Chapter 2
The Causal Metric Hypothesis

Abstract. This chapter formally introduces the causal metric hypothesis, and
describes in detail its motivations and justifications. Foremost among these are the
metric recovery theorems of Hawking and Malament, which state, roughly, that “the
causal structure of relativistic spacetime determines its metric structure up to scale.”
As understood in causal set theory, the novel assumption that spacetime is discrete
provides a natural notion of scale, given by the “sizes of fundamental elements and
relations.” This suggests that causal structure alone can account for emergent geom-
etry in the discrete context. Section2.1 introduces a general version of the causal
metric hypothesis, which states, very broadly, that “the properties of the physical
universe are manifestations of causal structure.” This basic idea may be modified
and/or interpreted in various ways; in particular, the strong interpretation of the
causal metric hypothesis ascribes all of physics, including “nongravitational mat-
ter,” to causal structure at the fundamental scale. Section 2.2 introduces a classical
version of the causal metric hypothesis, which states that classical spacetime may
be modeled in terms of mathematical objects called directed sets, or, more con-
ventionally, directed graphs. The term “directed set” has a different conventional
meaning, but [ prefer to re-purpose the term than to use awkward graph-theoretic ter-
minology. Section 2.3 begins the study of metric recovery by introducing five types
of structure on relativistic spacetime; namely, metric, conformal, causal, smooth,
and topological structure, in decreasing order of detail. Section2.4 discusses metric
structure in the relativistic context, i.e. pseudo-Riemannian geometry. Section2.5
covers conformal structure, which defines “geometry up to scale.” Section2.6 dis-
cusses causal structure, which generalizes the “null cone structure” on Minkowski
spacetime. The metric recovery theorems state that “causal structure determines
conformal structure” under suitable assumptions. Section2.7 introduces causality
conditions on relativistic spacetime, which play a technical role in the metric recov-
ery theorems. Section2.8 gives a formal statement of metric recovery, sketches its
proof, and describes how it motivates the causal metric hypothesis in the discrete
setting. Section 2.9 explains why continuum-based theories are inherently awkward
for modeling fundamental physics. Section 2.10 outlines some of the basic principles
underlying the technical developments of subsequent chapters.
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66 2 The Causal Metric Hypothesis

2.1 General Version of the Hypothesis

Background and context. Discrete causal theory is founded on a single motivating
idea, which I refer to as the causal metric hypothesis. While an informal sketch
of this hypothesis appears in Section 1.2, a much deeper analysis of its meaning
and implications is required to support the developments in the remainder of the
book. The choice of terminology for the causal metric hypothesis is my own, but
variants of the same basic idea may be distilled from a number of previous sources,
stretching back to at least the 1960s. The clearest and most explicit of these is Rafael
Sorkin’s structural ansatz for causal set theory, “order plus number equals geometry.”
This statement reflects the conviction that the metric recovery theorems of Hawking
[HA76] and Malament [MA77], proven in the late 1970s, suggest subtle new aspects
of spacetime structure beyond the scope of their native relativistic paradigm, just as
the Lorentz invariance of Maxwell’s equations suggested special relativity, despite
the fact that these equations were formulated in the Newtonian context. In the case of
metric recovery, the suggested new structure is discrete directed structure. Causal set
theory, which emerged in the early 1980s, was the first sustained theoretical program
attempting to describe spacetime in such terms, although a few abortive individual
efforts along similar lines enjoy chronological priority. I postpone further discussion
of such historical details until Chapter 3, which provides a concise overview of the
origins of discrete causal theory before launching into the technical apparatus of
directed sets and multidirected sets. The present chapter involves a modest amount
of standard technical material, but focuses as much as possible on basic conceptual
topics.

The causal metric hypothesis itself does not require any discreteness assump-
tions, but the metric recovery theorems described in Section2.8 provide stronger
motivation for the hypothesis in the discrete context than in the continuum-based
setting.! Sorkin’s version of the hypothesis, which applies at the classical level, is
explicitly discrete, since it invokes counting, and therefore requires a notion of local
finiteness in order to make sense.> This book devotes the most attention to ver-
sions of the hypothesis that are very similar to Sorkin’s. However, it is possible to
imagine continuous versions of the causal metric hypothesis, or versions that are
neither discrete nor continuous. Further, due to the ubiquity of directed relationships
in modern science, there exist many ‘“non-fundamental” settings in which the causal
metric hypothesis serves as a useful source of analogy, without being taken literally.
For example, one may compare certain abstract architectures in computer science to
spacetime, and may define “frames of reference,” and other related notions for these
structures, without insisting on any exact correspondence between the two, or sug-

Indeed, in the latter setting, the metric recovery theorems essentially say that causal structure is
not quite sufficient to recover geometry, at least under relativistic assumptions.

2The “local finiteness” condition used in causal set theory, which I refer to more descriptively as
interval finiteness (IF), is not necessarily ideal for this purpose, as explained in Chapter4. However,
causal sets actually appearing in physically realistic scenarios in the literature generally do satisfy
a suitable notion of local finiteness, even in the context of cosmology.
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gesting that spacetime is a computer in some sense. In guantum information theory,
such considerations are more than just an analogy, but this subject is not explored in
this book.

Restatement of the general version of the hypothesis. The philosophical content of
the causal metric hypothesis is that the observed properties of the physical universe
arise from causal relationships between pairs of events, or more generally, from
causal relationships among families of events. The latter generalization is included
to allow for the possibility of classical holism, although I focus almost exclusively
on classically reductionist models in this book. The following statement of the causal
metric hypothesis, repeated from Section 1.2, is sufficiently general to use as a starting
point:

Definition 2.1.1. Causal metric hypothesis (CMH). The properties of the physical
universe are manifestations of causal structure.

The causal metric hypothesis may be regarded as an expression of the longstanding
idea, examined explicitly by Leibniz, Gauss, Riemann, Einstein, Kaluza and Klein,
Weyl, Wheeler, and many others, that physics is essentially structural in nature.
The hypothesis takes the familiar relationship between cause and effect to be the
fundamental building block of this structure.

Scope of the hypothesis; strong interpretation. The proper scope of the causal
metric hypothesis is debatable. A conservative approach is to soften the statement in
Definition 2.1.1 by replacing the words “physical universe” with the word “space-
time.” This approach abandons any attempt to explain the “material content of space-
time” by means of causal structure. As noted in Section 1.7, this alternative leads to
theories that possess, at best, a limited degree of background independence. These
include “discrete quantum field theories,” and “theories of gravity,” but not “unified
theories” in the deepest sense. At the opposite extreme, one may choose to take the
statement in Definition 2.1.1 at face value, and interpret the opening phrase “the
properties,” as “all the properties.” This is the strong interpretation of the causal
metric hypothesis. Its radical nature was already highlighted in Section 1.10. The
strong interpretation leads to a version of discrete causal theory that is ambitious and
optimistic, but also quite pleasing at a structural and aesthetic level. In particular, it
enables perfect background independence, by removing any possibility of tension
between “material bodies” and “spacetime.” The advantages of this approach are
elaborated in Section2.7 in the context of “causality paradoxes,” and are revisited
periodically throughout the book. Definition 2.1.1 is deliberately phrased in such
a way as to suggest the strong interpretation of the causal metric hypothesis, but
weaker interpretations are possible, and most of the methods and results of the book
do not require the strong interpretation.

Prescription versus description. An important philosophical distinction between
the relativistic viewpoint and the causal metric hypothesis, particularly its strong
interpretation, involves the choice between prescription of possible behavior and
description of actual behavior. Relativity employs spacetime geometry to prescribe
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which events may influence a given event, while the causal metric hypothesis
interprets the same structure as merely an approximate way of describing which
events actually do influence others. This distinction enables discrete causal theory
to eliminate “awkward counterfactual speculation” regarding causality in relativity,
as described in Section 1.3. In particular, the discrete causal rejoinder to Wheeler’s
famous statement that “spacetime tells matter how to move; matter tells spacetime
how to curve” [WHO8], is that “things happen; “spacetime” and “matter” are ways
of describing them.” A general preference for description over prescription in theo-
retical physics constitutes one of the philosophical principles informing the overall
development of discrete causal theory, as described in Section2.10. This does not
mean that the theory seeks to avoid the necessary criteria of explaining and predicting
physical behavior, but merely that “causal structure” should mean neither more nor
less than the aggregate of actual causes and effects. This viewpoint is closely linked
to the notion of perfect background independence, because it removes the distinction
between a “spacetime” that prescribes behavior, and “material participants” in this
behavior.

Technical implementations. A “technical implementation” of the causal metric
hypothesis specifies what the words causal structure in Definition 2.1.1 are taken
to mean in mathematical terms. Many different such implementations are possible,
both at the classical level and the quantum level. In Section 2.2, I introduce a classical
version of the causal metric hypothesis (CCMH), which identifies directed sets as the
chosen mathematical models of classical spacetime. This version is more specific
than the version appearing in Definition 2.1.1, but is still quite general, since its
purpose is to accommodate any “reasonable” variant of the theory. Hence, additional
conditions must be imposed in order to obtain a specific theory capable of precise
quantitative description of nature. This is accomplished by specifying a set of axioms
thatrestrict attention to a “desirable” class of directed sets, together with a “plausible”
physical interpretation of these sets. Physical intuition plays an unavoidable role in
this process, but data from experimentally-established physics should be used for
guidance whenever possible. Examples of the types of considerations that might be
involved in selecting such a set of axioms are the questions of how to implement
the idea of discreteness, what type of local behavior the chosen class of directed
sets should exhibit, and whether or not directed sets containing causal cycles should
be included. Chapters3 and 4 are largely devoted to identifying a suitable set of
axioms for discrete classical causal theory, based both on experimental evidence
and on basic structural considerations. A “suggested list” of axioms is offered in
Section4.10, along with “conservative” and “radical” alternatives. A specific choice
of axioms leads, via iteration of structure (IS), to a specific version of quantum theory,
as described in Part II of the book.

Quantum causal metric hypothesis. A detailed treatment of the quantum causal
metric hypothesis (QCMH) is postponed until Chapter 7, since much conceptual and
technical ground must be covered before it can be adequately explained. In gen-
eral terms, the role of classical causal structure is superseded in discrete quantum
causal theory by the “higher-level multidirected structures” of kinematic schemes,
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introduced informally in Chapter 1 as “structured configuration spaces” of classical
histories, whose “relations” are co-relative histories. Given a kinematic scheme, the
general strategy is to “superpose” evolutionary processes for its constituent classi-
cal histories, thereby building the “quantum universe.” Feynman’s path summation
approach to quantum theory provides the basic conceptual ingredients of this view-
point. In a more modern context, this approach shares important features with Isham’s
quantization on a category [IS05], and Sorkin’s quantum measure theory [SO12]. A
formal statement of the quantum causal metric hypothesis appears in Section7.6.

2.2 Classical Version of the Hypothesis

Review of basic building blocks of causal structure. The content of the causal
metric hypothesis (CMH) must be expressed mathematically before its physical con-
sequences may be explored in a precise quantitative fashion. In the classical context,
this may be accomplished by means of the “classical histories” introduced infor-
mally in Chapter 1. In the present chapter, it is necessary to consider the mathemat-
ical properties of these histories in slightly more detail, although formal definitions
and analysis are postponed until Chapter 3. The basic unit of mathematical structure
used to model a particular instance of cause and effect between two events is an
ordered pair of abstract elements, with the first element representing the cause, and
the second element representing the effect. In Figure 1.4.1, I introduced a convenient
way to represent this structure via diagrams, called generalized Hasse diagrams, in
which elements are represented by nodes, and relations are represented by directed
line segments connecting pairs of nodes, with directions inferred by using an “up the
page” convention. For convenience, I reproduce this picture in Figure2.2.1.

element 2: “effect”

causal relationship
is shorthand for between element 1
and element 2

element 1: “cause”

Figure 2.2.1. Abstract representation of a single instance of cause and effect.

Directed sets. Elements 1 and 2 in Figure 2.2.1 are naturally ordered, with element 1,
representing the “cause,” preceding element 2, representing the “effect.” It is con-
venient to name these elements x and y; one may then write x < y to represent
this order. As explained in Section 1.8, the precursor symbol < is analogous to the
familiar “less than” symbol < in integer arithmetic, although < is more specific,
since x < y means that x directly precedes y. In discrete classical causal theory, the
local “arrow of time” is defined by this primitive order, with a single fundamental
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unit of local time, i.e., a single “classical chronon,” separating x and y. For a larger
family D of elements, say D = {w, x, y, z}, one must consider a corresponding fam-
ily of relations, encoding each individual instance of cause and effect. It is standard
to denote this entire family, say {w < y,x < y, z < w}, by the single symbol <.
In technical terms, this means that < is a binary relation on D, i.e., a subset of the
Cartesian product D x D. Using this definition, the statement x < y means that the
ordered pair (x, y) in D x D is an element of <. In this book, the pair (D, <) is
called a directed set. Equivalent structures are called directed graphs in conventional
mathematical settings, with the term “directed set” usually assigned a more specific
meaning; however, in this book, a “directed set” means simply a set equipped with
a binary relation. An individual relation between a pair of elements x and y in D is
almost always represented by the notation x < y, rather than the alternative notation
(x,y) e<.

The “up the page” convention for inferring the directions of relations may be used
for any directed set D in which “causal influence always flows one way, never looping
back.” Technically, this means that D is acyclic, as noted in Section 1.4. All of the
classical histories used for illustrative purposes in Chapter 1 are modeled via acyclic
directed sets, but it is sometimes interesting to adopt a broader viewpoint, and allow
directed sets containing cycles. In spite of their counterintuitive properties, such sets
can be physically interesting, partly because general relativity does not rule out the
existence of “closed causal curves.” Generalized Hasse diagrams cannot be used to
represent such sets; rather, arrows must be included in the diagrams to explicitly
indicate the direction of each relation. The vast majority of directed sets considered
in this book, however, are acyclic. In Figure 2.2.2, I reproduce the generalized Hasse
diagram of the “slightly more complicated classical history” of Figure 1.4.3, now

SO
P

Figure 2.2.2. An acyclic directed set (D, <).

Classical causal metric hypothesis in terms of directed sets. In the classical con-
text, a general mathematical version of the causal metric hypothesis may be formu-
lated in terms of directed sets, as follows:
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Definition 2.2.3. Classical causal metric hypothesis (CCMH). Classical histories
may be modeled via directed sets.

Though more specific than Definition 2.1.1, this is still a very general statement.
For example, it includes Sorkin’s version of the causal metric hypothesis, since causal
sets are a special case of directed sets, butitalso includes continuous domain-theoretic
versions, since domains are directed sets as well. As noted in Section 2.1, practical
application of discrete causal theory requires narrowing the focus to a specific class
of “physically relevant directed sets,” and this involves nontrivial choices. In this
book, the most substantial such choices are to work in the discrete context, to focus
mainly on the acyclic case, and to work primarily in terms of direct, i.e., immediate,
relationships. In technical terms, discreteness is expressed via an appropriate local
finiteness condition; in this case, star finiteness (SF). Acyclicity (AC) simply means
that no sequence of relations may both begin and end at the same element. The choice
to focus on direct relationships is implemented by modeling classical causal structure
in terms of generally nontransitive binary relations, and interpreting each individual
relation to encode independent influence. This means abstaining from the axiom
of transitivity (TR), and adopting the independence convention (IC). These choices
are briefly explained below, and are examined and justified more systematically in
Chapters 3 and 4.

Discreteness. The single most significant restriction on the types of directed sets
studied in this book as models of classical spacetime is that they are discrete. The
term “discrete’ has different meanings in topology, measure theory, and order theory,
so further explanation is necessary to render the precise meaning of this choice suf-
ficiently clear. In causal set theory, the axiom of interval finiteness (IF) ensures that
causal sets are discrete in an order-theoretic sense; i.e., every nonextremal element in
a causal set has at least one maximal predecessor and minimal successor. In addition,
the use of a discrete measure that “counts fundamental volume units” ensures that
causal sets are discrete in a measure-theoretic sense.® This lends plausibility to the
appearance of “number” in Sorkin’s version of the classical causal metric hypothesis,
without any need to “quantize spacetime,” as is typically attempted in continuum-
based approaches to quantum gravity. The causal set version of discreteness may
take too literally the idea of “volume” at the fundamental scale, since “familiar geo-
metric notions” are generally expected to emerge only at relatively large scales in
discrete causal theory.* For the purposes of this book, the order-theoretic meaning
of discreteness, suitably generalized, is the most important. The measure-theoretic
meaning, meanwhile, is “relevant, but less precise,” while the topological meaning
is almost completely irrelevant. The desired order-theoretic and measure-theoretic

3To be precise, the causal set measure allows “statistical fluctuations” in the assignment of volume.
This topic is revisited in Sections 3.2, 3.5, and 4.5.

“4One such familiar notion that turns out to be very complicated is the emergent notion of spacetime
dimension. In particular, a variety of approaches to discrete spacetime structure suggest possible
scale-dependence of dimension. See the recent paper of Carlip [CA15] for an interesting discussion
and list of references.
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properties may be achieved by imposing the local finiteness condition of star finite-
ness (SF), together with the generalized measure axiom (M*), both discussed in
Chapter4. Some of the general motivations for working in the discrete context are
discussed further in Sections 2.9 and 2.10, as well as in later chapters.

Acyclicity. Another attractive “physical relevance criterion” for directed sets is
acyclicity (AC), which justifies the “up the page” convention for the generalized
Hasse diagrams appearing in this book.> Acyclicity is a natural abstraction of the
apparently unidirectional nature of causality, i.e., the fact that events do not seem
to contribute to their own causes, either directly or indirectly. The acyclic binary
relations studied in this book are generally not assumed to be transitive (TR), since
transitive relations cannot distinguish naturally between direct and indirect relation-
ships. By abstaining from transitivity, one is free to use the independence convention
(IC), which specifies that each individual relation encodes direct influence, inde-
pendent of other modes of influence between its initial and terminal elements. A
binary relation < on a set D generates a transitive relation <y under the operation
of transitive closure, as described in Chapter 3. In the acyclic case, < is a partial
order, which is essentially why partial orders play such a prominent role in causal set
theory. In particular, this lends plausibility to the appearance of “order” in Sorkin’s
version of the classical causal metric hypothesis. However, as indicated above, pas-
sage from < to < destroys information about direct relationships; i.e., one cannot
recover < from <. For this reason, I work almost exclusively with the nontransitive
binary relation < itself, which I call the causal relation. These details are discussed
in Chapter 3, particularly in Sections 3.9 and 3.10.

2.3 Structure on Relativistic Spacetime

‘“Geometric intuition” versus physical geometry. Given the “geometric” picture
of directed sets afforded by graphical representations such as generalized Hasse dia-
grams, it is natural to view these sets as “spaces” in a mathematical sense, quite
apart from any specific physical interpretation. Of course, I have already explained
the discrete causal interpretation of these sets at an informal level, but this prelim-
inary description falls far short of providing a precise quantitative description of
how discrete causal theory models fundamental spacetime structure, or enabling a
meaningful comparison of the theory with more conventional approaches to funda-
mental physics. This situation calls for a deeper examination of the physical role
of directed structure, followed by a careful explanation of its consequences in the
discrete setting. The best understanding of such structure available within the scope
of experimentally-established physics comes from general relativity. Hence, much
of the present chapter focuses on reviewing a few important aspects of relativistic

SFor diagrams of directed sets that are not assumed to be acyclic, arrows are added to the edges to
explicitly indicate the direction of causal influence. Examples appear in Figures2.7.2, 3.6.5, 5.4.4,
and 8.7.2. It is occasionally convenient to add arrows even in the acyclic case.
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spacetime structure, from a perspective that may be readily adapted to the discrete
causal context. Central to this picture are the metric recovery theorems.

The pedestrian view of directed sets as “spaces in a mathematical sense” represents
an instance of the common and useful practice of applying “geometric intuition” to
help analyze the properties of mathematical objects, whether or not these objects are
“geometric” in a traditional sense. While the original source of such intuition is often
partly physical in nature, the practice itself has no necessary connection to physics
at all; indeed, fields of pure mathematics such as functional analysis and algebraic
geometry abound with such “geometric” methods. In functional analysis, for exam-
ple, one studies “spaces of functions,” which are typically infinite-dimensional vector
spaces. The elements of such spaces are functions on some other space, such as the
real line R. Notions originating in geometry, such as projections and orthogonality,
play a central role. In algebraic geometry, meanwhile, one studies “spaces” called
algebraic schemes, whose elements are prime ideals in commutative rings; for exam-
ple, the ideal of all polynomials f(x, y) in the polynomial ring R[x, y] vanishing
on an irreducible algebraic curve® such as {(x, y) € R?|y = x?}. In this case, famil-
iar “geometric” concepts are applied in ways unimagined by mathematicians over
the first two millennia of studying such objects; for example, individual points may
possess nonzero dimension. Generalization of these ideas to the noncommutative
setting leads back in a curious manner to topics in fundamental physics, via Connes’
noncommutative geometry, revisited briefly in Chapter 8.

The purpose of rehearsing this bit of pure mathematics is to emphasize that the
vague “geometric” character of arbitrary directed sets does not, by itself, constitute
evidence that physical spacetime, from which humans have acquired much of their
geometric intuition, may actually be a directed set, or a structure “built from directed
sets.” Indeed, “geometric data” in some form may be squeezed out of almost any type
of mathematical object one might choose to work with. For example, when studying
any suitable class’ of structured sets, one may always pass to a category of such sets,
then ignore the “internal structure” of the sets themselves, regarding them as merely
“higher-level elements,” just as directed sets are viewed as “elements” of a kine-
matic scheme. This yields an abstract multidirected set, whose elements represent
the original structured sets, and whose relations represent morphisms between pairs
of structured sets. This multidirected structure, in turn, provides natural “geometric”
notions of “directions,” “neighbors,” “paths,” distances,” and so on. Of course, nei-
ther multidirected sets nor categories enter the picture in any serious manner until
Chapter 3, aside from a brief explanation in the present section regarding the role of
category theory in organizing different types of structure on relativistic spacetime.
However, the details of this particular example involving categories of structured
sets are immaterial at present. Its role is merely to illustrate why the causal metric

SIn this context, the word “curve” means “locus of points,” not “map from a real interval into a
manifold,” as it does later in the chapter.

"The reason for the qualifier “suitable” here is that the class must be “small enough” so that the
resulting multidirected structure will actually be a set, rather than a proper class.
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hypothesis (CMH) requires much stronger and more specific justification than I have
demonstrated thus far.

Fortunately, such justification exists, in the form of the metric recovery theorems
of Hawking and Malament. The basic idea of metric recovery is that almost all of
the apparent geometric structure of relativistic spacetime is encoded in its causal
structure. The only information missing is “scale data;” or, more precisely, a confor-
mal factor in the metric. If spacetime is actually discrete, however, then the combina-
torial details of discrete microstructure can supply scale data “for free.” Hence, one
may construct discrete models whose only structure is causal structure, yet which
“look just like relativistic spacetime at ordinary scales.” This suggests that, under
the limitations of present observations, discrete causal models of classical spacetime
are “just as good” as the geometric models used in relativity. In fact, they turn out
to be much better in a number of significant ways. The principal reason why such
models are not yet ready to replace relativistic spacetime root and branch is because
general relativity explains how specific geometry arises dynamically, while discrete
causal dynamics is still in its infancy.

Pseudo-Riemannian manifolds; diffeomorphism invariance. To properly under-
stand the subject of metric recovery, it is necessary to examine a few of the geometric
ingredients of general relativity. In this context, the “spaces” of interest are special
types of real manifolds, called pseudo-Riemannian manifolds, viewed as models
of classical spacetime. To be precise, I should point out that even in general rel-
ativity, such manifolds are not properly regarded as “physical” in their own right.
Einstein himself understood that individual elements of a pseudo-Riemannian man-
ifold do not possess intrinsic physical meaning, as already mentioned in Section 1.6.
To understand, at an informal level, why this is true, one might imagine “painting”
certain physical information on the surface of a sphere, then mapping each element
of the sphere to another element by means of a rotation. In this context, the physical
information is “re-associated” with different abstract points on the sphere, but there
is no intrinsic physical distinction between the two associations.® More formally,
general relativity is diffeomorphism invariant; i.e., Einstein’s equation (1.3.1) does
not change its form under “smooth transformations” of relativistic spacetime. With
this understanding, I often lapse into the common habit of treating elements of a
pseudo-Riemannian manifold as “spacetime events” in the relativistic context, even
though these elements really only represent spacetime events.

This distinction between mathematical elements and physical events actually turns
out to be important when comparing general relativity to discrete causal theory, due
to the relative rigidity of discrete directed sets, mentioned periodically throughout
Part I of the book, and revisited more thoroughly in Section6.3. I will not go into
the details in the present chapter, but one of the basic physical implications of this
rigidity is that physical spacetime events may be associated much more directly
with elements of a discrete directed set than with elements of a pseudo-Riemannian
manifold. On a historical note, the “non-physicality” of elements and coordinate
systems presented Einstein with such severe difficulties that it contributed to several

8This familiar thought experiment paraphrases part of an analogous discussion in Rovelli [RO04].
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years of delay in the publishing of his first papers on general relativity, even after
most of the mathematical and physical essentials were in place. Had Einstein been
working with discrete directed sets instead, this particular conceptual issue would
likely have posed far less of a obstacle.’

Five types of structure. Pseudo-Riemannian manifolds are endowed with a number
of different types of structure, with varying types and degrees of physical significance.
Two manifolds that are “the same” with respect to one type of structure may be
“different” with respect to another. Five important types of structure on a pseudo-
Riemannian manifold X are topological, smooth, causal, conformal, and metric
structure. These are listed in a suggestive way in Figure2.3.1. For future reference,
the left-hand side of the figure, which looks like part of a curved two-dimensional
surface, really represents part of a pseudo-Riemannian manifold, usually assumed
to be four-dimensional, connected, and without boundary. In particular, the “edges
of the surface” do not represent actual boundary points of the manifold, but merely
delimit the portion being illustrated. Auxiliary structure represented by graphical
features that intersect the edges, such as “curves drawn on the surface,” should be
assumed to “keep on going,” rather than “stopping at the edge.”

X
metric
\ conformal ?
|
causal “more detailed”
S I
topological

Figure 2.3.1. Informal view of types of structure on a relativistic spacetime manifold X.

“Relativistic spacetime geometry” is an informal term for metric structure in
relativity, which is the “most detailed” of the five types of structure listed in the
figure. A question of central importance, both in relativity and in related theories,
is how much of this metric structure one may “recover” from knowledge of one
or more of the other four types of structure. This is a generalized version of the
metric recovery problem. In the present context, of course, the focus is directed
toward the more specific question considered by Malament; namely, how much of
the metric structure may be recovered from knowledge of the corresponding causal
structure. However, these five types of structure are intimately bound together, and it

Rovelli [RO04] gives a splendid explanation of this topic in his chapter 2.
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is necessary to consider all of them to some degree in order to understand this more
specific problem.

Ranking of structures. The list appearing on the right-hand side of Figure2.3.1
gives an informal “ranking” of these five types of structure in the specific context
of relativistic spacetime. The qualitative idea of this ranking is that it is “easy” to
recover structures lower on the list from structures higher on the list, but difficult
or impossible to do the opposite. For example, metric structure is specified by a
particular choice of metric, as described below, while conformal structure is specified
by an equivalence class of metrics, related to each other by “scaling functions”
called conformal factors. Knowledge of metric structure, i.e., of a specific metric,
immediately yields knowledge of the corresponding equivalence class of metrics, i.e.,
of the conformal structure. However, knowledge of an equivalence class of metrics,
by itself, does not yield a method of choosing a unique metric from among them.
Hence, it is generally impossible to recover metric structure from conformal structure
alone.

The reason for the dashed line in the figure is that it is possible to talk about
the top three types of structure in “non-smooth” contexts; in particular, discrete
causal structure is the main subject of Part I of this book. Hence, the “ranking” only
applies to relativistic spacetime, where an underlying smooth manifold structure is
taken for granted. Such a manifold comes equipped with a “standard” topological
structure, called the manifold topology, indirectly inherited from the topological
structure of the real line R. However, other topological structures are also of interestin
relativity; for example, the Alexandrov topology, which is closely related to the axiom
of interval finiteness (IF) in causal set theory, and the path topology of Hawking, King,
and McCarthy [HA76]. The latter two topologies are “physically more natural,” in
certain specific ways, than the manifold topology, and both contribute to the proof
of the metric recovery theorems. However, when I refer to topological structure on
relativistic spacetime in this chapter, I am referring to the manifold topology unless
stated otherwise.

For the sake of relevance and brevity, I focus primarily on the top three types of
structure listed in the figure, examining them in reverse order of detail, beginning with
metric structure and ending with causal structure. The choice to present the material
in this order is motivated by the fact that conformal structure and causal structure
in relativity are usually expressed in ferms of metric structure. I discuss smooth
structure and topological structure only briefly, and in purely auxiliary ways. For
example, smooth structure enters the picture in the discussion of metric structure,
since the bilinear maps on tangent spaces defined by the metric are taken to vary
smoothly. It also plays arole in the discussion of causal structure, since the distinction
between causal isomorphisms and enhanced causal isomorphisms in Definition 2.6.3
is described in terms of the distinction between smooth causal curves and causal
curves that are merely continuous. I discuss topological structure last of all, and only
briefly, after the description of metric recovery in Section2.8. The purpose of this
brief topological detour is partly to aid the reader in understanding the literature
on metric recovery, which makes use of all three topologies mentioned above, and
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partly to facilitate the discussion in Chapter 4 regarding how the Alexandrov topology
relates to the interval topology and the causal set axiom of interval finiteness (IF).
The qualitative claim of the classical causal metric hypothesis (CCMH) is that
“metric structure” is merely a way of describing certain aspects of causal struc-
ture. This assertion seems to turn on its head the ranking of structures appearing in
Figure2.3.1, but the causal metric hypothesis is not intended to apply, at a precise
level, in the relativistic setting. Indeed, if classical spacetime really is precisely rep-
resented by a pseudo-Riemannian manifold in the usual relativistic sense, then the
classical causal metric hypothesis is wrong, at least, under the standard definitions
and assumptions specifying how causal structure should be modeled in this context.
In this case, the metric recovery theorems tell exactly what is missing; namely, scale
data, and this is where conformal structure enters the picture. Hence, the plausibility
of the causal metric hypothesis depends on the conviction that what is convention-
ally viewed as relativistic spacetime is really some alternative structure that merely
mimics a pseudo-Riemannian manifold at large scales. Although the metric recovery
theorems say nothing about discreteness explicitly, they do demonstrate indirectly
that “relativistic spacetime looks suspiciously like a discrete directed set,” since dis-
crete directed structure carries natural scale data. These theorems may therefore be
interpreted to suggest that discrete directed sets represent a particularly promising
candidate for such alternative structure. It is therefore reasonable to consider the pos-
sibility that general relativity is merely a “smooth approximation” of discrete causal
theory, just as special relativity is a “flat approximation” of general relativity, and
Newtonian mechanics is a “low-velocity approximation” of special relativity.

Category theory as an organizing principle. Category theory provides a use-
ful, though incomplete, method of organizing the five types of structure listed in
Figure2.3.1. It is useful because it treats these structures in a unified and coherent
manner, but it is incomplete because it emphasizes only the active viewpoint, in
which structural relationships are studied via morphisms, in this case, by actively
mapping each element of spacetime to another element. The complementary passive
viewpoint, in which one compares different instances of the same type of struc-
ture without any active mapping procedure, is implicitly deprecated in this context.
In conventional continuum-based physics, these two viewpoints often, though not
always, involve essentially equivalent treatment of physically relevant information.
In discrete causal theory, however, they lead in profoundly different directions. I
return to this subject later in the chapter, and again in Section 8.4. At present, the
distinction introduces no serious difficulties.

If X and X’ are “spaces,” in a general and unspecified sense, with each space
possessing different instances of a particular type of structure, then X and X’ may
be viewed as objects in a category characterized by this common structural type,
ignoring for the moment any other type of structure they might possess. For example,
if X and X’ are “relativistic spacetimes,” then one may choose to view them as
simply topological spaces, i.e., as objects in an appropriate fopological category.
For the sake of clarity, it is useful to note that there is a different category for
each type of topology; for example, the manifold, Alexandrov, and path topologies.
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Alternatively, one may choose to view X and X’ as smooth real manifolds, i.e., as
objects in an appropriate smooth category. Smooth real manifolds are the underlying
structures on which geometry is built in general relativity. Once a particular type of
structure has been chosen to study, it is natural to turn attention to the class of maps
f : X — X' preserving this structure. These are the morphisms between X and X’
in the chosen category. For more abstract categories, morphisms are not necessarily
maps, but in the context of relativity, the categories involved are very “concrete,”
and maps suffice. If the morphism f : X — X’ possesses an inverse that is also a
morphism, then f is called an isomorphism, and X and X' are called isomorphic. This
is sometimes denoted more succinctly by the expression X = X', which expresses
the information that there exists at least one isomorphism between X and X', without
specifying a particular isomorphism. Isomorphic objects X and X’ are considered to
be “essentially the same” with respect to whatever type of structure is being studied.
“Self-morphisms” f : X — X are called endomorphisms, and “self-isomorphisms”
are called automorphisms. It is easy to see why this approach emphasizes only the
active viewpoint, since different instances of a particular type of structure on X are
compared by actively transforming X.

Traditionally, different names are assigned to morphisms in different categories.
For example, a topological isomorphism is called a homeomorphism, and one must
specify which type of topological structure is being considered for this notion to
be well-defined. A smooth isomorphism is called a diffeomorphism, a metric iso-
morphism is called an isometry, and a conformal isomorphism is called a conformal
isometry. As far as I know, causal morphisms do not possess separate traditional
names, probably because they were not seriously studied until after category theory
became the standard structural paradigm in abstract algebra. In particular, Zeeman
[ZE64] seems to have coined the term causal automorphism in his 1964 paper on
causality and the Lorentz group.'? In the topological category for the manifold topol-
ogy, relativistic spacetime is assumed to be locally homeomorphic to R*; i.e., it is a
four-dimensional real manifold. In the more detailed smooth category, it is assumed
to be locally diffeomorphic to R* with its usual smoothness structure; i.e., it is a
smooth four-dimensional real manifold. This supplies enough underlying structure
to facilitate the specification of spacetime geometry.

2.4 Metric Structure

Pseudo-Riemannian metrics. The type of geometry of principal interest in gen-
eral relativity is a special kind of pseudo-Riemannian geometry, sometimes called
Lorentzian geometry. It is the tool Einstein finally settled on for modeling classical
spacetime structure after several years of painful self-education in then-relatively-

101n fact, both Zeeman [ZE64] and Malament [MA77] define causal morphisms in terms of timelike
rather than causal relationships. The latter may be either timelike or null. Discrete causal theory
generally does not make such distinctions. See Sections 2.6 and 2.8 for more details.
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modern mathematics. A significant proportion of readers will probably be grateful
for the inclusion of a few extra pages recalling some of the rudiments of this particu-
lar type of geometry. However, I do assume that the reader is familiar with the basic
definitions of real manifolds, tangent and cotangent spaces, smooth maps, and a few
related ideas from elementary differential geometry.

Definition 2.4.1. Let X be a smooth real manifold. A pseudo-Riemannian metric
g on X is a smoothly-varying family of real-valued, non-degenerate, symmetric,
bilinear maps on the tangent spaces of X. A pseudo-Riemannian manifold is a
smooth real manifold together with a choice of pseudo-Riemannian metric.

To spell this out in more detail, the definition means that for each x € X, g assigns
areal value g, (v, w) to each pair of tangent vectors v and w in the tangent space 7, X at
x. For any fixed tangent vector v in 7, X, one may defineamap g, (v, —) : T, X — R,
sending each tangent vector w to g, (v, w). A similar map g, (—, w) : T, X — R may
be defined by fixing the second argument in g,. The “non-degenerate” property of
g means that the map g, (v, —) is identically zero if and only if v is itself the zero
vector, and similarly for g, (—, w). The “symmetric” property means, of course, that
gx(v,w) = g, (w, v) for every choice of v and w. The “bilinear” property means that
g, is linear in each of the variables v and w. For the first variable v, this means that
gx(avy +axva, w) = a8, (vi, w) + axg.(v2, w), for any tangent vectors vy, v,, and
w at x, and any scalars a; and a,. An alternative way to say this is that the maps
g:(v, —) and g, (—, w) are linear; i.e., they are dual vectors or cotangent vectors at x.

The metric g is a tensor, which is a general term denoting a family of multilinear
maps of an appropriate type, whose arguments are tangent vectors and/or cotangent
vectors on X. The assignment (v, w) — g, (v, w) may be viewed as a “generalized
inner product” on the vector space T, X. In the special case of a Riemannian mani-
fold, dropping the prefix “pseudo,” this assignment really is an inner product, i.e., a
symmetric, bilinear, positive-definite map, where “positive” means that g, (v, v) > 0,
and “definite” means that g, (v, v) = 0if and only if v = 0. More generally, however,
it is possible that g, (v, v) < 0 even when the vector v is nonzero; in this case, g does
not define true inner products on the tangent spaces of X. This occurs, in particular,
in the relativistic case, where the sign of g, (v, v) determines whether v is timelike,
null, or spacelike. These designations, along with their physical interpretations, are
discussed further below. For notational clarity, I remark that it is sometimes conve-
nient to denote a pseudo-Riemannian manifold by a pair (X, g), when one wishes to
make the choice of metric explicit.

In the context of relativity, one is interested in the specific case of four-dimensional
spacetime. In this case, the metric g may be represented at each point x € X by a
4 x 4 symmetric matrix:

8oo go1 £o2 803
810 811 812 813 | (24.2)
820 821 822 823
830 831 832 833

(g/w) =
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The numerical values of the entries g, in this expression depend on a choice of
basis for T, X, which is often derived from a choice of local coordinates on X near
x. However, the metric g itself, as opposed to a particular matrix representation of
g at a particular point, is often written as g, for historical reasons. For example,
this notation appears in the usual expression of Einstein’s equation (1.3.1). Mathe-
matically, this is a bit awkward, and constitutes one of the reasons why much of the
literature on general relativity, and also on quantum field theory, is difficult for many
mathematicians to read. A reasonable compromise between traditional and modern
conventions is Penrose’s abstract index notation, in which the indices appearing in
the expression for a tensor have nothing to do with bases or coordinates, but merely
indicate the type and order of its arguments, i.e., the number and arrangement of tan-
gent vectors and cotangent vectors on which it operates. However, such notational
details play essentially no role in this book beyond the present chapter.

Examples of metrics. The typical student of relativity usually encounters two spe-
cific, and particularly simple, pseudo-Riemannian metrics, before studying the prop-
erties of metrics in general. The first of these metrics is the Euclidean metric § on R*,
for which the diagonal entries in the above matrix representation (2.4.2)are 1, 1, 1, 1,
and the off-diagonal entries are 0, for every point x € R*, under a standard choice
of basis. The second is the Minkowski metric n on R?*, for which the corresponding
diagonal entries are —1, 1, 1, 1, and the off-diagonal entries are 0. Since the gen-
eralized inner products defined by these metrics do not vary across spacetime, they
are called constant metrics. In both cases, the entire pseudo-Riemannian manifold
involved is isomorphic to any of its tangent spaces. This means that properties that
generally apply only locally, or in a limiting sense, such as Lorentz invariance in the
case of relativistic spacetime, actually hold at a global level in these special cases.
A simple example of a non-constant metric is the Schwarzchild metric on R*, which
may be represented by the matrix

~(1-2) o 0 0
-1
(g/w) = 0 (] - Zglrl/l) 0 0
0 0 20
0 0 0 rZsin?6

using coordinates (ct, r, 6, ¢), where c is the speed of light, G is Newton’s gravita-
tional constant, ¢ is the time coordinate, and the spatial coordinates (r, 6, ¢) are the
usual spherical coordinates on R3.!! In the limit of a vanishing “cosmological con-
stant,” the Schwarzchild metric describes relativistic spacetime near an appropriate
spherically-symmetric body of mass M, such as an ideal, non-charged, non-rotating
black hole.

1t is common to “choose units” in such a way that the numerical values of constants such as ¢ and
G are set to 1. For example, Carroll [CA04], p. 193, omits explicit inclusion of ¢ in his expression
of the Schwarzchild metric, and Hawking and Ellis [HE73], p. 149, omit both ¢ and G. I include
these factors so that the “units work out” in a naive sense.
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A general class of metrics of particular interest in conventional relativistic cosmol-
ogy is the class of Friedman-Lemaitre-Robertson-Walker (FLRW) metrics, which are
special solutions to Einstein’s equation (1.3.1), describing homogeneous, isotropic
spacetimes with time-varying “scale factors.” Under a suitable choice of coordinates
(ct,r, 0, ¢), a FLRW metric may be represented by the matrix

-1 0 0 0
0 a*(t) 0 0

@) ={0 0 awre 0 ’
0 0 0 a’(t) f2(r) sin®> @

where a(t) is the scale factor, and where f(r) takes on one of a few simple val-
ues, depending on the curvature. Two specific “maximally symmetric” examples of
particular prominence are the positive-curvature de Sitter metric, which describes
an idealized cosmology dominated by a positive “cosmological constant,” and the
negative-curvature anti-de Sitter metric, whose higher-dimensional analogues are
central to Maldacena’s AdS/CFT correspondence [MA99] in string theory. The most
popular “realistic” models in modern cosmology involve so-called “almost FLRW
metrics,” which are perturbed away from an exact FLRW form by inhomogeneities
on relatively small scales, in an effort to model the manifest local irregularity of
matter content in the observable universe. In particular, the ACDM model, named
to reflect the fact that it involves a nonzero “cosmological constant” A and “cold
dark matter” (CDM), uses such metrics. A good standard reference on the subject is
[EMM12]."> FLRW models make a brief reappearance in Chapter4, where I quote
an assertion by the founders of causal set theory [BLMSS88] that star finite causal
sets suffice for studying their discrete causal analogues.

Pulling back a metric; metric morphisms. Given a smooth morphism'? f : X —
X', between a pair of smooth real manifolds X and X', together with a choice of
pseudo-Riemannian metric g’ on X’, one may define a smoothly-varying family of
symmetric, bilinear maps f*g’ on the tangent spaces of X, called the pullback of
g’ along f. This family is defined by “pushing forward” tangent vectors from X to
X', then applying g’ to these tangent vectors. If the morphism f possesses “suitable
properties;” in particular, if it is a diffeomorphism, or more generally, an immersion,
then f*g’ is nondegenerate, and therefore constitutes a pseudo-Riemannian metric
on X. The reason for such a brief and informal description of this construction is
that the pullback plays a very limited and specific role in this chapter. Most of the
technical details are unnecessary for this purpose, but may be found in any appropriate
reference on differential geometry or general relativity, such as Wald [WA84]. A
metric morphism between a pair of pseudo-Riemannian manifolds (X, g) and (X', g')
isamap f : X — X' that preserves metric structure, in the sense that the pulled-back
metric f*g’ on X coincides with the chosen metric g on X. In particular, if X = X',

12See [EMM12], p. 205. Most texts based on general relativity use the “line element” notation to
describe such metrics; in this case, ds? = —dr? + az(t)[dr2 + fz(r)(a’e2 + sin? qubz)],
13This means a morphism in the smooth category.
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then such a morphism f is necessarily bijective, and is therefore a self-isometry, i.e.,
an automorphism of X in the category of pseudo-Riemannian manifolds.

Metric signature. The signature of a pseudo-Riemannian metric g on a smooth
n-dimensional real manifold X is an ordered pair of natural numbers (p, q), with
sum n, where p and g are the “numbers of plus 1’s and minus 1’s along the diagonal,”
when g is represented in matrix form, via appropriate choices of bases for the tangent
spaces T, X. Again, an informal description suffices for the present purposes. The
signature of the Euclidean metric § on R* is (4, 0), since the corresponding diagonal
entries are 1, 1, 1, 1 in this case, while the signature of the Minkowski metric n on
R*is (3, 1), since the diagonal entries are —1, 1, 1, 1.'* More generally, signatures
of the form (p, 1), i.e., signatures with “exactly one minus sign,” are so important
in theoretical physics, regardless of the dimension of the underlying manifold, that
they are collectively referred to by the single name Lorentz signature. Other metric
signatures may also be physically relevant; for example, the signature (2, 2) plays
a role in Penrose’s twistor theory. The fact that the signature of g is independent
of the choice of point x € X and the choice of basis for T, X, is due to Sylvester’s
law of inertia, which says that “the number of positive and negative coefficients in
a diagonalized quadratic form does not depend on the choice of diagonalization,”
together with the “smoothly varying” hypothesis on g.

Riemannian geometry is the study of real manifolds of metric signature (p, 0),
for some p, called pure signatures. In this sense, Riemannian geometry is a gen-
eralization of Euclidean geometry, since the spaces involved “look like Euclidean
spaces locally,” in a limiting sense, even though their underlying smooth manifold
structures may be very complicated. Pseudo-Riemannian geometry expands this
picture further, to allow mixed signatures, i.e., signatures for which both p and g are
nonzero; the case ¢ = 1 is the Lorentzian case discussed above. Altogether, there
exist n + 1 possible signatures (p, g) for a pseudo-Riemannian metric on a smooth
real manifold of dimension #, running from (7, 0) to (0, n). In particular, in the special
case where the manifold under consideration is merely R”, there exist n + 1 different
pseudo-Euclidean spaces RPT4, whose metrics are the constant metrics of signatures
(p, q). This is why Minkowski spacetime is often denoted by R3*!. Physically, this
choice of notation emphasizes the fact that one of the dimensions, viewed here as the
“temporal dimension,” is distinguished from the others, due to its association with
the single minus sign in the metric signature. More generally, it is easy to understand
why Lorentz signature is so important from the perspective of causal structure: the
single minus sign in the signature corresponds to the “local direction from cause to
effect,” regardless of the dimension of the underlying manifold. For a more general
pseudo-Riemannian manifold X with signature (p, g), the tangent spaces 7, X at
each point x € X are naturally isomorphic to RP* as pseudo-Euclidean spaces, so
these manifolds are “locally pseudo-Euclidean of type (p, ¢),” in a limiting sense. In

14The inconsistency of the order of plus and minus signs between the list of entries —1, 1, 1, 1 and
the abbreviation (3, 1) for the metric signature is an annoying historical artifact. One ought to either
flip the signs to 1, —1, —1, —1 and denote the signature by (1, 3), as is done in certain texts on
quantum field theory, or else flip the entries to 1, 1, 1, —1, and denote the signature by (3, 1).
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particular, the tangent spaces of pseudo-Riemannian manifolds of Lorentz signature
(3, 1) are isomorphic to R¥*!, so relativistic spacetime is “locally approximated by
Minkowski spacetime.”

Recovering “physically relevant metric structure” Among all pseudo-
Riemannian manifolds of Lorentz signature (3, 1), those actually arising in “physi-
cally relevant scenarios” in general relativity are sometimes given special names. For
example, vacuum solutions to Einstein’s equation, in which the stress-energy tensor
vanishes, are called Einstein manifolds. Minkowski spacetime is the prototypical
example. The class of Einstein manifolds is too restrictive for the study of metric
recovery in the relativistic setting, since the matter-energy content of the observ-
able universe is non-negligible. On the other hand, certain classes of solutions to
Einstein’s equation involve types of “exotic matter” whose existence is doubtful, or
configurations of matter and energy that may be difficult or impossible to achieve
dynamically, even if they are theoretically possible. Hence, it can sometimes be
desirable to restrict attention to the recovery of a smaller class of manifolds than the
class of all solutions to Einstein’s equation for all possible configurations of matter
and energy. It is convenient to refer to such “physically relevant” manifolds as gen-
eralized Einstein manifolds. The following definition is deliberately vague, simply
because the actual results necessary to motivate the developments in this book are
much more general.

Definition 2.4.3. A pseudo-Riemannian manifold of Lorentz signature (3, 1), sat-
isfying Einstein’s equation (1.3.1) for a “physically reasonable” choice of stress-
energy tensor, is called a generalized Einstein manifold.

General relativity is very successful experimentally, and any theoretical effort to
improve upon it must eventually reproduce its empirical success. This is a very
demanding task, involving detailed quantitative behavior across scales from the
everyday scale up to at least the stellar scale, and quite possibly to the scales of
“dark matter,” “dark energy,”!> and beyond. For this reason, the most promising new
theories of fundamental spacetime structure are those that naturally approximate the
content of general relativity in a comprehensive manner, rather than attempting to
reproduce a host of experimental results in a purely coincidental way. This is one
reason why “theories” such as modified Newtonian dynamics (MOND) are problem-
atic; such approaches may explain a limited range of phenomena quite well, but the
scope of explanation of general relativity is so great that it is difficult to imagine
a successful replacement for the theory that is not intimately connected to it at a
deep structural level. Despite the crucial common thread of causal structure, discrete
directed sets might a priori be expected to prove absurdly inadequate for this purpose,
since smoothness is one of the basic properties on which pseudo-Riemannian geom-
etry is built. However, there is “plenty of room” for such models to converge with
relativity somewhere between the hypothesized fundamental scale and the scales

15As in the case of the “cosmological constant” and “dark matter,” the quotation marks serve to
warn the reader that the term “dark energy” itself suggests a conventional interpretation of certain
observed phenomena.
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accessible to present-day experiment. The crucial requirement, then, is not that the
fundamental constituents of a new theory must match those of relativity in every
respect, but that the new theory must adequately approximate relativistic spacetime
structure in a uniform and natural way across a suitable range of scales. These con-
siderations narrow the general problem of describing physical spacetime in terms of
causal structure to the following much more specific problem:

Relativistic metric recovery problem: Can directed sets, and preferably
discrete directed sets, adequately approximate a suitable class of general-
ized Einstein manifolds at sufficiently large scales?

If the answer to this metric recovery question were negative, then the classical
causal metric hypothesis (CCMH) would be in serious jeopardy. Indeed, general rel-
ativity would have to be basically wrong across a broad range of observable scales
for the hypothesis to be true. This is not out of the realm of possibility; for example,
many physicists have questioned whether “dark matter” and/or “dark energy” might
actually represent MOND-like dynamical deviations from Einstein’s equation. At
present, however, it is unnecessary to explore these issues further, because the metric
recovery theorems solve a much more general problem:

Solution: Discrete directed sets can adequately approximate the entire
class of four-dimensional'® pseudo-Riemannian manifolds of Lorentz
signature at sufficiently large scales.

The next four sections of the chapter explain the meaning and significance of this
solution.

2.5 Conformal Structure

Spacetime ‘““angles” and ‘‘scales.” Before stating an appropriate version of the met-
ric recovery theorems, I must supply some preliminary information about conformal
structure and causal structure in general relativity. To avoid the nuisance of copy-
ing lists of technical properties, and becoming bogged down in mostly irrelevant
discussions about which specific properties apply in which cases, I will sometimes
refer to the manifolds involved as merely “relativistic spacetime manifolds,” or even
just “spacetimes,” in what follows, even though they may not be actual solutions to
Einstein’s equation. A more descriptive term might be “relativistic classical histo-
ries,” but this term is not quite accurate, due to the imperfect background indepen-
dence of general relativity, i.e., the fact that typical relativistic scenarios include
material content distinct from pure geometry.

16The same is true, in fact, for any dimension at least three, as discussed in Section2.8.
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The metric g on a relativistic spacetime manifold X encodes information that
enables measurement of several different types of geometric quantities in X, such
as “angles” and “scales.” The reason for the quotation marks here is that a mixed
signature, in particular, the Lorentz signature (3, 1), alters the naive Euclidean picture
of such quantities. For example, the angle between two smooth intersecting curves
in a Euclidean space, and by extension, in a Riemannian manifold X, is defined,
reasonably enough, to be the angle between their tangent vectors at their point x of
intersection. This angle, in turn, is defined in terms of the inner product on the tangent
space T, X, which is supplied by the metric. However, if X is a pseudo-Riemannian
manifold of mixed signature, then the metric g does not define true inner products
on the tangent spaces of X, and this makes the picture subtler. In particular, this is
what leads to consideration of analogues of Euclidean angles in relativity, such as the
hyperbolic angles measuring the “rapidity of reference frames in relative motion.”
An iconic feature of mixed signature, which distinguishes it from the Riemannian
case, is the existence of null vectors in the tangent spaces 7, X, i.e., nonzero vectors v
that are “orthogonal to themselves,” in the sense that g, (v, v) = 0. In the special case
of Minkowski spacetime R3*!, these vectors represent the trajectories of light rays,
and define the “light cone,” or null cone, of x in R3>*!.!7 Despite such distinctions,
the intuition associated with Euclidean “angles” and ““scales” remains valuable, and I
make informal use of these concepts in some of the examples and illustrations below.
The purpose of these examples is merely to motivate the notions of “conformal
equivalence of metrics” and “conformal maps between spacetimes.” Hence, little
precision is needed.

Separating ‘““‘angle data” and ‘‘scale data.” The information encoded in the metric
g on a relativistic spacetime manifold X may be partitioned in various ways; in
particular, one may study “angle data” and “scale data” separately. To understand
how these two types of information may be distinguished, it is instructive to consider
apair of smooth curves y; and y, in X that “intersect with angle §” atapointx € X, as
illustrated in the left-hand diagram in Figure 2.5.1. There are several choices for how
to make this scenario more precise, if one wishes to do so, and any of these choices
serve adequately for the purposes of illustration. For example, one may choose to
take X to be a Riemannian manifold in this particular example, and view the “angle”
between the curves at x as an actual angle; or one may ignore the “up the page rule,”
and think of the figure as representing a “spacelike section” of X, which possesses
a natural “induced Riemannian structure.” Finally, one may take the tangent vectors
of the curves to be timelike, in the sense described below, and view this “angle” as
a hyperbolic angle.

To illustrate the distinction between “angle data” and “scale data” on X, one
may replace the metric g with a new metric g’ = £22g, for some positive real

17 As explained in Section4.5, the “near-zero” Minkowski spacetime intervals between an event and
other events near its null cone in a given frame of reference translates to extreme spatiotemporal
nonlocality in certain idealized types of causal sets induced by global sprinklings into R3*!. This
leads to interesting general considerations regarding local structure in discrete causal theory.
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Figure 2.5.1. “Angle data” and “scale data” in relativistic spacetime; multiplying the metric by a
constant factor changes “scales,” but does not affect “angles”.

number §2. To be precise, g’ is shorthand for the metric defined by the formula
2. (v,w) = £2°g, (v, w) at each point x in X. In this particular example, £2 is chosen
to be greater than 1; later, it will be allowed to assume any positive magnitude, and will
also be allowed to vary over X. In the present case, the new metric g’ will yield larger
“scale” measurements for regions in X than g does; this is illustrated heuristically
in the figure, by “drawing the tick marks on the measuring stick representing g’ as
closer together than the tick marks on the measuring stick representing g.” However,
both metrics yield the same measurement for the “angle” between the curves y; and
y». Hence, “angle data” and “scale data” are separate, in the sense that two metrics
may encode exactly the same “angle data,” even if they encode totally different “scale
data.”

Conformal equivalence. The two metrics g and g’ illustrated in Figure2.5.1 pro-
vide a simple example of conformally equivalent metrics. The factor £2, which dis-
tinguishes the two metrics, is called a constant conformal factor. The qualitative
meaning of “conformal” is “same shape,” just as one would expect on etymological
grounds. Since the conformal factor §2 is constant in this particular example, it is
clear that g and g’ measure any subset of X to be the “same shape, but different
sizes;” examples of such subsets include the images of the curves y; and y,, and the
shaded regions labeled V; and V,. The general concept of conformal equivalence is
less restrictive: two pseudo-Riemannian metrics g and g’ on a smooth manifold X are
called conformally equivalent if they measure the “same shapes” in an infinitesimal
sense, i.e., if “sufficiently small regions are arbitrarily close to being the same shape”
with respect to the two metrics. This notion is made precise in Definition 2.5.2 below.

In Riemannian geometry, the idea that two metrics g and g’ on a manifold X
measure the same shapes in an infinitesimal sense may be elegantly re-expressed by
the simple statement that g and g’ measure the same angles between pairs of tangent
vectors in the tangent spaces T, X of X. For this reason, “angle preservation” is often
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the central motivating concept offered when conformal structure is introduced in
elementary settings; for example, in single-variable complex analysis. In pseudo-
Riemannian geometry, the same intuition remains useful, but true angles do not play
the same role in the case of mixed signature, since in this case a metric on X does
not define true inner products on its tangent spaces. In this context, it is simpler to
describe conformal equivalence of metrics in terms of how such metrics may differ;
namely, with regard to scale measurements. This is accomplished by simply allowing
the constant conformal factor §2 in the previous example to vary smoothly over X.

Definition 2.5.2. Two pseudo-Riemannian metrics g and g’ on a smooth manifold
X are called conformally equivalent if there exists a smooth positive function

$2:X —> R,

called the conformal factor, such that g, (v, w) = 2(x)%g, (v, w) for every point
x € X, and every pair of tangent vectors v,w € T, X.

A conformal geometry on a smooth manifold X is an equivalence class of con-
formally equivalent pseudo-Riemannian metrics on X. As a branch of mathematics,
conformal geometry is concerned with “scale-independent” properties of manifolds.
Conformal geometry is important in many physics-related contexts besides general
relativity. Perhaps the most famous of these, already mentioned in Section?2.4, is
Maldacena’s AdS/CFT correspondence in string theory, where “AdS” stands for
“anti-de Sitter,” and “CFT” stands for “conformal field theory.” A less conventional
application is Julian Barbour’s shape dynamics [BA12], which studies the “evolu-
tion of three-dimensional conformal spatial geometries.” More recently, Penrose’s
conformal cyclic cosmology [PE10] examines models of the universe in which the
contribution of scale data is “transient” in a limiting sense, allowing cosmological
epochs to be “stitched together,” despite the “initial smallness of Big-Bang type
scenarios,” and the “terminal largeness of expanding spacetimes.”

“Scaling the manifold instead of the metric.” A familiar scientific fable features an
observer who wakes up one morning to find that everything, except for all the measur-
ing sticks, has increased in size during the night. The question then becomes whether
“the world has really grown,” or whether “the measuring sticks have shrunk.” Silly
as this scenario may seem, reputable physicists have actually worked on very similar
ideas; for example, the question of whether or not there is any important distinction
between the conventional wisdom that spacetime is expanding, and the alternative
hypothesis that its material content shrinking. The answers to such questions depend
on a number of factors, but one of the most obvious of these is the actual nature of
fundamental spacetime structure. It is useful to consider this question in the specific
context of conformal structure, since changes of scale are “allowed” in this setting.
In trading the metric g on X for the conformally equivalent metric g’ = £22g, as
illustrated in Figure 2.5.1, one is not “doing anything” to the underlying manifold X,
so in this case it is clear that “the measuring sticks have shrunk.” Intuitively, it is easy
to imagine the alternative scenario, in which “X grows;” this scenario is illustrated
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in Figure2.5.3. In attempting to make this idea precise, however, an obvious prob-
lem arises: how can one “scale the manifold instead of the metric,” since a metric is
required to determine “sizes in X" in the first place?

Figure 2.5.3. “Scaling the manifold instead of the metric” makes sense only if scale data is available
from some other source.

The only possible solution to this problem is that one must obtain scale data about
X from some other source, and this is exactly what I have done in the figure. Here,
for once, it is instructive to think for a moment about the figure itself, temporarily
forgetting about what it is supposed to represent abstractly. The illustration of X looks
like a manifold; or, more precisely, like “part of a manifold,” embedded in a higher-
dimensional space, which is itself equipped with a metric. This metric provides a
“natural way to measure X.” Given this setup, it is easy to “copy,” and “dilate” X
to yield another manifold, called X', embedded in the same ambient space. The new
manifold X" may then be measured using the same metric, and it is clear that in this
case “the world has grown,” while “the measuring sticks have stayed the same size.”
Of course, in pseudo-Riemannian geometry, there is generally no ambient space to
appeal to, and therefore no “natural way to measure X;” instead, one must choose
a metric. In the discrete causal context, however, there is a natural source of scale
data for classical histories; namely, discrete causal structure itself. This is one of the
principal reasons why the metric recovery theorems provide “enough evidence” to
motivate the classical causal metric hypothesis (CCMH) in the discrete setting.

Smooth conformal isometries. Returning to Figure?2.5.3, what is represented is
a “pair of spacetimes” X and X’ embedded in an ambient space, whose metrics
g and g’ are induced by a choice of metric on this space. In this context, there
exist natural diffeomorphisms between X and X', which may be called dilation and
contraction maps. In particular, the dilation map sends x to x’, and the contraction
map sends x’ to x. These maps are simple examples of smooth conformal isometries,
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i.e., isomorphisms between X and X’ in the smooth conformal category. It is worth
emphasizing that referring to a map f as a “conformal isometry” does not mean
that f is “an isometry that is conformal,” since isometries are always conformal by
definition. Rather, it means that f is an “isometry up to conformal equivalence.”
This is made precise by the following definition:

Definition 2.5.4. A smooth conformal isometry f : (X, g) — (X', g'), between
two pseudo-Riemannian manifolds (X, g) and (X', g'), is a diffeomorphism f :
X — X/, such that the pulled-back metric f*g' on X is conformally equivalent to
the metric g on X.

The reason for the qualifier “smooth” in the phrase “smooth conformal isom-
etry” is that it is possible to study conformal properties of objects in more gen-
eral categories, as already mentioned in Section2.3. A smooth conformal morphism
f (X, g) — (X', g is defined by demoting “diffeomorphism” to “smooth map”
in Definition 2.5.4. Since conformal equivalence of metrics “preserves shapes” only
infinitesimally, smooth conformal morphisms and smooth conformal isometries gen-
erally do not “preserve shapes” at a finite level, and they obviously do not preserve
volumes, lengths, and other related measurements. Figure 2.5.5 illustrates two space-
times related by a smooth conformal isometry, which are nor “the same shape”
macroscopically. The checkerboard pattern in the figure is included to show how
corresponding regions “approach the same shape as they shrink in size;” in particu-
lar, the individual black and gray regions in the right-hand diagram are “much closer
to being squares” than the region itself.

Figure 2.5.5. Spacetimes related by a smooth conformal isometry.

Passive viewpoint versus active viewpoint. The specific distinction between
conformal equivalence of metrics and conformal morphisms between manifolds pro-
vides an excellent illustration of the more general difference between the passive and
active viewpoints regarding structural comparisons, already mentioned in Section 2.3
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in the context of category theory. Exchanging one metric for another involves the pas-
sive viewpoint, since one begins with an underlying structure, which is “left alone,”
while alternative additional structures are superimposed on it. Such an exchange of
metrics is mathematically analogous to changing “coordinate systems” or “frames
of reference,” but is much more drastic, at least in the relativistic context. This is
because different metrics are generally assumed to encode different physics,'® while
different frames of reference merely represent different points of view regarding the
same physics. Conformal morphisms, by contrast, involve the active viewpoint, since
they map each element of one manifold to an image element in another manifold. Of
course, nothing physically passive or active is involved in either case; but the choice
of terminology offers a convenient way of describing the difference in viewpoint.

Subtle relationships exist between the active and passive viewpoints in the context
of conformal structure. For example, if g and g’ = £2g¢ are conformally equivalent
metrics on an underlying smooth manifold X, then the identity map Id : X — X
may be viewed as a map between two different pseudo-Riemannian manifolds (X, g)
and (X, g’). From this viewpoint, the map “Id” is no longer the identity if g # g’;
i.e., it is not the identity morphism in the pseudo-Riemannian category, because it
is a map between two different objects in the category. In fact, it is not a morphism
in this category at all, because it fails to preserve metric structure. However, it is a
conformal isometry relating the two metrics g and g’, because Id*g’ = g’ = 2°2g.
Given such a pair of conformally equivalent metrics on X, there generally exist many
different self-diffeomorphisms f : X — X relating g and g’ via the same conformal
factor; for example, the underlying diffeomorphism of any smooth self-isometry f
of (X, g) relates g to itself in the trivial way: f*g = g = 1°g.

One may also ask the question of when a nontrivial self-diffeomorphism
f X — X, viewed as a self-map on a fixed pseudo-Riemannian manifold (X, g), is
a conformal isometry relating g to another previously-chosen metric g’ = £2%g on
the underlying smooth manifold X, i.e., for which f it is true that f*g = g’. If one
begins with a smooth conformal isometry f, then by definition one obtains a pair of
conformally equivalent metrics, but the conformal factor relating them is determined
by the details of f, and cannot be specified beforehand. If, on the other hand, one
first chooses a pair of conformally equivalent metrics g and g’ related by a particu-
lar conformal factor £22, then there may or may not exist any self-diffeomorphism
f : X — X such that f*g = g’.!° This provides a preliminary hint that the passive
viewpoint has information to offer that is unavailable from the active viewpoint.

I8Here I am referring to the many attempts, from Weyl to CFT’s to conformal cyclic cosmology,
to extend the relativity principle to include conformal invariance. In such a theory, an appropriate
change of conformally equivalent metrics would not affect the physics. Note that under the passive
viewpoint, the question of whether or not “different metrics encode different physics” does not
involve the active idea of “re-associating physical data with different points in a manifold,” discussed
in Section 2.3 in the context of diffeomorphism invariance. Here, the question is merely, “if the metric
near x is changed, does the physics near the event represented by x change?”.

19See Wald [WAS84], Appendix D.
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2.6 Causal Structure

Relativistic causal structure and the classical causal metric hypothesis. What
the metric recovery theorems demonstrate is that the causal structure of relativistic
spacetime determines the corresponding metric structure up to smooth conformal
isometry. Informally, this means that information about cause and effect reveals
everything that there is to know about relativistic spacetime geometry, except for scale
data, i.e., except for the choice of conformal factor. As mentioned in Section 2.3, if
classical spacetime really is precisely represented by a pseudo-Riemannian manifold,
then the metric recovery theorems are not quite sufficient to support the classical
causal metric hypothesis (CCMH), since there is no way to obtain the “missing
conformal factor” without turning to some auxiliary, “non-causal” source. Hence, if
general relativity is absolutely correct in how it models classical spacetime, then the
classical causal metric hypothesis is wrong, and the metric recovery theorems explain
exactly why, and to what extent. This does not necessarily mean that the physical
existence of continuum-based structure in general would doom the causal metric
hypothesis, since one could conceive of continuum-based spacetime models other
than pseudo-Riemannian manifolds. For example, domain theory provides a context
in which “continuous, pure causal” structure makes sense. On the other hand, if
classical spacetime is discrete, and merely looks like a pseudo-Riemannian manifold
at large scales, then a natural scale comes for free: the scale of the fundamental
elements and relations.? This is what the founders of causal set theory realized
around 1980.

Directions of curves in relativistic spacetime. What, precisely, is meant by “the
causal structure of relativistic spacetime?” The reader is no doubt well-aware that
relativity “forbids superluminal communication,” and this means that influence may
travel only along certain curves®! in spacetime, called causal curves. These curves
are determined by the metric g on a relativistic spacetime manifold X, which sup-
plies information about “what direction a differentiable curve is pointing” at each
point along the curve. At a fixed point x in X, these various “directions” may be
partitioned into three classes, usually called fimelike, null, and spacelike. Timelike
and null directions may be further subdivided into classes of past and future direc-
tions. From a physical standpoint, future timelike or null directions are directions in
which “causal influence may propagate,” while past timelike or null directions are
directions from which “causal influence may arrive.” Hence, these directions have
absolute physical significance, and their identification does not depend on a choice
of reference frame. For spacelike directions, however, the distinction between “past”
or “future” does depend on the frame of reference, as elaborated below. If X admits
a consistent, continuously-varying designation of “past” and “future” for timelike
and null directions, then it is called time-orientable, and most references on general

20As explained in Section2.1, there may be more than one reasonable way to define “emergent
volume” in terms of this fundamental scale data.

21Here T am really referring to the images of such curves; the distinction between a curve and its
image is discussed in more detail below.
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relativity eliminate non-time-orientable spacetime manifolds from consideration at
the outset, on basic physical grounds. The possibility of non-time-orientability is one
of many “continuum-related pathologies” that discrete causal theory avoids entirely,
since there is no need for anything to vary continuously.

The “directions” at a point x in a relativistic spacetime manifold X may be repre-
sented precisely by tangent vectors to X at x. A tangent vector v at x in X is called
timelike if g.(v,v) < 0, null if g, (v,v) = 0, and spacelike if g,(v,v) > 0. These
designations make sense for any pseudo-Riemannian manifold of Lorentz signature.
In the special case in which X is Minkowski spacetime R3*!, X is isomorphic to
T, X, and each nonzero tangent vector v at x “actually points to another element y of
X,”in an obvious sense. In this case, g is the Minkowski metric 7, and the Minkowski
spacetime interval, or more precisely, “squared interval,” between x and y, is just
ny(v,v). The events x and y are called timelike separated if n,(v,v) < 0, null
separated if n,(v,v) = 0, and spacelike separated if n,(v,v) > 0. In the general
case of a curved spacetime manifold X, the corresponding relationships between
pairs of events x and y are described in terms of curves from x to y, as explained
below.

In relativistic kinematics, a future timelike direction is a “permissible direction”
for the motion of a massive material object, such as an electron. A future null direction
is a “permissible direction” for the propagation of electromagnetic radiation, or any
other form of energy involving massless particles. In particular, future null directions
at a point x in a relativistic spacetime manifold X may be viewed as the possible
directions of light rays emanating from x, and these determine the “future light
cone,” or future null cone, of x in the tangent space 7, X. Spacelike directions are
“forbidden directions” for all forms of influence. Due to the relativity of simultaneity,
a spacelike direction that points toward the future in some frames of reference will
point toward the past in other frames. Timelike and null directions do not suffer
from this ambiguity. The left-hand diagram in Figure2.6.1 illustrates timelike, null,
and spacelike future directions at a point x in X, with respect to a particular frame
of reference, represented by the curved “coordinate lines.” Of course, the timelike
and null directions illustrated here retain their future orientation in any frame of
reference.

Smooth causal curves. The “directional information” associated with tangent vec-
tors in a relativistic spacetime manifold X may be used to classify special families
of curves in X. As in the case of tangent vectors themselves, the resulting definitions
make sense for any pseudo-Riemannian manifold of Lorentz signature. A smooth
curve passing through x € X is called timelike at x if its tangent vector at x is
timelike. It is called globally timelike, or just timelike, if it is timelike at each of its
points. A pair of distinct events x and y in X are called timelike separated if they
are connected by a smooth timelike curve. Null and spacelike smooth curves, and
null and spacelike separation of pairs of distinct events, are defined in an analogous
manner. A smooth curve is called causal if it is either timelike or null at each of its
points. The right-hand diagram in Figure?2.6.1 illustrates timelike, null, and space-
like future-directed smooth curves at a point x in X, with respect to the same frame
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Figure 2.6.1. Timelike (black), null (dashed), and spacelike (white) future directions in a given
frame of reference; corresponding timelike, null, and spacelike smooth curves.

of reference illustrated in the left-hand diagram. The warped, dark gray “triangular”
regions labeled J~(x) and J T (x) in the figure represent the causal past and causal
future of x, respectively; these are discussed more thoroughly below. The definitions
of timelike, null, and spacelike curves given here do not require actual smoothness in
order to make sense; these curves need only possess unique tangent vectors at each
of their points.

A few mathematical details are worth mentioning here for the purpose of clarity.
In the context of general relativity, a curve in a spacetime manifold X is usually
defined to be a map from an interval in R into X, often with additional conditions
imposed, such as smoothness, or non-vanishing of the tangent vector along the curve.
However, in the present context, one is principally interested in the properties of the
image of such a map, rather than the details of the map itself. For example, “repa-
rameterization” of such a map generally does not change its physical interpretation.
In particular, the elementary-calculus heuristic of “moving at different speeds along
the same curve” is irrelevant for a map into spacetime, whose image encodes all
physical motion-related quantities. This means that very large classes of physically
equivalent curves lurk beneath every curve-related notion in relativity. In particular,
different curves sharing the same image in X will generally have different tangent
vectors at a given point in X, so one might a priori worry about whether or not the
notions of timelike, null, and spacelike curves, defined in terms of these tangent
vectors, are actually physically meaningful. The reason why these particular notions
are meaningful is because only the sign of the tangent vector, and not its magnitude,
is involved in defining them. It is therefore common, and often innocuous, to refer
to such curves and their images interchangeably, and many instances of such lan-
guage appear throughout the remainder of the book. However, the presence of such
equivalence classes must be kept in mind in more general settings. For example, the
paths involved in Feynman’s path summation approach to ordinary quantum theory
are large equivalence classes of curves in a spacetime manifold, sharing a common
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image.?> Much like the issue of whether or not to associate physical events with
specific elements in a pseudo-Riemannian manifold, which so troubled Einstein dur-
ing the development of general relativity, the uncomfortable relativistic necessity of
dealing with large equivalence classes of curves disappears in discrete causal the-
ory. In this context, paths are often, though not always, represented by individual
morphisms. These details are elaborated in Section5.9.

Continuous causal curves. The definitions of timelike, null, and spacelike curves
may be generalized further, to classes of continuous curves. In certain circumstances,
this generalization makes an important difference to the physical significance of
the classes of curves under consideration.?® In particular, strictly stronger metric
recovery results may be proven if one chooses to describe causal structure in terms
of continuous causal curves, rather than restricting attention to smooth causal curves.
This is the reason for the distinction between causal morphisms and enhanced causal
morphisms of relativistic spacetime manifolds, appearing in Definition 2.6.3 below.
The definitions of timelike, null, and spacelike curves in the continuous context are
slightly subtle. For example, a continuous curve is called timelike if each of its points
X possesses a convex normal open neighborhood Uy, such that any two points w
and y on the curve in U, are connected by a smooth timelike curve “in the proper
order.”** Null and spacelike continuous curves are defined in an analogous manner.
A continuous curve is called causal if it is everywhere timelike or null. The left-hand
diagram in Figure 2.6.2 illustrates a continuous causal curve, with two points w and
y in a suitable neighborhood U, of a point x on the curve connected by a smooth
causal curve.

Figure 2.6.2. A continuous causal curve; transitivity of the relativistic causal relation.

22For examples of the distinction between “curves” and “paths” in general relativity, see Rovelli
[RO04], pp. xxii—xxiii, Thiemann [THO7], p. 164, Hawking and Ellis [HE73], p. 15, or Wald
[WA84], p. 17.

23See Malament, p. 1400.
24See Wald [WAS4], p. 193, for details.
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Relativistic causal relation; causal pasts and futures. It is very useful to define
a binary relation <ggr on a relativistic spacetime manifold X, called the relativistic
causal relation, where x <gr y if and only if there exists a nontrivial®®> smooth
causal curve from x to y in X. In other words, x <gr y if and only if x and y
are timelike or null separated. The subscript “GR” in the expression <gr stands
for “general relativity,” and is included in order to avoid confusion with other binary
relations appearing in this book, particularly the causal relation < on a directed set in
discrete causal theory, introduced in Section3.10. As usual, however, the definition
of <gr makes sense for any pseudo-Riemannian manifold of Lorentz signature.
The set J~(x) := {w € X|w <gr x} is called the causal past of x, while the set
JT(x) := {y € X|x <gr y} is called the causal future of x. These sets may be
viewed as relativistic prototypes of the more general domains of influence introduced
in Section 3.7, which are subsets or subobjects of a directed set D, defined to encode
information about influences between pairs of events represented by elements of D.
In the relativistic context, J~(x) is interpreted as the set of all events in X which
“could conceivably” influence x, and J T (x) is interpreted as the set of all events in
X which “could conceivably” be influenced by x. The union J(x) = J~(x) U J T (x)
is called the total domain of influence of x.

The causal past J~(x) and causal future J ¥ (x) of an element x in a relativistic
spacetime manifold X were illustrated as the warped, dark gray “triangular” regions
appearing in the right-hand diagram in Figure 2.6.1 above. In the right-hand diagram
in Figure 2.6.2, the progressively darker-shaded regions represent the causal futures
of the events labeled w, x, and y. The boundaries of these regions generalize the future
“light cones,” or null cones, of events in Minkowski spacetime R3*!, Two rather trivial
points are worth mentioning here for the sake of clarity. First, the reason why these
regions appear triangular, rather than cone-shaped, in these particular illustrations,
is because only two of the dimensions involved are actually shown in the diagrams.
Second, the term “light cone” is popular in the relativistic context, but is not ideal in
general relativity. In this setting, the actual cones involved exist only in the tangent
spaces T, X of a relativistic spacetime manifold X, and not in X itself, while rays
of light follow curved geodesics in X, determined by Einstein’s equation (1.3.1).
Hence, one must choose between speaking about a “light cone” in T, X, which does
not really describe the propagation of light, or a “light cone” in X, which is not really
a cone. Penrose offers the reasonable suggestion to simply use the more precise term
null cone to describe the desired object in 7, X; one may then describe the more
general corresponding structures in X itself as pasts and futures, eliminating the
term “light cone” entirely. I mostly follow Penrose’s convention in this book.

The relativistic causal relation < is transitive, which means that if x <gr y and
Y <GR Z, then x <ggr z. For relativistic spacetime manifolds satisfying the causal
condition, defined in Section 2.7, <gg is also irreflexive, which means that x Agr x.
At a conceptual level, transitivity of <gr encodes the “common sense” that “if x
influences y, and y influences z, then x influences z.” The choice to abstain from

25«“Nontrivial” means “nonconstant;” see the discussion of the causal condition in Section?2.7 for
more details.
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imposing transitivity on the more general causal relation introduced in Section3.10
does not contradict this common sense, but merely recognizes the fact that discrete
structure demands a more fundamental notion of direct causation, encoded by <,
while “possibly indirect” causation is encoded by a transitive relation <, generated
by <. Irreflexivity of <gr means that “x does not influence itself;” however, if
there exists a nontrivial closed causal curve in X, beginning and terminating at
x, then transitivity implies that x does influence itself. The causal condition rules
out the existence of such curves, which is why irreflexivity of <gg holds only for
spacetime manifolds satisfying this condition. Conveniently, it turns out that the
actual identity of J*(x) and J~ (x), as subsets of X, is unaffected if “smooth causal
curve” is replaced by “continuous causal curve” in the definition. This follows from
the transitivity of the relativistic causal relation, together with an easy compactness
argument. By replacing causal curves with timelike curves in the definition of the
relativistic causal relation, one may define a corresponding relativistic chronological
relation, which I denote by <<gg. In particular, the set  ~(x) := {w € X|w <<ggr X}
is called the chronological past of x, while the set I (x) := {y € X|x <=<gr ¥}
is called the chronological future of x. Finally, one may define a horismos relation,
sometimes denoted by x — y, by using only null curves in the same setting.?

Causal morphisms and “enhanced causal morphisms.” The relativistic causal
relation <gr on a relativistic spacetime manifold X is what is usually meant by the
causal structure of relativistic spacetime. It is curious, however, that incorporating
information about continuous causal curves, as opposed to merely smooth causal
curves, yields stronger metric recovery results. In discrete causal theory, there are no
such distinctions, and hence no ambiguities about how structure-preserving maps,
i.e., morphisms, should be defined. To deal with this particular continuum-induced
complication, I give rwo definitions of causal morphisms: the first following the
usual relativistic conventions, and the second included to account for the difference
between smooth curves and continuous curves in this context.

Definition 2.6.3. Let f : X — X' be a map between two pseudo-Riemannian man-
ifolds of Lorentz signature, with relativistic causal relations <gr and <gy, respec-
tively.

1. Themap f is called a causal morphism if it preserves relativistic causal relations,
ie, if f(x) <gr f(y) whenever x <gr y. It is called a causal isomorphism if
it possesses an inverse that is also a causal morphism.

2. The map f is called a enhanced causal morphism if it preserves future-directed
continuous causal curves. It is called an enhanced causal isomorphism if it
possesses an inverse that is also an enhanced causal morphism.

The term “enhanced causal morphism” is awkward; the alternative term “strong
causal morphism” is a priori more attractive. However, the former term is chosen here
to avoid confusion with the strongly causal condition on relativistic spacetime man-
ifolds, discussed in Section2.7, which is ubiquitous in the early-modern relativity

26See Malament p. 1400 for details.
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literature. The definitions given here are stronger than necessary to prove the version
of metric recovery stated in Theorem 2.8.1; in particular, Malament [MA77] works
mostly in terms of maps f and f~! that are assumed only to preserve certain classes
of timelike curves. The necessary properties for causal curves in general are then
proven, using the assumptions regarding timelike curves, together with the topolog-
ical structures of the manifolds involved. However, these details are not essential to
the present discussion. Causal morphisms generalize in a natural way to the context
of directed sets, but enhanced causal morphisms do not, because there is generally
no concept of continuity in this setting. Note that this distinction cannot be elim-
inated by defining a new binary relation on a relativistic spacetime manifold X in
terms of continuous causal curves, since one merely recovers the usual relativistic
causal relation <gg in this manner. This, of course, is just a pointwise statement of
the fact that the causal pasts and futures J*(x) and J~(x) of an event x in X do
not depend on whether one uses smooth curves or continuous curves to define them.
This situation foreshadows the conclusion that something more than a simple binary
relation is necessary to specify geometry in the absence of natural scale data.

2.7 Causality Conditions

Avoiding ‘“‘causality violations.” The degree to which the metric structure of a rel-
ativistic spacetime manifold X may be recovered from its causal structure depends,
informally, on “how close X comes to violating causality.” In this context, “violating
causality” means that X includes events that influence their own causes, and hence,
that indirectly influence themselves. Causality conditions are technical conditions
that give precise meaning to the words “how close,” in this qualitative description.
As discussed below, the potential consistency issues posed by “causality-violating”
relativistic spacetime manifolds may be completely avoided in discrete causal the-
ory, by working in a perfectly background independent setting. However, causality
conditions remain important in this context, due to their role in metric recovery.

Overview of causality conditions. Seven causality conditions that feature promi-
nently in general relativity are the chronological, causal, past or future distinguishing,
past and future distinguishing, strongly causal, stably causal, and globally hyper-
bolic conditions. Figure 2.7.1, which is an elaboration of one of Malament’s [MA77]
diagrams, lists these conditions in ascending order of restrictiveness. For example,
every strongly causal spacetime is past and future distinguishing, but the converse
is false. Conditions possessing natural analogues in discrete causal theory appear in
bold font in the figure. From a modern viewpoint, the past and future distinguishing
condition is the condition that determines whether enhanced causal isomorphisms,
or merely causal isomorphisms, are necessary in the hypotheses for metric recovery.
This is the reason for the dashed line in the figure, which separates conditions “restric-
tive enough” to render enhanced causal isomorphisms unnecessary from conditions
which are “too weak.” One of Malament’s achievements was to eliminate the use
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of the “strongly causal” hypothesis from Hawking’s earlier proof. The remainder of
this section examines these seven conditions. Due to the relationships among them,
it is convenient to discuss them in a somewhat different order: the chronological and
causal conditions are discussed first, followed by the stably causal condition, the past
and/or future distinguishing conditions, the strongly causal condition, and finally, the
globally hyperbolic condition.

globally hyperbolic

stably causal

strongly causal ?

\ past and future distinguishing ~ “more restrictive”

past or future distinguishing I
causal
chronological

Figure 2.7.1. Seven causality conditions on a relativistic spacetime manifold X.

Closed timelike curves; chronological condition. The “worst” possible type of
behavior, from the viewpoint of “causality violation,” is the existence of closed time-
like curves, like the one illustrated in the left-hand diagram in Figure2.7.2. A rel-
ativistic spacetime manifold sufficiently “well-behaved” not to contain such curves
is called chronological. Since relativity permits the transport of a material body in
any future timelike direction, an observer could theoretically travel to his or her
own past along such a curve. From a naive viewpoint, this possibility raises serious
consistency issues. In particular, familiar “causality paradoxes,” such as the grand-
father paradox, originate from this scenario. It is likely a waste of time to devote
serious consideration to such “paradoxes” in their own right, since their actual sig-
nificance seems to be mostly restricted to illustrating potential issues arising from a
lack of perfect background independence in general relativity. Indeed, the common
source of such paradoxes is a potential clash between two different types of struc-
ture: the relativistic spacetime manifold on which a material body could conceivably
“move around and return to where it started,” and the material body itself. The strong
interpretation of the causal metric hypothesis (CMH) eliminates such issues once
and for all, by admitting only one type of basic structure; namely, causal structure,
of which “spacetime” and “material bodies” are viewed as different manifestations.
It does not rule out the possibility of discrete causal analogues of closed timelike
curves, i.e., cycles such as the one illustrated in the right-hand diagram in Figure 2.7.2,
but it does guarantee their physical consistency, should they exist. In particular, it
avoids the potential conflicts involved in traversing a cycle, by simply disallowing
any extrinsic entity that could traverse it. Of course, most versions of discrete causal
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theory do not distinguish precisely between analogues of timelike and null curves,
so it is generally not obvious which cycles in a directed set should be regarded as
“timelike.” For this reason, the chronological condition has no simple analogue in
discrete causal theory.

Figure 2.7.2. A closed timelike curve in relativistic spacetime; a cycle in a directed set.

Closed causal curves; causal condition. A slightly more restrictive causality condi-
tion than the chronological condition is the causal condition, which rules out not just
closed timelike curves, but all nontrivial closed causal curves, including null curves.
Any pseudo-Riemannian manifold X admits trivial “constant curves,” mapping an
entire interval in R to a single point x in X, and these curves are technically “null,”
because their tangent vectors vanish. Such curves are not interpreted as encoding
“self-causation.” Throughout the remainder of the book, null curves are assumed to
be nontrivial unless stated otherwise. The principal qualitative difference between a
closed timelike curve and a closed null curve is that relativity permits the latter to
convey only information, and not material bodies. In the absence of perfect back-
ground independence, however, closed null curves are “nearly as bad” as closed
timelike curves from a consistency standpoint. For example, one may imagine send-
ing instructions “back in time” along a closed null curve, detailing how to construct
the very device one is using to send the instructions. This creates obvious problems
if one distinguishes “spacetime” from “information,” since once again two types of
structure are pitted against each other.

By contrast, discrete causal analogues of non-causal spacetimes, viewed according
to the strong interpretation of the causal metric hypothesis (CMH), are immune to
consistency issues involving cycles, since they possess only one type of structure.
If such cycles do exist, they merely represent “part of what the causal structure is
like,” even if the resulting behavior is alien to ordinary experience. However, it is
worth noting that the class of relativistic spacetime manifolds admitting the “best”
metric recovery results, i.e., results that do not require the use of enhanced causal
isomorphisms, is a subclass of the class of causal spacetimes; namely, the class of past
and future distinguishing spacetimes. In other words, it is technically more difficult
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to recover metric structure from causal structure for spacetimes that fail to satisfy the
causal condition. It is possible to interpret this fact as a hint that acyclicity should
be taken as an axiom of discrete causal theory. In my own opinion, however, the
relativistic evidence is not overwhelming one way or the other; for instance, closed
causal curves appear in rather generic relativistic situations, such as the Kerr black
hole. An important characteristic of relativistic spacetime manifolds satisfying the
causal condition is that the relativistic causal relation <gg on such a manifold is in
fact a strict partial order, i.e., an acyclic transitive binary relation. For this reason,
causal sets may be viewed as discrete causal analogues of causal spacetimes, since
causal set theory restricts its consideration of directed structure to the order-theoretic
paradigm.

Stability issues; stably causal condition. Relativistic spacetime manifolds satis-
fying the causal condition may be viewed as “causally well-behaved,” since they
avoid, by definition, causality-based conflicts between “spacetime” and auxiliary
“matter-energy content.” However, the causal condition is often inadequate from a
practical perspective. In particular, an arbitrarily small perturbation of the metric
in a causal spacetime can produce closed causal curves. Issues of this nature arise
in almost any conceivable continuum-based theory, as part of the cost to be paid
for the availability of convenient interpolation and limiting procedures. To prove
certain desirable results, it is sometimes necessary to impose more restrictive con-
ditions that “bound systems away from bad behavior,” instead of merely ruling out
the bad behavior itself. The stably causal condition, appearing second on the list in
Figure2.7.1, accomplishes this by explicitly requiring that a particular type of finite
perturbation of the metric preserves the chronological condition.?’ In the context
of metric recovery, however, the stably causal condition is unwieldy. Moreover, the
condition does not possess a natural discrete causal analogue.

Past and/or future distinguishing conditions. Less-restrictive conditions, called
past and/or future distinguishing conditions, are more useful in this setting. Infor-
mally, these conditions govern the extent to which a relativistic spacetime manifold
X “separates pasts and futures of individual events.” In particular, X is called past
distinguishing if distinct elements possess distinct causal pasts, and is called future
distinguishing if distinct elements possess distinct causal futures. Conditions of this
nature are easy to conceptualize by considering relationships among small finite
sets of elements, and this reflects the fact that these conditions possess natural ana-
logues in discrete causal theory. The directed sets depicted in the left-hand diagram in
Figure2.7.3 illustrate these conditions. The “diamond-shaped” set D is neither past
nor future distinguishing, since the elements x; and x, both possess the same past
and the same future. The set D’ is future distinguishing but not past distinguishing,
because the elements y; and y, both possess the same past. The set D” is past and
future distinguishing. For simplicity, I am ignoring the “sameness” of empty pasts
and/or futures in these examples. It is worth noting that a “large random directed set”
may easily fail to satisfy either or both of these conditions, due solely to small, local

27See Wald [WA84] p- 198 for details.
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“defects,” such as the existence of “diamond-shaped” subsets. Hence, one should be
very reluctant to impose such conditions as axioms for discrete causal theory.

Vi Y2

Figure 2.7.3. Directed sets illustrating past and/or future distinguishing conditions; relativistic
versions of the future distinguishing condition and the strongly causal condition.

Returning to the relativistic context, it is convenient to reformulate past and/or
future distinguishing conditions in fopological terms. In particular, it turns out that
a relativistic spacetime manifold X is future distinguishing if and only if for every
event x in X, and every open set U containing x, there exists a “smaller” open set
U’ in U, containing x, such that no future-directed smooth timelike curve through
x that leaves U’ ever returns to it.”® This situation is illustrated for the event x; in
the right-hand diagram in Figure2.7.3. The past distinguishing condition may be
reformulated in an analogous manner, by replacing the word “future” with “past” in
the reformulation of the future distinguishing condition.

Strongly causal condition. The topological reformulation of the past and/or future
distinguishing conditions may be slightly modified to yield a stronger condition,
called the strongly causal condition. A relativistic spacetime manifold X is called
strongly causal if for every element x in X, and every open set U containing x,
there exists a “smaller” open set U’ in U, containing x, such that no future-directed
smooth timelike curve leaving U’, whether or not it passes through x, ever returns
to U’. Heuristically, this condition provides “slightly more room between pasts and
futures” than the past and/or future distinguishing conditions. The strongly causal
condition is illustrated for the event x, in the right-hand diagram in Figure?2.7.3.
There is generally no natural analogue of this condition in discrete causal theory,
and it plays a less-significant role even in relativity than it did a few generations
ago. As mentioned above, Malament succeeded in removing this condition from the
hypotheses of his version of metric recovery. More recently, Bernal and Sanchez
[BSO7] have expunged it from topological reformulations of the globally hyperbolic
condition, discussed below.

28See Malament p. 1400 for details.
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Cauchy surfaces; globally hyperbolic condition. The globally hyperbolic condi-
tion is the most restrictive causality condition of the seven listed in Figure 2.7.1, and
requires a bit of preliminary explanation before it may be properly introduced. First,
the terminology originates from the study of wave equations, i.e., special hyperbolic
partial differential equations, on continuum-based models of spacetime. In this gen-
eral context, one of the variables is interpreted as representing time, whether in a
Euclidean or Lorentzian fashion, and the differential equations under consideration
are used to model initial value problems. The informal idea behind this approach,
handed down from pre-relativistic physics, is that if one knows the values of cer-
tain quantities “everywhere in space, at a given instant in time,” then one can solve
for the corresponding values at all later times. Since this description refers implic-
itly to simultaneity, which is not absolute in relativity, one must be precise about
which subsets of relativistic spacetime manifolds are suitable representatives of the
notion of “everywhere in space, at a given instant in time.” Such subsets are called
Cauchy surfaces. The corresponding initial value problems are classified as special
types of Cauchy problems, i.e., problems involving the solution of partial differen-
tial equations satisfying specified conditions on hypersurfaces. Since discrete causal
analogues of Cauchy surfaces play a crucial role in this book, it is worthwhile to give
a formal definition:

Definition 2.7.4. A Cauchy surface in a relativistic spacetime manifold X is a
subset o of X such that every inextensible causal curve in X intersects o exactly
once.

The term “inextensible causal curve” in the definition means what the terminology
suggests: a causal curve that cannot be extended to yield a “longer” causal curve.
Several different types of inextensible causal curves exist. One obvious type is closed
causal curves, such as the closed causal curve illustrated in Figure2.7.2. A few
other types of inextensible causal curves are illustrated in the left-hand diagram
in Figure2.7.5. The white region represents a “hole” in the relativistic spacetime
manifold W, with its boundary “stripped away.” Of course, it is not a hole in a
physical sense, but a topological feature of W. Causal curves in W that “approach
this hole,” such as the curves y», y3, and y; illustrated in the figure, cannot be extended.
A “simpler” type of inextensible causal curve is one that “runs on forever in both
directions,” such as the curve y;.

A Cauchy surface in a relativistic spacetime manifold X is a special case of an
acausal subset of X, which is defined to be a subset intersected at most once by any
causal curve. In particular, no pair of events belonging to such a subset are causally
related. The right-hand diagram in Figure?2.7.5 illustrates two acausal subsets of
X, represented by thick horizontal curves. The lower, “broken” curve, labeled p, is
permeable, in the sense that it has “gaps,” through which causal curves may pass
without intersecting it. The upper curve, labeled o, is a Cauchy surface, which is by
definition impermeable; no causal curve may pass from its past to its future without
intersecting it. From a modern information-theoretic viewpoint, a Cauchy surface
“samples,” or “filters,” data flowing from its past to its future. A permeable acausal
subset is “faulty” in this sense, because information may flow from its past to its
future without being “sampled,” by following causal curves permeating the subset.
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Figure 2.7.5. Inextensible causal curves; a permeable acausal subset p and a Cauchy surface o.

This creates “predictability issues,” since data associated with a permeable acausal
subset is insufficient to determine “what will happen” in the future of the subset. This
is sometimes expressed by saying that the initial value problem for such a subset is
not “well-posed.” I refer to this general deficiency of arbitrary acausal subsets as
the permeability problem. As explained below, the discrete causal version of the
permeability problem is of great significance in discrete causal dynamics.

A relativistic spacetime manifold is called globally hyperbolic if it contains a
Cauchy surface. The spacetime W illustrated in the left-hand diagram in Figure 2.7.5
is not globally hyperbolic; no acausal subset of W can intersect all inextensible causal
curves in W, due to the presence of the “hole” in W. It may be easy to construct
acausal subsets intersecting particular families of causal curves; for example, the
events represented by the four nodes in the figure form a finite acausal subset of
W intersecting the four curves y; to y4. However, if one attempts to extend such a
subset, one is forced to make choices; for example, the extended subset may intersect
certain curves “below the hole” or other curves “above the hole,” but not both. The
spacetime X illustrated in the right-hand diagram of the figure is globally hyperbolic
by definition, since o is a Cauchy surface. The “global” part of the term “globally
hyperbolic” may seem inappropriate, since a particular Cauchy surface represents
just one “slice” of spacetime. However, the existence of even one Cauchy surface
implies much more in the relativistic setting. In particular, a globally hyperbolic
relativistic spacetime manifold may be foliated by Cauchy surfaces. Informally, this
means that the entire spacetime may be viewed as a “stack of Cauchy surfaces;”
the individual surfaces are called the leaves of the foliation. Each leaf represents
a “moment in time” in a particular frame of reference. More precisely, a suitable
choice of transition functions defining X as a manifold separates the local temporal
variable from the corresponding spatial variables, and the resulting spatial “plaques”
patch together across coordinate charts to form the leaves of the foliation. From
a dynamical perspective, all the information flowing from past to future may be
sampled at any given leaf. This, together with an appropriate dynamical law, enables
a “global solution” for the physical behavior modeled by this dynamics; i.e., it allows
one to predict “what happens anywhere in spacetime.”
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Permeability issues involving acausal subsets. Since discrete causal analogues of
Cauchy surfaces are objects of central interest in discrete causal dynamics, it is
important to clear up a potential source of confusion regarding these surfaces before
proceeding. In comparing the acausal subsets p and o in the right-hand diagram
in Figure2.7.5, it is natural to notice that the “gaps” in p may be “plugged” so as
to convert p into a Cauchy surface, i.e., so as to render it impermeable. From this
viewpoint, it is tempting to think of the distinction between an arbitrary acausal
subset and a Cauchy surface as one of completeness, i.e., to think that a Cauchy
surface is roughly the same thing as a “complete” or “maximal” acausal subset.
However, this identification is obviously invalid, since only a very restricted class
of relativistic spacetime manifolds possess Cauchy surfaces at all. The left-hand
diagram in Figure 2.7.6 illustrates, at an informal level, how a maximal acausal subset
of a non-globally hyperbolic spacetime may fail to qualify as a Cauchy surface. The
acausal subset illustrated here is the union p U p’ of two smaller acausal subsets
p and p’ of the spacetime manifold W first illustrated in Figure?2.7.5. Here, p is
represented by the thick black curve “below the hole” in W, which has a “missing
point” at x;, while p’ is represented by the shorter thick black curve “above the
hole,” which includes its left endpoint x,, but not its right endpoint x3. The latter
subset p’ is “shielded from p by the shadow of the hole,” in the sense that the “hole”
prevents causal curves passing through p from reaching p’. The “shadow of the hole”
is represented by the dark gray region.

Figure 2.7.6. Permeable maximal acausal subset in relativistic spacetime; a typical maximal
antichain in a directed set is highly permeable.

Note that the extension “back in time” of the boundary of this “shadow” intersects
the “missing point” x; i.e., there is a null curve from x; to x,, represented by the
dashed curve in the figure. Hence, the “gap” in p U p’ at x| cannot be “plugged by
adding x1;” the resulting subset p U {x;}U o’ of W would not be acausal. If the “hole”
were absent, then p U {x;} would be a Cauchy surface. As it is, however, the curves
Y1, V2, V3, and yy4 are examples of inextensible causal curves that do not intersect the
maximal acausal subset p U p’. The curve y; “permeates” p U p" in an obvious way,
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since it “goes through the missing point x;;” this curve behaves much like the curves
permeating the acausal subset labeled p in Figure2.7.5. The other curves, y», y3, and
y4, “avoid” p U p’ in subtler ways, whose details are unimportant at present. The
purpose of the illustration is merely to demonstrate how a maximal acausal subset
of a relativistic spacetime manifold may fail to be a Cauchy surface.

In discrete causal theory, the permeability problem is a priori “much worse” than
in relativity. It occurs more naturally, and is less-strongly tied to global structure. In
particular, after defining appropriate discrete causal analogues of Cauchy surfaces
in a directed set, one finds that the existence of one such “Cauchy surface” does not
guarantee that the set may be “foliated by such surfaces.” Further, “most” maximal
acausal subsets, called maximal antichains in this context, are not even close to being
“Cauchy surfaces.” Indeed, they are “riddled with permeations,” rather than merely
“missing a few points.” These details are worth remembering when consulting the
literature; for example, Bleybel and Zaiour [BZ15] prove a “foliation theorem” for
causal sets in a recent paper; however, the “leaves” of the “foliations” involved
are not close analogues of Cauchy surfaces, since they are generally permeable.
Similarly, the foliation scheme Sgoy introduced in Chapter 7 describes a special type
of “generational growth” via generally permeable antichains.

The right-hand diagram in Figure 2.7.6 illustrates a permeable maximal antichain
o in a directed set D, represented by the roughly-horizontal row of nodes connected
by dashed lines. These dashed lines are merely a visual aid, included to suggest the
“surface-like” characteristics of o; they are not part of the actual structure of D. At
a mathematical level, the statement that o is an antichain means that no pair of its
elements, distinct or otherwise, is connected by a chain, i.e., a sequence of relations.
Chains, which are natural discrete causal analogues of causal curves,? are studied
formally in Chapter 3. The antichain o is maximal because every other element of D
is connected to at least one element of o by a chain®®; hence, it is impossible to add
any more elements to o while preserving its properties as an antichain. The remaining
black nodes in the diagram, and the edges connecting them, represent two chains in
D permeating o. The “flow of information” represented by these chains is “invisible
to o,” and this means that the corresponding initial value problem is not well-posed.
The resulting complications for the dynamics of directed sets have already been
recognized in the literature, particularly in the special case of causal sets [MRS06].
As described in Chapter 5, passage to relation space provides a pleasing solution to
this problem. At least in the acyclic case, the relation space R(D) over a directed
set D is roughly analogous to a “globally hyperbolic spacetime” hidden behind
the seemingly intractable structure of D itself. This enables associated dynamical
problems to be treated in a much more satisfactory manner.

21t would be more precise to say “analogues of causal paths;” see Section 5.9 for details.

30Johnny Feng pointed out to me the a posteriori obvious fact that maximality of an antichain in
a multidirected set containing cycles cannot be characterized by the condition that “every other
element is connected to it by a chain.” For example, according to Definition 3.7.1, the empty subset
of a cyclic multidirected set is a maximal antichain, since no element of such a set can belong to an
antichain.
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2.8 Maetric Recovery

Historical context. The previous five sections of this chapter provide enough back-
ground information on relativistic spacetime structure and causality conditions to
enable the statement of an appropriate version of metric recovery. No formal proof is
included, since the details are mostly tangential to the discussion, and may be easily
found in the literature. Historically, the theorems of Hawking [HA76] and Malament
[MAT77], published in the late 1970s, supplied the “critical pieces of the puzzle,” in
the sense that they led almost immediately to the birth of discrete causal theory as a
serious approach to fundamental spacetime structure. These results have since been
amplified in various ways. For example, Hawking and Malament consider only the
four-dimensional case, since relativistic spacetime is modeled via four-dimensional
manifolds, but the same basic results have since been shown to apply to any dimension
at least three. Further, Hawking and Malament assume knowledge of the causal struc-
ture of the entire manifold under consideration in the hypotheses of their theorems,
but subsequent results have demonstrated that knowledge of the causal structure of
a countable dense subset suffices. While newer results of this nature are important
for establishing the precise details of how causal structure relates to geometry, the
original metric recovery theorems are themselves sufficient to motivate the classical
causal metric hypothesis (CCMH) in the discrete context.

Statement of the theorem. For the sake of simplicity, I state here a version of met-
ric recovery that may be extracted from Malament’s paper [MA77] alone, although
Malament does make use of Hawking’s theorem. The result here is expressed in a
somewhat different way than Malament’s main theorem; in particular, it includes two
statements, one for enhanced causal isomorphisms of arbitrary relativistic spacetime
manifolds, and one for causal isomorphisms of past and future distinguishing rel-
ativistic spacetime manifolds. As stated at the end of Section2.6, Malament works
mostly in terms of timelike curves, which means that the properties of causal iso-
morphisms and enhanced causal isomorphisms are actually somewhat stronger than
necessary to prove the theorem.

Theorem 2.8.1. Metric recovery. Let X and X' be smooth four-dimensional real
manifolds without boundary, and let g and g’ be smooth pseudo-Riemannian metrics
of Lorentz signature on X and X', respectively.

1. If f : X — X'isanenhanced causal isomorphism, then f is a smooth conformal
isometry.

2. If X and X' are past and future distinguishing, and f : X — X' is a causal
isomorphism, then f is a smooth conformal isometry.

In particular, in either case, knowledge of g enables recovery of g’ up to conformal
equivalence, and vice versa.

Sketch of Proof. Let X and X’ be as described in the statement of the theorem.
Informally, the proof involves combining the consequences of the following two
statements:
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Hawking: “Topological structure determines conformal structure.”
Malament: “Causal structure determines topological structure."”

Here, I outline the proof as it appears in Malament’s paper [MA77]. Due to
Malament’s choice to work mostly in terms of timelike curves, certain aspects of the
proof are more detailed than necessary to establish Theorem 2.8.1 as I have stated it.
However, the additional detail is not too cumbersome, and may help the interested
reader to follow the proof in its original context.

The first step in the proof is simply to note Hawking’s result that if f : X — X'is
a homeomorphism with respect to the manifold topologies on X and X', and if both
f and f~! preserve future-directed continuous null geodesics, then f is a smooth
conformal isometry.>! Malament refers to Hawking, King, and McCarthy for the
proof, while noting that the theorem is described there in a slightly different way.*?
The essential argument is described as an “‘unpublished result of Hawking,” which
justifies Malament’s attribution of the theorem to Hawking specifically.

The second step is to extend Hawking’s theorem by means of an easy lemma*
demonstrating that if f : X — X’ is a homeomorphism with respect to the manifold
topologies on X and X', and if f and f~! preserve future-directed continuous time-
like curves, then f and f~! also preserve future-directed continuous null geodesics.

The third step is to prove that if f : X — X is a bijection, and if f and f~!
preserve future-directed continuous timelike curves, then f is a homeomorphism
with respect to the manifold topologies on X and X', and hence, by Hawking’s
theorem, a conformal isometry. This is the lengthiest part of the proof; it comprises
the entire fifth section of Malament’s paper. This is more than enough to establish the
first statement in Theorem 2.8.1. Indeed, if f is an enhanced causal isomorphism,
then by Definition 2.6.3, f is a bijection, and f and f~' preserve future-directed
continuous causal curves, which include future-directed continuous timelike curves.

The fourth and final step is to establish that if X and X’ are past and future distin-
guishing, and if f : X — X’ is a bijection such that f and f~! preserve relativistic
chronological relations, then f and f~! preserve future-directed continuous timelike
curves. Hence, by the previous steps in the proof, f is a conformal isometry. This
is more than enough to establish the second statement in Theorem 2.8.1. Indeed, if
f is a causal isomorphism, then by Definition 2.6.3, f is a bijection such that f
and f -1 preserve relativistic causal relations, and hence, relativistic chronological
relations. ]

Topological details. A few technical details are worth clarifying before resuming a
more qualitative examination of how metric recovery motivates the classical causal
metric hypothesis (CCMH). First, I explain some topological details relating to the
proof of Theorem 2.8.1. The reason for emphasizing that the maps involved in the
proof are homeomorphisms with respect to the manifold topologies on X and X' is

31See Malament [MA77], p. 1400.
328ee Hawking, King, and McCarthy [HA76], p. 174.
3See Malament [MA77], Lemma 1, p- 1400.
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to avoid potential confusion involving two other topologies that play a role in the
papers of Hawking, King, and McCarthy [HA76], and Malament [MA77]; namely,
the Alexandrov topology and the path topology. It is convenient to give here a brief
account of these topologies, thereby completing the discussion of the five types of
structure on relativistic spacetime, listed in “reverse order of detail” in Figure 2.3.1.
Besides assisting the reader in deciphering the literature on metric recovery, this
information serves the additional purpose of preparing the ground for later exami-
nation of topologies and local properties for directed sets and multidirected sets.

A topology defines which subsets of a set X are “open,” and by complementation,
which subsets are “closed.” Most of the details regarding topologies are postponed
until Chapter4. In the present section, I take the informal viewpoint that a topology
on X is a collection of subsets of X, called open sets, satisfying certain properties
abstracted from the properties of intervals on the real line R. Topologies are par-
ticularly useful for describing “local properties of spaces.” Generally, a property is
considered to be local near a point x in X if it may be detected by examining any open
set containing x, usually called an open neighborhood of x. The heuristic that open
sets in a topology are analogues of open intervals in R plays a role both in relativity
and in discrete causal theory. In the relativistic case, the Alexandrov topology is a
type of order topology, or interval topology, with respect to the partial order on a
relativistic spacetime manifold X satisfying the causal condition. The path topology
on X, meanwhile, is defined in terms of maps from open intervals in R into X. In
the discrete causal context, however, the naive idea that “intervals measure local
properties,” abstracted from the relativistic setting, leads to serious conceptual and
technical issues, as explained in Chapter4.

The manifold topology on a relativistic spacetime manifold X is inherited from
the “usual topology” on R*, via the coordinate charts defining X as a real manifold.
This latter topology is the metric topology for the usual Euclidean metric on R*. It
is defined by taking a subset U of R* to be open if and only if for every element
x € U, there exists a positive number &, such that every element of R* within
distance ¢ of x with respect to the Euclidean metric is also in U. The resulting
structure is then transported to X via its coordinate charts in the obvious way. The
dark gray “circular” regions illustrated in Figure2.8.2 represent typical open sets in
the manifold topology on a relativistic spacetime manifold X . For R itself, which may
be viewed as one-dimensional Euclidean space R!, the metric topology coincides
with the order topology, and hence involves intervals. However, there is no obvious,
unique, physically significant partial order on a higher-dimensional Euclidean space,
so it is not surprising that the manifold topology on X fails, in certain important
ways, to mesh naturally with the physical attributes of X arising from its pseudo-
Riemannian structure.

A topology is called “coarse” if it has “few open sets,” and is called “fine” if it has
“many open sets.” The Alexandrov topology on a relativistic spacetime manifold X
is defined to be the coarsest topology such that the chronological past 1~ (x) and the
chronological future I (x) of each event x in X are open sets. In particular, every
open set in the Alexandrov topology is automatically open in the manifold topology.
The “basic open sets” in the Alexandrov topology are the “diamond-shaped” subsets
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Figure 2.8.2. Manifold topology and Alexandrov topology; defining the path topology.

IT(w)N I~ (y); one of these sets is illustrated in the left-hand diagram in Figure 2.8.2.
By the definition of the chronological relation <<ggr on X, these basic open sets are
intervals of the form (w, y)) := {x|w <<gr * <<gr y}. Froma physical standpoint,
the basic open set {(w, y)) consists of all events that may be reached from the event
w by the motion of a massive body, and may also reach the event y by the motion of
a massive body. This description demonstrates the obvious physical significance of
the Alexandrov topology in the relativistic setting.

A topology on a set X induces topologies on each of its subsets S, by defining
a subset V of S to be open if and only if V = U N § for some open subset U of
X. The path topology on a relativistic spacetime manifold X is defined to be the
finest topology that induces, on the images of all continuous timelike curves in X, the
same topology induced by the manifold topology. In particular, every open set in the
manifold topology is automatically open in the path topology. The right-hand diagram
in Figure2.8.2 illustrates how an open subset U of X in the manifold topology,
represented by the dark “circular” region, defines an open subset V = U N y of the
image of a continuous timelike curve y in X, represented by the “part of y inside U,”
which has its “endpoints missing.” The physical significance of the path topology is
slightly less direct than that of the Alexandrov topology; continuous timelike curves
are obviously significant in their own right, but the finest choice of “open sets”
in X that reproduces the usual manifold-induced topology on the images of such
curves is a bit of a nuisance to describe. The real advantage of the path topology
is that its homeomorphisms are precisely the smooth conformal isometries of X.
To paraphrase Malament,>* the path topology “simultaneously encodes information
about the manifold structure, the smooth structure, and the conformal structure of X.”

Modern improvements on metric recovery. A second technical point, already
mentioned in passing above, is that the strength and scope of metric recovery results
has been significantly improved since the original metric recovery theorems of the

34Malament [MA77], p. 1399.
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late 1970s. For example, Luca Bombelli and David Meyer’s 1989 paper The origin
of Lorentzian geometry [BO89], and Keye Martin and Prakash Panangaden’s 2006
paper A Domain of Spacetime Intervals in General Relativity [MP06], both demon-
strate metric recovery results for which much weaker hypotheses, involving only
the causal structure of a countable dense subset of a relativistic spacetime manifold,
suffice. Metric recovery has also been extended to pseudo-Riemannian manifolds of
Lorentz signature in any dimension at least three; for a discussion of this, see the
recent paper of Parrikar and Surya [PS11]. Since many proposed theories attempting
to improve upon general relativity, especially string theory and M -theory, make use
of higher-dimensional manifolds, these results are of more than academic interest.
The fact that analogous results fail to hold in dimension two is also interesting; for
example, because of simulations suggesting dimension reduction in certain fields
of quantum gravity, and because of the prominence of conformal field theories on
Riemann surfaces in other areas of theoretical physics.

Motivation for the causal metric hypothesis. The simplest way to express the
meaning of metric recovery in the context of general relativity is to say that causal
structure determines metric structure up to scale. As discussed in Section 2.3, this
statement approaches, but does not quite reach, the elegant and tempting conclusion
represented by the classical causal metric hypothesis (CCMH); namely, that metric
structure is merely an approximate way of describing causal structure. The qualifier
“up to scale” obstructs such a conclusion in the relativistic case, but the idea is
sufficiently compelling that it is natural to ask if one can somehow justify it by
shifting attention to “causal structures possessing a natural scale.” As mentioned in
Section 1.3, and again in Section 2.6, the founders of causal set theory perceived the
most obvious way to accomplish this, almost immediately after the original metric
recovery theorems were established: to work with discrete models, and to assign
volume to subsets by counting their elements. This is the strategy that Sorkin later
encapsulated in his phrase, “order plus number equals geometry,” where “order”
stands for causal structure, and “number” stands for the counting procedure. Perhaps
the most straightforward way to realize this idea is by means of causal sets constructed
via “sprinklings” into pseudo-Riemannian manifolds, such as Minkowski spacetime
R3*+!. Such causal sets are discussed briefly in Section 3.2, and more thoroughly in
Section4.5.

Options for realizing the hypothesis. However, the causal set approach is only one
of many possible ways to realize the classical causal metric hypothesis, even if one
restricts attention to the discrete context. “Order” is a very restrictive, and likely
inadequate, proxy for causal structure, even in the relativistic case. In particular, the
relativistic causal relation <gr defines a partial order only for relativistic spacetime
manifolds satisfying the causal condition. “Number,” meanwhile, is a very specific,
and possibly oversimplified, proxy for scale. A general hazard to be avoided when
converting a compelling conceptual motif; in this case, the classical causal metric
hypothesis, into a specific technical approach; for example, causal set theory, is the
risk of ignoring equally viable approaches that may ultimately reach further. Hence,
it is crucial not to narrow down the possibilities prematurely. In particular, even if
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one restricts attention to spacetimes satisfying the causal condition, the transition to
the discrete context is nontrivial, and automatically transferring over all the axioms
of partially ordered sets is unjustified. Similarly, it is by no means obvious that each
element in a discrete directed set should contribute equally, or even approximately
equally, to the “volume” of the set. After all, one of the most obvious ways in which
a typical such a set differs from a manifold is that it is locally irregular; i.e., its local
structure is generally not the same near each element.

The only truly essential feature of causal structure, beginning from first principles,
is the directed relationship between cause and effect. A partial order takes this local
building block of structure, and adds additional nonlocal properties that are not nec-
essarily appropriate; for example, transitivity (TR). Similarly, the only truly essential
requirement regarding the introduction of scale data in the context of the classical
causal metric hypothesis is that this data should arise naturally from the causal struc-
ture itself. Following these lines of thought, it is useful to juxtapose Sorkin’s version
of the classical causal metric hypothesis with a more general statement that, while
less succinct, avoids the risk of placing the subsequent technical development in a
structural straitjacket:

Sorkin: “Order plus number equals geometry.”
Generalization: “Directed structure plus natural scale equals geometry.”

Figure 2.8.3 illustrates three different ways of assigning “volume data” to a dis-
crete directed set. The left-hand diagram illustrates Sorkin’s original prescription,
taken literally; every element is assigned exactly the same volume. The middle dia-
gram illustrates the incorporation of “statistical fluctuations” in the computation of
volume. Such fluctuations are invoked in the causal set literature for technical rea-
sons; in particular, to avoid systematic violations of Lorentz invariance for causal
sets constructed via global “sprinkling” into Minkowski spacetime R3*!. The right-
hand diagram illustrates a much different method of assigning volume, in which not
only the number of elements, but also the local causal structure, plays a role. In
this particular case, the “volume” of each element is determined by its valence, i.e.,
by the number of relations for which it is the initial or terminal element.® In this
context, the valence field illustrated in Figure 1.7.2 of Chapter 1 serves as a “volume
field,” i.e., a “discrete conformal factor.”

From the relation space viewpoint, introduced briefly in Section 1.5, and devel-
oped in detail in Chapter3, the latter method of assigning scale data is perhaps
the most attractive of the three rather naive methods illustrated in the figure. This is
because relations, rather than elements, are considered to be fundamental in this con-
text, and the valence field essentially “counts relations.” However, discrete directed
sets are rich in combinatorial structure, and there are many other possible methods
of deriving scale data from this structure. In a way, this is a disadvantage, because

35 As explained in Section4.3, reflexive relations x < x are counted twice in enumerating v(x),
because such relations both begin and terminate at x. Of course, such relations do not occur in
acyclic directed sets.
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Figure 2.8.3. Alternative methods of assigning volume to a discrete causal structure: constant;
incorporating statistical fluctuations; valence-based.

it introduces a risk that the selection of one particular method among these will
be unconvincing. It would be preferable if one of the simplest methods, involv-
ing a straightforward counting of elements or relations, could be proven to be the
“right one.” However, there are other quantities just as basic as scale from a geomet-
ric viewpoint, such as dimension, whose emergence from discrete causal structure
almost certainly does not arise from a method as direct as a simple counting proce-
dure. Perhaps the most reasonable approach to this situation, while discrete causal
theory remains in a relatively early stage of development, is to focus on the simplest
models, while keeping in mind the possibility that subtler considerations may ulti-
mately be incorporated as “corrections” in more mature versions of the theory. This
strategy is supported by the plausible reflection that a variety of different methods of
assigning scale data may very well “converge” within just a few orders of magnitude
of the fundamental scale. In particular, the “variable volume” method illustrated in
the right-hand diagram in Figure 2.8.3 could, in many cases, be replaced by a simpler
causal set-type method, using the “average valence” of the elements, leading to only
negligible differences in the resulting computations above the very smallest scales.
In fact, if the typical valences of elements in a physically realistic directed set turn
out to be very large, then the differences between the volumes assigned to elements
under a valence-based approach to volume could be negligibly small in proportion
even at the fundamental scale itself. Finally, Bombelli, Henson, and Sorkin [BHS09]
suggest the possibility of adding “distance information” to the relations of a causal
set, but conjecture that causal sets represent “in some sense, the minimal [system-
atically] Lorentz invariant discrete [structures] from which [Minkowski spacetime]
can be reconstructed at macroscopic scales.”

2.9 Order Good, Continuum Bad

Criticizing continuum-based theories. The foregoing sections of this chapter
provide preliminary evidence suggesting that discrete causal theory is a reasonable
candidate to serve as an alternative structural paradigm for modeling classical space-
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time. However, it is worthwhile to consider the basic question of why such alternatives
are needed in the first place; in particular, why real manifolds are ultimately not ideal
for this role, despite their distinguished history in theoretical physics. In this section,
I present a perspective on this subject that might be considered “underrepresented
in the literature;” namely, that the prominence of continuum-based theories is partly
Jjust a historical accident, resulting from broad shortcomings in human knowledge,
and human computational capabilities, throughout the early development of modern
science. From this point of view, there is nothing natural or inevitable about the role
of the real numbers to recommend them as the default building block of basic physi-
cal structure to any sufficiently advanced scientific community. In particular, certain
well-known obstructions to progress in standard continuum-based theories, includ-
ing divergence issues and problems with renormalizability, are regarded, from this
perspective, less as “great problems to be solved,” than as evidence that the wrong
questions are being asked, based on the wrong presuppositions. Discrete causal the-
ory aims, as far as possible, to completely circumvent such obstructions.

A nonspecific hypothesis of fundamental discreteness no longer seems avant-
garde in its own right, since it is now widely expected that “the spacetime continuum
breaks down at the fundamental scale” in the context of quantum gravity. Indeed, a
large number of different non-continuum-based approaches to fundamental physics,
and more specifically, discrete approaches, may be found in the literature.3® However,
even a cursory examination of leading publications suggests that the vast majority of
mainstream modern theoretical physicists still devote their efforts almost exclusively
to theories that use the real numbers as a structural “starting point” in one form or
another. In particular, string theory, which remains, by a huge margin, the dominant
approach, both in terms of its number of researchers and its quantity of resources,
is entirely continuum-based. Its main competitor, loop quantum gravity, “arrives” at
a form of fundamental discreteness in a circuitous manner, via a novel quantization
procedure, beginning in the continuum-based context of general relativity.?” Hence,
even though it is generally believed that “quantum spacetime is not a real manifold,”
the actual practice of modern theoretical physics mostly fails to reflect this belief.

Many of the specific technical problems arising in continuum-based theories are
completely irrelevant in the discrete causal context. For example, renormalization
is a standard device in quantum field theory for “curing” certain divergence issues
that arise, ultimately, from properties of the real numbers. This approach succeeds
only in special cases; theories for which it fails are called nonrenormalizable. One
of the major historical obstacles in formulating successful theories of quantum grav-
ity has been the fact that “standard” approaches to “quantizing general relativity”
lead to nonrenormalizable theories. In discrete causal theory, however, the original
sources of the divergences eliminated by renormalization are generally absent, and

36 An interesting list of such approaches appears in the recent paper on tensor networks by Chen,
Sasakura, and Sato [CSS16]. The majority of these approaches are less relevant to this book than
causal set theory, since they rely to a large degree on auxiliary, “non-causal” structure.

370f course, as discussed in Section 8.8, much of this reliance on the continuum may be stripped
away a posteriori.
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this renders the whole subject of such devices a priori irrelevant, at least in its original
context.*® Of course, objects such as renormalization groups, or analogues thereof,
may reappear in interesting mathematical roles, possibly intersecting with discrete
causal theory. As originally conceived, however, such methods may be regarded as
“chemotherapy for continuum-based theories,” i.e., as tortuous cures for problems
that one would prefer to avoid entirely.

Similarly, the deeply-entrenched and tiresome controversy over the string theory
landscape, and its implications regarding the anthropic principle, arises ultimately
from the properties of certain families of manifolds, including the iconic Calabi—Yau
manifolds, which are likely of greater mathematical than physical interest. These
manifolds have been “imported” into string theory from algebraic geometry, in order
to “cure” the inconvenient fact that string theory requires the wrong dimension for
spacetime, as indicated by all available observational evidence. A serious description
of such problems would contribute nothing to the subject of this book, so I choose
instead to focus on more basic and foundational objections to the entire corpus of
continuum-based theories, in particular, objections arising from generic structural
properties of real manifolds that are almost certainly physically irrelevant. Many
of the technical struggles of modern theoretical physics, including those mentioned
above, may be regarded as mere symptoms of these deeper problems.

The real numbers R; order and completeness. Every physicist is familiar with the
real number system R, which supplies the structural scaffolding for the continuum-
based theories that dominate conventional modern physics. R is a linear continuum,
in a sense made precise below; for the moment, it suffices to remark that the word
“linear” refers to a purely order-theoretic property of R, while the word “contin-
uum’” refers to a “completeness property,” which is also essentially order-theoretic,
but which may be generalized to apply to non-ordered sets. In this book, the term
continuum-based theory refers to a physical theory described in terms of real mani-
folds. Such manifolds inherit a completeness property from R, but generally possess
no natural order. Hence, in passing from R itself to manifolds defined over R, one
loses most of the original order-theoretic structure. To construct continuum-based
theories that yield even an approximate description of nature, one must “add back
in” order-theoretic structure artificially, by means of a metric. In the discrete causal
context, order-theoretic properties are essential, because the directed sets used to
model discrete causal classical histories derive their local structure from individual
ordered relationships between pairs of elements. Hence, even though order theory
is not quite general enough to model classical causal structure in a global sense, it
remains part of the conceptual core of the theory.

Despite the universal familiarity of the real numbers, it is instructive to re-examine
R in detail as a mathematical object, but with a view toward physical applications.
This enables a better understanding of some of the basic objections to continuum-
based theories of fundamental physics. These objections strongly suggest a need for
alternative approaches, of which discrete causal theory is an obvious candidate. It

38See, however, the discussion in Section 4.5 regarding “sprinkled” causal sets, which may exhibit
locally infinite behavior.
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turns out that most of the order-theoretic structure of R may be regarded as “good”
in this context, with totally ordered and partially ordered sets retaining a prominent
role in discrete causal theory. However, the completeness property of R, which is the
property that “makes it a continuum,” leads to deep trouble. In fact, even the weaker
interpolative property of R, which says that “one can always find a real number
strictly between any two distinct real numbers,” is problematic. In particular, even
the “incomplete” field of rational numbers Q is already “bad” from the discrete causal
perspective, since it shares the interpolative property with R.

R in terms of universal properties. Standard definitions of R, though given in
almost every university analysis course, appear surprisingly obtuse when approached
from first principles. R may be defined, in terms of universal properties, as the
unique isomorphism class of Archimedean complete totally ordered fields. To review
a bit of algebra, a field is an “optimally behaved number system,” in the sense that
it possesses additive and multiplicative operations that satisfy familiar properties,
and that “cooperate” with each other in familiar ways. To be precise, a field is a
set IF, together with two operations + and x, called addition and multiplication,
respectively, such that (IF, 4) is an abelian group with identity 0, (F — {0}, x) is an
abelian group with identity 1 # 0, and multiplication distributes over addition.

Total order. A total order, or synonymously, a linear order, on afield I, is a transitive,
antisymmetric, total binary relation < on F. Letting x, y, and z be elements of [,
“transitive” means that if x < y and y < z, then x < z, “antisymmetric” means that
if x < yand y < x, then x = y, and “total” means that either x < y, or y < x for
every choice of x and y, including x = y. In particular, < is reflexive; i.e., x < x for
every x € . Omitting the “total” property, but retaining reflexivity, yields a partial
order. The set of real numbers R is a totally ordered field under the familiar “less
than or equal to” relation <. Given a total order < on [F, one may define a unique
irreflexive binary operation < on I, sometimes called a strict total order, by setting
x < yifand only if x < y and x # y. The familiar “less than” relation < on R
is the strict total order corresponding to <. Conversely, given a strict total order <
on IF, one may define a unique non-strict total order < on F in the obvious way, by
setting x < y ifand only if x < y or x = y. It is convenient here to dispose of some
nuisances of terminology. First, strict orders such as < are more useful in this book
than nonstrict orders such as <, even though the latter are often more popular in
mathematical settings. Second, partial orders play a larger role in this book than total
orders. Hence, most encounters with “order theory” in this book actually involve
strict partial orders, whether or not the words “strict partial” appear explicitly. By
contrast, the discussion of ordered fields in the present section follows the usual
mathematical conventions; in particular, the “order” on R is taken to be the usual
non-strict total order <.

It is important to note that the total order < on R is a natural aspect of the
structure of R, not an arbitrary auxiliary structure added a posteriori. Following the
order refinement principle (ORP), discussed in Section 3.8, any set, and hence any
field, may be endowed with a total order. For example, the field of complex numbers
C, whose elements are of the form a + bi, where a and b are real numbers and
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i means the imaginary unit v/—1, may be endowed with the total order borrowed
from the familiar lexicographic order on R?, i.e., the order < defined by setting
a+bi <c+diifandonlyifa < c,ora = c and b < d, under the usual order
on R. The distinction between this sort of ad hoc total order imposed on a field, and
a natural total order, such as the usual order < on R, is that the latter “respects the
field structure.” For example, given positive elements w, x, y, and z of R, it is true
that if w < x and y < z, then wy < xz. The analogous property fails to hold for
the total order on C defined above; for example, letw =y =landx =z =1 +1;
then wy #£ xz, since the real part of wy is 1 and the real part of xz is 0. Generally,
when one speaks of an “ordered” algebraic object, the order is assumed to respect
the algebraic structure, unless stated otherwise.

Archimedean property. The order < on a totally ordered field F provides a way
of comparing any pair of elements x and y of F. In particular, any nonzero element
x satisfies either x < 0 or 0 < x under the corresponding strict total order; in
the first case, x is called positive, and in the second case, x is called negative. The
Archimedean property says, informally, that “given any pair of positive elements x
and y in I, either element may be re-scaled to become larger than the other.” More
precisely, a positive element x is called infinitesimal with respect to a positive element
y if every natural-number multiple of x is less than y; the Archimedean property says
that IF has no pairs x and y such that x is infinitesimal with respect to y. To readers
without much background in abstract algebra, the Archimedean property may seem
“obvious,” but there exist familiar and important examples of non-Archimedean total
ordered fields. For example, the field R(x) of rational functions in one variable x,
with real coefficients, possesses a natural total order, defined in terms of the leading
coefficients of numerator polynomials. However, it possesses infinitesimal elements;
for example, 1/x is infinitesimal with respect to 1.

Completeness. The remaining property of R cited above is completeness, and it is
this property that distinguishes R as the only continuum, up to isomorphism, among
the class of Archimedean totally ordered fields. The set of rational numbers Q,
for example, is an Archimedean totally ordered field, but it is not complete, since it
“leaves out” certain “limiting values,” such as the algebraic number /2, and the tran-
scendental numbers 7 and e. Completeness is defined in terms of Cauchy sequences
in a totally ordered set, which are sequences whose elements “eventually become
arbitrarily close to each other,” in a manner familiar from elementary calculus. How-
ever, a potential problem of self-reference arises in this context, because Cauchy
sequences are usually defined in terms of R, which, of course, is the object of present
scrutiny. In more detail, Cauchy sequences in a set S are usually defined in terms of a
generalized distance function d, called a “metric,” which quantifies the “closeness”
of pairs of elements of S. To be clear, such a “metric” d does not represent the same
type of structure as a metric g on a smooth real manifold; e.g. a pseudo-Riemannian
metric, although a metric of Euclidean signature induces a “metric” d in the present
sense. Rather, d is a map S x S — R, which is positive-definite, symmetric, and
satisfies the triangle inequality. Defining “closeness” with respect to such a “metric”
d is circular when discussing the real numbers themselves, since the target of d is R.
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A more general notion is needed in this context, and this is supplied by the totally
ordered group structure of (R, 4), which defines what is called a uniform structure.
Generalized Cauchy sequences may be defined with respect to any uniform structure,
and this method may be used to characterize the completeness of R. In general, a
set S endowed with a uniform structure is called complete if every Cauchy sequence
defined in terms of this structure converges to an element of S. The real numbers are
complete with respect to the uniform structure defined by (R, +).

R as a linear continuum. Technically, a linear continuum L is an interpolative
totally ordered set satisfying the least-upper bound property. Here, letting x, y, and z
be elements of L, and denoting the strict total order on L by <, “interpolative” means
that for any pair of elements x and z in L with x < z, there exists a third element
y “between the two,” i.e., such that x < y < z. The least upper bound property
says, as one would expect, that any subset S of L that is bounded above has a least
upper bound in L. More precisely, a subset S of L is bounded above if there exists
an element u € L — S such that s < u for every s € S. A least upper bound for
S is an element uyn € L that is, first of all, an upper bound of S, and secondly, is
less than any other upper bound of §. By antisymmetry, upy iS necessarily unique
if it exists. The rational numbers Q fail to satisfy the least upper bound property;
for example, the subset of rational numbers {%, %, %, g, ...}, defined in terms of the
Fibonacci numbers, is bounded above by the rational number 2, by an easy induction
argument, but does not possess a rational least upper bound. Its least upper bound in
R, of course, is the golden ratio ¢ = 1+Tf5

In the special case of Archimedean totally ordered fields, completeness is enough
to guarantee the interpolative property and the least upper bound property defining
a linear continuum, but in more general contexts, completeness does not imply con-
tinuum structure. For example, the set of integers Z is complete, since every Cauchy
sequence is “eventually constant” at a specific integer n, to which it therefore con-
verges. However, Z is not a continuum, because it does not satisfy the interpolative
property. Even for the rational numbers, there exist different, non-Archimedean,
completions, which are not continua; namely, the p-adic fields Q,, in which “dis-
tance” is quantified in terms of divisibility properties. It is interesting to note that
there has recently emerged an entire field of fundamental physics devoted to non-
Archimedean versions of quantum theory and related topics, sometimes called p-adic
quantum mechanics.

Real manifolds as ‘“‘unordered continua.” As suggested above, the word “contin-
uum,” without the qualifier “linear,” is often used in a general manner to refer to
certain spaces that possess an appropriate “completeness property,” but which gen-
erally do not possess natural order-theoretic structure. For example, a topological
continuum is defined to be a compact, connected topological space equipped with a
“metric,” i.e., a generalized distance function like the “metric” d discussed above. In
this context, the necessary completeness property is embodied by the compactness
condition, which may be expressed in terms of the convergence properties of general-
ized sequences. However, in the context of theoretical physics, the word “continuum”
is often used as a synonym for “real manifold.”
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Real manifolds are generally neither linear continua nor compact connected metric
spaces. In particular, essentially the only “ordinary” real manifold possessing the
natural structure of a linear continuum is R itself,>® while an n-dimensional real
manifold is, by definition, locally isomorphic to R”, which itself possesses no natural
order-theoretic structure for n > 2. However, real manifolds are “locally complete,”
in the sense that every point in a real manifold X possesses a neighborhood which
“contains all limit points of sequences in the neighborhood.” This is illustrated in
Figure2.9.1, which shows a sequence {x,},cy of points converging to a point x in
X. Order theory plays only an indirect role in this notion of completeness; the points
of the sequence are ordered, but this order is borrowed from the natural numbers
N, and does not reflect any essential structural aspect of X itself. At a formal level,
the sequence {x,},cy may be viewed as a map from N into X, and this is how it is
represented in the figure.*’ A path in a set X, in a generalized order-theoretic sense,
is an equivalence class of maps from a “linear directed set” into X, so this sequence
may be regarded as representing a “discrete path” in X. However, it is not a “discrete
directed path,” i.e., an equivalence class of morphisms of directed sets from N into X,
since X is not assumed to be a directed set in this context. Indeed, the only structure
on X taken for granted here is its real manifold structure.

0

Figure 2.9.1. A sequence {x,} converging to a point x in a real manifold X, viewed as a map
N — X.

Itis both unfortunate and ironic that the ubiquitous use of the word “continuum” to
mean “real manifold” in theoretical physics emphasizes only the completeness prop-
erty of the linear continuum R, the object from which every real manifold derives
most of its structure, and suppresses the role of the other order-theoretic properties

3The informal qualifier “ordinary” is included to rule out “exotic examples” such as the long line.
40The directed set illustrated in the left-hand diagram in Figure 2.9.1 is really the skeleton sk(N) of
N, not N itself, since reducible relations are not included in the figure. Skeletons are introduced in
Chapter 3.
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of R. This completeness property, despite its mathematical convenience in the con-
text of calculus and differential equations, is probably the least relevant and most
problematic feature of R from a physical standpoint. From the perspective of the
causal metric hypothesis (CMH), it is the linear order of R that stands out as its
principal redeeming characteristic, since this order enables subsets of real intervals
to parameterize sequences of events.

Constructive view of R. Of course, mainstream modern physics devotes little atten-
tion to the basic properties of R, whether order-theoretic, topological, analytic, or
algebraic. Instead R is usually treated as a collection of numbers which can serve,
at least in principle, as the values of measurements, and which is moreover large
enough and well-enough behaved to enable convenient methods of mathematical
analysis; in particular, calculus and differential equations. Here, the viewpoint rep-
resented by the phrase “large enough and well-enough behaved” may be understood
in terms of the historical emergence of R as a “number system,” which encourages
the unfortunate impression that “progress” involves a constructive process of adding
more and more structure until “enough structure is present to describe nature.” In
fact, such a process risks, at each step, the inclusion of mathematically convenient
but physically irrelevant structure, which may ultimately lead the researcher, or the
entire scientific community, in the wrong direction.*!

The history of the constructive process leading to R might be told in the following
naive way: the positive integers, which had been used since paleolithic times to count
quantities such as the number of bear skins harvested in a given month, required
augmentation by a zero element, to facilitate such innovations as the place value
system; this led to the natural numbers N. Similarly, negative integers and fractions
were added to the picture to describe such concepts as directions on the number line,
and equal partitions of objects; this yielded the integers Z and the rational numbers
Q. Early geometry, and later algebra, raised awareness of the existence of pairs
of idealized quantities not in integer ratios to each other; for example, the Greeks
noticed that the diagonal of a square in the Euclidean plane is incommensurable with
its edges. This eventually motivated the recognition of irrational numbers such as v/2,
and transcendental numbers, such as 7 and e. The table in Figure2.9.2 shows some
of the “number systems” appearing in this process, along with their basic algebraic
and order-theoretic properties. As indicated by the three bottom rows of the table,
the process may be continued “beyond R.”

419t is prudent to balance this warning with the principle of hidden structure (HS), introduced in
Chapter 3, which emphasizes the utility of enlarging the structural picture, if necessary, with new
features that are relevant! The moral, ultimately, is that one must always keep in mind the physical
motivation, or lack thereof, of structural features in physical theories.
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symbol name algebraic structure order structure
s semigroup under -+, discrete
- ositive integers .
N-{0} p g monoid under x total order
N natural numbers monoid under +, discrete
* monoid under x total order
: - discrete
integers ring (under +, x
Z e g( +) total order
. - interpolative
Q rational numbers field total order
R real numbers field llr}ear
continuum
C complex numbers algebraically no natural
closed field order
. non-commutative no natural
H quaternions division algebra order
0 octonions non-associative no natural
1 division algebra order

Figure 2.9.2. Comparison of “number systems,” increasing in “size” from fop to bottom.

From this constructive viewpoint, R may ultimately be defined as the set of equiv-
alence classes of Cauchy sequences of rational numbers, under an appropriate equiv-
alence relation. For example, the sequence {l, % % }—; ...} is a representative of the
equivalence class identified with +/2.*> Now suppose that there really is a mini-
mum physical length; for example, the Planck length, and suppose that one wishes
to “describe the diagonal of a macroscopic square-shaped region in flat space in
terms of its edge.” The naive description involves the irrational number +/2, but the
precise physical description must be rational; for instance, there might be exactly
1.414213562373095048801688724209698 units of length along the diagonal for
each unit of length along the edge. This example illustrates one reason why hypothe-
ses involving discrete microstructure might generate little sympathy from a naive
point of view, since it is often a waste of time, practically speaking, to worry about
so many decimal places. It might seem that “nothing is lost” by enlarging the set of
possible values to admit quantities such as +/2, even if they may not be precisely
physical.

Probably no serious modern theorist actually holds a view so naive as this, but
the example nonetheless provides a reasonably accurate illustration of some of the
conceptual pitfalls surrounding the physical role of R, which do seem to exert a
profound influence on the way mainstream theoretical physics is done. In particular,
the impression that “nothing is lost” by enlarging, or completing, a number system,
is egregiously wrong in general. In the context of classical causal structure, the nat-

42The method of Dedekind cuts is a different way of constructing R in terms of subsets of Q.
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ural scale is lost thereby, and with it, metric recovery. In this setting, it is striking to
consider the fact that smooth manifolds, by themselves, are manifestly inadequate
for modeling classical spacetime; even in relativity, one must import a metric as aux-
iliary structure. Discrete directed sets, by contrast, can at least approximate classical
spacetime to a high degree of accuracy, even if spacetime is ultimately nondiscrete. In
a broader setting, an unfortunate tendency exists to automatically place objections to
the physical status of R in the same category as ancient Greek qualms about irrational
numbers, or the constructivist arguments of Kronecker, Brouwer, and others, made
more than a century ago. In fact, the objections to R most relevant to the motivations
for discrete causal theory have nothing to do with the ontology of number systems,
or with mathematical constructivism more generally.

Larger related number systems. Before enumerating some of these specific objec-
tions, I briefly outline the remaining content of the table in Figure2.9.2, including
the “larger number systems” C, H, and Q. First, I must explain the algebraic ter-
minology appearing in the table. A semigroup is a set equipped with an associative
binary operation, but generally without an identity or inverses. The prototypical
example is the set N — {0} of positive integers*> under addition, since, informally
speaking, the “obvious candidates for an additive identity and additive inverses,”
namely, the zero element and the negative integers, respectively, are “left out.” A
monoid is a semigroup with identity; the prototypical examples are the positive inte-
gers under multiplication, with identity 1, and the natural numbers N under addition,
with identity 0. A ring is “like a field,” in the sense that it possesses “additive” and
“multiplicative” operations, but it is more general; in particular, nonzero elements
of a ring may not possess multiplicative inverses, multiplication may not be com-
mutative, and so on. The prototypical example of a ring is the set of integers Z, with
the usual multiplication and addition. The construction of Q from Z is algebraic in
nature; it is an example of what is called localization. The terminology arises from
the fact that the same construction is used to examine local properties of algebraic
schemes in algebraic geometry. The construction of R from Q is order-theoretic, as
described above.

The complex numbers form an algebraically closed field, which means that the
roots of any polynomial with coefficients in C are also in C. Hence, the construction of
C from R is algebraic. The complex numbers play a central role in ordinary quantum
theory; in particular, the “state function”  appearing in Schrodinger’s equation
(1.1.3) takes on complex values, and the phases associated with spacetime paths in
Feynman’s path summation approach to quantum theory are also complex-valued.
The apparent physical importance of progressively larger number systems, up to and
including C, has provoked natural interest in the even larger systems of quaternions
H and octonions O, the latter of which is the “largest normed division algebra over
the real numbers.” For example, since passage from R to C “produces quantum
theory from classical theory,” it is natural to ask if there might exist “hyperquantum

43This book follows the convention that the natural numbers N include zero; hence, the set of
positive integers is given by removing zero from N.
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theories,” based on H and Q.* Examination of these larger number systems has
borne only modest fruit in physical settings; both H and O play a limited role in
quantum information theory, and H makes appearances in spin dynamics and a few
other contexts. However, these contributions remain miniscule compared to those of
R and C.

The table of “number systems” in Figure 2.9.2 may be placed into a larger con-
text, in which “simple objects,” such as N, and even “simpler objects,” such as finite
sets, may be generalized and/or extended in a variety of different ways. For example,
finite sets may be converted into “number systems,” by endowing them with group
or ring structure. Another example is given by rings of adeles, which generalize
the completion Q, of Q. Examples more directly relevant to discrete causal theory
are ordinal numbers and cardinal numbers, which generalize naive “counting” of
finite sets in different ways. It is sometimes useful to regard directed sets as gen-
eralizations of ordinal numbers; for example, this viewpoint is useful in the theory
of relative directed sets over a fixed base, introduced in Section4.6. From this per-
spective, Sorkin’s phrase “order plus number equals geometry” “almost” says that
“ordinal plus cardinal equals geometry,” since the partial orders involved in causal
set theory generalize the total orders defining ordinal numbers, while the “quantity,”
or “measure,” or “scale,” represented by Sorkin’s use of the word “number,” refines
the “pure size” meaning associated with cardinal numbers.

Quantum-theoretic significance of C. A common heuristic is to associate the real
numbers R with “classical physics,” and the complex numbers C with “quantum
physics.” For example, the reader may recall that the use of real probabilities in
the “toy dynamics” discussed in Section 1.8 is what distinguishes this choice of
dynamics as a classical stochastic theory. A natural, and indeed inevitable, question
arising in this context is why, at a fundamental level, the transition from “classical”
to “quantum” is accompanied by a transition from R to C. Most attempts to address
this question involve significant structural assumptions that narrow the focus to the
specific properties of particular “state spaces.” For example, a 2001 paper of Caves,
Fuchs, and Schack [CF02] explains why complex Hilbert spaces, but not real or
quaternionic Hilbert spaces, support “reasonable behavior” for density operators in
quantum theory.*> A common “continuity” argument in favor of the use of complex
numbers in quantum theory is that the unitary operations representing time evolution
in this context should possess square roots, enabling the “time interval” under consid-
eration to be subdivided.*® Obviously, arguments of this type are generally irrelevant
in the discrete causal setting, which does not involve the interpolative property.

“Discrete causal theory raises the possibility of much more natural types of “hyperquantum theo-
ries,” defined by adding additional levels of hierarchy “above the level of kinematic schemes.” This
topic is revisited in Section7.10.

45 Another virtue of the paper [CF02] is that it supplies a spectrum of useful references on the
subject.

46For example, this argument is raised in the course of an illuminating general discussion of the
subject on Scott Aaronson’s blog on quantum information theory.
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However, discrete causal theory itself offers interesting insight into the quan-
tum-theoretic role of C, and also suggests that H and O remain worth considering
in similar roles. The basic argument, which applies most naturally to the path sum-
mation approach to quantum theory in the background independent setting, is that
one should not “artificially discriminate” among “evolutionary pathways” for clas-
sical histories, by assigning them weights of different magnitudes in path sums. This
immediately focuses attention on spheres, or close analogues of spheres, as the natural
target objects for the “phases” of these pathways, since spheres are the prototypical
examples of “spaces whose elements all possess the same magnitude.” The desire
to preserve the algebraic structure associated with “splicing together evolutionary
pathways” then leads to the consideration of “multiplicative structures on sphere-like
objects,” while the procedure of path summation requires “additive structures” on
larger objects containing these “spheres.” Without attempting to be precise, these
very general reflections lead immediately to the consideration of the 1-sphere S!,
viewed as a subobject of C, the 3-sphere S3, viewed as a subobject of H, and the
7-sphere S7, viewed as a subobject of ©. Coincidentally or not, S' is the target of
Feynman’s phase map in his original description of the path summation approach
[FE48]. In the discrete setting, of course, it is more natural to consider subobjects
of these spaces that are not real manifolds, or possibly abstract analogues of such
spaces. These rather speculative ideas are revisited in Section 6.7, in the context of
adapting the path summation approach to the discrete causal setting. Note that none of
this reasoning has anything to do with the “completeness” of such number systems,
or suggests that they should serve as basic structural scaffolding for spacetime.

The right-hand column of the table in Figure 2.9.2, which lists the order-theoretic
structure of the number systems appearing in the table, reveals how the buildup
from N — {0} to R, and beyond, first obscures, then destroys, the order-theoretic
significance of the term ‘“number.” The notion of “quantity” suffers a similar fate,
at least from a physical perspective, since cardinality provides much too coarse a
description to support a useful notion of scale in continuum-based settings. Given
the ongoing troubles of continuum-based theories, as well as the relatively barren
physical role of the quaternions and octonions to date, it is worth considering the
possibility that this progression of “more-and-more-complete” number systems is
simply not well-suited to describing fundamental physics. In particular, as noted
above, the general quantum-theoretic virtues of the field of complex numbers C
do not seem to depend on its “completeness.” For the simplest number systems,
order-theoretic information, fogether with sufficiently-refined notions of quantity,
are embodied in the same objects; for example, in the set of natural numbers N,
and in subsets of N. Historically, this is one reason why the distinctions between
ordinals and cardinals were not clearly recognized until the late nineteenth century.
In the present context, N stands in stark contrast to larger and more complicated
number systems such as C, which fail to preserve suitable notions of order and
quantity, at least in physical settings. Fortunately, the discrete directed sets central
to discrete causal theory, while they are much more complicated than the natural
numbers N, at least share with N the important feature of supporting useful versions
of both concepts. Among other important consequences, this is why metric recovery
“works” in the discrete setting.
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Physical objections to continuum-based theories. It is useful to briefly focus spe-
cific attention on a few of the many objections to the use of R as a basic source of
structure in fundamental physics. Some of these objections involve technical issues,
while others are more conceptual in nature, or arise from the theory and practice
of experimental science. The persistence of these problems suggests that the main-
stream modern physics community should seriously consider devoting a more equi-
table proportion of its efforts to alternative approaches, which can potentially avoid
these problems entirely.

1. Divergence issues. Many of the theoretical problems of continuum-based the-
ories of fundamental physics involve divergences that arise precisely because
certain quantities are permitted to become arbitrarily small. This is true, in par-
ticular, of general relativity and quantum field theory. It is especially difficult
to construct continuum-based background independent quantum theories that
avoid such divergences. These problems are deeply-rooted, and remain mostly
intractable, despite several generations of intensive effort by the world’s foremost
physicists. There is no convincing evidence that they can be surmounted or cir-
cumvented without a significant change of structural paradigm. Similar problems
are to be expected in almost any theory in which R plays a substantial role.

2. Lack of natural scale. Real manifolds do not possess natural scale data. In partic-
ular, different coordinate charts on a real manifold X yield different “sizes” for a
given subset. The only natural way to measure the “quantity” of a subset in this
context is by its cardinality, which is much too coarse to provide a meaningful
notion of scale in physical settings. For example, R” has the same cardinality as R
for any positive integer n. This means that scale data must be supplied artificially
by the addition of auxiliary information, such as a metric. In the context of general
relativity, this implies that metric recovery from causal structure is possible only
up to a conformal factor, as established by Malament’s theorem.

3. Experimental discreteness. The choice to discard continuum-based assumptions,
even without prior theoretical justification, has proven strikingly successful his-
torically. The prototypical example is Planck’s solution of the blackbody radia-
tion problem, which illustrates how divergence issues, arising from an irrelevant
assumption of underlying continuum-based structure, can be cured by changing
to a discrete paradigm. More generally, quantum theory has already replaced
continua with discrete sets in a host of physical situations. Given this precedent,
it seems imprudent to automatically retain continuum-based assumptions every-
where that experimental evidence has not already rooted them out.

4. Discreteness arising from continuum-based assumptions. Even continuum-based
theories tend to predict important instances of discreteness in quantum-theoretic
contexts. For example, in conventional quantum theory, certain operators on
Hilbert spaces of functions over a real manifold may happen to possess discrete
spectra of eigenvalues, leading to derived discreteness for the values of the asso-
ciated observable quantities. At a more basic level, continuum-based approaches
to quantum gravity and fundamental spacetime structure tend to arrive at a form
of fundamental discreteness, via “quantization of spacetime.” Most notably, loop
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quantum gravity features “area” and “volume” operators that measure the “small-
est meaningful units” of these observables. Thus, fundamental discreteness forces
its way into the picture regardless of continuum-based assumptions.

5. Discreteness via the philosophy of measurement. It is impossible to directly estab-
lish, via measurement, the existence of a continuum of values of any observable
quantity. In particular, one may always posit discrete structure at smaller scales,
and such structure may be experimentally detectable, directly or indirectly. This
realization, by itself, should not rule out continuum-based theories, but it should
be considered as a mark against them, since it is awkward to invoke structure
whose existence can never be established, even in principle. This view is closely
related to a philosophical preference for background independence, since it treats
as undesirable the practice of carrying along a “continuum background” in which
discrete families of measurement values are taken to be “embedded.” As the the-
ory of metric recovery illustrates, assuming the existence of such a “background”
can lead to difficulties that are more than merely aesthetic, such as the loss of
natural scale.

Historical and sociological objections to continuum-based theories. After demon-
strating the existence of serious experimental, mathematical, and/or logical problems
associated with an existing approach to fundamental physics, or a class of such
approaches, it can be instructive to consider possible historical and sociological fac-
tors that might have contributed to these shortcomings. This is a risky exercise, due
to the hazard of historical bias. In particular, it is tempting to view the development
of scientific thought in a zeleological sense, as “leading up to” the present state of
scientific understanding, and this type of presumption often generates serious mis-
conceptions. For example, popular “explanations” of Zeno’s paradoxes, which fortu-
nately are ignored by serious physicists, mathematicians, and philosophers, focus on
the largely irrelevant development of the rational and real number systems, boasting
that “it is now known that an infinite number of terms can sum to a finite answer.” In
fact, the original statements of these paradoxes are physical in nature, and essentially
question whether or not spacetime possesses the interpolative property. As another
example, Riemann seems to have been as ready to consider “discrete manifolds” in
the 1850’s as he was to consider continua, but many physicists regard his work as
“leading up to” general relativity. Despite these risks, it can still be useful to think
about the development of science itself in terms of cause and effect. In this spirit, I
mention the following factors as possibly contributing to the historical preeminence
of continuum-based theories of fundamental physics.

1. Pragmatism of continuum-based theories. Until recently, continuum-based the-
ories have been remarkably successful in providing solutions to the physical
problems of greatest immediate interest, particularly in the context of applied sci-
ence and engineering. In other words, these theories have prospered not because
they seem likely to be true, but because they have been useful. A modern analogy
is illuminating: during the construction of the standard model of particle theory,
physicists were well-aware that the tools involved; in particular, background-
dependent quantum field theories on Minkowski spacetime R3**!, were very
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unlikely to address fundamental problems such as the unification of relativity
and quantum theory.*” However, these tools facilitated short-term progress, so
they achieved temporary ascendancy. Failure to address deeper issues has largely
squelched further progress over the last generation, and the lengthy run of success
of continuum-based methods in fundamental physics since the time of Newton
may well have ended with the completion of the standard model.

2. Earlyignorance of experimental discreteness. Reasonable judgment regarding the
adequacy of a structural paradigm is strongly influenced by the results of exper-
iment and observation. In this regard, the last century has left continuum-based
approaches to fundamental physics on far shakier ground than previously, due
to recognition of numerous discrete phenomena via advances in microtechnol-
ogy, which spurred the development of ordinary quantum theory. By this measure,
early preeminence of continuum-based theories may be partly attributable to early
ignorance of such discrete behavior at small scales.

3. Early lack of structural alternatives to the continuum. The continuum-based focus
of early-modern physics was likely influenced by an absence of recognized mathe-
matical alternatives to the real number system as a source of basic structure. Many
structurally promising and physically suggestive alternatives arising in informa-
tion theory, order theory, graph theory, and category theory were nonexistent or
unrecognizable. Of course, the formal properties of R were not explicitly under-
stood during this period either, but this technical imprecision seems to have had
little effect on the conceptual development of physics.

4. Early lack of computational alternatives to continuum-based techniques. The
predominance of continuum-based methods may be partly attributed to a lack
of computational alternatives to techniques from calculus, differential equations,
and other areas of mathematics involving real analysis. Computational science
was in its infancy when modern physics arose. Discrete models involving more
than a few elements would have seemed computationally intractable even if they
had been considered conceptually promising. For example, Riemann might have
had difficulty actually studying examples of “discrete manifolds,” whatever his
estimation of their fundamental merits. By contrast, real analysis is remarkably
congenial to the computational limits of the unaided human brain, regardless of
its ultimate physical relevance.

2.10 The Philosopher’s Peril

Scientific philosophy. A significant task of Chapters 3 and 4 of this book is to analyze
the physical plausibility of various mathematical models for encoding discrete causal
structure, and of axiomatic systems governing these models. I would prefer to regard
much of this analysis as “appeals to the self-evident,” i.e., as common sense, but

470f course, there are important connections between Yang—Mills theory and general relativity in
the context of loop quantum gravity.
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objectively speaking, it belongs to the field of “scientific philosophy.” This field, of
course, is one of the principal avenues whereby scientists and philosophers alike have
made fools out of themselves since antiquity. Aristotle, for example, still receives
what is probably an undeserved degree of ridicule for his unfortunate non-empirical
conclusions regarding falling bodies. However, there is no shortage of other exam-
ples, both ancient and modern. Perhaps partly as a response to this, many modern
physicists have taken the view that attempting to formulate novel approaches to fun-
damental physics based on “physical intuition” and “general principles” is a waste
of time, and instead favor the more conservative approach of trying to first match
experimental data before drawing any philosophical conclusions.*® At an individ-
ual level, this strategy is pragmatic, since such efforts frequently achieve modest
success, while more ambitious approaches usually fail. However, these “successful”
models are often merely incremental updates of previous models, and suffer from
the same obvious foundational issues as their progenitors. They also tend to exhibit
what might be referred to as the “more-and-more disease,” in which a good idea
from an established theory is extended beyond its scope of applicability. Histori-
cally, this has led to spurious consideration of more and more epicycles, particles,
symmetries, dimensions, and so on, often accompanied by less and less progress in
basic understanding.

Of course, ignoring experimental data is even worse; doing so pits the philosopher
against the Almighty, a losing proposition.** Perhaps the sensible middle ground is
to avoid choosing sides between science and scientific philosophy at all. Einstein cer-
tainly harbored a healthy respect for scientific philosophy, remarking that the deep
physical principles underlying the natural world cannot be logically deduced, but
must be reached by “intuition, resting on sympathetic understanding of experience”
[EI34]. While mostly above reproach in his own right, Einstein is sometimes cited as
a misleading exception to the “rule” that intuition is relatively useless compared to
close grappling with experimental evidence. This rule seems valid, however, only if
intuition is allowed to operate unconstrained by what is actually known. If the “sym-
pathetic understanding of experience” is taken into consideration, then exceptions
accumulate rapidly. For example, the Lagrangian and Hamiltonian formulations of
mechanics and the path summation approach to quantum theory are all based on
intuition involving deep general principles. Deep general ideas about spontaneous
symmetry breaking, including the Higgs mechanism, were formulated years before
acquiring a specific use in the Glashow—Weinberg—Salam electroweak theory. Non-
abelian gauge theories were developed on basic structural grounds long before they
were used to describe the electroweak and strong interactions. These examples sug-

“8Hawking has gone so far as to remark that “philosophy is dead.” While I disagree with this
statement at face value, Hawking was primarily expressing a low opinion of the scientific competence
of the philosophical community, not suggesting that philosophical issues themselves are vacuous.
Ironically, Malament works as a philosopher.

49Erdos remarked facetiously that life is a game against the “Supreme Fascist,” his fanciful con-
ception of God. The human contestant can never score any points, but can keep the S.F.’s score as
low as possible, by avoiding error.
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gest that even intuition has its merits.”° In any case, it may be healthy to balance the
philosophical skepticism of the modern physics community, which has not enjoyed
the privilege of seeing any revolutionary advances, with the outlook of a more for-
tunate generation. For example, Hermann Weyl expressed the following viewpoint
in the introduction to his classic text Space Time Matter [WES52]:

And now, in our time, there has been unloosed a cataclysm which has swept away space,
time, and matter, hitherto regarded as the firmest pillars of natural science, but only to make
place for a view of things of wider scope, and entailing a deeper vision. This revolution was
promoted essentially by the thought of one man, Albert Einstein... Philosophy, mathematics,
and physics have each a share in the problems presented here... I shall only touch lightly
on the philosophical implications, for the simple reason that in this direction nothing final
has yet been reached, and that for my own part I am not in a position to give such answers
to the epistemological questions involved as my conscience would allow me to uphold... As
things stand today... the separate sciences... should follow in good faith the paths along
which they are led by reasonable motives proper to their own peculiar methods and special
limitations. The task of shedding philosophic light onto these questions is nonetheless an
important one... This is the point at which the philosopher must exercise his discretion. If he
keeps in view the boundary lines determined by the difficulties inherent in these problems, he
may direct, but must not impede, the advance of sciences whose field of inquiry is confined
to the domain of concrete objects. Nevertheless, I shall begin with a few reflections of a
philosophical character... (pp. 2-3)

Weyl’s carefully balanced perspective respects the necessity for caution in the
practice of philosophy in the physical sciences, but never questions the legitimacy or
importance of the discipline itself. Similar acknowledgment of the role of scientific
philosophy has remained relatively mainstream throughout most of the history of
modern science, despite current prejudices. This is not very surprising, because the
subject involves questions of great scope and depth, whose difficulties remain as
formidable, and whose consequences remain as important, as ever. Ultimately, the
peril of squarely facing such difficulties must be accepted if these questions are ever
to be adequately addressed.

Experimental challenges. In the last generation or so, an unfortunate practical lim-
itation has grown increasingly prominent in fundamental physics: new experimental
results in the realm of high energy particle theory have become almost prohibitively
difficult and costly to obtain, thereby forcing philosophical substitutes to play a
greater role in the way physics is done. For example, I have already mentioned the
controversies surrounding the anthropic principle and the multiverse, in the context
of string theory. Over much of the previous century, experiment decided the fate
of many theoretical approaches within a few years of their inception. Today this is
less-often true; a large proportion of theories that can be readily dismissed on exper-
imental grounds are manifestly unworthy of attention in the first place, while most
of the “interesting” theories are so difficult to test definitively that even decades-long
research projects, and vast, internationally-funded engineering operations, cannot
reliably decide their viability. This remains true, in particular, of string theory and

50The mathematical reader will recognize here a slightly facetious reference to Gordan’s reluctant
endorsement of Hilbert’s “theology.”
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loop quantum gravity. Under these conditions, every possible source of insight into
the conceptual integrity and technical viability of a theory is useful, including knowl-
edge of where the theorist stands on philosophical grounds. Such information is far
from definitive, since some great physicists have been suspect philosophers, while
many outstanding philosophers have been terrible physicists. In this book, however,
wish to provide the reader with a viewpoint as conceptually comprehensive as possi-
ble. Hence, I devote the remainder of this section to the risky task of outlining some
crucial conceptual and philosophical underpinnings of discrete causal theory, as I
choose to approach it. The reader should be aware that important elements of this
philosophy differ significantly from certain viewpoints associated with previously-
existing versions of discrete causal theory.

Six basic principles. The following basic principles of scientific philosophy help to
frame the overall viewpoint underlying the version of discrete causal theory devel-
oped in this book. In stating these principles, I make no attempt to be original; most
of them fall well within the scientific mainstream. I also make no attempt to be
definitive; it is possible to add or subtract a statement or two from this list with-
out substantially altering the overall viewpoint. The remarks accompanying these
statements provide illustrative examples, and indicate some of the places in the book
where these principles are employed.

1. Physics should seek not to prescribe what may be, but to describe and explain
what is. As explained in Section2.1, the distinction between prescription and
description is well-illustrated by comparing certain aspects of general relativity
and discrete causal theory. General relativity treats the mathematical structure
used to model classical spacetime as prescribing which pairs of events may be
causally related. As noted in Section 1.3, this leads to “awkward counterfactual
speculation” about actual events. Discrete causal theory, on the other hand, treats
such structure as describing which pairs of events are causally related. Some
might argue, with a degree of justification, that general relativity is merely mis-
interpreted along these lines,”' but this is indisputably the mainstream interpre-
tation. Of course, some descriptions are more satisfying than others. An ideal
description should explain, or “render intelligible,” the associated formalism,
by showing it to faithfully represent clear fundamental principles.’? As outlined
in the discussion of causality conditions in Section2.7, the descriptive philoso-
phy avoids meaningless inconsistencies, such as “time-travel paradoxes.” It also
abstains from unjustified assumptions, such as the presumed steady state of the
universe before Hubble’s observations. Looking ahead to Chapters 3 and 4, the
axioms of transitivity (TR) and interval finiteness (IF), which feature prominently

SIHere, T am thinking about influential scientists such as Rovelli [RO04], who offers a viewpoint
about certain aspects of relativity that may give too much credit to the theory itself. I agree with
much of the physical content of Rovelli’s viewpoint, without necessarily agreeing that Einstein’s
theory itself suffices to adequately embody it.

52Much has been written about whether or not physics should be expected to be intelligible, whatever
the meaning of the term. In any case, it would be difficult to formulate a clearer fundamental principle
than the causal metric hypothesis (CMH).
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in the existing literature, are worrisomely prescriptive. For this reason and others,
neither of these two axioms plays a role in the version of discrete causal theory
developed in this book. This illustrates the fact that shifting to the discrete causal
paradigm does not automatically cure prescriptive issues; the specific choice of
axioms is also important. In a broader context, prescriptive issues are often related
to a lack of perfect background independence, and more generally to the use of
structures that are arbitrary, rather than structures possessing a universal property,
as discussed in Section 1.6.

2. Mathematics and physics are distinct; each informs the other. Mathematical struc-
tures in physics should be chosen for their conceptual merits, not for their familiar-
ity or convenience. This principle, which may be shortened to the phrase “con-
cept over convenience,” recalls Gauss’ “notions over notations.” Historically,
this practice has led not only to good physics, but also to interesting mathematics,
while the mathematical community has returned the favor by introducing concepts
and methods whose physical significance has only been appreciated much later.
Care must be taken to distinguish between mathematical and physical proper-
ties. An unfortunate byproduct of the long-standing success of continuum-based
theories in physics has been the automatic and unjustified attribution of certain
mathematical properties of the continuum, such as the interpolative property and
the completeness property discussed in Section?2.9, to physical spacetime. An
important example of distinguishing between mathematical and physical prop-
erties in discrete causal theory is offered by the independence convention (IC),
introduced in Section 3.7. In this case, the two properties to be distinguished are
mathematical irreducibility and physical independence of relations between pairs
of elements in a directed or multidirected set.

3. Basic structural concepts are crucial. As mentioned in Section 2.9, it is instructive
to consider the poverty of structural alternatives to continuum-based geometry
available to physicists during the early 20th century, when relativity and quan-
tum theory were developed. Many physically suggestive ideas from fields such as
order theory, graph theory, information theory, computer science, category theory,
algebra, and algebraic geometry, were not yet known. Even group theory faced a
difficult reception, as evidenced by Wigner’s description of Schrodinger’s “grup-
penpest.” The twenty-first century scientific community is much better equipped,
at least on paper, to follow up Einstein’s intuition that physics is essentially struc-
tural in nature, brilliantly vindicated by general relativity, but largely unconsum-
mated thereafter. Many of the structural ideas appearing in this book have roots
in modern algebra, particularly in the work of Alexander Grothendieck. Espe-
cially important is Grothendieck’s relative viewpoint (RV), formally introduced
in Section 3.8, and applied in Chapters4-7.

4. Local and global properties must be properly distinguished. The history of physics
is littered with errors resulting from specious local-to-global reasoning and dubi-
ous extrapolation across scales. Often, such errors arise from failure to recognize
the limitations of “obvious” observations, such as the apparent motionlessness of
the earth, or the apparent flatness of spacetime in the vicinity of the earth, or the
apparent possibility of assigning definite values of position and momentum simul-
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taneously to macroscopic material bodies. Particularly troublesome are “local”
conditions adopted without recognition of their global consequences. Looking
ahead to Chapter 4, the axiom of interval finiteness (IF), sometimes mislabeled as
“local finiteness” in the literature, prescribes global structure to an uncomfortable
degree. This provides another illustration of why the specific set of axioms chosen
for discrete causal theory is of crucial importance.

5. The nature of experimentation has theoretical significance. A specific instance
of this principle, involving the uncomfortable status of continuum-based theories
with regard to the philosophy of measurement, was mentioned in Section2.9.
More generally, besides attempting to explain specific experimental results, theo-
rists should consider general demands and prohibitions associated with the exper-
imental method. For example, in Section 1.3, I noted the unavoidable scientific
role of directed relationships between experimental conditions and results. The
nature of experimentation also favors axiomatizing local rather than global prop-
erties, since the latter may be experimentally inaccessible. For example, in the
context of relativity, it is reasonable to assume that classical spacetime is four-
dimensional, since dimension is defined locally, but it is unreasonable to assume
a specific global topology. Of course, conclusions about large-scale topology
could conceivably be derived on dynamical grounds, or inferred from unlikely
observational scenarios, such as “circles in the sky.”

6. Censor the fatal, not the merely unexpected. A reasonable facet of theory-building
is to impose conditions “censoring” properties that are so qualitatively contrary
to observation that any theory exhibiting them is immediately discredited. More
succinctly, it is reasonable to “ignore the irrelevant.” This is the rationale behind
the discussion of narrowing the focus of the classical causal metric hypothesis
(CCMH) to “physically relevant directed sets,” in Section2.2. More generally,
this principle defines the boundary of the prohibition against “prescription” men-
tioned above, by permitting the proscription of “fatal phenomena.” However, this
idea must be applied with great care, due to the limitations of human judgment
and imagination. Planck’s approach to black-body radiation, eliminating all but a
discrete set of emission frequencies, to avoid the fatal ultraviolet catastrophe, is an
example of justified censorship. However, Einstein’s fixing of the “cosmological
constant,” to achieve his expectation of a steady-state universe, is not. In the con-
text of discrete causal theory, the axioms of transitivity (TR) and interval finiteness
(IF), already mentioned above, censor nonfatal phenomena in problematic ways;
the former by ignoring distinctions among certain modes of influence between
pairs of events, and the latter by drastically constraining the global structure of
classical spacetime.

Ten qualitative assumptions of discrete causal theory. The six principles listed
above are very general, and provide only a partial overview of a broad approach to
doing science. They inform the developments described in this book in important
ways, but do not come close to determining them. Hence, it is useful to gather
together some more-specific assumptions underlying the version of discrete causal
theory developed here. Many of these assumptions have already been mentioned
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and applied, at least implicitly, in previous sections, but they have not yet appeared
explicitly in one place. Among other advantages, this listing provides the opportunity
to revisit some of the conceptual topics discussed in the questions and answers at the
end of Chapter 1, with the benefit of additional information from the present chapter.

1. There is no physical continuum. In Section2.9, I discussed some of the general
shortcomings of physical models that rely on the real number continuum R
as a source of basic structure. Discrete causal theory treats these objections as
sufficient to completely rule out the use of R in this role.

2. The physical universe is basically discrete. Having dispensed with R, along
with derivative structures such as real manifolds, it is necessary to offer an
alternative structural paradigm for fundamental physics. Discrete structures seem
to furnish more-natural and more-promising physical models. It is important to
emphasize that discreteness is not “the exclusive physical alternative” to the
continuum; most of the structural paradigms one could choose to explore are
neither continuous nor discrete. However, there are good reasons why most
modern approaches to fundamental physics rely heavily on one or both of these
extremes: they possess special properties that are either physically suggestive,
or amenable to mathematical analysis, or both. From the viewpoint of discrete
causal theory, the conceptual advantages of discrete models far outweigh the
mathematical convenience of continuum-based models.

3. Physics is about cause and effect. This statement is, of course, a paraphrase
of the causal metric hypothesis (CMH), which is the subject of the present
chapter, and one of the main themes of the book. The first two chapters have
presented a number of different versions, paraphrases, and shades of meaning
of this hypothesis. A crucial part of the picture, not yet discussed in detail,
is the quantum causal metric hypothesis (QCMH), which requires additional
theoretical background before it can be stated in a precise manner. The necessary
developments are carried out in Chapters 5-7.

4. Classical spacetime may be modeled in terms of directed sets. This statement is
a paraphrase of the classical causal metric hypothesis (CCMH). As explained in
Section 2.2, discrete classical causal structure may be modeled, at the local level,
in terms of directed relationships between pairs of elements, and a directed set
is merely a collection of such related pairs, considered as a single object. One
advantage of describing causal structure in this way is that it avoids prescribing
dubious global properties, such as transitivity (TR). More-detailed discussion of
axiomatic systems for directed sets appears in Chapters 3 and 4.

5. Quantum spacetime may be modeled in terms of multidirected sets. This is the
essence of the quantum causal metric hypothesis, although the details are post-
poned until Chapter 7. Multidirected sets are natural generalizations of directed
sets, in which a given pair of elements may have multiple relations between them
in either or both directions. The elements in discrete quantum causal theory rep-
resent classical histories, and the corresponding relations represent relationships
between classical histories, i.e., co-relative histories. Similarly, the multidirected
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sets arising in this context represent kinematic schemes. The reason why multi-
directed structure, and not merely directed structure, is necessary in this context,
is because of a subtle technical property of directed sets that permits the exis-
tence of multiple distinct co-relative histories between a given pair of classical
histories.

6. Classical histories are generally nontransitive. The conceptual basis of this
assertion is merely that direct and indirect relationships are physically differ-
ent; the details are explained in Chapter 3, particularly in Section3.9. Using a
nontransitive binary relation, direct causation may be modeled by an individual
relation between a pair of events, while indirect causation may be modeled by
chains of relations. In general relativity, influence is taken to flow along causal
curves, which implies that every instance of causation is indirect, due to the inter-
polative property of R. However, in the discrete setting, both direct and indirect
influences are possible, and it is necessary to use models that enable distinction
between the two. Following this reasoning, the possibility of direct causation is
an essentially new feature, introduced by exchanging continuum-based models
for discrete ones.

7. Classical histories are locally finite, i.e., star finite (SF), but not necessarily
interval finite (IF). The motivation for imposing a local finiteness condition
on discrete causal structure is, roughly speaking, that one expects individual
elements to possess a “finite size” in the discrete context. Hence, one faces con-
vergence issues if an infinite number of elements are permitted to coexist in a
“local region.” The subject of local behavior in discrete causal theory is exam-
ined in much more detail in Chapter4, but I briefly elaborate on the need for a
local finiteness condition here. The metric recovery results discussed earlier in
the present chapter imply that if natural scale data can somehow be derived from
causal structure, then one can recover the apparent geometric properties of rela-
tivistic spacetime at ordinary scales. The obvious way to proceed in the discrete
context is by “using local combinatorial data to determine scale,” generalizing
the causal set prescription. To avoid physical pathologies, such as the instan-
taneous expansion of a minimal region of spacetime into an infinite volume, it
is natural to impose the condition that “each element is directly related to only
a finite number of other elements.” This local finiteness condition, called star
finiteness, is formally introduced in Section4.4. Unfortunately, the term “local
finiteness” is sometimes used in the literature to denote the very different condi-
tion of interval finiteness, which is not a local condition at all, and which permits
the very type of physical pathologies described above.

8. The relative viewpoint is indispensable. As explained in Section 1.5, Grothen-
dieck’s relative viewpoint (RV) embodies the philosophy that objects should not
be analyzed in isolation, but should be studied along with their natural relation-
ships. At the classical level, this viewpoint leads to the definition of the relation
space R(D) over a directed set D, viewed as a discrete causal classical history.
Relation space was briefly introduced in Section 1.5, and is studied in detail in
Chapter5. At the quantum level, the relative viewpoint leads to the theory of
co-relative histories and kinematic schemes, developed in Chapters 6 and 7.
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9. “Classical” and “quantum” may be understood as levels of structural hierarchy.
As described in the first few pages of the book, discrete causal theory exhibits
an attractive self-similarity, called iteration of structure (IS), in which quantum
structure naturally occupies a level of mathematical hierarchy above that of
classical structure. A hint of this relationship is evident even in the ordinary
Hilbert-space approach to quantum theory, which shifts the focus from individual
states, and relationships among them, to spaces of states, and operators on these
spaces. Category theory provides a more general analogy, elaborated in a striking
manner by Christopher Isham [ISO5]: “quantization” corresponds roughly to
passage from “elements and relations” to “objects and morphisms.” What is
special, and perhaps unique, about discrete causal theory, in this context, is that
its “higher-level quantum objects” possess essentially the same type of structure
as its “lower-level classical objects.” A concise way to paraphrase this viewpoint
is to say that “classical physics is about relationships between pairs of events;
quantum physics is about relationships between pairs of histories.”

10. Quantum dynamics arises from generalized path summation. The import of this
assertion is that one particular approach to quantum theory; namely, Feynman’s
path summation approach, is sufficiently general to apply to discrete causal the-
ory, for which other popular approaches are inadequate. This is because most
approaches to quantum theory take for granted a great deal of structure arising
from the properties of the real and complex numbers, which is generally unavail-
able in the discrete causal setting. For example, ordinary quantum theory and
quantum field theory begin with Hilbert spaces of complex-valued functions over
real manifolds, which depend on constructions that discrete causal theory treats
as emergent.”® By contrast, the path summation approach may be abstracted to
apply to any situation involving families of directed relationships between pairs
of classical histories.
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