Chapter 2
Security Validation in Modern SoC Designs

Sandip Ray, Swarup Bhunia and Prabhat Mishra

2.1 Security Needs in Modern SoC Designs

System-on-Chip (SoC) architecture pervades modern computing devices, being the
prevalent design approach for devices in embedded, mobile, wearable, and Internet-
of-Things (IoT) applications. Many of these devices have access to highly sensi-
tive information or data (often collectively called “assets”), that must be protected
against unauthorized or malicious access. The goal of SoC security architecture is to
develop mechanisms to ensure this protection. The goal of SoC security validation
is to ensure that such mechanisms indeed provide the protection needed. Clearly the
two activities are closely inter-related in typical SoC security assurance methodolo-
gies. This chapter is about the security validation component, but we touch upon
architectural issues as necessary.

To motivate the critical role of security validation activities, it is necessary to
clarify (1) what kind of assets is being protected, and (2) what kind of attacks we are
protecting against. One can get some flavor of the kind (and diversity) of assets by
looking at the kind of activities we perform on a typical mobile system. Figure 2.1
tabulates some obvious end user usages of a standard smartphone and the kind of end
user information accessed during these usages. Note that it includes such intimate
information as our sleep pattern, health information, location, and finances. In addi-
tion to private end user information, there are other assets in a smartphone that may
have been put by the manufacturers and OEMs, which they do not want to be leaked
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Usages Assets Exposed
Browsing Browsing history
Fitness tracking Health information,sleep pattern
GPS Location
Phone call Contacts
Banking,Stock trading Finances

Fig. 2.1 Some typical smartphone applications and corresponding private end user information
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Fig. 2.2 Some potential attacks on a modern SoC design. a Potential attack areas for a smartphone
after production and deployment. b Potential threats from untrusted supply chain during the design
life cycle of an SoC design
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out to unauthorized sources. This includes cryptographic and DRM keys, premium
content locks, firmware execution flows, debug modes, etc. Note that the notion of
“unauthorized source” changes based on what asset we are talking about: end user
may be an unauthorized source for DRM keys while manufacturer/OEM may be an
unauthorized source for end user private information.

In addition to criticality of the assets involved, another factor that makes SoC
security both critical and challenging is the high diversity of attacks possible.
Figure 2.2 provides a flavor of potential attacks on a modern SoC design. Of par-
ticular concern are the following two observations:

o Because of the untrusted nature of the supply chain, there are security threats at
most stages of the design development, even before deployment and production.

e A deployed SoC design inside a computing device (e.g., smartphone) in the hand
of the end user is prone to a large number of potential attacker entry points, includ-
ing applications, software, and network, browser, and sensors. Security assurance
must permit protection against this large attack surface.

We discuss security validation for the continuum of attacks from design to deploy-
ment. Given that the attacks are diverse, protection mechanisms are also varied, and
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each induces a significantly different validation challenge. However, validation tech-
nology is still quite limited. For most of the security requirements, we still very much
depend on the perspicuity, talent, and experience of the human validators to identify
potential vulnerabilities.

2.2 Supply Chain Security Threats

The life cycle of a SoC from concept to deployment involves number of security
threats at all stages involving various parties. Figure 2.2b shows the SoC life cycle
and the security threats that span the entire life cycle. These threats are increasing
with the rapid globalization of the SoC design, fabrication, validation, and distribu-
tion steps, driven by the global economic trend.

This growing reliance on reusable pre-verified hardware IPs during SoC design,
often gathered from untrusted third-party vendors, severely affects the security and
trustworthiness of SoC computing platforms. Statistics show that the global market
for third-party semiconductor IPs grew by more than 10 % to reach more than 2.1
billion in late 2012 [1]. The design, fabrication, and supply chain for these IP cores is
generally distributed across the globe involving USA, Europe, and Asia. Figure 2.3
illustrates the scenario for an example SoC that includes processor, memory con-
trollers, security, graphics, and analog core. Due to growing complexity of the IPs
as well as the SoC integration process, SOC designers increasingly tend to treat these
IPs as black box and rely on the IP vendors on the structural/functional integrity of
these IPs. However, such design practices greatly increase the number of untrusted
components in a SoC design and make the overall system security a pressing con-
cern.

Hardware IPs acquired from untrusted third-party vendors can have diverse secu-
rity and integrity issues. An adversary inside an IP design house involved in the
IP design process can deliberately insert a malicious implant or design modifi-
cation to incorporate hidden/undesired functionality. In addition, since many of
the TP providers are small vendors working under highly aggressive schedules,
it is difficult to ensure a stringent IP validation requirement in this ecosystem.
Design features may also introduce unintentional vulnerabilities, e.g., intentional
information leakage through hidden test/debug interfaces or side-channels through
power/performance profiles. Similarly, IPs can have uncharacterized parametric
behavior (e.g., power/thermal) which can be exploited by an attacker to cause irrecov-
erable damage to an electronic system. There are documented instances of such
attacks. For example, in 2012, a study by a group of researchers in Cambridge
revealed an undocumented silicon level backdoor in a highly secure military-grade
ProAsic3 FPGA device from MicroSemi (formerly Actel) [2], which was later
described as a vulnerability induced unintentionally by on-chip debug infrastruc-
ture. In a recent report, researchers have demonstrated such an attack where a mali-
cious upgrade of a firmware destroys the processor it is controlling by affecting
the power management system [3]. It manifests a new attack mode for IPs, where
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Fig. 2.3 An SoC would often contain hardware IP blocks obtained from entities distributed across
the globe

firmware/software update can maliciously affect the power/performance/temperature
profile of a chip to either destroy a system or reveal secret information through appro-
priate side-channel attack, e.g., a fault or timing attack.

Trusted and untrusted CAD tools pose similar trust issues to the SoC design-
ers. Such tools are designed to optimize a design for power, performance, and area.
Security optimization is not an option in today’s tools, hence sometimes during the
optimization new vulnerabilities are introduced [4]. Rogue designers in an untrusted
design facility, e.g., in case of a design outsourced to a facility for Design-for-Test
(DFT) or Design-for-Debug (DFD) insertion, can compromise the integrity of a SoC
design through insertion of stealthy hardware Trojan. These Trojans can act as back-
door or compromise the functional/parametric properties of a SoC in various ways.

Finally, many SoC manufacturers today are fabless and hence must rely upon
external untrusted foundries for fabrication service. An untrusted foundry would
have access to the entire SoC design and thus brings in several serious security con-
cerns, which include reverse-engineering and piracy of the entire SoC design or the
IP blocks as well as tampering in the form of malicious design alterations or Trojan
attacks. During distribution of fabricated SoCs through a typically long globally dis-
tributed supply chain, consisting of multiple layers of distributors, wholesalers, and
retailers, the threat of counterfeits is a growing one. These counterfeits can be low-
quality clones, overproduced chips in untrusted foundry, or recycled ones [5]. Even
after deployment, the systems are vulnerable to physical attacks, e.g., side-channel
attacks which target information leakage, and magnetic field attacks that aim at cor-
rupting memory content to cause denial-of-service (DoS) attacks.



2 Security Validation in Modern SoC Designs 13

2.3 Security Policies: Requirements from Design

In addition to supply-chain threats, the design itself may have exploitable vulnerabil-
ities. Vulnerabilities in system design, in fact, forms the quintessential objective of
security study, and has been the focus of research for over three decades. At a high
level, the definition of security requirement for assets in a SoC design follows the
well-known “CIA” paradigm, developed as part of information security research [6].
In this paradigm, accesses and updates to secure assets are subject to the following
three requirements:

» Confidentiality: An asset cannot be accessed by an agent unless authorized to do
SO.

 Integrity: An asset can be mutated (e.g., the data in a secure memory location can
be modified) only by an agent authorized to do so.

« Availability: An asset must be accessible to an agent that requires such access as
part of correct system functionality.

Of course, mapping these high-level requirements to constraints on individual assets
in a system is nontrivial. This is achieved by defining a collection of security poli-
cies that specify which agent can access a specific asset and under what conditions.
Following are two examples of representative security policies. Note that while illus-
trative, these examples are made up and do not represent security policy of a specific
company or system.

Example 1  During boot time, data transmitted by the cryptographic engine cannot
be observed by any IP in the SoC other than its intended target.

Example 2 A programmable fuse containing a secure key can be updated during
manufacturing but not after production.

Example 1 is an instance of confidentiality, while Example 2 is an instance of
integrity policy; however, the policies are at a lower level of abstraction since they
are intended to be translated to “actionable” information, e.g., architectural or design
features. The above examples, albeit hypothetical, illustrate an important character-
istic of security policies: the same agent may or may not be authorized access (or
update) of the same security asset depending on (1) the phase of the execution (i.e.,
boot or normal), or (2) the phase of the design life cycle (i.e., manufacturing or pro-
duction). These factors make security policies difficult to implement. Exacerbating
the problem is the fact that there is typically no central documentation for security
policies; documentation of policies can range from microarchitectural and system
integration documents to informal presentations and conversations among architects,
designers, and implementors. Finally, the implementation of a policy is an exercise
in concurrency, with different components of the policy implemented in different IPs
(in hardware, software, or firmware), that coordinate together to ensure adherence to
the policy.

Unfortunately, security policies in a modern SoC design are themselves signifi-
cantly complex, and developed in ad hoc manner based on customer requirements
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and product needs. Following are some representative policy classes. They are not
complete, but illustrate the diversity of policies employed.

Access Control. This is the most common class of policies, and specifies how differ-
ent agents in an SoC can access an asset at different points of the execution. Here an
“agent” can be a hardware or software component in any IP of the SoC. Examples 1
and 2 above represent such policy. Furthermore, access control forms the basis of
many other policies, including information flow, integrity, and secure boot.

Information Flow. Values of secure assets can sometimes be inferred without direct
access, through indirect observation or “snooping” of intermediate computation or
communications of IPs. Information flow policies restrict such indirect inference.
An example of information flow policy might be the following.

e Key Obliviousness: A low-security IP cannot infer the cryptographic keys by
snooping only the data from crypto engine on a low-security communication fab-
ric.

Information flow policies are difficult to analyze. They often require highly sophisti-
cated protection mechanisms and advanced mathematical arguments for correctness,
typically involving hardness or complexity results from information security. Con-
sequently they are employed only on critical assets with very high confidentiality
requirements.

Liveness. These policies ensure that the system performs its functionality without
“stagnation” throughout its execution. A typical liveness policy is that a request for
a resource by an IP is followed by an eventual response or grant. Deviation from
such a policy can result in system deadlock or livelock, consequently compromising
system availability requirements.

Time-of-Check Versus Time of Use (TOCTOU). This refers to the requirement
that any agent accessing a resource requiring authorization is indeed the agent that
has been authorized. A critical example of TOCTOU requirement is in firmware
update; the policy requires firmware eventually installed on update is the same
firmware that has been authenticated as legitimate by the security or crypto engine.

Secure Boot. Booting a system entails communication of significant security assets,
e.g., fuse configurations, access control priorities, cryptographic keys, firmware
updates, debug and post-silicon observability information, etc. Consequently, boot
imposes more stringent security requirements on IP internals and communications
than normal execution. Individual policies during boot can be access control, infor-
mation flow, and TOCTOU requirements; however, it is often convenient to coalesce
them into a unified set of boot policies.
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2.4 Adversaries in SoC Security

To discuss security validation, one of the first steps is to identify how a security
policy can be subverted. Doing so is tantamount to identifying potential adversaries
and charactertizing the power of the adversaries. Indeed, effectiveness of virtually all
security mechanisms in SoC designs today are critically dependent on how realistic
the model of the adversary is, against which the protection schemes are considered.
Conversely, most security attacks rely on breaking some of the assumptions made
regarding constraints on the adversary while defining protection mechanisms. When
discussing adversary and threat models, it is worth noting that the notion of adversary
can vary depending on the asset being considered: in the context of protecting DRM
keys, the end user would be considered an adversary, while the content provider (and
even the system manufacturer) may be included among adversaries in the context of
protecting private information of the end user. Consequently, rather than focusing on
a specific class of users as adversaries, it is more convenient to model adversaries
corresponding to each policy and define protection and mitigation strategies with
respect to that model.

Defining and classifying the potential adversary is a highly creative process. It
needs considerations such as whether the adversary has physical access to the sys-
tem, which components they can observe, control, modify, or reverse-engineer, etc.
Recently, there have been some attempts at developing a disciplined, clean catego-
rization of adversarial powers. One potential categorization, based on the interfaces
through which the adversary can gain access to the system assets, can be used to
classify them into the following six broad categories (in order of increasing sophis-
tication). Note that there has been significant research into specific attacks in different
categories, and a comprehensive treatment of different attacks is beyond the scope
of this chapter; the interested reader is encouraged to look up some of the references
for a thorough description of specific details.

Unprivileged Software Adversary: This form of adversary models the most com-
mon type of attack on SoC designs. Here the adversary is assumed to not have access
to any privileged information about the design or architecture beyond what is avail-
able for the end user, but is assumed to be smart enough to identify or “reverse-
engineer” possible hardware and software bugs from observed anomalies. The under-
lying hardware is also assumed to be trustworthy, and the user is assumed to have no
physical access to the underlying IPs. The importance of this naive adversarial model
is that any attack possible by such an adversary can be potentially executed by any
user, and can therefore be easily and quickly replicated on-field on a large number of
system instances. For these types of attacks, the common “entry point” of the attack
is assumed to be user-level application software, which can be installed or run on the
system without additional privileges. The attacks then rely on design errors (both in
hardware and software) to bypass protection mechanisms and typically get a higher
privilege access to the system. Examples of these attacks include buffer overflow,
code injection, BIOS infection, return-oriented programming attacks, etc. [7, 8].
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System Software Adversary: This provides the next level of sophistication to the
adversarial model. Here we assume that in addition to the applications, potentially
the operating system itself may be malicious. Note that the difference between the
system software adversary and unprivileged software adversary can be blurred, in
the presence of bugs in the operating system implementation leading to security vul-
nerabilities: such vulnerabilities can be seen as unprivileged software adversaries
exploiting an operating system bug, or a malicious operating system itself. Nev-
ertheless, the distinction facilitates defining the root of trust for protecting system
assets. If the operating system is assumed untrusted, then protection and mitigation
mechanisms must rely on lower level (typically hardware) primitives to ensure pol-
icy adherence. Note that system software adversary model can have a highly subtle
and complex impact on how a policy can be implemented, e.g., recall from the mas-
querade prevention example above that it can affect the definition of communication
fabric architecture, communication protocol among IPs, etc.

Software Covert-Channel Adversary: In this model, in addition to system and
application software, a side-channel or covert-channel adversary is assumed to have
access to nonfunctional characteristics of the system, e.g., power consumption, wall-
clock time taken to service a specific user request, processor performance counters,
etc., which can be used in subtle ways to identify how assets are stored, accessed, and
communicated by IPs (and consequently subvert protection mechanisms) [9, 10].

Naive Hardware Adversary: Naive hardware adversary refers to the attackers who
may gain the access to the hardware devices. While the attackers may not have
advanced reverse-engineering tools, they may be equipped with basic testing tools.
Common targets for these types of attacks include exposed debug interfaces and
glitching of control or data lines [11]. Embedded systems are often equipped with
multiple debugging ports for quick prototype validation and these ports often lack
proper protection mechanisms, mainly because of the limited on-board resources.
These ports are often left on purpose to facilitate the firmware patching or bug-
fixing for errors and malfunctions detected on-field. Consequently, these ports also
provide potential weakness which can be exploited for violating security policies.
Indeed, some of the “celebrated” attacks in recent times make use of available hard-
ware interfaces including the XBOX 360 Hack [12], Nest Thermostat Hack [13], and
several smartphone jailbreaking techniques.

Hardware Reverse-Engineering Adversary: In this model, the adversary is
assumed to be able to reverse-engineer the silicon implementation for on-chip secrets
identification. In practice, such reverse-engineering may depend on sniffing inter-
faces as discussed for naive hardware adversaries. In addition, they can depend
on advanced techniques such as laser-assisted device alteration [14] and advanced
chip-probing techniques [15]. Hardware reverse engineering can be further divided
into two categories: (1) chip-level and (2) IP core functionality reconstruction. Both
attack vectors bring security threats into the hardware systems, and permit extrac-
tion of secret information (e.g., cryptographic and DRM keys coded into hardware),
which cannot be otherwise accessed through software or debugging interfaces.
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Malicious Hardware Intrusion Adversary: A hardware intrusion adversary (or
hardware Trojan adversary) is a malicious piece of hardware inside the SoC design.
It is different from a hardware reverse-engineering adversary in that instead of “pas-
sively” observing and reverse-engineering functionality of the rest of the design
components, it has the ability to communicate with them (and “fool” them into vio-
lating requisite policies). Note that as with the difference between system software
and unprivileged software adversaries above, many attacks possible by an intrusion
adversary can, in principle, be implemented by a reverse-engineering adversary in
the presence of hardware bugs. Nevertheless, the root of trust and protection mecha-
nisms required are different. Furthermore, in practice, hardware Trojan attacks have
become a matter of concern specifically in the context of SoC designs that include
untrusted third-party IPs as well as those integrated in an untrusted design house.
Protection policies against such adversaries are complex, since it is unclear a priori
which IPs or communication fabric to trust under this model. The typical approach
taken for security in the presence of intrusion adversaries (and in some cases, reverse-
engineering adversaries) is to ensure that a rogue IP .2/ cannot subvert a non-rogue
IP 4 into deviating from a policy.

2.5 1IP-Level Trust Validation

One may wonder, why is it not possible to reuse traditional functional verification
techniques to this problem? This is due to the fact that IP trust validation focuses
on identifying malicious modifications such as hardware Trojans. Hardware Trojans
typically require two parts: (1) a trigger, and (2) a payload. The trigger is a set of con-
ditions that their activation deviates the desired functionality from the specification
and their effects are propagated through the payload. An adversary designs trigger
conditions such that they are satisfied in very rare situations and usually after long
hours of operation [16]. Consequently, it is extremely hard for a naive functional vali-
dation technique to activate the trigger condition. Below we discuss a few approaches
based on simulation-based validation as well as formal methods. A detailed descrip-
tion of various IP trust validation techniques is available in [17, 18].

Simulation-Based Validation: There are significant research efforts on hardware
Trojan detection using random and constrained-random test vectors. The goal of
logic testing is to generate efficient tests to activate a Trojan and to propagate its
effects to the primary output. These approaches are beneficial in detecting the pres-
ence of a Trojan. Recent approaches based on structural/functional analysis [19—
21] are useful to identify/localize the malicious logic. Unused Circuit Identification
(UCI) [19] approaches look for unused portions in the circuit and flag them as mali-
cious. The FANCI approach [21] was proposed to flag suspicious nodes based on
the concept of control values. Oya et al. [20] utilized well-crafted templates to iden-
tify Trojans in TrustHUB benchmarks [22]. These methods assume that the attacker
uses rarely occurring events as Trojan triggers. Using “less-rare” events as trigger
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will void these approaches. This was demonstrated in [23], where Hardware Trojans
were designed to defeat UCI [19].

Side-Channel Analysis: Based on the fact that a trigger condition usually has
extremely low probability, the traditional ATPG-based method for functional testing
cannot fulfill the task of Trojan activation and detection. Bhunia et al. [16] proposed
the multiple excitation of rare occurrence (MERO) approach to generate more effec-
tive tests to increase the probability to trigger the Trojan. A more recent work by
Saha et al. [24] can improve MERO to get higher detection coverage by identify-
ing possible payload nodes. Side-channel analysis focuses on the side channel sig-
natures (e.g., delay, transient, and leakage power) of the circuit [25], which avoids
the limitations (low trigger probability and propagation of payload) of logic testing.
Narasimhan et al. [26] proposed the Temporal Self-Referencing approach on large
sequential circuits, which compares the current signature of a chip at two different
time windows. This approach can completely eliminate the effect of process noise,
and it takes optimized logic test sets to maximize the activity of the Trojan.

Equivalence Checking: In order to trust an IP block, it is necessary to make sure
that the IP is performing the expected functionality—nothing more and nothing less.
From security point of view, verification of correct functionality is not enough. The
verification engineer has to confirm that there are no other activities besides the
desired functionality. Equivalence checking ensures that the specification and imple-
mentation are equivalent. Traditional equivalence checking techniques can lead to
state space explosion when large IP blocks are involved with significantly different
specification and implementation. One promising direction is to use Grobner basis
theory to verify arithmetic circuits [27]. Similar to [28], the reduction of specifica-
tion polynomial with respect to Grobner basis polynomials is performed by Gaussian
elimination to reduce verification time. In all of these methods, when the remainder
is nonzero, it shows that the specification is not exactly equivalent with the imple-
mentation. Thus, the nonzero remainder can be analyzed to identify the hidden mal-
functions or Trojans in the system.

Model Checking: Model checking is the process of analyzing a design for the
validity of properties stated in temporal logic. A model checker takes the Regis-
ter Transfer Level (RTL) (e.g., Verilog) code along with the property written as a
Verilog assertion and derives a Boolean satisfiability (SAT) formulation for validat-
ing/invalidating the property. This SAT formulation is fed to a SAT engine, which
then searches for an input assignment that violates the property [29]. In practice,
designers know the bounds on the number of steps (clock cycles) within which a
property should hold. In Bounded Model Checking (BMC), a property is determined
to hold for at least a finite sequence of state transitions. The Boolean formula for val-
idating/ invalidating the target property is given to a SAT engine, and if a satisfying
assignment is observed within specific clock cycles, that assignment is a witness
against the target property [30]. The properties can be developed to detect Trojans
that corrupt critical data and verify the target design for satisfaction of these proper-
ties using a bounded model checker.
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Theorem Proving: Theorem provers are used to prove or disprove properties of sys-
tems expressed as logical statements. However, verifying large and complex systems
using theorem provers require excessive effort and time. Despite these limitations,
theorem provers have currently drawn a lot of interest in verification of security prop-
erties on hardware. In [31-33], the Proof-Carrying Hardware (PCH) framework was
used to verify security properties on soft IP cores. Supported by the Coq proof assis-
tant [34], formal security properties can be formalized and proved to ensure the trust-
worthiness of IP cores. The PCH method is inspired from the proof-carrying code
(PCC), which was proposed by Necula [35]. The central idea is that untrusted devel-
opers/vendors certify their IP. During the certification process, the vendor devel-
ops safety proof for the safety policies provided by IP customers. The vendor then
provides the user with the IP design, which includes the formal proof of the safety
properties. The customer becomes assured of the safety of the IP by validating the
design using a proof checker. A recent approach presented a scalable trust validation
framework using a combination of theorem proving and model checking [36].

2.6 Security Along SoC Design Life Cycle

We now turn to the problem of system-level security validation for the SoC designs.
This process takes place in the SoC design house and continues across the system
design life cycle. When performing system-level validation, the constituent IPs are
assumed to have undergone a level of standalone trust validation before integration.

Figure 2.4 provides a high-level overview of the SoC design life cycle. Each com-
ponent of the life cycle, of course, involves a large number of design, development,
and validation activities. Here, we summarize the key activities involved along the
life cycle, that pertain to security. Subsequent sections will elaborate on the individ-
ual activities.

Risk Assessment. Security requirements definition is a key part of product plan-
ning, and happens concurrently with (and in close collaboration with) the definition
of architectural features of the product. This process involves identifying the secu-
rity assets in the system, their ownership, and protection requirements, collectively
defined as security policies (see below). The result of this process is typically the
generation of a set of documents, often referred to as product security specification
(PSS), which provides the requirements for downstream architecture, design, and
validation activities.

Security Architecture. The goal of a security architecture is to design mecha-
nisms for protection of system assets as specified by the PSS. It includes several
components, as follows: (1) identifying and classifying potential adversary for each
asset; (1) determining attacker entry points, also referred to as threat modeling; and
(3) developing protection and mitigation strategies. The process can identify addi-
tional security policies—typically at a lower level than those identified during risk
assessment (see below)—which are added to the PSS. The security definition typi-
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Fig. 2.4 A typical SoC life cycle from exploration to production

cally proceeds in collaboration with architecture and design of other system features,
including speed, power management, thermal characteristics, etc., with each compo-
nent potentially influencing the others.

Security Validation. Security validation represents one of the longest and most crit-
ical part of security assurance for industrial SoC designs, spanning the architecture,
design, and post-silicon components of the system life cycle. The actual validation
target and properties validated at any phase, of course, depends on the collateral
available in that phase. For example, we target, respectively, architecture, design,
implementation, and silicon artifacts as the system development matures. Below
we will discuss some of the key validation activities and associated technologies.
One key component of security validation is to develop techniques to subvert the
advertised security requirements of the system, and identify mitigation measures.
Mitigation measures for early-stage validation targeting architecture and early sys-
tem design often include significant refinement of the security architecture itself. At
later stages of the system life cycle, when architectural changes are no longer feasi-
ble due to product maturity, mitigation measures can include software or firmware
patches, product defeature, etc.

2.7 Security Validation Activities

Unfortunately, the role of security validation is different from most other kinds of val-
idation (such as functional or power-performance or timing) since the requirements
are typically less precise. In particular, the goal of security validation is to *“validate
conditions related to security and privacy of the system that are not covered by other
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validation activities.” The requirement that security validation focuses on targets not
covered by other validation is important given the strict time-to-market constraints,
which preclude duplication of resources for the same (or similar) validation tasks;
however, it puts onus on the security validation organization to understand activi-
ties performed across the spectrum of the SoC design validation and identify holes
that pertain to security. To exacerbate the problem, a significant amount of security
objectives are not clearly specified, making it difficult to (1) identify validation tasks
to be performed, and (2) develop clear coverage/success criteria for the validation.
Consequently, the validation plan includes a large number of diverse activities that
range from the science to the art and sometimes even “black magic.”

At a high level, security validation activities can be divided roughly among the
following four categories.

Functional Validation of Security-sensitive Design Features. This is essentially
extension to functional validation, but pertain to design elements involved in crit-
ical security feature implementations. An example is the cryptographic engine IP.
A critical functional requirement for the crypographic engine is that it encrypts and
decrypts data correctly for all modes. As with any other design block, the crypto-
graphic engine is also a target of functional validation. However, given that it is a
critical component of a number of security-critical design features, security valida-
tion planning may determine that correctness of cryptographic functionality to be
crucial enough to justify further validation beyond the coverage provided by vanilla
functional validation activities. Consequently, such an IP may undergo more rigorous
testing, or even formal analysis in some cases. Other such critical IPs may include
IPs involved in secure boot, on-field firmware patching, etc.

Validation of Deterministic Security Requirements. Deterministic security
requirements are validation objectives that can be directly derived from security
policies. Such objectives typically encompass access control restrictions, address
translations, etc. Consider an access control restriction that specifies a certain range
of memory to be protected from Direct Memory Access (DMA) access; this may
be done to ensure protection against code-injection attacks, or protect a key that is
stored in such location, etc. An obvious derived validation objective is to ensure that
all DMA calls for access to a memory whose address translates to an address in the
protected range must be aborted. Note that validation of such properties may not
be included as part of functional validation, since DMA access requests for DMA-
protected addresses are unlikely to arise for “normal” test cases or usage scenarios.

Negative Testing. Negative testing looks beyond the functional specification of
designs to identify if security objectives can be subverted or are underspecified.
Continuing with the DMA-protection example above, negative testing may extend
the deterministic security requirement (i.e., abortion of DMA access for protected
memory ranges) to identify if there are any other paths to protected memory in addi-
tion to address translation activated by a DMA access request, and if so, potential
input stimulus to activate such paths.



22 S. Ray et al.

Hackathons. Hackathons, also referred to as white-box hacking fall in the “black
magic” end of the security validation spectrum. The idea is for expert hackers to
perform goal-oriented attempts at breaking security objectives. This activity depends
primarily on human creativity, although some guidelines exist on how to approach
them (see discussion on penetration testing in the next section). Because of their cost
and the need for high human expertise, they are performed for attacking complex
security objectives, typically at hardware/firmware/software interfaces or at the chip
boundary.

2.8 Validation Technologies

Recall from above that focused functional validation of security-critical design com-
ponents form a key constituent of security validation. From that perspective, secu-
rity validation includes and supersedes all functional validation tools, flows, and
methodologies. Functional validation of SoC designs is a mature and established
area, with a number of comprehensive surveys covering different aspects [37, 38].
In this section, we instead consider validation technologies to support other vali-
dation activities, e.g., negative testing, white-box hacking, etc. As discussed above,
these activities inherently depend on human creativity; tools, methodologies, and
infrastructures around them primarily act as assistants, filling in gaps in human rea-
soning and providing recommendations.

Security validation today primarily uses three key technologies: fuzzing, pene-
tration testing, and formal or static analysis. Here we provide a brief description of
these technologies. Note that fuzzing and static analysis are very generic techniques
with applications beyond security validation; our description will be confined to their
applications only on security.

Fuzzing. Fuzzing, or fuzz testing [39], is a testing technique for hardware or soft-
ware that involves providing invalid, unexpected, or random inputs and monitoring
the result for exceptions such as crashes, or failing built-in code assertions or mem-
ory leaks. Figure 2.5 demonstrates a standard fuzzing framework. It was developed
as a software testing approach, and has since been adapted to hardware/software
systems. It is currently a common practice in industry for system-level validation.
In the context of security, it is effective for exposing a number of potential attacker
entry points, including through buffer or integer overflows, unhandled exceptions,
race conditions, access violations, and denial of service. Traditionally, fuzzing uses
either random inputs or random mutations of valid inputs. A key attraction to this
approach is its high automation compared to other validation technologies such as
penetration testing and formal analysis. Nevertheless, since it relies on randomness,
fuzzing may miss security violations that rely on unique corner-case scenarios. To
address that deficiency, there has been recent work on “smart” input generation for
fuzzing, based on domain-specific knowledge of the target system. Smart fuzzing
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Fig. 2.5 A pictorial representation of fuzzing framework used in post-silicon SoC security vali-
dation

may provide a greater coverage of security attack entry points, at the cost of more
up front investment in design understanding.

Penetration Testing. A penetration test is an attack on a computer system with the
intention to find security weakness, potentially gaining access to it, its functionality,
and data. It is typically performed by expert hackers often with deep knowledge
of system architecture, design, and implementation characteristics. Note that while
there are commonalities between penetration testing and testing done on functional
validation, there are several important differences. In particular, roughly, penetration
testing involves iterative application of the following three phases:

1. Attack Surface Enumeration. The first task is to identify the features or aspects
of the system that are vulnerable to attack. This is typically a creative process
involving a smorgasbord of activities, including documentation review, network
service scanning, and even fuzzing or random testing (see below).

2. Vulnerability Exploitation. Once the potential attacker entry points are discov-
ered, applicable attacks and exploits are attempted against target areas. This may
require research into known vulnerabilities, looking up applicable vulnerability
class attacks, engaging in vulnerability research specific to the target, and writ-
ing/creating the necessary exploits.

3. Result Analysis. If the attack is successful, then in this phase the resulting state of
the target is compared against security objectives and policy definitions to deter-
mine if the system was indeed compromised. Note that even if a security objective
is not directly compromised, a successful attack may identify additional attack
surface which must then be accounted for with further penetration testing.

Note that while there are commonalities between penetration testing and testing done
functional validation, there are several important differences. In particular, the goal
of functional testing is to simulate benign user behavior and (perhaps) accidental
failures under normal environmental conditions of operation of the design as defined
by its specification. Penetration testing goes outside the specification to the limits set
by the security objective, and simulates deliberate attacker behavior.
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Clearly, the efficacy of penetration testing critically depends on the ability to iden-
tify the attack surface in the first phase above. Unfortunately, rigorous methodologies
for achieving this are lacking. Following are some of the typical activities in current
industrial practice to identify attacks and vulnerabilities. We classify them below
as “easy,” “medium,” and “hard” depending on the creativity necessary. Note that
there are tools to assist the human in many of the activities below [40, 41]. How-
ever, determining the relevancy of the activity, identifying the degree to which each
activity should be explored, and inferring a potential attack from the result of the
activity involve significant creativity.

» Easy Approaches. These include review of available documentation (e.g., speci-
fication, architectural materials, etc.), known vulnerabilities or misconfigurations
of IPs, software, or integration tools, missing patches, use of obsolete or out-of-
date software versions, etc.

o Medium Approaches. These include inferring potential vulnerabilities in the
target of interest from information about misconfigurations, vulnerabilities, and
attacks in related or analogous products, e.g., a competitor product, a previous
software version, etc. Other activities of similar complexity involve executing rel-
evant public security tools or published attack scenarios against the target.

o Hard Approaches. This includes full security evaluation of any utilized third-
party components, integration testing of the whole platform, and identification of
vulnerabilities involving communications among multiple IPs or design compo-
nents. Finally, vulnerability research involves identifying new classes of vulnera-
bilities for the target which have never been seen before. The latter is particularly
relevant for new IPs or SoC designs for completely new market segments.

Static or Formal Reasoning. This involves making use of mathematical logic to
either derive a security assurance requirement formally, or identifying flaws in the
target system (architecture, design, or implementation). Application of formal meth-
ods typically involve significant effort, either in the manual exercise of performing
deductive reasoning or in developing abstractions of the security objective which are
amenable to analysis by automated formal tools [38, 42]. In spite of the cost, how-
ever, the effort is justified for highly critical security objectives, e.g., cryptographic
algorithm implementation. Furthermore, for some critical properties, automated for-
mal methods can be used in a light-weight manner as effective state exploration tools.
For example, TOCTOU property violations often involve scenarios of overlapping
execution of different instances of the same protocol, which are effectively exposed
by formal methods tools [43]. Finally, formal proofs have also been used as certifi-
cation mechanisms for third party IP vendors to convey security assurance to SoC
system integration teams [33].



2 Security Validation in Modern SoC Designs 25

2.9 Summary

We have provided a tutorial overview of the industrial practices in security assurance
and validation of modern SoC designs. The goal has been to give the reader an overall
big picture, provide an understanding of the current state of the practice, and describe
the different pieces of a highly complex ecosystem that must interact and cooperate to
ensure trustworthiness of our computing devices. The picture of the current practice
is scary. On the one hand, the complexity involved is staggering and increasing at
an alarming rate. On the other hand, the state of the art in current practice is to
depend on human creativity and experience to identify innovative attacks within a
small time window before the system goes on field (and is exposed to attacks from
the “bad guys”)—an approach that we know cannot scale over the complexity we
are encountering. While there are promising emergent approaches, we are very far
from solving the problem of creating trustworthy computing devices. The need is to
develop a disciplined approach to security assurance, from the ground up. Perhaps
more importantly, it may require a highly cooperative research initiative involving the
different participants, viz., architects, designers, validators, and even cross-cutting
stake-holders such as power/performance architects, physical design engineers, etc.
Our objective for this chapter has been to serve as the starting point for researchers
to understand the overall complexity and contribute to development of trustworthy
and secure systems.

Although we covered a broad spectrum of activities on security, we only scratched
the surface. There are more complexities involved, including trade-offs with power
management, physical design, testing, etc., as well as complex supply chain issues,
which we only touched peripherally. The readers interested in deeper exploration
are encouraged to explore into some of the references, which include challenges and
surveys of specific components, and use the discussions in this paper as a glue for
connecting the different pieces.
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