
Chapter 2
Small-Gain and Passivity for Input–Output
Maps

In this chapter we give the basic versions of the classical small-gain (Sect. 2.1) and
passivity theorems (Sect. 2.2) in the study of closed-loop stability. Section2.3 briefly
touches upon the “loop transformations” which can be used to expand the domain of
applicability of the small-gain and passivity theorems. Finally, Sect. 2.4 deals with
the close relation between passivity and L2-gain via the scattering representation.

2.1 The Small-Gain Theorem

A straightforward, but very important, theorem is as follows.

Theorem 2.1.1 (Small-gain theorem) Consider the closed-loop system G1‖ f G2

given in Fig.1.1, and let q ∈ {1, 2, . . . ,∞}. Suppose that G1 and G2 have
Lq-gains γq(G1), respectively γq(G2). Then the closed-loop system G1‖ f G2 has
finite Lq-gain (see Definition1.2.11) if

γq(G1) · γq(G2) < 1 (2.1)

Remark 2.1.2 Inequality (2.1) is known as the small-gain condition. Two stable sys-
tems G1 and G2 which are interconnected as in Fig. 1.1 result in a stable closed-loop
system provided the “loop gain” is “small” (i.e., less than 1). Note that the small-gain
theorem implies an inherent robustness property: the closed-loop system remains sta-
ble for all perturbed input–output maps, as long as the small-gain condition remains
satisfied.

Proof By the definition of γq(G1), γq(G2) and (2.1) there exist constants
γ1q , γ2q , b1q , b2q with γ1q · γ2q < 1, such that for all T ≥ 0
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14 2 Small-Gain and Passivity for Input–Output Maps

||(G1(u1))T ||q ≤ γ1q ||u1T ||q + b1q , ∀u1 ∈ Lqe(U1)

||(G2(u2))T ||q ≤ γ2q ||u2T ||q + b2q , ∀u2 ∈ Lqe(U2)
(2.2)

For simplicity of notation we will drop the subscripts “q.” Since u1T = e1T −
(G2(u2))T

||u1T || ≤ ||e1T || + ||(G2(u2))T || ≤ ||e1T || + γ2||u2T || + b2
||u2T || ≤ ||e2T || + ||(G1(u1))T || ≤ ||e2T || + γ1||u1T || + b1.

Combining these two inequalities, using the fact that γ2 ≥ 0, yields

||u1T || ≤ γ1γ2||u1T || + (||e1T || + γ2||e2T || + b2 + γ2b1).

Since γ1γ2 < 1 this implies

||u1T || ≤ (1 − γ1γ2)
−1(||e1T || + γ2||e2T || + b2 + γ2b1). (2.3)

Similarly we derive

||u2T || ≤ (1 − γ1γ2)
−1(||e2T || + γ1||e1T || + b1 + γ1b2). (2.4)

This proves finite Lq -gain of the relation Reu , and thus by Lemma1.2.12 finite
Lq -gain of G1‖ f G2. �
Remark 2.1.3 Note that in (2.3) and (2.4) we have actually derived a bound on the
Lq -gain of the relation Reu . Substituting y1 = G1(u1), y2 = G2(u2), and combining
(2.2) with (2.3) and (2.4), we also obtain the following bound on the Lq -gain of the
relation Rey :

||y1T ||≤(1 − γ1γ2)
−1γ1(||e1T || + γ2||e2T || + b2 + γ2b1) + b1

||y2T ||≤(1 − γ1γ2)
−1γ2(||e2T || + γ1||e1T || + b1 + γ1b2) + b2.

(2.5)

Remark 2.1.4 Theorem2.1.1 remains valid for relations Ru1 y1 and Ru2 y2 , instead of
maps G1 and G2.

Note that in many situations, e1 and e2 are given and u1, u2 (as well as y1, y2)
are derived. The above formulation of the small-gain theorem (as well as the def-
inition of Lq -stability of the closed-loop system G1‖ f G2, cf. Definition1.2.11)
avoids the question of existence of solutions u1 ∈ Lqe(U1), u2 ∈ Lqe(U2) to e1 =
u1 + G2(u2), e2 = u2 − G1(u1) for given e1 ∈ Lqe(E1), e2 ∈ Lqe(E2). As we will
see, a stronger version of the small-gain theorem does also answer this question, as
well as some other issues. First, we extend the definition of Lq -gain to its incremental
version.

Definition 2.1.5 (Incremental Lq-gain) The input–output map G : Lqe(U ) →
Lqe(Y ) is said to have finite incremental Lq-gain if there exists a constant �q ≥ 0
such that
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2.1 The Small-Gain Theorem 15

||(G(u))T − (G(v))T ||q ≤ �q ||uT − vT ||q , ∀T ≥ 0, u, v ∈ Lqe(U ) (2.6)

Furthermore, its incremental Lq-gain �q(G) is defined as the infimum over all such
�q .

The property of finite incremental Lq -gain is seen to imply causality.

Proposition 2.1.6 LetG : Lqe(U ) → Lqe(Y )have finite incremental Lq-gain. Then
it is causal.

Proof Let u, v ∈ Lqe(U ) be such that uT = vT . Then by (2.6)

||(G(u))T − G(v))T ||q ≤ �q ||uT − vT ||q = 0,

and thus (G(u))T = (G(v))T , implying by Lemma1.1.4 causality of G. �

Remark 2.1.7 Hence, finite incremental Lq -gain for causal maps is the same as
requiring that for all T ≥ 0

||(G(uT ))T − (G(vT ))T ||q ≤ �q ||uT − vT ||q , ∀u, v ∈ Lqe(U ) (2.7)

Theorem 2.1.8 (Incremental form of small-gain theorem) Let G1 : Lqe(U1) →
Lqe(Y1), G2 : Lqe(U2) → Lqe(Y2) be input–output mapswith incremental Lq-gains
�q(G1), respectively �q(G2). Consider the closed-loop system G1‖ f G2. Then, if
�q(G1) · �q(G2) < 1,

(i) For all (e1, e2) ∈ Lqe(E1 × E2) there exists a unique solution (u1, u2, y1, y2) ∈
Lqe(U1 ×U2 × Y1 × Y2).

(ii) The map (e1, e2) 	→ (u1, u2) is uniformly continuous on the space Lqe(E1 ×
E2).

(iii) If the solution (u1, u2) to e1 = e2 = 0 is in Lq(U1 ×U2), then (e1, e2) ∈
Lq(E1 × E2) implies that (u1, u2) ∈ Lq(U1 ×U2).

Proof First we note that since �q(G1) · �q(G2) < 1, there exist constants �1q , �2q

with �1q · �2q < 1 such that for all T ≥ 0 and for all u1, v1 ∈ Lqe(U1), u2, v2 ∈
Lqe(U2)

||(G1(u1))T − (G1(v1))T ||q ≤ �1q ||u1T − v1T ||q
||(G2(u2))T − (G2(v2))T ||q ≤ �2q ||u2T − v2T ||q (2.8)

Furthermore, by Proposition2.1.6 G1,G2 are causal. The statements (i), (ii) and (iii)
are now proved as follows.
(i) Since u2 = e2 + G1(e1 − G2(u2)) it follows that

u2T = e2T + [G1(e1 − G2(u2))]T
Using causality of G1 and G2 this yields

http://dx.doi.org/10.1007/978-3-319-49992-5_1


16 2 Small-Gain and Passivity for Input–Output Maps

u2T = e2T + {G1[e1T − (G2(u2T ))T ]}T (2.9)

For every e1, e2 this is an equation of the form u2T = C(u2T ). We claim that C is
a contraction on Lq,[0,T ](U2) (the space of Lq -functions on [0, T ]). Indeed for all
u2T , v2T ∈ Lq,[0,T ](U2)

||G1[e1T − (G2(u2T ))T ] − G1[e1T − (G2(v2T ))T ]||q,[0,T ]
≤ �1q ||(G2(v2T ))T − (G2(u2T ))T ||q ≤ �1q · �2q ||u2T − v2T ||q

by (2.8). By assumption �1q · �2q < 1, and thus C is a contraction. Therefore, for
all T ≥ 0, and all (e1, e2) ∈ Lqe(E1 × E2), there is a uniquely defined element of
u2T ∈ Lq,[0,T ](U2) solving u2T = C(u2T ). The same holds trivially for u1T since

u1T = e1T − (G2(u2T ))T

Thus for all (e1, e2) ∈ Lqe(E1 × E2) there exists a unique solution (u1, u2) ∈
Lqe(U1 ×U2) to (1.30).

(ii) Since u1T = e1T − (G2(u2T ))T , u′
1T = e′

1T − (G2(u′
2T ))T we obtain by sub-

traction and the triangle inequality

||u1T − u′
1T || ≤ ||e1T − e′

1T || + �2q ||u2T − u′
2T ||

for all (e1, e2), (e′
1, e

′
2) and corresponding solutions (u1, u2), (u′

1, u
′
2). Similarly

||u2T − u′
2T || ≤ ||e2T − e′

2T || + �1q ||u1T − u′
1T ||

and thus

||u1T − u′
1T || ≤ (1 − �1q�2q)

−1(||e1T − e′
1T || + �2q ||e2T − e′

2T ||), (2.10)

and similarly for ||u2T − u′
2T ||. This yields (ii).

(iii) Insert e′
1 = e′

2 = 0 in (2.10) and in the same inequality for the expression
||u2T − u′

2T ||. �

Remark 2.1.9 For a linear map G, property (2.6) is equivalent to

||(G(u))T ||q ≤ �q ||uT ||q
and thus to the property that G has Lq -gain ≤ �q (with zero bias). Note also that in
this case the solution to e1 = e2 = 0 is u1 = u2 = 0, and thus (iii) is always satisfied.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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2.2 Passivity and the Passivity Theorems

While the small-gain theorem is naturally concerned with normed (finite-
dimensional) linear spaces V and the corresponding Banach spaces Lq(V) for every
q = 1, 2, . . . ,∞, passivity is, at least in first instance, independent of any norm, but,
at the same time, requires a duality between the input and output space.

Indeed, let us consider any finite-dimensional linear input spaceU (of dimension
m), and let the output space Y be the dual space U ∗ (the set of linear functions
on U ). Denote the duality product between U and U ∗ = Y by < y | u > for y ∈
U ∗, u ∈ U . (That is,< y | u > is the linear function y : U → R evaluated at u ∈ U .)
Furthermore, take any linear space of functions u : R+ → U , denoted by L(U ),
and any linear space of functions y : R+ → Y = U ∗, denoted by L(U ∗). Define
the extended spaces Le(U ), respectively Le(U ∗), similar to Definition1.1.2, that is,
u ∈ Le(U ) if uT ∈ L(U ) for all T ≥ 0 and y ∈ Le(U ∗) if yT ∈ L(U ∗) for all T ≥ 0.
Define a duality pairing between Le(U ) and Le(U ∗) by defining for u ∈ Le(U ), y ∈
Le(U ∗)

< y | u >T :=
∫ T

0
< y(t) | u(t) > dt , (2.11)

assuming that integral on the right-hand side exists. In examples, the duality product
< y(t) | u(t) > usually is the (instantaneous) power (electrical power if the compo-
nents of u, y are voltages and currents, or mechanical power if the components of
u, y are forces and velocities). In these cases, < y | u >T will denote the externally
supplied energy during the time interval [0, T ].
Definition 2.2.1 (Passive input–output maps) Let G : Le(U ) → Le(U ∗). Then G
is passive if there exists some constant β such that

< G(u) | u >T ≥ −β, ∀u ∈ Le(U ), ∀T ≥ 0, (2.12)

where additionally it is assumed that the left-hand side of (2.12) is well defined.

Note that (2.12) can be rewritten as

− < G(u) | u >T ≤ β, ∀u ∈ Le(U ), ∀T ≥ 0, (2.13)

with the interpretation that the maximally extractable energy is bounded by a finite
constant β. Hence, G is passive iff only a finite amount of energy can be extracted
from the system defined by G. This interpretation, together with its ramifications,
will become more clear in Chaps. 3 and 4.

Definition2.2.1 directly extends to relations.

Definition 2.2.2 (Passive relation) A relation R ⊂ Le(U ) × Le(U ∗) is said to
be passive if < y | u >T ≥ −β, for all (u, y) ∈ R and T ≥ 0, assuming that
< y | u >T is well defined for all (u, y) ∈ R and all T ≥ 0.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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18 2 Small-Gain and Passivity for Input–Output Maps

Remark 2.2.3 In many applications Le(U )will be defined as L2e(U ) for some norm
|| ||U on U . Then Le(U ∗) can be taken to be L2e(U ∗), with || ||U ∗ the norm on U ∗
canonically induced by || ||U , that is,

||y||U ∗ := max
u 
=0

< y | u >

||u||U .

This implies | < y | u > | ≤ ||y||U ∗ · ||u||U , yielding

| < G(u) | u >T | = | ∫ T
0 < G(u)(t) | u(t) > dt | ≤(∫ T

0 ||G(u)(t)||2U ∗dt
) 1

2 ·
(∫ T

0 ||u(t)||2Udt
) 1

2
.

(2.14)

Hence, in this case the left-hand side of (2.12) is automatically well defined. The
same holds for a passive relation R ⊂ L2e(U ) × L2e(U ∗)

Remark 2.2.4 For a linear single-input single-output map the property of passivity
is equivalent to the phase shift of an input sinusoid being always less than or equal
to 90◦ (see e.g., [343]). This should be contrasted with the Lq -gain of a linear input–
output map, which deals with the amplification of the input signal.

Similarly to Proposition1.2.3 we have the following alternative formulation of pas-
sivity for causal maps G.

Proposition 2.2.5 Let G : Le(U ) → Le(U ∗) satisfy (2.12). Then also

< G(u) | u > ≥ − β , ∀ u ∈ L(U ), (2.15)

if the left-hand side of (2.15) is well defined. Conversely, if G is causal, then (2.15)
implies (2.12).

Proof Suppose (2.12) holds. By letting T → ∞ we obtain (2.15) for u ∈ L(U ).
Conversely, suppose (2.15) holds and G is causal. Then for u ∈ Le(U )

< G(u) | u >T = < (G(u))T | uT >=< (G(uT ))T | uT >

= < G(uT ) | uT > ≥ −β.

�

We are ready to state the first version of the Passivity theorem.

Theorem 2.2.6 (Passivity theorem; first version) Consider the closed-loop system
G1‖ f G2 in Fig.1.1, with G1 : Le(U1) → Le(U ∗

1 ) and G2 : Le(U2) → Le(U ∗
2 ) pas-

sive, and E1 = U ∗
2 = U1, E2 = U ∗

1 = U2.

(a) Assume that for any e1 ∈ Le(U1), e2 ∈ Le(U2) there are solutions u1 ∈ Le(U1)

and u2 ∈ Le(U2). Then G1‖ f G2 with inputs (e1, e2) and outputs (y1, y2) is
passive.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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(b) Assume that for any e1 ∈ Le(U1) and e2 = 0 there are solutions u1 ∈ Le(U1), u2
∈ Le(U2). Then G1‖ f G2 with e2 = 0 and input e1 and output y1 is passive.

Proof The definition of standard negative feedback, cf. (1.30), implies the key
property

< y1 | u1 >T + < y2 | u2 >T

=< y1 | e1 − y2 >T + < y2 | e2 + y1 >T

=< y1 | e1 >T + < y2 | e2 >T ,

(2.16)

and thus for any e1 ∈ Le(U1), e2 ∈ Le(U2) and any T ≥ 0

< y1 | u1 >T + < y2 | u2 >T

=< y1 | e1 >T + < y2 | e2 >T
(2.17)

with y1 = G1(u1), y2 = G2(u2). By passivity of G1 and G2, < y1 | u1 >T ≥ −β1,

< y2 | u2 >T ≥ −β2, and thus by (2.17)

< y1 | e1 >T + < y2 | e2 >T ≥ −β1 − β2 (2.18)

implying part (a). For part (b) take e2 = 0 in (2.17). �
Remark 2.2.7 Theorem2.2.6 expresses an inherent robustness property of passive
systems: the closed-loop system G1‖ f G2 remains passive for all perturbations
of the input–output maps G1,G2, as long as they remain passive (compare with
Remark2.1.2).

In order to state a stronger version of the Passivity theorem we need stronger notions
of passivity. First of all, we will assume that the input space U is equipped with an
inner product <,>. Using the linear bijection

u ∈ U 	−→< u, · >∈ U ∗, (2.19)

we may then identify Y = U ∗ with U . That is, Y = U ∗ = U , and
< y | u >=< y, u >. Furthermore, for any input function u ∈ L2e(U ) and corre-
sponding output function y = G(u) ∈ L2e(U ) we will have < y | u >T =∫ T
0 < y(t), u(t) > dt , which will be throughout denoted by < y, u >T .

Definition 2.2.8 (Output and input strict passivity) Let U = Y be a linear space
with inner product <,> and corresponding norm || · ||. Let G : L2e(U ) → L2e(Y )

be an input–output map. Then G is input strictly passive if there exists β and δ > 0
such that

< G(u), u >T ≥ δ||uT ||22 − β, ∀u ∈ L2e(U ), ∀T ≥ 0, (2.20)

and output strictly passive if there exists β and ε > 0 such that

< G(u), u >T ≥ ε||(G(u))T ||22 − β, ∀u ∈ L2e(U ), ∀T ≥ 0. (2.21)

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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Furthermore, G : L2e(U ) → L2e(Y ) is merely passive if there exists β such that
(2.21) holds for ε = 0 (or equivalent (2.20) for δ = 0). Whenever we want to empha-
size the role of the constants δ, ε we will say that G is δ-input strictly passive or
ε-output strictly passive. In the same way we define (δ-)input and (ε-)output strict
passivity for relations R ⊂ L2e(U ) × L2e(Y ).

Remark 2.2.9 Note that by Remark2.2.3 the left-hand sides of (2.20) and (2.21) are
well defined.

Remark 2.2.10 Proposition2.2.5 immediately generalizes to input, respectively, out-
put strict passivity.

We obtain the following extension of Theorem2.2.6.

Theorem 2.2.11 (Passivity theorem; second version) Consider the closed-loop sys-
tem G1‖ f G2 in Fig.1.1, with G1 : L2e(U1) → L2e(U1), G2 : L2e(U2) → L2e(U2),
and E1 = U1 = U2 = E2 =: U an inner product space.

(a) Assume that for any e1, e2 ∈ L2e(U ) there are solutions u1, u2 ∈ L2e(U ). If
G1 and G2 are respectively ε1- and ε2-output strictly passive, then G1‖ f G2

with inputs (e1, e2) and outputs (y1, y2) is ε-output strictly passive, with ε =
min(ε1, ε2).

(b) Assume that for any e1 ∈ L2e(U )ande2 = 0 there are solutions u1, u2 ∈ L2e(U ).
If G1 is passive and G2 is δ2-input strictly passive, or if G1 is ε1-output strictly
passive and G2 is passive, then G1‖ f G2 for e2 = 0, with input e1 and output y1,
is δ2-input, respectively ε1-output strictly passive.

Proof Equation (2.17) becomes

< y1, u1 >T + < y2, u2 >T = < y1, e1 >T + < y2, e2 >T (2.22)

(a) Since G1 and G2 are output strictly passive (2.22) implies

< y1, e1 >T + < y2, e2 >T = < y1, u1 >T + < y2, u2 >T

≥ ε1||y1T ||22 + ε2||y2T ||22 − β1 − β2

≥ ε(||y1T ||22 + ||y2T ||22) − β1 − β2

for ε = min(ε1, ε2) > 0.
(b) Let G1 be passive and G2 be δ2-input strictly passive. By (2.22) with e2 = 0

< y1, e1 >T=< y1, u1 >T + < y2, u2 >T

≥ −β1 + δ2||u2T ||22 − β2 = δ2||y1T ||22 − β1 − β2

If G1 is ε1-output strictly passive and G2 is passive, then the same inequality
holds with δ2 replaced by ε1. �

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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Remark 2.2.12 A similar theorem can be stated for relations R1 and R2.

For statements regarding the L2-stability of the feedback interconnection of passive
systems a key observation will be the fact that output strict passivity implies finite
L2-gain.

Theorem 2.2.13 Let G : L2e(U ) → L2e(U ) be ε-output strictly passive. Then G
has L2-gain ≤ 1

ε
.

Proof Since G is ε-output strictly passive there exists β such that y = G(u) satisfies

ε||yT ||22 ≤ < y, u >T +β

≤ < y, u >T +β + 1
2 || 1√

ε
uT − √

εyT ||22

= β + 1
2ε ||uT ||22 + ε

2 ||yT ||22 ,

(2.23)

whence ε
2 ||yT ||22 ≤ 1

2ε ||uT ||22 + β, proving that γ2(G) ≤ 1
ε
. �

Remark 2.2.14 As a partial converse statement, note that if G is δ-input strictly
passive and has L2-gain ≤ γ, then

< G(u), u > ≥ δ‖u‖22 − β ≥ δ

γ
‖G(u)‖22 − β,

implying that G is δ
γ
-output strictly passive.

Combining Theorems2.2.11 and 2.2.13 one directly obtains the following.

Theorem 2.2.15 (Passivity theorem; third version) Consider the closed-loop system
G1‖ f G2 in Fig.1.1, with G1 : L2e(U1) → L2e(U1), G2 : L2e(U2) → L2e(U2), and
E1 = E2 = U1 = U2 =: U an inner product space.

(a) Assume that for any e1, e2 ∈ L2e(U ) there exist solutions u1, u2 ∈ L2e(U ). If
Gi is εi -output strictly passive, i = 1, 2, then G1‖ f G2 with inputs (e1, e2) and
outputs (y1, y2) has L2-gain ≤ 1

ε
with ε = min(ε1, ε2). For e1, e2 ∈ L2(U ) it

follows that u1, u2, y1, y2 ∈ L2(U ).
(b) Assume that for any e1 ∈ L2e(U )ande2 = 0 there are solutions u1, u2 ∈ L2e(U ).

If G1 is passive and G2 is δ2-input strictly passive, or if G1 is ε1-output strictly
passive and G2 is passive, then G1‖ f G2 for e2 = 0 with input e1 and output
y1 has L2-gain ≤ 1

δ2
, respectively ≤ 1

ε1
. Furthermore, if e1 ∈ L2(U ) then also

y1 = u2 ∈ L2(U ).

Remark 2.2.16 SupposeG1 andG2 are causal. Then byPropositions2.2.5 and 1.2.14
we can relax the assumption in (a) to assuming that for any e1, e2 ∈ L2(U ) there
exist solutions u1, u2 ∈ L2e(U ). Similarly, we can relax the assumption in (b) to

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1


22 2 Small-Gain and Passivity for Input–Output Maps

assuming that for any e1 ∈ L2(U ) and e2 = 0 there exist solutions u1, u2 ∈ L2e(U ).
If G1 and/or G2 are not causal, then this relaxation of assumptions will guarantee at
least L2-stability.

Example 2.2.17 Note that in Theorem2.2.15 (b) it is not claimed that u1 and y2 =
G2(u2) are in L2(U ). In fact, a physical counterexample to such a claim can be
given as follows. Consider a mass moving in one-dimensional space. Let the mass
be subject to a friction force which is the sum of an ideal Coulomb friction and a
linear damping. Furthermore, let themass be actuated by a force u1 = e1 − y2, where
e1 is an external force and y2 is the force delivered by a linear spring. Defining y1
as the velocity of the mass, the input–output map G1 from u1 to y1 for zero initial
condition (velocity zero) is output strictly passive, as follows from the definition of
the friction force. Furthermore, let G2 be the passive input–output map defined by
the linear spring for zero initial extension, with the spring attached at one end to
a wall and with the velocity of the other end being its input u2 and with output y2
being the spring force (acting on the mass). Now let e1(·) be an external force time
function with the shape of a pulse, of magnitude h and width w. Then by taking
h large enough the force e1 will overcome the total friction force (in particular the
Coulomb friction force), resulting in a motion of the mass and thus of the free end
of the spring. On the other hand by taking the width w of the pulse small enough
the extension of the spring will be such that the spring force does not overcome the
Coulomb friction force. As a result, the velocity of the mass y1 will converge to zero,
while the spring force y2 will converge to a nonzero constant value (smaller than the
Coulomb friction constant). Hence, y2 and u1 will not be in L2(R).

A useful generalization of the Passivity Theorems2.2.11 (a) and 2.2.15 (a), where
we do not necessarily require passivity of G1 and G2 separately, can be stated as
follows.

Theorem 2.2.18 Suppose there exist constants εi , δi ,βi , i = 1, 2, satisfying

ε1 + δ2 > 0, ε2 + δ1 > 0 (2.24)

such that
< Gi (ui ), ui >T ≥ εi ||(Gi (ui ))T ||22 + δi ||uiT ||22 − βi , (2.25)

for all ui ∈ L2e(Ui ) and all T ≥ 0, i = 1, 2. Then G1‖ f G2 has finite L2-gain from
(e1, e2) to (y1, y2).

Proof Addition of (2.25) with yi = Gi (ui ) for i = 1, 2 yields

< y1, u1 >T + < y2, u2 >T

≥ ε1‖y1T ‖22 + δ1‖u1T ‖22 + ε2‖y2T ‖2 + δ2‖u2T ‖2 − β1 − β2.
(2.26)
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Substitution of the negative feedback u1 = e1 − y2, u2 = e2 + y1 results in

< y1, e1 >T + < y2, e2 >T +β1 + β2

≥ ε1‖y1T ‖22 + δ1‖e1 − y2‖22 + ε2‖y2‖22 + δ2‖e2 + y1‖22. (2.27)

Writing out and rearranging terms leads to

−δ1‖e1T ‖22 − δ2‖e2T ‖22 + β1 + β2

≥ (ε1 + δ2)‖y1T ‖22 + (ε2 + δ1)‖y2T ‖22−2δ1 < y2, e1 >T −2δ2 < y1, e2 >T − < y1, e1 >T − < y2, e2 >T .

By the positivity assumption onα2
1 := ε1 + δ2,α

2
2 := ε2 + δ1 we can perform “com-

pletion of the squares” on the right-hand side of this inequality, to obtain an expression
of the form

‖
[
α1y1T
α2y2T

]
− A

[
e1T
e2T

]
‖22 ≤ c2 ‖

[
e1T
e2T

]
‖22 + β1 + β2, (2.28)

for a certain 2 × 2matrix A and constant c. In combinationwith the triangle inequality

‖
[
α1y1T
α2y2T

]
‖2 ≤ ‖

[
α1y1T
α2y2T

]
− A

[
e1T
e2T

]
‖2 + ‖A

[
e1T
e2T

]
‖2, (2.29)

this yields finite L2-gain from (e1, e2) to (y1, y2). �
Remark 2.2.19 Clearly, Theorem2.2.18 includes Part (a) of Theorems2.2.11 and
2.2.15 by taking δ1 = δ2 = 0. Importantly, it shows that ε1, ε2, δ1, δ2 need not all be
nonnegative. Negativity of ε1 (“lack of passivity” of G1) can be “compensated” by
a sufficiently large positive δ2 (“surplus of passivity” of G2).

Notice that the last version of the Passivity Theorem2.2.15 still assumes the exis-
tence of solutions u1, u2 ∈ L2e(U ). In the small-gain case this was remedied, cf.
Theorem2.1.8, by replacing finite Lq -gain and the small-gain condition by their
incremental versions. Similarly this can be done by invoking a notion of incremental
passivity defined as follows.

Definition 2.2.20 (Incremental passivity) An input–output map G : L2e(U ) →
L2e(Y ) is E-output strictly incrementally passive for some E > 0 if there exists
β such that

E||yT − zT ‖22 ≤ < y − z, u − v >T + β (2.30)

for all u, v ∈ L2e(U ) and corresponding outputs y = G(u), z = G(v). IfE = 0 then
G is incrementally passive.

Furthermore, G is called �-input strictly incrementally passive for some � > 0 if
there exists β such that

�||uT − vT ‖22 ≤ < y − z, u − v >T + β (2.31)
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for all u, v ∈ L2e(U ) and corresponding outputs y = G(u), z = G(v).

We immediately obtain the following incremental version of Theorem2.2.15.

Proposition 2.2.21 Consider the closed-loop system G1‖ f G2 in Fig.1.1, with G1 :
L2e(U1) → L2e(U1), G2 : L2e(U2) → L2e(U2), and E1 = U1 = U2 = E2 =: U an
inner product space.

(a) Assume that for any e1, e2 ∈ L2e(U ) there are solutions u1, u2 ∈ L2e(U ). If G1

and G2 are respectively E1- and E2-output strictly incrementally passive, then
G1‖ f G2 with inputs (e1, e2) and outputs (y1, y2) is E-output strictly incremen-
tally passive, with E = min(E1,E2).

(b) Assume that for any e1 ∈ L2e(U )ande2 = 0 there are solutions u1, u2 ∈ L2e(U ).
If G1 is incrementally passive and G2 is �2-input strictly incrementally passive,
or if G1 is E1-output strictly incrementally passive and G2 is incrementally
passive, then G1‖ f G2 with e2 = 0 and input e1 and output y1 isE-output strictly
incrementally passive, with E equal to �2 respectively E1.

The following crucial step is the observation that output strict incremental passivity
implies finite incremental L2-gain in the same way as output strict passivity implies
finite L2-gain, cf. Theorem2.2.13.

Proposition 2.2.22 Let G : L2e(U ) → L2e(U ) be E-output strictly incrementally
passive. Then G has incremental L2-gain ≤ 1

E
.

Proof Repeat the same argument as in the proof of Theorem2.2.13, but now in the
incremental setting, to conclude that

E‖yT − zT ‖22 ≤ β + 1

2E
‖uT − vT ‖22 + E

2
‖yT − zT ‖22,

where y = G(u), z = G(v). This proves that the incremental L2-gain of G is
≤ 1

E
. �

By combining Propositions2.2.21 and 2.2.22 with Theorem2.1.8 we immediately
obtain the following corollary.

Corollary 2.2.23 Consider the closed-loop system G1‖ f G2 in Fig.1.1, with G1 :
L2e(U1) → L2e(U1), G2 : L2e(U2) → L2e(U2), and E1 = E2 = U1 = U2 =: U an
inner product space.

Assume that G1 and G2 are E1-, respectively E2-, output strictly incrementally
passive, and that

E1 · E2 > 1. (2.32)

Then

(i) For all (e1, e2) ∈ L2e(E1 × E2) there exists a unique solution (u1, u2, y1, y2) ∈
L2e(U1 ×U2 × Y1 × Y2).

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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(ii) The map (e1, e2) 	→ (u1, u2) is uniformly continuous on the domain L2e(E1 ×
E2).

(iii) If the solution (u1, u2) to e1 = e2 = 0 is in L2(U1 ×U2), then (e1, e2) ∈
L2(E1 × E2) implies that (u1, u2) ∈ L2(U1 ×U2).

Remark 2.2.24 (General power-conserving interconnections) All the derived pas-
sivity theorems can be generalized to interconnections which are more general than
the standard feedback interconnection of Fig. 1.1. This relies on the observation
that the essential requirement in the proof of Theorem2.2.6 is the identity (2.16),
expressing the fact that the feedback interconnection u1 = −y2 + e1, u2 = y1 + e2 is
power-conserving. Many other interconnections share this property, and as a result
the interconnected systems share the same passivity properties as the closed-loop
systems arising from standard feedback interconnection. As an example, consider
the following system (taken from [355]) given in Fig. 2.1. Here R represents a robotic
system andC is a controller, while E represents the environment interacting with the
controlled robotic mechanism. The external signal e denotes a velocity command.
We assume R and E to be passive, and C to be a output strictly passive controller.
By the interconnection constraints uC = yE + e, uR = yE and uE = −yR − yC we
obtain

< yC | uC > + < yR | uR > + < yE | uE > = < yC | e >

and hence, as in Theorem2.2.15 part (b), the interconnected system with input e and
output yC is output strictly passive, and therefore has finite L2-gain.

This idea will be further developed in the subsequent chapters, especially in
Chaps. 4, 6 and 7 in the passive and port-Hamiltonian systems context.

Fig. 2.1 An alternative
power-conserving
interconnection

C
yCuCe

R

E

+
+uR yR

uEyE

−

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_7
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Fig. 2.2 Feedback system
with multipliers
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2.3 Loop Transformations

The range of applicability of the small-gain and passivity theorems can be consider-
ably enlarged using loop transformations. We will only indicate two basic ideas.

The first possibility is to insertmultipliers in Fig. 1.1 by pre- and post-multiplying
G1 andG2 by Lq -stable input–output mappingsM and N and their inversesM−1 and
N−1, which are also assumed to be Lq -stable input–output mappings, see Fig. 2.2.

By Lq -stability of M, M−1, N and N−1 it follows that e1 ∈ Lq(E1), e2 ∈ Lq(E2)

if and only ifM(e1) ∈ Lq(E1), M(e2) ∈ Lq(E2). Thus stability ofG1‖ f G2 is equiv-
alent to stability of G1‖ f G2, with G ′

1 = NG1M−1, G ′
2 = MG2N−1.

A second idea is to introduce an additional Lq -stable and linear operator K in the
closed-loop systemG1‖ f G2 by first subtracting and then adding toG2 (see Fig. 2.3).

Using the linearity of K , this can be redrawn as in Fig. 2.4. Clearly, by stability
of K , e1 − K (e2) and e2 are in Lq if and only if e1, e2 are in Lq . Thus stability of
G1‖ f G2 is equivalent to stability of G ′

1‖ f G ′
2.

2.4 Scattering and the Relation Between Passivity
and L2-Gain

Let us return to the basic setting of passivity, as exposed in Sect. 2.2, starting with
a finite-dimensional linear input space U (without any additional structure such as
inner product or norm) and its dual space Y := U ∗ defining the space of outputs.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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G1
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K
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++ e2y2

e1 −Ke2 y1

Fig. 2.4 Redrawn transformed closed-loop configuration

On the product space U × Y of inputs and outputs there exists a canonically
defined symmetric bilinear form � , �, given as

� (u1, y1), (u2, y2) �:=< y1 | u2 > + < y2 | u1 > (2.33)

with ui ∈ U, yi ∈ Y, i = 1, 2, and< | > denoting the duality pairing between Y =
U ∗ and U . With respect to a basis e1, . . . , em of U (where m = dimU ), and the
corresponding dual basis e∗

1, . . . , e
∗
m of Y = U ∗, the bilinear form � , � has the

matrix representation [
0 Im
Im 0

]
(2.34)

It immediately follows that � , � has singular values +1 (with multiplicity m)
and−1 (also with multiplicitym), and thus defines an indefinite inner product on the
spaceU × Y of inputs and outputs. Scattering is based on decomposing the combined
vector (u, y) ∈ U × Y with respect to the positive and negative singular values of
this indefinite inner product. More precisely, we obtain the following definition.

Definition 2.4.1 Any pair (V, Z) of subspaces V, Z ⊂ U × Y is called a pair of
scattering subspaces if

(i) V ⊕ Z = U × Y
(ii) � v1, v2 �> 0, for all v1, v2 ∈ V unequal to 0,

� z1, z2 �< 0, for all z1, z2 ∈ Z unequal to 0
(iii) � v, z �= 0, for all v ∈ V, z ∈ Z .

It follows from (2.34) that any pair of scattering subspaces (V, Z) satisfies

dim V = dim Z = m
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Given a pair of scattering subspaces (V, Z) it follows that any combined vector
(u, y) ∈ U × Y also can be represented, in a uniquemanner, as a pair v ⊕ z ∈ V ⊕ Z ,
where v is the projection along Z of the combined vector (u, y) ∈ U × Y on V , and
z is the projection of (u, y) along V on Z . The representation (u, y) = v ⊕ z is
called a scattering representation of (u, y), and v, z are called the wave vectors of
the combined vector (u, y).

Using orthogonality of V with respect to Z it immediately follows that for all
(ui , yi ) = vi ⊕ zi , i = 1, 2,

� (u1, y1), (u2, y2) �=< v1, v2 >V − < z1, z2 >Z (2.35)

where <, >V denotes the inner product on V defined as the restriction of � , �
to V , and <, >Z denotes the inner product on Z defined as minus the restriction of
� , � to Z .

In particular, taking (u1, y1) = (u2, y2) = (u, y), we obtain for any (u, y) = v ⊕
z the following fundamental relation between (u, y) and its wave vectors v, z

< y | u >= 1

2
� (u, y), (u, y) �= 1

2
||v||2V − 1

2
||z||2Z , (2.36)

where || ||V , || ||Z are the norms on V, Z , defined by <, >V , respectively <, >Z .
Identifying as before < y | u > with power, the vector v thus can be regarded as

the incoming wave vector, with half times its norm being the incoming power, and
the vector z is the outgoing wave vector, with half times its norm being the outgoing
power.

Now let G : Le(U ) → Le(Y ), with Y = U ∗, be an input–output map as before.
Expressing (u, y) ∈ U × Y in a scattering representation as v ⊕ z ∈ V ⊕ Z , it fol-
lows that G transforms into the relation

Rvz = {v ⊕ z ∈ Le(V ) ⊕ Le(Z) |
v(t) ⊕ z(t) = (u(t), y(t)), t ∈ R+, y = G(u)}, (2.37)

with the function spaces Le(V ) and Le(Z) yet to be defined. As a direct consequence
of (2.36) we obtain the following relation between G and Rvz :

< G(u) | u >T = 1

2
||vT ||2V − 1

2
||zT ||2Z , T ≥ 0. (2.38)

In particular, if u and y = G(u) are such that v ∈ L2e(V ) and z ∈ L2e(Z) then, since
the right-hand side of (2.38) is well defined, also the expression < G(u) | u >T is
well defined for all T ≥ 0.

We obtain from (2.38) the following key relation between passivity of G and the
L2-gain of Rvz .
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Proposition 2.4.2 Consider the relation Rvz ⊂ L2e(V ) ⊕ L2e(Z) as defined in
(2.37), with Le replaced by L2e. Then G is passive if and only if Rvz has L2-gain
≤ 1.

Proof By (2.38), ||zT ||2Z ≤ ||vT ||2V + c if and only if < G(u) | u >T≥ − c
2 . �

If the relation Rvz can be written as the graph of an input–output map

S : L2e(V ) → L2e(Z), (2.39)

(with respect to the intrinsically defined norms || ||V and || ||Z ) then we call S the
scattering operator of the input–output mapG.We obtain the following fundamental
relation between passivity and L2-gain.

Corollary 2.4.3 The scattering operator S has L2-gain ≤ 1 if and only if G is
passive.

As noted before, the choice of scattering subspaces V, Z , and therefore of the scat-
tering representation, is not unique. Particular choices of scattering subspaces are
given as follows. Take any basis e1, . . . , em for U , with dual basis e∗

1, . . . , e
∗
m for

U ∗ = Y . Then it can be directly checked that the pair (V, Z) given as

V = span
{(

ei√
2
,

e∗
i√
2

)
, i = 1, . . . ,m

}

Z = span
{(

−ei√
2
,

e∗
i√
2

)
, i = 1, . . . ,m

} (2.40)

defines a pair of scattering subspaces. (In the above the factors 1√
2
were inserted in

order that the vectors spanning V , respectively Z , are orthonormalwith respect to the
intrinsically defined inner products <, >V and<, >Z .) In these bases forU,Y and
V, Z the relation between (u, y) and its scattering representation (v, z) is given as

v = 1√
2
(u + u∗)

z = 1√
2
(−u + u∗).

(2.41)

Hence, with y = G(u), the relation Rvz has the coordinate expression

Rvz = {(v, z) : R+ → V × Z |
v(t) = 1√

2
(G + I )(u)(t), z(t) = 1√

2
(G − I )(u)(t)}, (2.42)

where I denotes the identity operator. In particular, Rvz can be expressed as the
graph of a scattering operator S if and only if the operator G + I : L(U ) → L(V )

is invertible, in which case S takes the standard form

S = (G − I )(G + I )−1. (2.43)
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In caseU is equipped with an inner product<, >U , andU ∗ can be identified withU
(see Sect. 2.2), we obtain the following relation between passivity of G and L2-gain
of Rvz .

Proposition 2.4.4 Let U be endowed with an inner product <, >U . Consider an
input–output mapping G : L2e(U ) → L2e(U ) and the corresponding relation Rvz ⊂
L2e(V ) × L2e(Z). Then G is input and output strictly passive if and only if the
L2-gain of Rvz (or, if G + I is invertible, the L2-gain of the scattering operator S)
is strictly less than 1.

Proof Let the L2-gain of Rvz be ≤ 1 − δ, with 1 ≥ δ > 0. Then ||zT ||22 ≤ (1 −
δ)||vT ||22 + c, and thus by (2.38)

2 < G(u) | u > ≥ δ||vT ||22 − c

Since ||vT ||22 = ||uT + (G(u))T ||22 = ||uT ||22 + ||G(u)T ||22 + 2 < G(u) | u >, this
implies for some ε > 0 and β

< G(u) | u > ≥ ε||G(u)||22 + ε||u||22 − β

The converse statement follows similarly. �

Remark 2.4.5 Since “input strict passivity” plus “finite L2-gain” implies output strict
passivity, cf. Remark2.2.14, and conversely output strict passivity implies finite
L2-gain, the condition of input and output strict passivity in the above proposition
can be replaced by input strict passivity and finite L2-gain.

2.5 Notes for Chapter 2

1. The treatment of Sects. 2.1 and 2.2 is largely based on Vidyasagar [343], with
extensions from Desoer & Vidyasagar [83]. We have emphasized a “coordinate-
free” treatment of the theory, which in particular has some impact on the for-
mulation of passivity. See also Sastry [267] and Khalil [160] for expositions.
The developments regarding incremental passivity, in particular Corollary2.2.23,
seem to be relatively new.

2. The small-gain theorem is usually attributed to Zames [362, 363], and in its
turn is closely related to the Nyquist stability criterion. See also Willems [348].
A classical treatise on passivity and its implications for stability is Popov [255].

3. Theorem2.2.18 is treated in Sastry [267], Vidyasagar [343].

4. An interesting generalization of the small-gain theorem (Theorem2.1.1) is
obtained by considering input–output maps G1 and G2 that have a finite “nonlin-
ear gain” in the following sense. Suppose there exist functions γi : R+ → R+
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of class1 K and constants bi , i = 1, 2, such that

‖Gi (uT )‖ ≤ γi (‖uT ‖) + bi , T ≥ 0, (2.44)

for i = 1, 2, where ‖ ‖ denotes some Lq -norm. Note that by taking linear func-
tions γi (z) = γi z, with constant γi > 0, we recover the usual definition of finite
gain. Then, similar to the proof of Theorem2.1.1, we derive the following inequal-
ities for the closed-loop system G1‖ f G2:

‖u1T ‖ ≤ ‖y2T ‖ + ‖e1T ‖
‖u2T ‖ ≤ ‖y1T ‖ + ‖e2T ‖ (2.45)

and thus by (2.44)
‖y1T ‖ ≤ γ1(‖y2T ‖ + ‖e1T ‖) + b1

‖y2T ‖ ≤ γ2(‖y1T ‖ + ‖e2T ‖) + b2
(2.46)

which by cross-substitution yields

‖y1T ‖ ≤ γ1(γ2(‖y1T ‖ + ‖e2T ‖) + ‖e1T ‖ + b2) + b1

‖y2T ‖ ≤ γ2(γ1(‖y2T ‖ + ‖e1T ‖) + ‖e2T ‖ + b1) + b2.
(2.47)

Onemaywonder under what conditions on γ1 and γ2 the inequalities (2.47) imply
that

‖y1T ‖ ≤ δ1(‖e1T ‖, ‖e2T ‖) + d1

‖y2T ‖ ≤ δ2(‖e1T ‖, ‖e2T ‖) + d2
(2.48)

for certain constants d1, d2 and functions δi : R+ × R+ → R+, i = 1, 2, which
are of class K in both their arguments. Indeed, this would imply that the closed-
loop system G1‖ f G2 has finite nonlinear gain from e1, e2 to y1, y2. As shown
in Mareels & Hill [194] this is the case if there exist functions g, h ∈ K and a
constant c ≥ 0, such that

γ1 ◦ (id + g) ◦ γ2(z) ≤ z − h(z) + c, for all z, (2.49)

with id denoting the identity mapping. Condition (2.49) can be interpreted as a
direct generalization of the small-gain condition γ1 · γ2 < 1. See also [149] for
another formulation.

5. There is an extensive literature related to the theory presented in Sects. 2.1 and
2.2. Among themany contributions wemention the work of Safonov [262]&Teel
[337] on conic relations, the work on nonlinear small-gain theorems in Mareels
& Hill [194], Jiang, Teel & Praly [149], Teel [336] briefly discussed in the pre-

1A function γ : R+ → R+ is of class K (denoted γ ∈ K) if it is zero at zero, strictly increasing
and continuous.
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vious Note 4, and work on robust stability, see e.g., Georgiou [111], Georgiou &
Smith [112], as well as the important contributions on stability theory within the
“Petersburg school”, see e.g., the classical paper Yakubovich [359], and develop-
ments inspired by this, see e.g., Megretski & Rantzer [215]. The developments
stemming from dissipative systems theory will be treated in Chaps. 3, 4, and 8.

6. For further ramifications and implications of the loop transformations sketched in
Sect. 2.3 we refer to Vidyasagar [343], Scherer, Gahinet & Chilali [306], Scherer
[307], and the references quoted therein.

7. The scattering relation between L2-gain and passivity is classical, and can be
found in Desoer & Vidyasagar [83], see also Anderson [6]. The geometric,
coordinate-free, treatment given in Sect. 2.4 is developed in Maschke & van der
Schaft [208], Stramigioli, van der Schaft, Maschke & Melchiorri [190, 331],
Cervera, van der Schaft & Banos [63].

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_8
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