Chapter 2
First-Order Equations

Certain types of first-order equations can be solved by relatively simple methods. Since,
as seen in Sect. 1.2, many mathematical models are constructed with such equations, it
is important to get familiarized with their solution procedures.

2.1 Separable Equations

These are equations of the form

W~ Fwa), (21)
where f and g are given functions.

We notice that if there is any value yo such that g(yo) = 0, then y = yg is a solution
of (2.1). Since this is a constant function (that is, independent of z), we call it an
equilibrium solution.

To find all the other (non-constant) solutions of the equation, we now assume that
g(y) # 0. Applying the definition of the differential of y and using (2.1), we have

dy =/ (@)dz = L do = f()gly) do.

which, after division by g(y), becomes

Next, we integrate each side with respect to its variable and arrive at the equality
G(y) = F(z) + C, (2.2)

where F' and G are any antiderivatives of f and 1/g, respectively, and C is an arbitrary
constant. For each value of C, (2.2) provides a connection between y and x, which
defines a function y = y(x) implicitly.

We have shown that every solution of (2.1) also satisfies (2.2). To confirm that these
two equations are fully equivalent, we must also verify that, conversely, any function
y = y(x) satisfying (2.2) also satisfies (2.1). This is easily done by differentiating both
sides of (2.2) with respect to x. The derivative of the right-hand side is f(x); on the
left-hand side, by the chain rule and bearing in mind that G(y) = G(y(x)), we have
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16 2 First-Order Equations

d d dy 1 d

Az G(y(z)) = @G(y)% = @ e

which, when equated to f(x), yields equation (2.1).
In some cases, the solution y = y(z) can be determined explicitly from (2.2).

2.1 Remark. The above handling suggests that dy/dx could be treated formally as a
ratio, but this would not be technically correct. m

2.2 Example. Bringing the DE

y +8ry =0
to the form

dy

2§

dr Yy,

we see that it has the equilibrium solution y = 0. Then for y # 0,

/@:/—Sxdw,
Yy

In|y| = —42” 4 C,

from which

where C' is the amalgamation of the arbitrary constants of integration from both sides.
Exponentiating, we get

|y| — 674x2+C _ eC 6741’2

3

SO

y(x) = el = Cre 4",

Here, as expected, C} is an arbitrary nonzero constant (it replaces +e® # 0), which
generates all the nonzero solutions y. However, if we allow C; to take the value 0 as
well, then the above formula also captures the equilibrium solution y = 0 and, thus,
becomes the GS of the given equation.

VERIFICATION WITH MATHEMATICA® . The input

y=CLl*E" (-4xx"2);
Dly,x]+8*xx*xy

evaluates the difference between the left-hand and right-hand sides of our DE for the
function y computed above. This procedure will be followed in all similar situations. As
expected, the output here is 0, which confirms that this function is indeed the GS of
the given equation.

The alternative coding

yix.] =Cl*E" (-4%x"2);
v/ [X]+8xxxy[X] ==

gives the output True. Choosing one type of coding over the other is a matter of
personal preference. Throughout the rest of the book we will use the former. m

2.3 Example. In view of the properties of the exponential function, the DE in the IVP
Y +4we??* =0, y(0)=0

can be rewritten as
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dy
de

and we see that, since e¥ # 0 for any real value of y, the equation has no equilibrium

solutions. After separating the variables, we arrive at

/e_y dy = — /4956_2”” dx,

from which, using integration by parts (see Sect. B.2 in Appendix B) on the right-hand
side, we find that

—dze %Y,

—e Y =2z — /26*23” dr = 2z +1)e”** +C, C = const.

We now change the signs of both sides, take logarithms, and produce the GS
y(x) = —In[—(2z + 1)e™** - C].

The constant C'is more easily computed if we apply the IC not to this explicit expression
of y but to the equality immediately above it. The value is C' = —2, so the solution of
the IVP is

y(r) = —In[2 — (2 + 1)e™ 7).
VERIFICATION WITH MATHEMATICA® . The input

y=-Log[2 - (2xx + 1) *E" (-2xx) ;
{Dly,x] + 4*xx*E"(y - 2%x),y/.x— 0}//Simplify

evaluates both the difference between the left-hand and right-hand sides (as in the
preceding example) and the value of the computed function y at = 0. Again, this
type of verification will be performed for all IVPs and BVPs in the rest of the book
with no further comment. Here, the output is, of course, {0, 0}. m

2.4 Example. Form (2.1) for the DE of the IVP
xy' =y +2, y(l)=-1
is
dy _y+2
de =
Clearly, y = —2 is an equilibrium solution. For y # —2 and x # 0, we separate the
variables and arrive at

dy
y+2 T

dr.

i

hence,
Inly+2|=ln|z|+C, C = const,

from which, by exponentiation,
‘y+2| — eln|x|+C — eCeln\xl — 6C|.’L".

This means that
y+2= +e%s = Chz, Oy = const #0,

S0
y(x) = Cro — 2.
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To make this the GS, we need to allow C; to be zero as well, which includes the
equilibrium solution y = —2 in the above equality. Applying the IC, we now find that
C1 = 1; therefore, the solution of the IVP is

y(z) =z — 2.

VERIFICATION WITH MATHEMATICA® . The input

y=x-2;
{x*Dly,x] ~y-2,y/.x— 1}//Simplify

generates the output {0, —1}. =
2.5 Example. We easily see that the DE in the IVP
2+ yy —y* =2, y(5) =2

has no equilibrium solutions; hence, for x # —1, we have
/ 2ydy / dx
v?+2 ) z4+1

In(y>+2)=In|z+ 1]+ C, C = const,

SO

which, after simple algebraic manipulation, leads to

y? = Cy(zx+1)—2, Cy=const#D0.

Applying the IC, we obtain y?> = x — 1, or y = +(x — 1)/2. However, the function

with the ‘—’ sign must be rejected because it does not satisfy the IC. In conclusion, the
solution to our IVP is

y(a) = (z = 1)
If the IC were y(5) = —2, then the solution would be

y(a) = ~(a =V

VERIFICATION WITH MATHEMATICA® . The input

y=(x-1)"(1/2);
{2% (x + 1) xy*D[y,x] -y"2-2,y/.x— 5} //Simplify

generates the output {0, 2}. =
2.6 Example. Treating the DE in the IVP
(5y* +3y* +e¥)y =cosz, y(0)=0

in the same way, we arrive at

/(5y4 +3y2 +e¥)dy = /cosxd:z:;

consequently,
v’ +y® +e¥ =sinz+C, C = const.
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This equality describes the family of all the solution curves for the DE, representing its
GS in implicit form. It cannot be solved explicitly for y.
The IC now yields C' = 1, so the solution curve passing through the point (0,0) has
equation
v’ + 1> +e¥ =sinz + 1.
Figure 2.1 shows the solution curves for C = —2, —1, 0, 1, 2. The heavier line (for
C = 1) represents the solution of our IVP.

—

) -1 ‘ ~
_0.5,

/’_\

—

Fig. 2.1

VERIFICATION WITH MATHEMATICA® . The input

u=yI[x]"5 +y[x]"3 + E'yI[x] - Sin[x] - 1;
{(5Bxy[x]™4 + 3xy[x]"2 + ENy[x]) % (Solve[D[u,x]==0, y' [x]])
[[1,1,2]] - Cos[x],u/.{x— 0,y— 0}}//Simplify

generates the output {0, 0}, which shows that the function y defined implicitly above
satisfies the DE and IC. =

Exercises

Solve the given IVP.

1 o = —4xy?, y(0)=1. 2 y =823/y, y(0)=-1.

3y = —6ye®, y(0) =e2. 4 y =ysin(2z), y(r/4) =1.

5 y=(@B-22)y, y2)=¢" 6 y =y y(1)=1/3.

7 yY=>0+e7)/2y+2), y(0)=-1. 8 o =2yt y(—1/2) = €2

9 ¢ =2zsecy, y(0)=m/6. 10 o' =2x/y, y(1)=0.
11 (1+22)y =3+y, y0)=-2. 12 3(z> +2)y%y =4z, y(1) = (In9)'/5.
13 ¢ = (622 +22)/(2y +4), y(1)=v6-2.14 (4—2?)y =4y, y(0)=1.
15 ¢ =(@-3)y*+1), y0)=1. 16 2y(z®>+22+6)/%y =x+1, y(1)= -2
17 o = 2sin(27)/(4y3+3y?), y(r/4) = 1. 18 y = (2z+1)/(2y+siny), y(0) =0.
19 ¢y =(22+1)/(e"? +4y), y(0)=0. 20 vy =ze®*/(y* +2y), y(0)=—1.
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2.2 Linear Equations

The standard form of this type of DE is

¥ +p(t)y = q(t), (2.3)

where p and q are prescribed functions. To solve the equation, we first multiply it by an
unknown nonzero function u(t), called an integrating factor. Omitting, for simplicity,
the explicit mention of the variable ¢, we have

1y’ + upy = pg. (2.4)

We now choose 1 so that the left-hand side in (2.4) is the derivative of the product py;
that is,

wy' + ppy = (py) = py' + 1'y.
Clearly, this occurs if
' = pp.

The above separable equation yields, in the usual way,

/d—M :/pdt.
7
In | :/pdt7

u:C’exp{/pdt}, C = const # 0.

Integrating, we arrive at

S0, as in Example 2.4,

Since we need just one such function, we may take C' = 1 and thus consider the inte-

grating factor
u(t) = exp { /p(t) dt}. (2.5)

With this choice of u, equation (2.4) becomes

(ny)" = ngs (2.6)
hence,
py = / pgdt + C,
1
y(t) = o) { /u(t)q(t) dt + C}, C = const. (2.7)

2.7 Remarks. (i) Technically speaking, C' does not need to be inserted explicitly in
(2.7) since the indefinite integral on the right-hand side produces an arbitrary
constant, but it is good practice to have it in the formula for emphasis, and to
prevent its accidental omission when the integration is performed.

(ii) It should be obvious that the factor 1/u cannot be moved inside the integral to be
canceled with the factor p already there.
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(iii) Points (i) and (ii) become moot if the equality (uy)’ = ug (see (2.6)) is integrated
from some admissible value ¢y to a generic value ¢t. Then

H(B)(t) — ulto)y(to) = / w(r)q(r) dr,

from which we easily deduce that

y(t) = { [ wtoatrar + u(to)y(to)} (2.8)

0

In the case of an IVP, it is convenient to choose o as the point where the IC is
prescribed.

(iv) In (2.8) we used the ‘dummy’ variable 7 in the integrand to avoid a clash with the
upper limit ¢ of the definite integral. m

2.8 Example. Consider the IVP

y —3y =6, y(0)=-1,

where, by comparison to (2.3), we have p(f) = —3 and ¢(¢) = 6. The GS of the DE is
computed from (2.5) and (2.7). Thus,

pu(t) = exp { /—3 dt} =3t

y(t) = e3t{ /66—3t dt + C} _ eat(_26—3t +0) = Cedt — 2,

SO

where C' is an arbitrary constant. Applying the IC, we find that C' = 1, which yields
the IVP solution
y(t) =3t — 2.

Alternatively, we could use formula (2.8) with u as determined above and to = 0, to
obtain directly

t

iy =e{ 6 ar s oo}
0

= egt[— 26737|3 - 1] =% — 2.

VERIFICATION WITH MATHEMATICA® . The input
y=EN(3xt) - 2;
{Dly,t] -3%xy-6,y/.t—0}//Simplify
generates the output {0, —1}. =

2.9 Example. The DE in the IVP

ty' + 4y =6t%, y(1) =4
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is not in the standard form (2.3). Assuming that ¢ # 0, we divide the equation by ¢t and
rewrite it as

4

This shows that p(t) = 4/t and ¢(t) = 6t, so, by (2.5),

4
:U/(t) = exp { / tdt} — e41n|ﬂ — eln(t4) _ t4.

Using (2.8) with ¢o = 1, we now find the solution of the IVP to be

t

y(t) = t‘4{ /GT5 dr + u(l)y(l)} =740+ ) =1+ 3) = 2 43
1

VERIFICATION WITH MATHEMATICA® . The input

y=t"2 + 3xt" (-4);
{t*Dly,t] +4x*xy - 6xt"2,y/.t—1}//Simplify

generates the output {0,4}. =
2.10 Example. To bring the DE in the IVP
y' = (2+y)sint, y(r/2)=-3
to the standard form, we move the y-term to the left-hand side and write
y —ysint = 2sint.

This shows that p(t) = —sint and ¢(t) = 2sint; hence, by (2.5),

u(t) = exp{ - /sintdt} = st

and, by (2.8) with ¢ty = /2,

t

y(t) = e_COSt{Q / eCOSTsianT—|—,u(77/2)y(7r/2)}

/2
t
— ecost{ _92 / eCosT d(COST) o 3} — efcost< o 26COST|Z_/2 73)
/2
— e—cost(_2ecost _ 1) —_ _e—cost _9.

VERIFICATION WITH MATHEMATICA® . The input

y=-E"(-Cos[t]) - 2;
{Dly,t] - (2 +y)*Sin[t]l,y/.t— Pi/2}//Simplify

generates the output {0, —3}. m
2.11 Example. Consider the IVP

(P + 1)y —ty =2(t*+1)%,  y(0) = 2.
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Proceeding as in Example 2.9, we start by rewriting the DE in the standard form

¢
ey =2t +1).
V-pm Y (t"+1)

Then, with p(t) = —t/(t* + 1) and q(t) = 2t(t*> + 1), we have, first,

o-oe| - [ope) {352

— o~ (1/2)I(#+1) _ eln[(t2+1)’l/2] _ (t2 + 1)—1/27

followed by

y(t) = (12 + 1) 1/2{/7 +1) 1/227(T2+1)d7'+,u(0)y(0)}
0

=@+ [ (P +1)2d(r? +1)+ 2
(/ 3
:(t2+1)1/2{2 +1)5/2| %}:g(t2+1)2'

VERIFICATION WITH MATHEMATICA® . The input

=(2/3) % (£"2 + 1)"2;
{(t"2 + 1) xD[y,t] - t*xy - 2xt* (£"2+1)"2,y/.t—0}//Simplify

generates the output {0, 2/3}. [

2.12 Example. For t # —1, the standard form of the DE in the IVP

=1y +y=(t—-1)e", y(2)=3

1
/ :t
Yy =e

so p(t) = 1/(t — 1) and q(t) = e?; consequently,

—(t—1), t<1.

Since formula (2.8) uses the value of u at tp = 2 > 1, we take p(t) = ¢t — 1 and, after
integration by parts and simplification, obtain the solution

1

y(t) = —— { / (r = 1)e” dr +u(2)y(2)} _(=2ets

t—1 t—1
VERIFICATION WITH MATHEMATICA® . The input

y=((t-2)*Et +3)/(t-1);
{(t-1)*D[y,t] +y - (£t - 1) *E"t,y/.t—2}//Simplify

generates the output {0, 3}. =
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2.13 Remarks. (i) If we do not have an IC and want to find only the GS of the equation
in Example 2.12, then it does not matter whether we take p to be t —1 or —(t —1)
since p has to be replaced in (2.6) and, in the latter case, the “—” sign would
cancel out on both sides.

(i) Tt is easily seen that the DEs in Examples 2.8 and 2.10 have an equilibrium solution
(in both cases, it is y = —2), but its presence does not interfere with the solution
process for those IVPs. =

Exercises

Solve the given IVP, or find the GS of the DE if no IC is given.

y +4y+16 =0, y(0)=—2. 2 ¥y +3y=9, y0)=1.

3y +y=1%/6, y(0)=5 4 y -2y=4t—c’, y(0)=2.

y +y=4ate3, y(0)=3. 6 2y +y==8te /> +6, y(0)=-T7.

Y —ty = (4t —3)e" /2, y(1) = — /e

Yy —ysint = 4tsin(2t)e” 5t y(0) = 1/e.

ty' — 4y = 6t7 — 2t°, y(-1) = —2. 10 2ty —y=2/vt, y(1)=1.

11 2ty +y+ 126/t =0, y(1) = —1. 12 y +ycott=2cost, y(n/2)=1/2.
13 (t—2)y +y=8(t—2)cos(2t), y(m)=2/(m—2).

14 (3t +1)y +y=(3t+1)>3cost, y(0)=2.

15 2y + 3ty = 4e*, y(1) = €2 16ty +ty = ntsin(mt) — 1.

17 (2 +2)y + 2ty =3t — 4t, y(0) =3/2.

18 ty' + (2t — 1)y = 9t3e?, y(1) =2e72 + 2e.

19 (2—1)y'+4y =3(t+1)2(t2-1), y(0)=0. 20 (2+2t)y'+y =1, y(2)=0.

© 00 N ot W =

2.3 Homogeneous Polar Equations

These are DEs of the form
v =1(L). ez (29)
where f is a given one-variable function. Making the substitution
y(x) = zv(z) (2.10)

and using the fact that, by the product rule, ¥’ = v + 2v’, from (2.9) we see that the
new unknown function v satisfies the DE

2 +v = f(v), (2.11)

or

dv  f(v)—w
i
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This is a separable equation, so, for f(v) — v # 0,

dv dx

which, with v replaced by y/x in the result, produces y as an explicit or implicit function
of z.

2.14 Remark. If f(v) — v = 0, then (2.11) implies that v" = 0, or v = ¢ = const;
therefore, the equation has singular solutions of the form y = cx. The GS of the DE
consists of the aggregate of the solutions obtained by the procedure described above
and any singular solutions of this type that may exist. m

2.15 Example. The DE in the IVP
vy =x+2y, y(l)=3

can be written as
y=1+22,
x

so f(v) =1+ 2v. Then f(v) —v =wv+1 and, for v # —1, (2.12) becomes
/ dv  [dz
v+1 ) 2’

Injv+1]=ln|z|+C, C = const.

which yields

Exponentiating and simplifying, we find that
v+1=Chx,

where, as in other similar situations (see Example 2.2), C is an arbitrary nonzero
constant; hence, by (2.10),
y(r) = C1z? — . (2.13)

The case v = —1 set aside earlier is equivalent to y = —x (see Remark 2.14), and
is also covered by (2.13) with Cy = 0. Consequently, (2.13) is the GS of the DE if Cy
is any real number. The value of C7 is found from the IC; specifically, C; = 4, so the
solution of the IVP is

y(z) = 42 — .

VERIFICATION WITH MATHEMATICA® . The input

y=4>kxA2 - X;
{x*D[y,x] -x-2%y,y/.x—1}//Simplify

generates the output {0, 3}. =
2.16 Example. Consider the IVP
(@? +2zy)y’ = 2(xy +y%), y(1) =2.

We notice that the DE has the equilibrium solution y = 0, but this is of no interest to
us since it does not satisfy the IC, so we may assume that y # 0. Solving for y’ and
then dividing both numerator and denominator by z? brings the DE to the form
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Y Y

0¥ 1 oY
y/:2(xy+y2): x (x> :2(U+v2)=f(v)
22 + 2zy 1+2Y 1+2v '

T

Clearly, f is well defined since 1+ 2v = 0 means that y = —x/2, which does not satisfy
the DE.

Next, 5 2)
v+ v
fo)—v=—m v =15,

By (2.12) and the fact that y # 0 implies that v # 0, we have

/1+2”dv/(2+1>du dz
v v X

20+ In | =Inl|z| + C,

therefore,

or, according to (2.10),

2y+ln‘y2 e
T x

Applying the IC, we find that C' = 4 + In 2; hence, the solution of the IVP is defined
implicitly by the equality

2 4t — 4.
X

Y
222
VERIFICATION WITH MATHEMATICA® . The input

u=2xyI[x]/x + Logly[x]/(2xx"2)]-4;
{(x"2 + 2xxxy[x]) * (Solve [D[u,x]==0,y’ [x]]) [[1,1,2]]
-2k (xxy[x] +y[x]1"2),u/. {x—1, yIx] > 2}}//Simplify

generates the output {0, 0}. =
2.17 Remark. The DE (2.9) is sometimes written in the form
fi(z,y)y' = fa(@,y). (2.14)
If there is a function §(z) with the property that
fi(z, §(z)) = fa(z, §(z)) = 0,

then, technically speaking, § would qualify as a solution of (2.14). But this type of
‘solution’ would be caused by the algebraic structure of the equation and not by its dif-
ferential nature. In general, correctly formulated mathematical models are not expected
to exhibit such anomalies. m

2.18 Example. The equation in the IVP
(zy — 32%)y' = 2¢y* — by — 322, y(1) =3 (2.15)
is of the form (2.14), with

fi(z,y) = zy — 32* = z(y — 3x),
fo(z,y) =2y — 5oy — 32% = (z + 2y)(y — 3),
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so it is obvious that the function y(x) = 3z satisfies it. ‘Cleaning’ the DE algebraically—
in other words, assuming that y # 3z and dividing by y — 3x on both sides—we arrive
at the IVP

vy =x+2y, y(l)=3

solved in Example 2.15, with solution y = 422 — . But the discarded function y(z) = 3z
also satisfies the prescribed IC, so, at first glance, it would appear that the IVP (2.15)
does not have a unique solution. While raising no theoretical concerns, this situation, as
mentioned in Remark 2.17, is unacceptable in mathematical modeling, where y(x) = 3z
is normally considered a spurious ‘solution’ and ignored. m

Exercises

Solve the given IVP, or find the GS of the DE if no IC is given.

1 a2y =3y—=z, y(l)=1 2 2zy' =xz+y, y(l)=3.
3 3zy=x+3y. 4 (x+y)y =20-y, y(l)=-1-+2.
5 (2z+y)y =3z -2y, y(1)=—4. 6 2%y =axy+y°
7 2%y 22y —y? =0, y(1)=1. 8 2%y =32% - 22y +vy? y(l)=-1
9 22y =222 - 22y +y?, y(1) =3/2.
10 (222 —2zy)y’ = 4oy — 3y%, y(3) = —3.
11 2%y =42® + 2y + 9%, y(1) =0. 12 2%/ =22+ 2y +y?, y(1)=0.
13 22y = 2% — zy + 92 14 (2zy — 2%)y’ = 3y — 22y — 222, y(1) = 3/2.
15 (22 + 2zy)y’ = 22y — 2% + 392, y(2) = —4.
16  (2zy — 322)y’ = 222 — 6xy + 3y, y(3) = 3/2.
17 (222 — ay)y = vy — > 18 (222 — 3ay)y’ = 2% + 22y — 3y%, y(1) =0.
19 3ay?y =23 + 3y3. 20 2zy?y =2 + 43, y(2) =245,

2.4 Bernoulli Equations

The general form of a Bernoulli equation is

v +pt)y=qlt)y", n#1l (2.16)
Making the substitution
y(t) = (w(t)/ (2.17)
and using the chain rule, we have
J = Lo a=m-ry 1 W/ (1=
1—n 1—n

0 (2.16) becomes

Ly /=) /().

1—n
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Since 1/(1 —n) —n/(1—mn) = 1, after division by w™/ =" and multiplication by 1 —n
this simplifies further to
w' + (1 =n)pw = (1 —n)g. (2.18)

Equation (2.18) is linear and can be solved by the method described in Sect.2.2. Once
its solution w has been found, the GS y of (2.16) is given by (2.17).

2.19 Example. Comparing the DE in the IVP
y' +3y+6y° =0, y(0)=-1

to (2.16), we see that this is a Bernoulli equation with p(t) = 3, ¢(t) = —6, and n = 2.
Substitution (2.17) in this case is y = w™!; hence,

y = —w ', w(0) = (y(0)7 = -1,

so the IVP becomes
w' —3w=6, w(0)=-1.

This problem was solved in Example 2.8, and its solution is

VERIFICATION WITH MATHEMATICA® . The input

y=(EN(3xt) - 2)"(-1);
{Dly,t] +3*xy+6xy"2,y/.t—0}//Simplify

generates the output {0, —1}. =

2.20 Example. For the DE in the IVP

ty' +8y = 126/y, y(1)=16

we have
p(t) = 8/t7 q(t) =12t, n= 1/2;

therefore, by (2.17), we substitute y = w? and, since y' = 2ww’, arrive at the new IVP
tw' +dw = 6%, w(l) = 4.
From Example 2.9 we see that
w(t) =12 + 3t

SO
y(t) = (w(t))® = (£* + 372
VERIFICATION WITH MATHEMATICA® . The input

y=(t"2 + 3xtN(-4))"2;
Simplify [{t*DI[y,t] + 8xy - 12*xt"2xSqgrtlyl,y/.t— 1}, t>0]

generates the output {0, 16}. =



2.5 Riccati Equations 29

Exercises

Solve the given IVP, or find the GS of the DE if no IC is given.
1 y+y=-¢> y0)=1 2 ¢y —3y=—e*y? y(0)=-1/2.
3 oy —y+6ey??2=0, y(0)=1/4.
4 9y 42y = 30e 2y~ 1/2, 4(0) = 41/3.
5 8y —y=4te!/?y=3, y(0) =24 6 3ty —y=4t>y=2, y(1) =63
7 2y +3y=9y"'3 y(1)=1. 8 %y +4ty=2e'/y, y(1)=(1+e)
9 5ty +2y=2y"%2 10 (t+ 1)y +3y=9y*3 y(0)=-8.

2.5 Riccati Equations

The general form of these DEs is

Y = q(t) + a1 (y + a2 (t)y?, (2.19)

where qq, q1, and go are given functions, with qg, g2 # 0. After some analytic manipu-
lation, we can rewrite (2.19) as

v” + pr()v" + pa(t)v = 0. (2.20)

This is a second-order DE whose coefficients p; and py are combinations of qg, q1, ¢o,
and their derivatives. In general, the solution of (2.20) cannot be obtained be means of
integrals. However, when we know a PS y; of (2.19), we are able to compute the GS of
that equation by reducing it to a linear first-order DE by means of the substitution

1
y=y+—. (2.21)
w
In view of (2.19) and (2.21), we then have
., w 1 1\’
Yy=y1— S =@t+ta\ynt—)+telyt+—].
w w w

Since y; is a solution of (2.19), it follows that

/

w q Q2 q2
QO+C]1?J1+C]2y% - =qot+q1y1 + *+q2y%+2—+—2,
w w w w
which, after a rearrangement of the terms, becomes
w' + (g1 + 2¢291)w = —ga. (2.22)

Equation (2.22) is now solved by the method described in Sect. 2.2.

The matrix version of the Riccati equation occurs in optimal control. Its practical
importance and the fact that it cannot be solved by means of integrals have led to the
development of the so-called qualitative theory of differential equations.
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2.21 Example. The DE in the IVP
Y =—1— 420 +ty—y?, y(1) =2

is of the form (2.19) with qo(t) = —1 — 2, q1(t) = 2(t "1 + t), and q2(¢) = —1, and it is
easy to check that y; (t) = ¢ satisfies it; hence, according to (2.22),

w+2t 7w =1,
whose solution, constructed by means of (2.5) and (2.7), is
w(t) = %t +Ct™2,  C = const.

Next, by (2.21),

(t) =t4+ i
AN Tk
The constant C' is determined from the IC as C' = 2, so the solution of the IVP is
t4 + 3% + 6t
y(t) = 3 aa
t>+6

VERIFICATION WITH MATHEMATICA® . The input

y=(t"4 +3xt"2 +6x*t)/(t"3 +6);
Simplify [{Dly,t] + 1 +t"2 -2x% (" (-1) +t)xy+v"2,v/.t— 1}]

generates the output {0, 10/7}. =
2.22 Example. The IVP

y = —cost+ (2 —tant)y — (sect)y?, y(0)=0

admits the PS y;(t) = cost. Then substitution (2.21) is y = cost + 1/w, and the linear
first-order equation (2.22) takes the form

w' — (tant)w = sect,
with GS

_t+C
" cost’

w(t)

from which )
y(t) = (1 + H—C’) cost.

The IC now yields C' = —1, so the solution of the IVP is

tcost

y(t) = ,

t—1

VERIFICATION WITH MATHEMATICA® . The input

yv=(t*xCos[t])/(t - 1);
Simplify [{D[y,t] + Cos[t] - (2 - Tan[t]) *y + Sec[t] *y"2,
y/.t— 0}]

generates the output {0, 0}. =
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Exercises

In the given IVP, verify that y; is a solution of the DE, use the substitution y = y; +1/w
to reduce the DE to a linear first-order equation, then find the solution of the IVP.

1 oy =t2+3t7 = (@' +3)y+2y%, y(1) =5/2; wi(t) =1/t
2 Yy =2—4t—4t?e P+ (2+4dtetly —e P, y(1) =2+¢€; yi(t) =2t
3 ¢y =3t2 420ttty — 722, y(1)=-1/2; yi(t) = -1/t
4 Yy =4t—4e V' + (2t —de )y —e VY2, y0)=—1; yi(t)=—2.
5 ¢ =1-2t+ (4t — Dy —2ty*, y(0)=2; yi(t) =1.
6 oy =—(2+6t+4)+2(t+3)y—v% y(0)=9/5 yi(t)=t+1.
7 y =2t —1—ttant + (4 —tant)y + 2y*, y(w/4) = —-1/2—7/4; v (t) = —¢.
8 y =2—4cost+4sint+(4cost—4sint—1)y+(sint—cost)y?, y(0)=3; y1(t) =2.
9 oy =3t2-23 -t -1+ Bt—4H)y—2ty%, y(0)=0; y1(t)=1—t.
10 ' = —3et —e? + (2e! +4)y —y?, y(0) = —1/3; 31 (t) = €.

2.6 Exact Equations

Consider an equation of the form

P(z,y) + Q(z,y)y" =0, (2.23)

where P and @ are given two-variable functions. Recalling that the differential of a
function y = y(x) is dy = y'(x) dz, we multiply (2.23) by dz and rewrite it as

Pdz + Qdy = 0. (2.24)

The DE (2.23) is called an ezxact equation when the left-hand side above is the differential
of a function f(x,y). If f is found, then (2.24) becomes

df(.’E, y) =0,

with GS
f(z,y) =C, C = const. (2.25)

2.23 Remark. Suppose that such a function f exists; then (see item (iv) in Sect. 1.1)

df = fmd$+fydy7

so, by comparison to (2.24), this happens if

In view of the comment made in item (iii) in Sect. 1.1, we have fy, = fy, which, by
(2.26), translates as
P, =Q,. (2.27)

Therefore, if a function of the desired type exists, then equality (2.27) must hold.
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The other way around, it turns out that for coefficients P and @ continuously differ-
entiable in an open disc in the (z,y)-plane, condition (2.27), if satisfied, guarantees the
existence of a function f with the required property. Since in all our examples P and
@ meet this degree of smoothness, we simply confine ourselves to checking that (2.27)
holds and, when it does, determine f from (2.26). m

2.24 Example. For the DE in the IVP
y? —day® + 2+ (2zy — 62%9%)y’ =0, y(1) =1

we have
P(z,y) =y* —dzy® +2, Q(z,y) = 2zy — 6224,

SO
Py =2y —12zy° = Q,,

which means that the equation is exact. Then, according to Remark 2.23, there is a
function f = f(z,y) such that

fe(2,9)
fy(xvy)

Integrating, say, the first equation (2.28) with respect to x, we find that

P(z,y) =y* — day® + 2,
Q(x,y) = 2zy — 62°y>,

(2.28)

faw) = [ feyydo= [Py
= /(y2 —dzy® + 2) do = xy® — 22°y° + 2z + g(y),

where, as mentioned in item (vi) in Sect. 1.1, g is an arbitrary function of y. To find g,
we use this expression of f in the second equation (2.28):

fyla,y) = 20y — 62°y* + ¢/ (y) = 2zy — 62%y%;
consequently, ¢'(y) = 0, from which
g(y) = ¢ = const.

Since, by (2.25), we equate f to an arbitrary constant, it follows that, without loss of
generality, we may take ¢ = 0. Therefore, the GS of the DE is defined implicitly by the
equality

zy? — 222%y3 + 22 = C.

Using the IC, we immediately see that C' = 1; hence,
xy? —22%y3 420 =1

is the equation of the solution curve for the given IVP.
Instead of integrating f,, we could equally start by integrating f, from the second
equation (2.28); that is,

faw) = [ fev)ay= [ QGv)ay

= /(Qxy — 62%y?) dy = zy* — 22°%y> + h(x),
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where h is a function of z to be found by means of the first equation (2.28). Using this
expression of f in that equation, we have

fol@,y) = y° —day® + W (z) = y* — day® + 2,

so h'(x) = 2, giving h(z) = 2z. (Just as before, and for the same reason, we suppress the
integration constant.) This expression of h gives rise to the same function f as above.

VERIFICATION WITH MATHEMATICA® . The input

Uu=x*y[x]"2 - 2*xx"2*xy[x]"3 +2xx - 1;

{y[xI"2 - 4xx*xy[x]"3 +2 + (2xxxy[x] - 6xx 2%y [x]"2)
* (Solve[D[u,x]==0,y’" [x]])[[1,1,2]],
u/.{x—=1,yIx] = 1}}//Simplify

generates the output {0, 0}, which confirms that the function y defined implicitly by
the equation of the solution curve satisfies both the DE and the IC. m

2.25 Example. The DE in the IVP

6y~ + 8273y + (dy — 32y 2 — 1227 %)y =0, y(1) = %
has

P(z,y) =62y ' + 8273y, Q(x,y) = 4y — 322y~ 2 — 1227 %%

Obviously, here we must have x, y # 0.
Since

Py(x,y) = —6zy~2 + 2427%y* = Q. (x,y),

it follows that this is an exact equation. The function f we are seeking, obtained as in
Example 2.24, is

flz,y) = /fm(x,y) dx = /P(x,y) dx
= /(6xy71 + 8273y dr = 322y~ — 4%y + g(y),
with g determined from
fyla,y) = =322y = 12272y% + ¢/ (y) = 4y — 32y~ % — 1207 %%
hence, ¢'(y) = 4y, so g(y) = 2y?, which produces the GS of the DE in the implicit form
3%y~ — 4oy 4242 = C.

The IC now yields C = 6.

VERIFICATION WITH MATHEMATICA® . The input
u=3*x"2*y[x]"(-1) - 4*x"(-2) *xy[x]"3 + 2xy[x]"2-6;
{6xxxy[x]1"(-1) + 8%x"(-3) xy[x]"3 + (4xy[x]

- 3xxM2xy[x]N(-2) - 12xx"N(-2) xy[x]"2)
* (Solve[D[u,x]==0,y’" [x]])[[1,1,2]1,
u/.{x—1,ylx]l — 1/2}}//Simplify

generates the output {0, 0}. =
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2.26 Example. Consider the IVP
zsin(2y) — 32% + (y + 2% cos(2y))y’ =0, y(1) =

Since, as seen from the left-hand side of the DE, we have P(x,y) = zsin(2y) — 322 and
Q(z,y) = y + 22 cos(2y), we readily verify that

Py(xﬂy) = 2z cos(2y) = Qu(7,y),

so this is an exact equation. Then, integrating, say, the y-derivative of the desired
function f, we find that

few) = [ s = [ Qady
= /[y + 2% cos(2y)] dy = % y* + % x%sin(2y) + g(x).

The function g is determined by substituting this expression in the z-derivative of f;
that is,
fo(,y) = zsin(2y) + ¢' () = 2sin(2y) — 327,

which yields ¢/(z) = —322; therefore, g(x) = —3, and we obtain the function

fla,y) = 3y° + 5 2% sin(2y) — 2.

Writing the GS of the DE as f(z,y) = C and using the IC, we find that C' = 72/2 — 1,
so the solution of the IVP is given in implicit form by

y? + x?sin(2y) — 22° = 7% — 2.

VERIFICATION WITH MATHEMATICA® . The input

u=yI[x]"2 + x 2x8in[2*y[x]] - 2xx"3 - Pi"2 + 2;
{xx8in[2*y[x]] - 3*xx"2 + (y[x] + x"2%Cos[2*y[x]])
* (Solve[D[u,x]==0,y’" [x]])[[1,1,2]],

u/.{x—1,y[x] =»Pi}}//Simplify

generates the output {0, 0}. =

2.27 Example. The general procedure does not work for the IVP
22 —day+ 1+ 2oyt —62%)y' =0, y(1)=1

because here, with P(x,y) = 2y~2 — dzy + 1 and Q(z,y) = 22y~ ! — 622, we have
Py(x,y) = —4y~° — 4z # Qu(z,y) = 2y~ — 12x,

so the DE is not exact. However, it may be possible to transform the equation into an
exact one by using an integrating factor p(x,y). Writing the DE as P+ Qy’ = 0 and
multiplying it by u, we arrive at Py + @1y’ = 0, where Py = Pp and Q = Qu. We now
try to find a function p such that (Py), = (Q1)s; that is, (Pu)y = (Qp)s, which leads
to the partial differential equation

Ppy + Pyp = Qo + Qupt- (2.29)
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Since, in general, this equation may be difficult to solve, we attempt to see if y can be
found in a simpler form, for example, as a one-variable function. In our case, let us try
= pu(y). Then (2.29) simplifies to

Pp' = (Qz — Py)n,
and with our specific P and @ we get

, 2y e 44yt rdr 2y 4w+ 2y7) 2
2y=2 —day + 1 e yey s —aw+y )yl

I

which is a separable equation with solution u(y) = y?. Multiplying the DE in the given
IVP by 42, we arrive at the new problem

2 —day’ +y* + (2zy — 62%y%)y' =0, y(1) = 1.
This IVP was solved in Example 2.24. =

2.28 Remark. It should be pointed out that, in general, looking for an integrating fac-
tor of a certain form is a matter of trial and error, and that, unless some special feature
of the equation gives us a clear hint, this type of search might prove unsuccessful. m

Exercises

In 1-12,; solve the given IVP, or find the GS of the DE if no IC is given.

1 day+ (222 —6y)y’ =0, y(1)=1.

2 6-6x+y+(z+4y)y =0, y(1) =1

3 2x—5y+(2—-5z—6y)y =0, y(2)=-1.

4 2+3y+e+ (3x—1+2xe¥)y =0, y(—2)=0.

5 243y +ye/? + (3z — 2y +2e*/2)y’ =0, y(0)=—1.

6 32712y — 2+ (6212 4 4y)y =0, y(4)=2.

7 2wsiny —ycosx + (z2cosy —sinz)y =0, y(r/2) =m/2.

8 12z 4422y + 622y + (22% — 322y~ 1)y =0, y(1)=2.

9 322y 24+ 272y% — 2073 4 (6y~* — 223y 3 — 227 ly)y =0, y(1)=—1.
10 (z+y) ' —272—4dcos(2z —y) + [(x +y)~ + 2cos(2x — y)]y’ = 0.
11 2¢* — 2sin(2z)siny + [2y~2 + cos(2x) cosyly’ =0, y(0) = /2.

12 (z+1)e* 2 + 4o — 4y + (2y — 4z — 22e*~2Y)y' =0, y(0) = 0.

In 13-20, find an integrating factor (of the indicated form) that makes the DE exact,
then solve the given IVP, or find the GS of the DE if no IC is given.

13 y+3y ' +22y =0, y(1)=1, p=py).
14 2zy+y* +ayy =0, p=p(y).
15 1+22% — (z+4ay)y =0, p=pu(x).
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16 223 —y+ (x+22%)y =0, y(1)=1, p=pu(z).

17 3—da?yy' =0, y(2) =1, p=p(x)

18 z3 -2 Yy+a 12+ (@3 +2y9)y =0, y(1)=1, p=upu(x).
19 2zy® — P + 2y + (1 —ay® + 4ay®)y =0, y(1) = -1, p=p(y).
20 1—daye ¥+ (z—22%7Y)y' =0, y(-2)=0, pu=puy).

2.7 Existence and Uniqueness Theorems

Before attempting to solve an IVP or BVP for a mathematical model, it is essential to
convince ourselves that the problem is uniquely solvable. This requirement is based on
the reasonable expectation that, as mentioned at the beginning of Sect. 1.3, a physical
system should have one and only one response to a given set of admissible constraints.

Assertions that provide conditions under which a given problem has a unique solution
are called existence and uniqueness theorems. We discuss the linear and nonlinear cases
separately.

2.29 Theorem. Let J be an open interval of the form a <t < b, let ty be a point in J,
and consider the IVP

v +p(t)y =q(t), y(to) = yo, (2.30)

where yo is a given initial value. If p and q are continuous on J, then the IVP (2.30)
has a unique solution on J for any yo. m

2.30 Remark. In fact, we already know that the unique solution mentioned in
Theorem 2.29 can be constructed by means of formulas (2.5) and (2.8). =

2.31 Definition. The largest open interval J on which an IVP has a unique solution
is called the maximal interval of existence for that solution. m

2.32 Remarks. (i) Theorem 2.29 gives no indication as to what the maximal inter-
val of existence for the solution might be. This needs to be determined by other
means—for example, by computing the solution explicitly when such computation
is possible.

(ii) If no specific mention is made of an interval associated with an IVP, we assume
that this is the maximal interval of existence as defined above.

(iii) Many IVPs of the form (2.30) model physical processes in which the DE is mean-
ingful only for ¢ > 0. This would seem to create a problem when we try to apply
Theorem 2.29 because an open interval of the form 0 < ¢ < b does not contain the
point tg = 0 where the IC is prescribed. A brief investigation, however, will easily
convince us that, in fact, there is no inconsistency here. If the IVP in question is
correctly formulated, we will find that the maximal interval of existence for the
solution is larger than 0 < ¢ < b, extending to the left of the point ¢ty = 0. The
DE is formally restricted to the interval 0 < ¢ < b simply because that is where it
makes physical sense. m

2.33 Example. In the equation of the IVP

y — (2 + 1)y =sint, y(1)=2
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we have
p(t) = —(t2 +1), q(t) =sint.

Since both p and ¢ are continuous on the interval —co < ¢t < 0o, from Theorem 2.29 it
follows that this IVP has a unique solution on the entire real line. m

2.34 Example. Bringing the equation in the IVP
(t+1y +y=¢€", y(2)=3

to the standard form, we see that

1 2t

= (t) =
e YT

p(t)

The functions p and g are continuous on each of the open intervals —oo < ¢t < —1 and
—1 < t < o0; they are not defined at t = —1. Since the IC is given at o = 2 > —1,
from Theorem 2.29 we conclude that the IVP has a unique solution in the interval
—1<t<o0. m

2.35 Remark. If the IC in Example 2.34 were replaced by, say, y(—5) = 2, then,
according to Theorem 2.29, the IVP would have a unique solution in the open interval
—00 < t < —1, which contains the point tg = —5. =

2.36 Example. To get a better understanding of the meaning and limitations of The-
orem 2.29, consider the IVP

ty —y=0, y(to) = vo,

where p(t) = —1/t and ¢(t) = 0. The function ¢ is continuous everywhere, but p is
continuous only for ¢ > 0 or ¢ < 0 since it is not defined at ¢ = 0. Treating the DE as
either a separable or linear equation, we find that its GS is

y(t) = Ct, C = const. (2.31)
The IC now yields yo = C'tg, which gives rise to three possibilities.

(i) If o # 0, then, by Theorem 2.29, the IVP is guaranteed to have a unique solution

y(t) =24 (2.32)
to

on any open interval containing ¢y but not containing 0; more specifically, on any
interval of the form 0 < a <t < b (if o > 0) or a <t < b < 0 (if ¢t < 0). However,
direct verification shows that the function (2.32) satisfies the DE at every real
value of ¢, so its maximal interval of existence is the entire real line.

(ii) If to = 0 but yo # 0, then the IVP has no solution since the equality yo = Cto = 0
is impossible for any value of C.

(iii) If to = yo = 0, then the IVP has infinitely many solutions, given by (2.31) with
any constant C, each of them existing on the entire real line.

The ‘anomalous’ cases (ii) and (iii) are explained by the fact that they prescribe the
IC at the point where p is undefined, so Theorem 2.29 does not apply. m

‘We now turn our attention to the nonlinear case.
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2.37 Theorem. Consider the IVP

Y = f(t,y), ylto) = o, (2.33)

where f is a given function such that f and f, are continuous in an open rectangle
R={(t,y): a<t<b, c<y<d} (2.34)

If the point (to,yo) lies in R, then the IVP (2.33) has a unique solution in some open
interval J of the form tg — h <t < tg+ h contained in the interval a <t <b. m

2.38 Example. For the IVP
2 —-Dy'(H) =2t+1, y(2)=-1

we have
2t + 1 2t + 1

f(tvy):mv fy(t’y):_ma

both continuous everywhere in the (¢,y)-plane except on the line y = 1. By Theo-
rem 2.37 applied in any rectangle R of the form (2.34) that contains the point (2, —1)
and does not intersect the line y = 1, the given IVP has a unique solution on some open
interval J centered at tg = 2. Figure 2.2 shows such a rectangle and the arc of the actual
solution curve lying in it. The open interval 2 — h < t < 2 4+ h indicated by the heavy
line is the largest of the form mentioned in Theorem 2.37 for the chosen rectangle. But
the solution exists on a larger interval than this, which can be determined by solving
the IVP.

We separate the variables in the DE and write

/2(y—1)dyz/(2t+1)dt,

$0
(y—1)?=t*+t+C, C =const. (2.35)

The constant, computed from the IC, is C = —2. Replacing it in (2.35), we then find
that
y(t) =14 (2 +t—2)V2

Of these two functions, however, only the one with the negative root satisfies the IC;
therefore, the unique solution of the IVP is
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y(t) =1— (12 +t—2)Y2 (2.36)

We establish the maximal interval of existence for this solution by noticing that the
square root in (2.36) is well defined only if

24t —2=(t—-1)(t+2)>0;

that is, for t < —2 or ¢ > 1. Since ty = 2 satisfies the latter, we conclude that the
maximal interval of existence is 1 <t < 0co. =

2.39 Example. The situation changes if the IC in Example 2.38 is replaced by y(0) = 1.
Now the point (t9,y0) = (0,1) lies on the line y = 1 where f and f, are undefined, so
every rectangle R of the form (2.34) that contains this point will also contain a portion
of the line y = 1 (see Figure 2.3). Consequently, Theorem 2.37 cannot be applied.

Fig. 2.3

To see what kind of ‘pathology’ attaches to the problem in this case, we note that
the new IC leads to C' =0 in (2.35), which means that

y(t) =1+ (2 +1)Y/2 (2.37)

The square root is well defined for either t < —1 or ¢ > 0, and the two functions given by
(2.37) are continuously differentiable and satisfy the DE in each of the open intervals
—o0 <t < —1and 0 < t < oo. The point t; = 0 is well outside the former, but is
a limit point for the latter. Hence, we conclude that our IVP has a pair of distinct
solutions, whose maximal interval of existence is 0 < ¢t < oo. Both these solutions are
right-continuous (though not right-differentiable) at 0 and comply with the IC in the
sense that y(0+) = 1. The nonuniqueness issue we came across here is connected with
the fact that the conditions in Theorem 2.37 are violated.

VERIFICATION WITH MATHEMATICA® . The input
{yl,yv2}={1+ ("2 + )" (1/2),1 - ("2 +£)"(1/2)};
Simplify[{2x ({yl,y2} - 1) «xD[{yl,y2},t] - 2%t - 1,

{y1l,v2}/.t—=0},t>0]
generates the output {{0, 0},{1, 1}}. =m

2.40 Remarks. (i) The conditions in Theorems 2.29 and 2.37 are sufficient but not
necessary. In other words, if they are satisfied, the existence of a unique solution
of the kind stipulated in these assertions is guaranteed. If they are not, then, as
illustrated by Examples 2.36(ii),(iii) and 2.39, a more detailed analysis is needed
to settle the question of solvability of the IVP.
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The restrictions imposed on f in Theorem 2.37 can be relaxed to a certain extent. It
is indeed possible to prove that the theorem remains valid for functions f subjected
to somewhat less stringent requirements.

(ii) Theorems 2.29 and 2.37 imply that when the existence and uniqueness conditions
are satisfied, the graphs of the solutions of a DE corresponding to distinct ICs
do not intersect. For if two such graphs intersected, then the intersection point,
used as an IC, would give rise to an IVP with two different solutions, which would
contradict the statement of the appropriate theorem. Consequently, if y1, y2, and
ys are the PSs of the same DE on an open interval J, generated by initial values
Yo1, Yoz, and yo3, respectively, with yo1 < yoz < yos, then y1(t) < y2(t) < ys(t) at
all points ¢ in J.

Figure 2.4 shows the graphs of the solutions of the equation in Example 2.8 with
y():*].,(),].atto:o.

(iii) Existence of a unique solution is one of the conditions that an IVP or BVP repre-
senting a mathematical model needs to satisfy to be regarded as well posed—that
is, correctly formulated. The IVP in Example 2.39 is not well posed. =

1
e
1

—/

Fig. 2.4

Exercises

In 1-6, find the largest open interval on which the conditions of Theorem 2.29 are
satisfied, without solving the IVP itself.

1 (2t+1)y —2y=sint, y(0)=-2.

2 (t—1)y —(t—2)"2y=1t>+4, y(3)=-2.

3 (12 -3t+2)y +ty=¢e', y(3/2)=-1.

4 (12 —t—-2)Y2% +3y = (t—3)Y/2, y(4)=1.

5 (2—Int)y +3y=5, y(1)=e. 6 ¢ + 3ty =2tant, y(r)=1.

In 7-12, indicate the regions in the (¢,y)-plane where the conditions of Theorem 2.37
are not satisfied.

7T utt)y =2t+y. 8 y =t(y?>— 1)V 9 (*+y*—9)y =t
10 o = (t+ 2) tan(2y). 11 ¢y =(t+y)In(t+y). 12 o = /ly.

In 1320, solve the DE with each of the given ICs and find the maximum interval of
existence of the solution.
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13y =4ty?; y(0)=2; y(-1)=-2 y(3)=-1

14y =8y y(0)=—-1; y(0)=1.

15 (y—2)y' =t y(2)=3 y(-2)=1 y(0)=1; y(1)=2

16 (y—3)y' =2t+1; y(=1)=3; y(-1)=1; y(-1)=5 y(2)=1

17 ¢ =4y —DY% y(0)=5; y(-1)=2

18 ¢y =@ -1/t y(1)=0; y(-1)=2; y(2)=-3

19 ¢ =(2t4+2)/(3y%); y(0)=1; y(1)=1; y(-1)=2; y(@3)=-1

20 y' =y +y)/990+1); y(0)=1; y(=2)=1; y(4)=-2 y(-2)=-2

2.8 Direction Fields

Very often, a nonlinear first-order DE cannot be solved by means of integrals; therefore,
to obtain information about the behavior of its solutions we must resort to qualitative
analysis methods. One such technique is the sketching of so-called direction fields, based
on the fact that the right-hand side of the equation y' = f(¢, y) is the slope of the tangent
to the solution curve y = y(t) at a generic point (¢,y). Drawing short segments of the
line with slope f(¢,y) at each node of a suitably chosen lattice in the (¢, y)-plane, and
examining the pattern formed by these segments, we can build up a useful pictorial
image of the family of solution curves of the given DE.

2.41 Example. In Sect. 2.5, we mentioned the difficulty that arises when we try to
solve a Riccati equation for which no PS is known beforehand. The method described
above, applied to the equation

y/ _ e—2t _ 3 + (5 _ 26—2t)y+ (e—Qt _ 2)y2

in the rectangle defined by —1.5 < ¢ < 2 and 0.5 < y < 1.6, yields the direction field
shown in Figure 2.5, where several solution curves are also graphed.
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Figure 2.5 suggests that y(t) = 1 might be a PS of the given DE, and direct verifica-
tion confirms that this is indeed the case. Consequently, proceeding as in Sect. 2.5, we
determine that the GS of our equation is

1

=14+ ————.
y(®) + 2+e 2t 4 Cet

The solution curves in Figure 2.5 correspond, from top to bottom, to C' = —2.78, —1.05,
1, 10, 10,000, —30, —15, —6.

Of course, other equations may not benefit from this type of educated guess, however
refined a point lattice is employed to generate their direction fields. m
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