combination with the triangle inequality
aryir < | @nr _A eir + 1A eir 229
I [azm} I <1 [azm} [ezr] l+lale Tk @29
this yields finite L,-gain from (e, e2) to (y1, y2). U

Remark 2.2.19 Clearly, Theorem?2.2.18 includes Part (a) of Theorems?2.2.11 and
2.2.15 by taking §; = J, = 0. Importantly, it shows that £y, €5, d;, > need not all be
nonnegative. Negativity of ¢; (“lack of passivity” of G) can be “compensated” by
a sufficiently large positive d, (“surplus of passivity” of G,).

Notice that the last version of the Passivity Theorem?2.2.15 still assumes the exis-
tence of solutions uy, uy € Ly, (U). In the small-gain case this was remedied, cf.
Theorem2.1.8, by replacing finite L,-gain and the small-gain condition by their
incremental versions. Similarly this can be done by invoking a notion of incremental
passivity defined as follows.

Definition 2.2.20 (Incremental passivity) An input—output map G : Ly, (U) —
L».(Y) is C-output strictly incrementally passive for some ¢ > 0 if there exists
(3 such that

Cllyr—zrl; < <y—zu—v>r + 0 (2.30)

forallu, v € L,,(U) and corresponding outputs y = G (1), z = G(v). If € = 0 then
G is incrementally passive.

Furthermore, G is called A-input strictly incrementally passive for some A > 0 if
there exists (3 such that

Allur —vrll3 < <y—zou—v>r + f (2.31)
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for all u, v € Ly, (U) and corresponding outputs y = G(u), z = G(v).
We immediately obtain the following incremental version of Theorem?2.2.15.

Proposition 2.2.21 Consider the closed-loop system G ||y G, in Fig. 1.1, with G :
Ly, (Uy) = L2 (Uy), Ga: Lye(Uz) = Loe(Uz),and Ey = Uy = Uy = E; =: U an
inner product space.

(a) Assume that for any ey, ey € Ly, (U) there are solutions uy, uy € L, (U). If G,
and G, are respectively €,- and &,-output strictly incrementally passive, then
Gl y G with inputs (e, e2) and outputs (y1, y2) is €-output strictly incremen-
tally passive, with € = min(€&;, &,).

(b) Assumethatforanye; € Ly, (U) and ey = Othere are solutionsuy, uy € Ly.(U).
If G is incrementally passive and G, is A,-input strictly incrementally passive,
or if Gy is Ej-output strictly incrementally passive and G, is incrementally
passive, then G| y Go with e; = 0 and input ey and output y, is E-output strictly
incrementally passive, with € equal to A, respectively €.

The following crucial step is the observation that output strict incremental passivity
implies finite incremental L,-gain in the same way as output strict passivity implies
finite L,-gain, cf. Theorem2.2.13.

Proposition 2.2.22 Let G : Ly, (U) — L,,(U) be E-output strictly incrementally
passive. Then G has incremental L,-gain < é

Proof Repeat the same argument as in the proof of Theorem2.2.13, but now in the
incremental setting, to conclude that

1 ¢
Elyr —zrl5 < B+ ¢ lur = vrlls + 5 lyr = zrll3,

where y = G(u), z = G(v). This proves that the incremental L,-gain of G is
<1 O
=€

By combining Propositions2.2.21 and 2.2.22 with Theorem2.1.8 we immediately
obtain the following corollary.

Corollary 2.2.23 Consider the closed-loop system G|l ;G, in Fig. 1.1, with G :
Lo (Uy) — Ly (Ur), Ga: Loe(Uz) — Lao(Ua),and Ey = E; = Uy = Uy =:Uan
inner product space.
Assume that G| and G, are €;-, respectively &,-, output strictly incrementally
passive, and that
¢ -¢ > 1. (2.32)

Then

(i) Forall (ey, e;) € Ly.(E| X E,) there exists a unique solution (uy, u, y1, y2) €
L2e(Ul X U2 X Y] X Y2)
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(ii) The map (ey, e2) — (u1, us) is uniformly continuous on the domain L,,(E| X
E)).

(iii) If the solution (uy,u;) to ey =e; =0 is in Lo(U; X Uy), then (e, e;) €
L,(Ey x E») implies that (uy, us) € Lo(Uy x Uy).

Remark 2.2.24 (General power-conserving interconnections) All the derived pas-
sivity theorems can be generalized to interconnections which are more general than
the standard feedback interconnection of Fig.1.1. This relies on the observation
that the essential requirement in the proof of Theorem2.2.6 is the identity (2.16),
expressing the fact that the feedback interconnectionu; = —y, + ey, up = y; + ez is
power-conserving. Many other interconnections share this property, and as a result
the interconnected systems share the same passivity properties as the closed-loop
systems arising from standard feedback interconnection. As an example, consider
the following system (taken from [355]) given in Fig.2.1. Here R represents a robotic
system and C is a controller, while E represents the environment interacting with the
controlled robotic mechanism. The external signal e denotes a velocity command.
We assume R and E to be passive, and C to be a output strictly passive controller.
By the interconnection constraints u¢c = yg +e, ugr = ygandug = —yg — yc we
obtain
<ycluc>+<yplugp>+<yplug> = <ycle>

and hence, as in Theorem 2.2.15 part (b), the interconnected system with input e and
output yc is output strictly passive, and therefore has finite L,-gain.

This idea will be further developed in the subsequent chapters, especially in
Chaps. 4, 6 and 7 in the passive and port-Hamiltonian systems context.

Fig. 2.1 An alternative
power-conserving e . W o e
interconnection
R +
UR yr T

YE Up
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Fig. 2.2 Feedback system ]bf(el)+ ;
with multipliers —O—> M~ > Gy |4 N —

+ + N(eg)

Fig. 2.3 Transformed
closed-loop configuration

Y1

+ e

2.3 Loop Transformations

The range of applicability of the small-gain and passivity theorems can be consider-
ably enlarged using loop transformations. We will only indicate two basic ideas.
The first possibility is to insert multipliers in Fig. 1.1 by pre- and post-multiplying
G and G, by L,-stable input—output mappings M and N and their inverses M ~land
N~!, which are also assumed to be L,-stable input-output mappings, see Fig.2.2.
By L,-stability of M, M=, N and N~ it follows that e, € Ly(Ey), e € Ly(E>)
ifandonlyif M(e;) € L,(E), M(ez) € Ly(E>). Thusstability of G || ;G2 is equiv-
alent to stability of G| y G, with G| = NG M™', G, =MG,N~".
A second idea is to introduce an additional L ,-stable and linear operator K in the
closed-loop system G || s G, by first subtracting and then adding to G (see Fig.2.3).
Using the linearity of K, this can be redrawn as in Fig.2.4. Clearly, by stability
of K, e; — K(ey) and e; are in L, if and only if ey, e, are in L,. Thus stability of
Gl G is equivalent to stability of G|l rG5.

2.4 Scattering and the Relation Between Passivity
and L,-Gain

Let us return to the basic setting of passivity, as exposed in Sect. 2.2, starting with
a finite-dimensional linear input space U (without any additional structure such as
inner product or norm) and its dual space ¥ := U™ defining the space of outputs.
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Fig. 2.4 Redrawn transformed closed-loop configuration

On the product space U x Y of inputs and outputs there exists a canonically
defined symmetric bilinear form <, >>, given as

L Wi, y1), U, ) >=<y luag>+<yr|u > (2.33)

withu; e U, y; € Y, i = 1,2, and < | > denoting the duality pairing between ¥ =
U* and U. With respect to a basis ey, ..., e, of U (where m = dim U), and the
corresponding dual basis ej, ..., e}, of Y = U¥, the bilinear form <, > has the

matrix representation
0 I,
|: I, O} (2.34)

It immediately follows that <, >> has singular values 41 (with multiplicity m)
and —1 (also with multiplicity m), and thus defines an indefinite inner product on the
space U x Y of inputs and outputs. Scattering is based on decomposing the combined
vector (u,y) € U x Y with respect to the positive and negative singular values of
this indefinite inner product. More precisely, we obtain the following definition.

Definition 2.4.1 Any pair (V, Z) of subspaces V,Z C U x Y is called a pair of
scattering subspaces if
i) VezZ=UxY
(i) K< vy, vy > > 0, forall vy, v, € V unequal to 0,
<L 21,22 >» < 0,forall z;, 2o € Z unequal to O
(iil)) €K v,z >»=0,forallveV,ze Z

It follows from (2.34) that any pair of scattering subspaces (V, Z) satisfies

dmV =dimZ =m
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Given a pair of scattering subspaces (V, Z) it follows that any combined vector
(u,y) € U x Y alsocanberepresented, inaunique manner,asapairv @z € V @ Z,
where v is the projection along Z of the combined vector (¢, y) € U x Y on V, and
z is the projection of (u, y) along V on Z. The representation (i, y) = v @ z is
called a scattering representation of (u, y), and v, z are called the wave vectors of
the combined vector (u, y).

Using orthogonality of V' with respect to Z it immediately follows that for all
Wi, y)=vi®z,i =1,2,

L (W, ), (U2, y2) >=<V,0 >y —<Z21,22 >7 (2.35)

where <, >y denotes the inner product on V defined as the restriction of <, >
to V,and <, >z denotes the inner product on Z defined as minus the restriction of
<L, >t Z.

In particular, taking (1, y;) = (u2, y2) = (u, y), we obtain for any (u, y) = v @
z the following fundamental relation between (u, y) and its wave vectors v, z

1 1 1
<ylu>=2 <y, Wy >= §||v||2v - 5||z||22, (2.36)

where || ||y, || ||z are the norms on V, Z, defined by <, >y, respectively <, >7.

Identifying as before < y | u > with power, the vector v thus can be regarded as
the incoming wave vector, with half times its norm being the incoming power, and
the vector z is the outgoing wave vector, with half times its norm being the outgoing
power.

Nowlet G : L, (U) - L.(Y), with Y = U*, be an input—output map as before.
Expressing (#, y) € U x Y in a scattering representation as v @ z € V @ Z, it fol-
lows that G transforms into the relation

R.={v@zeL(V)®LAZ) | 2.37)
v(t) @ z(t) = (u(t), (1)), t e R*, y = G(u)}, ’
with the function spaces L.(V) and L.(Z) yet to be defined. As a direct consequence
of (2.36) we obtain the following relation between G and R,;:

1 1
<G(u>|u>T=5||vT||2V—§||zT||ZZ, T >0. (2.38)

In particular, if # and y = G (u) are such thatv € Ly, (V) and z € L,.(Z) then, since
the right-hand side of (2.38) is well defined, also the expression < G(u) | u >r is
well defined for all 7 > 0.

We obtain from (2.38) the following key relation between passivity of G and the
L,-gain of R,;.



2.4 Scattering and the Relation Between Passivity and L,-Gain 29

Proposition 2.4.2 Consider the relation R,, C L3.(V) @ L,.(Z) as defined in
(2.37), with L, replaced by L,,. Then G is passive if and only if R,; has L,-gain
<1

Proof By (2.38), ||z7]]% < ||vT||%, +cifandonly if < G(u) | u >7> —3. O

If the relation R, can be written as the graph of an input—output map
St Lye(V) = L2 (2), (2.39)

(with respect to the intrinsically defined norms || ||y and || ||z) then we call S the
scattering operator of the input—output map G. We obtain the following fundamental
relation between passivity and L,-gain.

Corollary 2.4.3 The scattering operator S has L,-gain < 1 if and only if G is
passive.

As noted before, the choice of scattering subspaces V, Z, and therefore of the scat-
tering representation, is not unique. Particular choices of scattering subspaces are
given as follows. Take any basis e, ..., e, for U, with dual basis e], ..., e}, for
U* =Y. Then it can be directly checked that the pair (V, Z) given as

.
¢

V:span{(%,ﬁ),izl,...,m}

Z:span{(%",%),i:l,...,m}

(2.40)

defines a pair of scattering subspaces. (In the above the factors % were inserted in
order that the vectors spanning V, respectively Z, are orthonormal with respect to the
intrinsically defined inner products <, >y and <, > .) In these bases for U, Y and

V, Z the relation between (u, y) and its scattering representation (v, z) is given as

v = \%(u—i—u*)

| . (2.41)
7= \/_5(_14 +u )
Hence, with y = G (u), the relation R, has the coordinate expression
R,.,={(v,2) : R" >V xZ
v = {(v, 2) I (2.42)

v(r) = %(G + D)), z(t) = \/%(G — D(u)(1)},
where I denotes the identity operator. In particular, R,, can be expressed as the
graph of a scattering operator S if and only if the operator G + I : L(U) — L(V)

is invertible, in which case S takes the standard form

S=G-DG+D". (2.43)
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In case U is equipped with an inner product <, >y, and U* can be identified with U
(see Sect.2.2), we obtain the following relation between passivity of G and L,-gain
of R,;.

Proposition 2.4.4 Let U be endowed with an inner product <, >y. Consider an
input—output mapping G : L,.(U) — L,.(U) and the corresponding relation R,,, C
Ly.(V) X Ly, (Z). Then G is input and output strictly passive if and only if the
Ly-gain of R,; (or, if G + I is invertible, the Ly-gain of the scattering operator S)
is strictly less than 1.

Proof Let the Ly-gain of R,; be <1 —4, with 1 > > 0. Then ||zT||% <(1-
6)||vT||% + ¢, and thus by (2.38)

2< G |u>=> 8|} —c

Since [Jvr[3 = llur + (G713 = llur|B + IG@rl3 +2 < G) |u >, this
implies for some € > 0 and /3

<G lu>> e||GWI5 +ellull; — 8

The converse statement follows similarly. (I

Remark 2.4.5 Since “input strict passivity” plus “finite L,-gain” implies output strict
passivity, cf. Remark2.2.14, and conversely output strict passivity implies finite
L,-gain, the condition of input and output strict passivity in the above proposition
can be replaced by input strict passivity and finite L,-gain.

2.5 Notes for Chapter 2

1. The treatment of Sects.2.1 and 2.2 is largely based on Vidyasagar [343], with
extensions from Desoer & Vidyasagar [83]. We have emphasized a “coordinate-
free” treatment of the theory, which in particular has some impact on the for-
mulation of passivity. See also Sastry [267] and Khalil [160] for expositions.
The developments regarding incremental passivity, in particular Corollary 2.2.23,
seem to be relatively new.

2. The small-gain theorem is usually attributed to Zames [362, 363], and in its
turn is closely related to the Nyquist stability criterion. See also Willems [348].
A classical treatise on passivity and its implications for stability is Popov [255].

3. Theorem2.2.18 is treated in Sastry [267], Vidyasagar [343].

4. An interesting generalization of the small-gain theorem (Theorem?2.1.1) is
obtained by considering input—output maps G| and G, that have a finite “nonlin-
ear gain” in the following sense. Suppose there exist functions 7; : Rt — R™
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of class! C and constants b;, i = 1, 2, such that

1Giupll =~i(lurl) +bi, T =0, (2.44)

fori =1, 2, where || || denotes some L,-norm. Note that by taking linear func-

tions v, (z) = 7;z, with constant 7; > 0, we recover the usual definition of finite

gain. Then, similar to the proof of Theorem2.1.1, we derive the following inequal-
ities for the closed-loop system G || s G»:

luirll < ly2r |l + lleir |l

2.45
luarll < Wil + lear | (249
and thus by (2.44)
Iyizll < nllyarll + lleir ) + by
(2.46)
Iy2r |l < %2zl + llear D) + b2
which by cross-substitution yields
Iyirll < nz2liyirll + llearl) + lleirll + b2) + by
(2.47)

lv2r I < 2(yvillly2rll + lleirll) + llear |l + b1) + bo.

One may wonder under what conditions on ; and 7y, the inequalities (2.47) imply
that
Iyirll < d1(llerr I, llear 1) + di

(2.48)
Iyarll < 62(llesr |l llear ) + da

for certain constants d;, d» and functions §; : R* x R™ — R™, i = 1, 2, which
are of class /C in both their arguments. Indeed, this would imply that the closed-
loop system G || sG> has finite nonlinear gain from ey, e; to y, y>. As shown
in Mareels & Hill [194] this is the case if there exist functions g, 4 € IC and a
constant ¢ > 0, such that

Yo (id+ g)oy(z) <z—h(z) +c, forall z, (2.49)

with id denoting the identity mapping. Condition (2.49) can be interpreted as a
direct generalization of the small-gain condition ; - 72 < 1. See also [149] for
another formulation.

5. There is an extensive literature related to the theory presented in Sects.2.1 and
2.2. Among the many contributions we mention the work of Safonov [262] & Teel
[337] on conic relations, the work on nonlinear small-gain theorems in Mareels
& Hill [194], Jiang, Teel & Praly [149], Teel [336] briefly discussed in the pre-

A function v : RT — R™ is of class K (denoted v € K) if it is zero at zero, strictly increasing
and continuous.
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vious Note 4, and work on robust stability, see e.g., Georgiou [111], Georgiou &
Smith [112], as well as the important contributions on stability theory within the
“Petersburg school”, see e.g., the classical paper Yakubovich [359], and develop-
ments inspired by this, see e.g., Megretski & Rantzer [215]. The developments
stemming from dissipative systems theory will be treated in Chaps. 3, 4, and 8.

For further ramifications and implications of the loop transformations sketched in
Sect. 2.3 we refer to Vidyasagar [343], Scherer, Gahinet & Chilali [306], Scherer
[307], and the references quoted therein.

The scattering relation between L,-gain and passivity is classical, and can be
found in Desoer & Vidyasagar [83], see also Anderson [6]. The geometric,
coordinate-free, treatment given in Sect. 2.4 is developed in Maschke & van der
Schaft [208], Stramigioli, van der Schaft, Maschke & Melchiorri [190, 331],
Cervera, van der Schaft & Banos [63].
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