Preface to the Second Edition

The second edition of this book contains a number of changes, some of substance and
some merely cosmetic. These changes aim to make the book appeal to a wider audience
and enhance its user-friendly features.

e A new chapter (Chap. 10) has been added, which presents some basic numerical
methods (Euler, Euler midpoint, improved Euler, and fourth-order Runge-Kutta)
for approximating the solutions of first-order initial value problems. The exercises
in Sects. 10.1-10.3 and the first ten exercises in Sect. 10.4 are based on the same
problems, so that students can compare the results produced by the different meth-
ods.

e The text of a few sections has been augmented with additional comments, expla-
nations, and examples.

e Appendix B4 has been inserted, to remind users the definition and basic properties
of hyperbolic functions.

The number of worked examples has been increased from 232 to 246.
The number of exercises has been increased from 810 to 1010.
All the misprints/omissions detected in the first edition have been corrected.

In Chap. 10, numerical results are rounded to the fourth decimal place. Also, to
avoid cumbersome notation, and without danger of ambiguity, the approximate equality
symbol has been replaced by the equality sign.

I would like to thank Elizabeth Loew, the executive editor for mathematics at
Springer, New York, for her guidance during the completion of this project and, in
alphabetical order, Kimberly Adams, Peyton Cook, Matteo Dalla Riva, Matthew Don-
ahue, Dale Doty, William Hamill, Shirley Pomeranz, and Dragan Skropanic for con-
structive comments and suggestions and for their help with proofreading parts of the
manuscript.

Finally, my special gratitude goes to my wife, who accepts that for some mathemati-
cians, writing books is an incurable affliction, whose sufferers are in need of constant
support and understanding.

Tulsa, OK, USA Christian Constanda
January 2017
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Preface to the First Edition

Arguably, one of the principles underpinning classroom success is that the instructor
always knows best. Whether this mildly dictatorial premise is correct or not, it seems
logical that performance can only improve if the said instructor also pays attention to
customer feedback. Students’ opinion sometimes contains valuable points and, properly
canvassed and interpreted, may exercise a positive influence on the quality of a course
and the manner of its teaching.

When I polled my students about what they wanted from a textbook, their answers
clustered around five main issues.

The book should be easy to follow without being excessively verbose. A crisp, con-
cise, and to-the-point style is much preferred to long-winded explanations that tend to
obscure the topic and make the reader lose the thread of the argument.

The book should not talk down to the readers. Students feel slighted when they are
treated as if they have no basic knowledge of mathematics, and many regard the multi-
colored, heavily illustrated texts as better suited for inexperienced high schoolers than
for second-year university undergraduates.

The book should keep the theory to a minimum. Lengthy and convoluted proofs should
be dropped in favor of a wide variety of illustrative examples and practice exercises.

The book should not embed computational devices in the instruction process. Although
born in the age of the computer, a majority of students candidly admit that they do
not learn much from electronic number crunching.

The book should be “slim.” The size and weight of a 500-page volume tend to dis-
courage potential readers and bode ill for its selling price.

In my view, a book that tries to be “all things to all men” often ends up disappoint-
ing its intended audience, who might derive greater profit from a less ambitious but
more focused text composed with a twist of pragmatism. The textbooks on differential
equations currently on the market, while professionally written and very comprehen-
sive, fail, I believe, on at least one of the above criteria; by contrast, this book attempts
to comply with the entire set. To what extent it has succeeded is for the end user to
decide. All T can say at this stage is that students in my institution and elsewhere, hav-
ing adopted an earlier draft as prescribed text, declared themselves fully satisfied by it
and agreed that every one of the goals on the above wish list had been met. The final
version incorporates several additions and changes that answer some of their comments
and a number of suggestions received from other colleagues involved in the teaching of
the subject.

In earlier times, mathematical analysis was tackled from the outset with what is called
the e-6 methodology. Those times are now long gone. Today, with a few exceptions, all
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X Preface to the First Edition

science and engineering students, including mathematics majors, start by going through
calculus I, IT, and III, where they learn the mechanics of differentiation and integration
but are not shown the proofs of some of the statements in which the formal techniques
are rooted, because they have not been exposed yet to the e-¢ language. Those who
want to see these proofs enroll in advanced calculus. Consequently, the natural continu-
ation of the primary calculus sequence for all students is a differential equations course
that teaches them solution techniques without the proofs of a number of fundamental
theorems. The missing proofs are discussed later in an advanced differential equations
sequel (compulsory for mathematics majors and optional for the interested engineering
students), where they are developed with the help of advanced calculus concepts. This
book is intended for use with the first—elementary—differential equations course, taken
by mathematics, physics, and engineering students alike.

Omitted proofs aside, every building block of every method described in this textbook
is assembled with total rigor and accuracy.

The book is written in a style that uses words (sparingly) as a bonding agent between
consecutive mathematical passages, keeping the author’s presence in the background
and allowing the mathematics to be the dominant voice. This should help the readers
navigate the material quite comfortably on their own. After the first examples in each
section or subsection are solved with full details, the solutions to the rest of them
are presented more succinctly: every intermediate stage is explained, but incidental
computation (integration by parts or by substitution, finding the roots of polynomial
equations, etc.) is entrusted to the students, who have learned the basics of calculus
and algebra and should thus be able to perform it routinely.

The contents, somewhat in excess of what can be covered during one semester, include
all the classical topics expected to be found in a first course on ordinary differential
equations. Numerical methods are off the ingredient list since, in my view, they fall
under the jurisdiction of numerical analysis. Besides, students are already acquainted
with such approximating procedures from calculus II, where they are introduced to
Euler’s method. Graphs are used only occasionally, to offer help with less intuitive
concepts (for instance, the stability of an equilibrium solution) and not to present a
visual image of the solution of every example. If the students are interested in the
latter, they can generate it themselves in the computer lab, where qualified guidance is
normally provided.

The book formally splits the “pure” and “applied” sides of the subject by placing
the investigation of selected mathematical models in separate chapters. Boundary value
problems are touched upon briefly (for the benefit of the undergraduates who intend to
go on to study partial differential equations), but without reference to Sturm-Liouville
analysis.

Although only about 260 pages long, the book contains 232 worked examples and 810
exercises. There is no duplication among the examples: no two of them are of exactly
the same kind, as they are intended to make the user understand how the methods are
applied in a variety of circumstances. The exercises aim to cement this knowledge and
are all suitable as homework; indeed, each and every one of them is part of my students’
assignments.

Computer algebra software—specifically, Mathematica®—is employed in the book
for only one purpose: to show how to verify quickly that the solutions obtained are
correct. Since, in spite of its name, this package has not been created by mathematicians,
it does not always do what a mathematician wants. In many other respects, it is a
perfectly good instrument, which, it is hoped, will keep on improving so that when,
say, version 54 is released, all existing deficiencies will have been eliminated. I take
the view that to learn mathematics properly, one must use pencil and paper and solve
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problems by brain and hand alone. To encourage and facilitate this process, almost all
the examples and exercises in the book have been constructed with integers and a few
easily managed fractions as coefficients and constant terms.

Truth be told, it often seems that the aim of the average student in any course
these days is to do just enough to pass it and earn the credits. This book provides
such students with everything they need to reach their goal. The gifted ones, who are
interested not only in the how but also in the why of mathematical methods and try
hard to improve from a routinely achieved 95% on their tests to a full 100%, can use
the book as a springboard for progress to more specialized sources (see the list under
Further Reading) or for joining an advanced course where the theoretical aspects left
out of the basic one are thoroughly investigated and explained.

And now, two side issues related to mathematics, though not necessarily to differen-
tial equations.

Scientists, and especially mathematicians, need in their work more symbols than the
Latin alphabet has to offer. This forces them to borrow from other scripts, among which
Greek is the runaway favorite. However, academics—even English speaking ones—
cannot agree on a common pronunciation of the Greek letters. My choice is to go to
the source, so to speak, and simply follow the way of the Greeks themselves. If anyone
else is tempted to try my solution, they can find details in Appendix D.

Many instructors would probably agree that one of the reasons why some students do
not get the high grades they aspire to is a cocktail of annoying bad habits and incorrect
algebra and calculus manipulation “techniques” acquired (along with the misuse of
the word “like”) in elementary school. My book Dude, Can You Count? (Copernicus,
Springer, 2009) systematically collects the most common of these bloopers and shows
how any number of absurdities can be “proved” if such errors are accepted as legitimate
mathematical handling. Dude is a recommended reading for my classroom attendees,
who, I am pleased to report, now commit far fewer errors in their written presentations
than they used to. Alas, the cure for the “like” affliction continues to elude me.

This book would not have seen the light of day without the special assistance that
I received from Elizabeth Loew, my mathematics editor at Springer-New York. She
monitored the evolution of the manuscript at every stage, offered advice and encourage-
ment, and was particularly understanding over deadlines. I wish to express my gratitude
to her for all the help she gave me during the completion of this project.

I am also indebted to my colleagues Peyton Cook and Kimberly Adams, who trawled
the text for errors and misprints and made very useful remarks, to Geoffrey Price for
useful discussions, and to Dale Doty, our departmental Mathematica® guru. (Readers
interested in finding out more about this software are directed to the website http://
www.wolfram.com/mathematica/.)

Finally, I want to acknowledge my students for their interest in working through all
the examples and exercises and for flagging up anything that caught their attention as
being inaccurate or incomplete.

My wife, of course, receives the highest accolade for her inspiring professionalism,
patience, and steadfast support.

Tulsa, OK, USA Christian Constanda
April 2013
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