Chapter 2

Distribution and
conditional expectation

Following the same spirit as in the previous chapter, we continue to explore the
implications of applying the results from measure theory to the field of probability
theory. This chapter introduces in particular concepts that will be key later to study-
ing various stochastic processes.

In the first section, we state the Radon—-Nikodym theorem [78] without proof,
and again refer the reader to Rudin [88] for the details. This result basically says
that, under certain assumptions and having two positive measures, there is a unique
measurable function ¢ such that the measure of a set for the first measure can be
expressed using the function ¢ and the second measure. The function ¢ is called
to the Radon—Nikodym derivative of the first with respect to the second measure.
A nice consequence of the theorem is that positive measures can be expressed using
a measurable function and a well-known reference measure such as the Lebesgue
measure. This result is important in probability theory because it is the main ingre-
dient to define more rigorously key probability concepts seen at the undergraduate
level. The theorem is used in particular in this chapter to define the distribution of a
random variable and the concept of conditional expectation.

Distribution — In the second section, we define the distribution of a random vari-
able and prove the change of variable formula which shows how quantities related
to the random variable can be computed using the distribution rather than the more
mysterious underlying probability measure. The random variable is said to be con-
tinuous or discrete depending on whether its distribution satisfies a property called
absolute continuity with respect to the Lebesgue or the counting measure. In partic-
ular, the Radon—-Nikodym theorem implies that the density function of a continuous
random variable and the probability mass function of a discrete random variable can
both be seen as the Radon—-Nikodym derivative of their distribution with respect to
a reference measure. This not only unifies discrete and continuous random variables
under the same umbrella, but also, together with the change of variable formula,
this gives a powerful computational tool to study random variables.
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26 2 Distribution and conditional expectation

Conditional expectation — In the third section, we introduce the important concept
of conditional expectation which will be important later for defining and studying
martingales and Markov chains. Roughly speaking, the conditional expectation of a
random variable with respect to a o-algebra is the best guess we can make about the
random variable given the information contained in the ¢-algebra. The existence
and uniqueness of the conditional expectation follows from the Radon—Nikodym
theorem. We show how important formulas seen at the undergraduate level can be
derived from this more abstract concept of conditional expectation, and also how
to compute the conditional expectation in practice by breaking down the random
variable under consideration into pieces that are either measurable with respect to
or independent of the conditioning o-algebra.

2.1 Radon-Nikodym theorem

This theorem is a general result in measure theory that has interesting applications
in probability theory discussed in the next sections. To motivate the theorem, note
that, given a positive measurable function ¢ on (,.%, 1),

v(A):/q)du:/q)lAdu forall AeF
A

defines a new measure v on (£2,.%). Indeed, for each sequence (A,) of mutually
exclusive measurable sets, we have

( ) /hm4 ¢1A>d“—11m2/¢lAdu Z;V(A,)

according to the monotone convergence theorem. The Radon—-Nikodym theorem is
in some sense the converse of the previous statement as it gives the existence and
uniqueness of ¢ under certain conditions on the measure v.

Definition 2.1 (Absolute continuity). The measure Vv is said to be absolutely con-
tinuous with respect to i, which we write v < 1, whenever

forall A € #, u(A)=0 implies that v(A) =0. (2.1)
This definition is motivated by the fact that
W(A)=0 implies that v(A)= A¢du 0.
In particular, given two positive measures (U and v, the absolute continuity of v with

respect to U is a necessary condition for the existence of the function ¢ above. The
Radon-Nikodym theorem states that this condition is also sufficient.
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Theorem 2.1 (Radon-Nikodym). Let u and v be two o-finite measures such
that v is absolutely continuous with respect to [. Then,

o Thereis ¢ : (Q2,F)— (R, PB) measurable positive such that

V(A):'/Ad)du forall Ae Z.

The function ¢ is written ¢ = dv /du and is called the Radon-Nikodym deriva-
tive of the measure v with respect to the measure 1.

e [tisunique in the sense that two such derivatives are equal [L-almost everywhere:
the set where both functions differ has measure zero for |.

This version of the theorem was proved by Nikodym in [78] and extends an earlier
result due to Radon who proved the theorem in the special case where the under-
lying space is R” rather than a general measure space. To understand the assump-
tion of the theorem, assume for a moment that the measures v and u are simply
nonnegative functions defined on the real line. Then, there exists a function ¢ that
satisfies v = ¢ u if and only if

u(x)=0 implies v(x)=0 forall xeR.

This last condition can be viewed as the analog of the absolute continuity for positive
measures (2.1). For a proof of the theorem, we refer to [88, Chapter 6]. In the next
two sections, we use this theorem to redefine more rigorously various key concepts
of probability theory.

2.2 Induced measure and distribution

Having a real random variable X on a probability space, one can define a probability
measure Vy on the Borel o-algebra by setting

vx(B) = P(X € B) = /Q L1 dP forall Be .

It is called the measure induced by X in measure theory and distribution of X in
probability theory. To study a random variable in practice, probabilists do not work
with the probability measure P but with its distribution by using the following result
called change of variables formula.

Theorem 2.2. Let X : (Q2,.%,P) — (R,#) and h : R — R be measurable. Then,
whenever h is positive or integrable,

E(h(X)) = /R hdvy = /R h(x) v (dx). 2.2)
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Proof. The steps of the proof follow the construction of the integral.

Step 1 — Assume first that 2 = 1p for some Borel set B. Then,
E(15(X)) = E(1{X € B}) = P(X € B) = vy(B) = / 1zdvy.
JR

Step 2 — In case h = a; 1p, +--- +a, 1p, is a simple measurable function, we use
the previous step and the linearity of the integral to obtain

E(h(X))ia,-E(lBi(X))gaii/RlBide :/thvx.

Step 3 — Assume that / is positive. Recall from (1.6) that
Sp(x) =min(n,27"|2"h(x)]) forall xeR

defines a nondecreasing sequence of simple measurable functions with pointwise
limit 4. In particular, by the monotone convergence theorem,

E(h(X)) = lim E(sn(X)) = lim [ spdvy = / hdvy.
n—soo n—e JR R

Step 4 — Finally, when £ is integrable, we write # = h* —h™. Since h* and h~ are

both positive (so the previous step applies) and integrable,

E(h(X)) = E(i* (X)) — E(h™ (X)) :/R}ﬁdvx —/ﬂ%h*dvx :/thvx.

This completes the proof. O

Note that the probability that X € A and the expected value of X can be computed
by taking 7 = 14 and i = id respectively, i.e.,

P(X eA):/RlAde:/Advx and E(X):/Rxdvx.

In practice, it is convenient to express the distribution vy as a measurable function
times a standard measure such as the Lebesgue measure. This idea is again related to
the Radon—Nikodym theorem, which we now use to show the connection between
the theory we have presented so far and undergraduate probability classes.

Probability density function. A random variable X is said to be continuous
whenever its distribution vy is absolutely continuous with respect to the Lebesgue
measure. Since the Lebesgue measure is o-finite, the Radon—Nikodym theorem ap-
plies and gives the existence of a measurable function ¢x such that dvy = ¢x dA.
The derivative @ is then called the probability density function of the random vari-
able and the change of variable formula (2.2) becomes

E(h(X)) :/h¢>xd), :/ﬂ%h(x) ox (x) dx. 2.3)
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Probability mass function. A random variable X is said to be discrete whenever
its range S is either finite or countable, in which case its distribution vy is absolutely
continuous with respect to the counting measure on the set S, that is,

vy < Us where Ug(A) =card(A) forall ACS.

Using once more the Radon—Nikodym theorem gives the existence of a measurable
function ¢y such that dvy = ¢x dus. In this case, the derivative ¢y is called the
probability mass function and the change of variable formula (2.2) becomes

E(h(X)) = / hox dps =Y, h(x) ox(x). (2.4)

x€S

In conclusion, random variables are characterized by their distributions which, in
turn, are characterized by their Radon—Nikodym derivative ¢y with respect to some
standard measures, either the Lebesgue measure or the counting measure. To this
extent, measure theory and the abstract integral unify both discrete and continu-
ous random variables by interpreting both probability density and probability mass
functions as Radon—-Nikodym derivatives. In practice, we deal with the integral with
respect to the Lebesgue measure (2.3) or with respect to the counting measure (2.4)
instead of the somewhat mysterious probability measure P. For a list of the most
common distributions along with their interpretation and probability mass/density
functions, we refer to Figure 2.1.

2.3 Conditional expectation

To study stochastic processes later, the next step is to define conditional expecta-
tion since this is a key concept to express certain dependency relationships among
random variables and define martingales and Markov chains. This concept is intro-
duced in the following definition. The fact that the conditional expectation exists
and is unique follows from the Radon—-Nikodym theorem.

Definition 2.2. Let X € L' (Q,.7,P) and let ¥ C .7 be a c-algebra.
e The conditional expectation of X given ¥ is any

Ze #(Q,9) suchthat E(X14)=E(Z1,) forall Ac¥.

The variable Z is called a version of E(X |¥).
e Having a second random variable Y, we let E(X |Y) = E(X |o(Y)).
e Also, we define the conditional probability as

P(X € B|9) = E(1{X € B} |9).
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Theorem 2.3. The conditional expectation exists and is unique in the sense that two
versions of the conditional expectation are equal P-almost surely.

Proof. Assuming first that X is positive, since
V(A) = E(X14) :/XdP forall Ac%
A

defines a finite measure v < P on the space (2,9), there exists Z that satisfies
the statement of the theorem, namely the Radon-Nikodym derivative dv/dP, and
two such random variables are equal P-almost surely. In the general case where the
random variable X is integrable, the first part of the proof applies to its positive
part and its negative part. In particular, there exist two random variables Z, and Z_
measurable with respect to ¢ such that

E(X14) = E(X*14) — E(X~ 1)
— E(Zi 14)—E(Z-14) = E((Z+ —Z-)14)

for all A € ¢. The uniqueness P-almost surely again follows from the uniqueness of

the Radon-Nikodym derivative. O

The conditional expectation has several interesting properties. For instance, it can
be proved that the conditional expectation inherits the following properties from the
unconditional expectation:

e The function X — E (X |¥) is linear and nondecreasing.
e Jensen’s inequality:

O(E(X|¥9)) <E(¢(X)|¥) for all convex functions ¢.
e Monotone convergence:

lim,e0 E(X,|9) =E(X|¥) whenever X,1X.

Dominated convergence:
lim, e E(X,|¥9) =E(X|¥) whenever X, — X and |X,| <Y elLl

The conditional expectation will be used later in two contexts.

1. From the concept of conditional expectation, we can recover important formulas
seen in undergraduate probability classes. These formulas show how to compute
the probability of an event or the expected value of a random variable by condi-
tioning on a partition of the sample space or on another random variable.

2. We also show how to compute the conditional expectation of a random variable
in practice by breaking down this variable into pieces that are measurable with
respect to the ¢-algebra and pieces that are independent of the ¢-algebra. These
results will be our main tools to study martingales.
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We now explore these two aspects.

Computing by conditioning. The most trivial but also one of the most useful prop-
erties, obtained by taking A = €2 in Definition 2.2, states that

E(E(X|Y))=E(X) forall X cL'(Q, Z P). (2.5)

This equation is most useful looking at it backward, namely, it is used in practice to
compute the expected value of a random variable, i.e., the right-hand side of (2.5), by
conditioning on another random variable, i.e., the left-hand side. To deduce how to
compute probability and expected value by conditioning, recall that the conditional
probability of an event and the conditional expectation of a discrete random variable
given an event are defined as

P(ANB)

P(A\B):W

and E(X|B)=

(2.6)

Now, assume that we have a o-algebra ¢ generated by a partition (B,) of events
that all have a strictly positive probability. The ¢-measurability of the conditional
expectation implies that

Z=EX|9)=a1p, +---+a,lp,+--- forsome a,cR,
but since B, € ¢, by definition of the conditional expectation,
E(X1p,)=E(Z1p,) = a, P(B,).
In particular, we obtain the following expression:

- (X an

E(X|9) = Z

Recall from our convention that, even if it is not specified, this equation only holds
almost surely. Setting X = 14 in (2.7), taking the expected value, using (2.5) and
recalling the definition of conditional probability from (2.6), we deduce

13,. 2.7

P(A) = E(E(14]9)) = ¥ E0a18) by, - i PAIB)P(B).  (28)

Now, let Y be a discrete random variable. Since the c-algebra o (Y) is generated by
a countable partition, we deduce from (2.7) that

x|y =y EEIT 20D 4y

S PY=y)

where the sum is over the range of Y. Taking the expected value, using (2.5) and
recalling the definition of conditional expectation from (2.6), we get
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E(X)=E(EX|Y)) =YX EX|Y =y)P(Y =)). (2.9)

Equations (2.8)—(2.9) are two important formulas seen at the undergraduate level.
They are useful in practice to compute unconditional probability and expected value
provided one is able to find natural partitions or random variables that make the
conditional objects easier to compute than their unconditional counterparts. The
exercises at the end of this chapter give a wide variety of examples of application of
these equations. Note that these two formulas can be proved more easily by simply
using the o-additivity of the probability. The approach we used is to show how they
can also be derived from the general definition of conditional expectation.

Computing conditional expectations. Finally, we give some tools that will be use-
ful later to prove that a stochastic process is a martingale and/or a Markov chain.
To better understand the real meaning of the conditional expectation hidden be-
hind its somewhat mysterious definition, one can think of the conditional expec-
tation as the best possible approximation of X given the information contained in
the o-algebra ¢, namely, the best possible approximation by a random variable
which is ¢-measurable. The larger the o-algebra, the better the approximation. With
this in mind, it is clear intuitively and easy to prove that

perfect information E(X|¥9)=X when ¥ =.% 2.10)
no information E(X|¥9)=E(X) when ¥ ={2,Q}. '

Following along these lines, we also prove that, when .77 C ¢,
E(E(X|9)|#) = E(E(X| #)|9) = E(X| #)

indicating that, after the double conditioning, the only information available comes
from the smaller o-algebra. It is convenient to call this property the projection rule
since one can think of the conditional expectation as the projection of a random
variable onto a subset of measurable functions, so the property above simply says
that projecting twice has the same result as projecting onto the smaller subset.

To compute the conditional expectation of a random variable in practice, the trick
is to break it down into pieces for which the information is perfect and pieces for
which there is no information and then use (2.10). To make this precise, we prove a
couple of lemmas showing basically that the pieces that are perfectly known under
the conditioning can be moved outside the conditional expectation.

Lemma 2.1. Let X,Y € L' (Q,.% P). Then,

EX+Y|9)=X+E(Y|Y9) whenX is9-measurable.
Proof. This follows from (2.10) and the linearity of the conditional expectation. [
Lemma 2.2. Let Y, XY € L'(Q,.%,P). Then,

E(XY|9)=XE(Y|Y) whenX is¥-measurable.
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Proof. LetA,B€ % andset X =14.Since ANB€ Y,
E(E(Y |9)14) = E(E(Y |9) 1405) = E(Y Lyng) = E(15Y 1)

which shows the result when X is an indicator function. We conclude following the
same steps and using the same ingredients as in the proof of Theorem 2.2. More
precisely, we extend the result to simple random variables using that the conditional
expectation is linear, then to positive random variables using the monotone conver-
gence theorem, and finally to integrable random variables by looking at negative
and positive parts separately. [

To study branching processes later, we will also need the following result.

Lemma 2.3. Let (X,) C L' (Q,.%,P) be a sequence of identically distributed ran-
dom variables and let T be an integer-valued random variable. Then,

EXi+Xo+--+X7 |T)=TE(X|T).
Proof. Letting A, = {T =n} for all n € N, we have

E((X1+-+Xr)1a,) =E((X1 +--+X:) 14,)
:E(nX1 lA”) :E(nE(X1 ‘T) lAn) ZE(TE(X1 |T) IA,,)-

Since o(T) is generated by the partition (A4,), the previous set of equations remains
true replacing A, by any A € ¢(T), which proves the result. O

The previous three lemmas show how to deal in practice with the pieces that are
measurable with respect to the conditioning. We now look at the other extreme: the
pieces of the random variable for which we have no information. In the second
part of (2.10), we have no information about the random variable because the
o-algebra does not give any information. More generally, we have no information
about the random variable whenever it is independent of the o-algebra, so we define
independence and show that the second statement in (2.10) extends to this case.
The reader should be already familiar with the independence of events. In contrast,
the next definition is about independence of ¢-algebras and random variables.

Definition 2.3. Two c-algebras ¢, 52 C .% are said to be independent if each event
in ¢ and each event in .7 are pairwise independent, i.e.,

P(ANB)=P(A)P(B) forall A€.ZandBcY¥.
Two random variables X and Y are independent when
P(X€AYeB) =P(Xe€A)P(Y €eB) forall A Bec %R)

meaning that 6(X) and o(Y) are independent.

The definition will become clear later when dealing with concrete examples of ran-
dom variables independent from a o-algebra in the context of stochastic processes.
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Before we state our next result about conditional expectation, recall that, having
a larger collection, finite or countable, of events (A4,), these events are said to be
independent whenever

P(ﬂA,) =]IP(Ai) forall IcC N*finite.

icl i€l

Recall also that a collection of events may be pairwise independent but not inde-
pendent, showing that independence is a somewhat subtle concept. To give a simple
counterexample, flip a fair coin twice and let X; and X, be respectively the outcome
of the first and second flip. Both flips are assumed to result in independent outcomes.
Then, define the events

A ={X,=H} Ay ={X, =H} Ay ={X; #X}.

These events are pairwise independent. Indeed, they all have probability one-half,
and the intersection of any two has probability one-fourth since

Ay ﬂAzZ{HH} A ﬂA}Z{HT} A20A3:{TH}.
However, they are not independent because
P(A|NA;NA3) = P(2) =0 # (1/2)° = P(A)) P(A2) P(A3).

Returning to conditional expectation, we now prove that, when the random variable
and the conditioning c-algebra are independent, suggesting that the c-algebra does
not provide any information about the random variable, our best guess is again the
unconditional expectation, i.e., we can remove the conditioning. This is proved in
the following lemma.

Lemma 2.4. Let X and & be independent. Then, E(X |4) = E(X).

Proof. The joint distribution of two independent random variables is equal to the
product of their distributions. Therefore, if X and Y are independent, by applying
Fubini’s theorem to the function %(x,y) = xy, we obtain

E(XY) = /hdvx,y _ /xvx(dx)/va(dy) — E(X)E(Y).
In particular, since X and Y = 1, are independent for all A € ¢,
E(X14) = E(XY) = E(X) E(Y) = E(X) E(14) = E(E(X) 14).
Moreover, since Z = E(X) is constant, it is ¢-measurable. O

Lemmas 2.1-2.4 are the main tools to compute the conditional expectation. As pre-
viously explained, in order to be able to apply these lemmas in practice, the first step
is to break down the random variable into pieces that are measurable with respect to
the o-algebra and pieces that are independent of the c-algebra.
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2.4 Exercises

Probability and conditional probability

Exercise 2.1. Let A and B be two events.

1. Prove that the occurrence of A makes the occurrence of B more likely if and only
if the occurrence of B makes the occurrence of A more likely.

2. Prove that A and B are independent if and only if A and B¢ are independent.

Exercise 2.2. Suppose that two balls numbered 1 and 2 are independently black or
white with the same probability of one-half.

1. Given that ball 2 is black, find the probability that the other ball is black.

2. Given that at least one of the two balls is black, find the probability that the other
ball is also black.

Exercise 2.3. An urn contains three white and three black balls. A fair die is rolled
and that number of balls is randomly chosen from the urn. Find the probability that
all the selected balls are white.

Exercise 2.4. An urn contains a white and b black balls. Take one ball at random,
paint it black in case it is white, and put the ball back in the urn. Then, take again
a ball at random. By what factor does the probability that the second ball is white
decreases in comparison with the probability that the first ball is white?

Exercise 2.5. An urn contains nine white balls and six black balls. Take three balls
at random, paint the white ones black, and put the balls back in the urn. Then, take
again three balls at random. Find the probability that these last three balls are all
white.

Exercise 2.6. Assume that a parallel system with n components is operational if and
only if at least one of its component is working. Compute the conditional probability
that component 1 is working given that the system is operational under the condition
that the components work independently with probability p.

Exercise 2.7. Consider n > 2 individuals labeled 1,2,...,n. Individual 1 creates a
rumor that she tells individual 2. Then, each individual independently tells the next
individual either the information she learned with probability p or the opposite of
the information she learned with probability g = 1 — p.

1. Condition on whether or not the information told by individual 2 is the one she
learned to express p, as a function of p,_; where p, be the probability that the
information received by individual r is the rumor created by individual 1.

2. Deduce an explicit expression for p,,.
3. Compute p, when p = 0, and in the limit as n — o when p € (0, 1).
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Exercise 2.8 (Craps). At this game, the player throws two fair dice.

e Ifthe sumis 7 or 11 then she wins.
e If the sumis 2, 3 or 12 then she loses.

e If the sum is anything else, she continues throwing the dice until the sum is either
that number again, in which case she wins, or 7, in which case she loses.

Find the probability of winning at the game of craps.

Hint: Compute first the probability that the sum i appears before the sum 7 by
conditioning on the value of the first roll.

Exercise 2.9. Players A and B play until they are two points apart. Find the proba-
bility that A is the first player to have two more points than the other player if each
point is independently won by A with probability p.

Exercise 2.10. Let A and B be two tennis players. Assume that each point is scored
independently by player A with probability p = 3/5. Compute the probability that A
wins a game, where the winner of a game is the first player with four points and two
more points than the other player.

Exercise 2.11. Two players A and B take turn playing a game until one of the two
players wins. Independently at each step, player A wins with probability p while
player B wins with probability ¢. Find the values of p and g for which the game is
fair, i.e., each player is equally likely to be the first one to win.

Hint: Condition on whether A wins the first game or not.

Exercise 2.12. Three evenly matched players A, B and C play a series of games. The
winner of each game plays the next game with the waiting player until a player wins
two games in a row and is declared the overall winner. Find the probability of each
of the players being the overall winner when A and B play the first game.

Exercise 2.13. A player plays alternatively with two opponents until she wins twice
in a row. Assuming that she wins independently each game with probability p
against opponent 1 and with probability g > p against opponent 2, should she start
playing with opponent 1 or with opponent 2 if her objective is to minimize the ex-
pected number of games she has to play?

Exercise 2.14. Consider a contest with 2" evenly matched players. The players are
randomly paired off against each other, then the 2"~! winners are again paired off,
and so on, until a single winner remains. Find the probability that two randomly
chosen contestants play each other.

Exercise 2.15 (The ballot problem). In an election, candidates A and B receive
respectively a and b votes with a > b. Let p(a,b) be the probability that candidate A
is always ahead of B when all the orderings of the votes are equally likely.
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1. Express p(a,b) as a function of p(a — 1,b) and p(a,b — 1) by conditioning on
the candidate who receives the last vote.
2. Deduce that p(a,b) = (a—b)/(a+b).

Exercise 2.16 (The best prize problem). Consider the game where n distinct
prizes are presented one by one to a player. All n! possible permutations are as-
sumed to be equally likely. Each time a prize is revealed, the player learns about
the relative rank of that prize compared to the ones already seen and, based on this
information, must decide to either leave with that prize or wait for a hopefully better
prize. A natural strategy is to reject the first m prizes and then accept the first one
that is better than the first m prizes provided there is one.

1. Letting B be the event that the best prize is selected and P, be the probability
under the strategy described above, prove that

Pm(B)zm(1+1+-~-+ ! >

n\m m+1 n—1

2. Deduce that, as n — o, the maximal probability of selecting the best prize under
the strategy described above converges to 1 /e ~ 0.368.

Exercise 2.17. Let m < n and let
Uy,...,Uy ~ Uniform{1,2,...,n}

be independent. Condition on the event that the random variables are all distinct to
compute the probability of the event

A={U <Uy < - <Up}.

Exercise 2.18. Compute P(A C B) where A and B are chosen uniformly at random
among the 2" possible subsets of a set with n elements.

Hint: Condition on the cardinal of B.

Exercise 2.19 (Euler ¢ function). For all n € N*, let ¢ (n) be the number of integers
less than or equal to n which are prime to n. We want to show that

1
o(n)=n ] (l - ) where P, ={p: pis prime and divides n}.
PEP; p

Let X ~ Uniform{1,2,...,n} and A, = {p divides X } for each p < n.

1. Compute P(A,) when p divides n.

2. Let py,..., p be distinct prime divisors of n. Prove that
Ap,Ap,,...,Ap, are independent.

3. Use the previous two questions to conclude.
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Expected value and conditional expectation

Exercise 2.20. Players 1,2, ..., n take turns flipping a coin having probability p of
turning up heads, with the successive flips being independent.

1. Thinking of the geometric random variable with success probability p as the
first flip resulting in heads, compute its expected value by conditioning on the
outcome of the first flip.

2. Use the same idea to find the probability mass function of the random variable X
referring to the first player who gets heads.

Exercise 2.21. Let (X,) be a sequence of independent and identically distributed
discrete random variables with finite range, say {1,2,...,m}. Find the expected
value of the total number T of random variables one needs to observe until the
first outcome appears again.

Hint: Condition on the outcome of the first random variable.
Exercise 2.22 (Matching rounds problem). Referring to Exercise 1.25,
1. Find E(X) and Var (X) where

X = number of husbands paired with their wife.

Now, assume that the couples for which a match occurs depart while the others are
again randomly paired. This continues until there is no couple left.

2. Prove that there are in average n rounds in this process.

Exercise 2.23. Let (X;) be a sequence of independent and identically distributed
discrete random variables and fix a pattern (x,xa,...,X,) such that,

(k15 Xn—kt2y - - -3 Xn) 7 (X1,%2, ..., x¢) forall k<n.

Let T be the number of random variables until the pattern appears.

1. Prove that T = i+ n if and only if
T>i and (Xi+1,Xi+2,.. . ,XiJrn) = ()C],)Cz,...,xn).
2. Deduce that E(T) = (px, px, *** Px,) " Where p, = P(X; = x).

Exercise 2.24. Assume that an a priori biased coin whose probability of landing on
heads is given by p is continually flipped.

1. Find the expected value of the time 7y 7 until the pattern HT appears.
2. Find the expected value of the time 7y until the pattern HH appears.

3. More generally, find the expected value of the time 7, until H appears n times in
arow by conditioning on 7;,_;.
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Exercise 2.25 (Compound random variable). Let (X,,) be a sequence of identi-
cally distributed random variables with

U=E(X,) <o and o= Var(X,) < oo

and let T be an independent nonnegative integer-valued random variable also with
finite mean and finite variance.
1. Prove that E(X; +Xo + -+ -+ X7) = L E(T).
2. Assuming in addition that the X,, are independent, show that
Var (X; +Xo 4 -+ Xr) = 62 E(T) + u* Var (T).

Hint: For both parts, condition on the random variable 7.

Exercise 2.26. Let p € (0,1) and X,Y ~ Bernoulli (p) be independent.

1. Compute E(X |Z) where Z=1{X +Y = 0}.
2. Deduce that E(X | Z) and E(Y | Z) are not independent.
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