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Abstract This chapter deals with the control of the temperature across a finite
diffusive interface medium using the CRONE controller (French acronym: Com-
mande Robuste d’Ordre Non Entier). In fact, the plant transfer function presents
two special properties: a fractional integrator of order 0.5 and a delay factor of a
fractional order (when controlling the temperature far from the boundary where the
density of flux is applied). The novel approach of this work resides by the use of a
fractional controller that would control a fractional order plant. Also note that the
choice of the CRONE generation is important as this controller is developed in
three generations: the first generation CRONE strategy is particularly appropriate
when the desired open-loop gain crossover frequency ωu is within a frequency
range where the plant frequency response is asymptotic (this frequency band will be
called a plant asymptotic-behavior band). As for the second generation, it is defined
when ωu is within a frequency range where the plant uncertainties are gain-like
along with a constant phase variation. Concerning the third generation, it would be
applied when both a gain and a phase variations are observed when dealing with
plant’s uncertainties. This generation will not be treated in this chapter due to some
space constraints. Thus, this chapter will present some case scenarios which will
lead to the use of the first two CRONE generations when using three different
plants: the first one is constituted of iron, the second of aluminum and the third of
copper with variable lengths L and several placements of the temperature sensor
x. Simulation results will show the temperature variation across the diffusive
interface medium in both time and frequency domains using Matlab and Simulink.
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These results show how the temperature behaves at different positions for the three
materials in use.

Keywords Finite diffusive interface ⋅ CRONE controller ⋅ Temperature control
in homogeneous bars ⋅ Robustness ⋅ Users specifications ⋅ Gain and phase
margin variation ⋅ Fractional order control

1 Introduction

The fractional calculus is a very old topic that was born following letter exchanges
between L’Hopital and Leibtniz in September 30th, 1695 [15, 16]. Most of engi-
neering domains have started the implementation of this topic either in the mod-
elling process or in the control of their dynamic behavior [8]. Hence, the
recognition of the fractional order in a system may reside in the identification of the
plant transfer function or the control of a whole process using well known fractional
controllers as the CRONE controller or the generalized PID controller [9, 17].

The diffusive interface medium is a fractional order system. In fact, the mod-
elling of this medium has shown a semi integration (integration of order half) when
considering the density of flux as the input of this medium and the temperature at
any given point as the system output [7, 10]. Thus, we will consider in this work the
temperature control of a finite diffusive interface after modelling, in previous works,
the finite and the semi-infinite diffusive interface media [2, 3].

Hence, the novelty of this work resides in the deployment of a fractional order
regulator in order to control a non-integer order plant. For this purpose, the CRONE
controller will be used in its first two generations.

As each generation is used for a specific variation in the plant’s transfer function,
two case studies will be proposed in order to analyze the behavior and the
robustness of the first two CRONE generations [1, 13].

However, lots of controllers were already synthesized and applied to several
engineering fields and have shown great results. The controllers could be synthe-
sized in both, time or frequency domain. For both cases, the fractional order has
been applied. Interested readers can refer to the following papers [4–6] for more
controller synthesis methods and applications.

This chapter will be divided as follow: in Sect. 2, the previous works concerning
the modelling of the diffusive interface will be presented. The exact model will be
proposed as well as the simplified one. Section 3 will present the CRONE con-
troller along with the first two generations. The same example will be applied for
both generations with three different gain margins. The main aim is to show the way
to synthesis the CRONE controller as well as to compare between these genera-
tions. Section 4 will conclude the proposed work and will introduce some future
work that may enrich this system.
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2 Presentation of the Finite Diffusive Interface Medium

When presenting a finite diffusive interface medium, the heat transfer function is
governed by three partial differential equations along with an initial condition
regarding the initial time:

∂T x, tð Þ
∂t = α ∂

2T x, tð Þ
∂x2 , x>0, t>0

− λ ∂T x, tð Þ
∂x =φ tð Þ, x=0, t>0

− λ ∂T x, tð Þ
∂x =0, x= L, t>0

T x, tð Þ=0, 0≤ x< L, t=0

8>>><
>>>:

. ð1Þ

As the temperature initial condition is null, the Laplace transform of the first
equation of system (1) leads to a differential equation of order 2 with respect to the
variable x, as shown in Eq. (2):

∂
2T x, sð Þ
∂x2

−
s
αd

T x, sð Þ=0 where T x, sð Þ=𝖫 T x, tð Þf g. ð2Þ

The solution of this equation is of the following form [7, 19]:

T ̄ x, sð Þ=K1 sð Þ ex
ffiffiffiffiffiffi
s α̸d

p
+K2 sð Þ e− x

ffiffiffiffiffiffi
s α̸d

p
. ð3Þ

When taking into consideration the boundary conditions (x = 0 and x = L), a
system of two equations with two unknown values, K1(s) and K2(s), is derived as
shown in (4):

K1 sð Þ−K2 sð Þ= − 1
λ
ffiffiffis
αd

p φ ̄ sð Þ
K1 sð ÞeL

ffiffiffis
αd

p
−K2 sð Þ e− L

ffiffiffis
αd

p
=0

.

(
ð4Þ

The solution of this system, after the introduction of a new parameter
λ= αd ρCp, leads to the expressions of K1(s) and K2(s), as shown below:

K1 sð Þ= 1ffiffiffiffiffiffiffiffiffiffi
λ ρCp s

p e−L
ffiffiffiffiffi
s α̸d

p

eL
ffiffiffiffiffi
s α̸d

p
−e−L

ffiffiffiffiffi
s α̸d

p φ sð Þ
K2 sð Þ= 1ffiffiffiffiffiffiffiffiffiffi

λ ρCp s
p eL

ffiffiffiffiffi
s α̸d

p

eL
ffiffiffiffiffi
s α̸d

p
−e−L

ffiffiffiffiffi
s α̸d

p φ sð Þ

8><
>: . ð5Þ

The introduction of system Eq. (5) in Eq. (3) and the replacement of the flux
density φ sð Þ by the flux ϕ sð Þ φ ̄ sð Þ=ϕ sð Þ S̸� �

lead to the below transfer function of
the whole system:
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H x, s,Lð Þ= T x, s,Lð Þ
ϕ sð Þ =

1
S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ρ Cp s

p e− L− xð Þ ffiffiffiffiffiffis α̸d
p

+ e L− xð Þ ffiffiffiffiffiffis α̸d
p

eL
ffiffiffiffiffiffi
s α̸d

p
− e− L

ffiffiffiffiffiffi
s α̸d

p , ð6Þ

which can be also presented as follow after introducing the hyperbolical functions
[3]

H x, s,Lð Þ= T ̄ x, s,Lð Þ
ϕ sð Þ =

1
S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ρ Cp s

p 1

tanh L
ffiffiffiffi
s
αd

q� � cosh L− xð Þ
ffiffiffiffi
s
αd

q� �

cosh L
ffiffiffiffi
s
αd

q� � . ð7Þ

Hence, to sum up, the system transfer function can be partitioned in several
blocks as shown in Fig. 1 and as mentioned in systems (8)–(10).

H x, s,Lð Þ= H0 I0.5 sð Þ F 0, s,Lð Þ G x, s,Lð Þ, ð8Þ

where

H0 =
s0.5 T 0, s,∞ð Þ

ϕ sð Þ = 1
S ηd

I0.5 sð Þ= T 0, s,∞ð Þ
s0.5T ̄ 0, s,∞ð Þ =

1
s0.5

F 0, s,Lð Þ= T 0, s,Lð Þ
T 0, s,∞ð Þ =

1

tanh
ffiffiffiffi
s
ωL

p� �

G x, s,Lð Þ= T x, s,Lð Þ
T 0, s,Lð Þ =

cosh
ffiffiffiffiffi
s

ωLx

p� �
cosh

ffiffiffiffi
s
ωL

p� �

8>>>>>>>>>>><
>>>>>>>>>>>:

, ð9Þ

knowing that

ηd =
ffiffiffiffiffiffiffiffiffiffiffiffi
λ ρCp

p
ωL = αd

L2

ωLx = αd
L− xð Þ2

,

8><
>: ð10Þ

where ηd represents the thermal effusivity.

Fig. 1 Block diagram of the finite medium transfer function
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Note that, for analysis purposes, a relation between ωL, ωLx and the diffusive
time constant, τL, were introduced:

ωL = 1− x
L

� �2
ωLx

τL = 1
ωL

= L2
αd

(
. ð11Þ

The approximation of this system was already presented in several previous
works. Interested authors can refer to the following references [3, 10, 12]. Just need
to know that Oustaloup approximation and Maclaurin series were at the core of this
approximation. As a conclusion, the finite diffusive interface medium can be
approximated by the following transfer function:

H x, s,Lð Þ= T x, s,Lð Þ
ϕ sð Þ =H0

1
s0.5

1

tanh
ffiffiffiffi
s
ωL

q� � e−
ffiffiffi
s
ωx

p
, ð12Þ

where ωx = αd/x
2.

At the end of this section, let us define the different materials to be used for the
control process. In fact, the aluminum, the copper and the iron were used for the
simulations later in this chapter. All physical values of these three materials will be
presented in Table 1.

3 CRONE Controller

CRONE is the acronym for Commande Robuste d’Ordre Non Entier (non-integer
order robust control). While the first two approaches use the real fractional inte-
gration or differentiation operator, the third uses the complex differentiation oper-
ator. In the frequency domain, they enable to synthesize simply and
methodologically, linear robust control laws. The control schematic used is based
on the classic unity-feedback configuration. Thus, Fig. 2 shows a general scheme
used for the control-system design.

The equations associated to this scheme are given by:

∙ Output: Y sð Þ= S sð ÞDm sð Þ+ SP sð ÞDu sð Þ+ T sð Þ Yref sð Þ ð13Þ

∙ Errorsignal: ε sð Þ= − S sð ÞDm sð Þ− SP sð ÞDu sð Þ+ S sð Þ Yref sð Þ ð14Þ
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∙ Controlsignal:U sð Þ= − SC sð ÞDm sð Þ+ T sð ÞDu sð Þ+ SC sð Þ Yref sð Þ ð15Þ

with

S sð Þ= 1
1+ β sð Þ : sensitivity function

T sð Þ=1− S sð Þ: complementary sensitivity function
SP sð Þ= S sð ÞP sð Þ
SC sð Þ= S sð ÞC sð Þ
β sð Þ=C sð ÞG sð Þ: open− loop transfer function

8>>>><
>>>>:

. ð16Þ

As the main purpose is not to present the CRONE controller but to provide the
tools used to fit the user specifications concerning the stability degree, the rapidity,
the precision in the steady state mode, the saturation as well as the sensibility of the
system towards the disturbances, we will present hereafter the general transfer
functions of the first two CRONE generations along with the conditions that must
be filled in order to apply each of these generations.

The user specifications lead us to set the following parameters:

• Concerning the stability degree, the phase margin MΦ varies between
90° ≥ MΦ ≥ 45°;

• Concerning the speed, desired open-loop gain crossover frequency ωu (or ωcg) is
equal to 1 rad/s;

• Concerning the precision in the steady state response, a null static error;
• Concerning the saturation, a maximum input value of 12 W is allowed.

3.1 Synthesis with Gain Variations Only

In this first part, we will treat the gain variations only while considering a constant
phase. Thus, the first CRONE generation could be used as well as the second one.

C(s)

Controller

P(s)

Plant model

+ +

Du(s)
Input disturbance

Dm(s)
Sensor noise

Ym(s) + (s)
Error signal

Yref (s)
Reference

signal

U(s)

- Measured
output

Fig. 2 Scheme used for the
control-system design
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3.1.1 First Generation CRONE Controller

The transfer function of the synthesized model of the plant that would be used for
the control purposes at the boundary where the flux is applied (e.g., for x = 0 mm)
is Poinot and Trigeassou [18], Malti et al. [14]:

P1 sð Þ=H 0, s,Lð Þ=H0
1
s0.5

1

tanh
ffiffiffiffi
s
ωL

q� � , ð17Þ

where the nominal state parameters (for the aluminum case) are:

H0 =H0 Aluð Þ=0.416 K s0.5 W− 1

ωL =ωL Alu, L=1mð Þ=0.97 10− 4 rad s̸

	
, ð18Þ

and their variation ranges taking into account the two other materials already shown
in Table 1:

H0 ∈ H0 =H0 Copð Þ=0.269 ; H0 =H0 Ironð Þ=0.596

 �

K s0.5 W− 1

ωL ∈ ωL =ωL Iron, L=1mð Þ=0.23 10− 4 rad s̸ ; ωL =ωL Cop,L=0.25mð Þ=19 10− 4 rad s̸

 �	

ð19Þ

As for the first generation CRONE controller, its transfer function is of the
following form [11]:

CFðsÞ=C0
1 + s ω̸I

s ω̸I

� �mI 1+ s ω̸l

1+ s ω̸h

� �m 1
1+ s ω̸Fð ÞmF

, ð20Þ

where mI, mF ∈ N, ωI <ωF ∈ℝ and ωl <ωh ∈ℝ.
If we choose ωI = ωl and ωh = ωF in order to simplify the transfer function of

the controller while taking into consideration the user specifications already defined
at the beginning of this section, we can get:

CFðsÞ=C0
ωl

s

� �mI 1+ s ω̸lð ÞmI +m

1+ s ω̸hð ÞmF +m . ð21Þ

Referring to the synthesis characteristics, we choose:

• mI = 1, in order to get a null static error as the plant contains an integration of
order 1 at low frequencies;

• m= MΦ − 180◦ − argP1 jωuð Þð Þ 9̸0◦, which is based on the definition of the
phase margin MΦ, knowing that argP1 jωuð Þ= − 45◦, thus MΦ ∈ 45◦; 90◦½ �,
hence m∈ − 1; − 0.5½ �;

• mF = 1, in order to limit the input sensitivity;
• ωunom = 1 rad/s, value defined by the authors;
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Based on these values, the expression of CF(s) can be rewritten as follow:

CFðsÞ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �1+m

. ð22Þ

Thus, knowing that m∈ − 1; − 0.5½ � and ωl < ωh, the fractional form of the
controller CF(s) can be expressed by an integrator of order 1 in series with a lead
compensator of order 1 + m, m being a non-integer value. The expression of CF(s)
is thus characterized by four parameters (m, ωl, ωh et C0) that could be defined
based on three below steps:

Step 1 m is determined based on the phase margin MΦ;
Step 2 ωl and ωh are defined in such a way that the fractional asymptotic behavior

of the controller should vary in a frequency range between [ωA, ωB] around
the nominal gain cutoff frequency ωunom. In order to keep the stability
degree robustness, it is necessary to set the following:

∀ωu ∈ ωumin;ωumax½ �, ωA ≤ωu ≤ωB ⇒
ωA ≤ωumin

ωB ≥ωumax

	
, ð23Þ

and

ωl =ωA b̸
ωh = bωB

	
, where b>1. ð24Þ

If we consider that ωl and ωh are geometrically distributed around the
cutoff frequency ωunom and if we suppose that r = ωB/ωA, ωl and ωh would
be calculated as follow:

ffiffiffiffiffiffiffiffiffiffiffi
ωl ωh

p
=ωunom

ωh
ωl

= b2 r ⇒
ωl =ωunom ̸ b

ffiffi
r

pð Þ
ωh =ωunomb

ffiffi
r

p
	

.
	

ð25Þ

The value of the ratio r is deduced from the slope −n20 dB/dec (n being
defined based on the open loop transfer function order around ωunom) and
from the gain variation Δβ due to the parametric uncertainties, thus:

r=Δβ1 n̸. ð26Þ

Step 3 C0 is calculated in order to respond to the speed specifications. Hence, C0

can be calculated based on the following relation:

β jωuð Þj j=1 ⇔ CF jωuð Þj j P1 jωuð Þj j=1, ð27Þ
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which can be also expressed as follows:

C0
ωl

ωu

� �
1+ ωu ω̸lð Þ2
1 + ωu ω̸hð Þ2
 ! 1+m

2ð Þ
P1 jωuð Þj j=1, ð28Þ

thus,

C0 =
ωl

ωu

� �
1+ ωu ω̸lð Þ2
1 + ωu ω̸hð Þ2
 ! 1+m

2ð Þ
P1 jωuð Þj j

2
4

3
5

− 1

. ð29Þ

Finally, the last step consists on presenting the controller fractional order
transfer function CF(s) in a rational form CR(s). Different approaches were
proposed but Oustaloup approximation remains one of the best. Hence,
applying it will lead to the following general form of the controller:

CRðsÞ=C0
ωl

s

� �
∏
N

i=1

1+ s ω̸′

i

1+ s ω̸i

� �
, ð30Þ

where

ω′

i+1
ω′

i
= ωi+1

ωi
= αη>1

ωi
ω′

i
= α et ω′

i+ 1
ωi

= η

αη= ωh ω̸lð Þ1 N̸

α= αηð Þ1+m et η= αηð Þ−m

ω′

1 =ω1η1 2̸ et ωN =ωhη− 1 2̸

.

8>>>>>><
>>>>>>:

ð31Þ

The remaining part of this paragraph will show the 1st generation CRONE
controller computation for three phase margin values MΦ = 45°, 67.5° and 90° and
its robustness when applying it to the three materials (aluminum, copper and iron).

Example 1: Phase Margin MΦ = 45°

If MΦ = 45°, then m= MΦ − 180◦ − argP1 jωuð Þð Þ 9̸0◦ = − 1. The controller
transfer function can be expressed as shown in Eq. (32):

CFðsÞ=C0
ωl

s

� �
. ð32Þ
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This is a particular case as the controller is expressed as an integrator of order 1
characterized by only one parameter C*

0 =C0 ωl whose main purpose is to take in
consideration the speed specification, thus:

β jωuð Þj j=1 ⇔ CF jωuð Þj j P1 jωuð Þj j=1, ð33Þ

which can also be expressed as follow:

C*
0

ωu
P1 jωuð Þj j=1, ð34Þ

thus,

C*
0 =

ωu

P1 jωuð Þj j ⇒ C*
0 = 2.405V ̸◦. ð35Þ

As the controller is of an integer form in this case, the transfer functions of CF(s)
and CR(s) are similar.

Example 2: Phase Margin MΦ = 67.5°

If MΦ = 67.5°, then m= MΦ − 180
◦ − argP1 jωuð Þ� �

9̸0
◦

= − 0.75. The controller
transfer function can be expressed as shown in Eq. (36):

CFðsÞ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.25

. ð36Þ

In this second example, the controller could be expressed as an integrator of
order 1 in series with a lead compensator of order 0.25. The gain C0 and the
open-loop gain crossover frequency are defined as follow:

ωA =ωumin = 72.77 10− 2rad ̸s
ωB =ωumax = 137.43 10− 2 rad ̸s

�
⇒ r=1.89

b=25 ⇒
ωl =2.91 10− 2rad ̸s
ωh =34.36 rad ̸s

	
C0 = 34.125V s ̸◦

.

8>>>><
>>>>:

ð37Þ

The rational form of this controller (who is expressed in Eq. (30)) will have the
below values:
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N =6
ω

0
1 = 8.17 10− 2 rad ̸s ω1 = 3.37 10− 2 rad ̸s

ω
0
2 = 26.55 10− 2 rad ̸s ω2 = 10.96 10− 2 rad ̸s

ω
0
3 = 86.3 10− 2 rad ̸s ω3 = 35.64 10− 2 rad ̸s

ω
0
4 = 2.81 rad ̸s ω4 = 1.159 rad ̸s

ω
0
5 = 9.12 rad ̸s ω6 = 3.77 rad ̸s

ω
0
6 = 29.65 rad ̸s ω7 = 12.25 rad ̸s

.

8>>>>>>>><
>>>>>>>>:

ð38Þ

Example 3: Phase Margin MΦ = 90°

If MΦ = 90°, then m= MΦ − 180
◦ − argP1 jωuð Þ� �

9̸0
◦

= − 0.5. The controller
transfer function can be expressed as shown in Eq. (39):

CFðsÞ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.5

. ð39Þ

In this example, the controller could be expressed as an integrator of order 1 in
series with a lead compensator of order 0.5. The gain C0 and the open-loop gain
crossover frequency are defined based on system (40):

ωA =ωumin = 67.21 10− 2 rad ̸s
ωB =ωumax = 148.8 10− 2 rad ̸s

�
⇒ r=2.214

b=25⇒ ωl =2.69 10− 2 rad ̸s
ωh =37.2 rad ̸s

	
C0 = 14.67V s ̸◦

8>>>><
>>>>:

, ð40Þ

As for the parameters of the rational transfer function CR(s), they are as follow:

N =6
ω

0
1 = 6.64 10− 2 rad s̸ ω1 = 3.63 10− 2 rad ̸s

ω
0
2 = 22.16 10− 2 rad s̸ ω2 = 12.13 10− 2 rad ̸s

ω
0
3 = 73.98 10− 2 rad s̸ ω3 = 40.49 10− 2 rad ̸s

ω
0
4 = 2.47 rad ̸s ω4 = 1.352 rad ̸s

ω
0
5 = 8.24 rad ̸s ω6 = 4.51 rad ̸s

ω
0
6 = 27.52 rad ̸s ω7 = 15.06 rad ̸s

8>>>>>>>><
>>>>>>>>:

. ð41Þ

Performances

Figures 3, 4, 5, 6, 7, 8 show the frequency domain and time domain performances
for the three examples when applying the three different materials. In fact, Fig. 3
shows the Bode diagrams of CF(s) for the three listed examples (MΦ = 45° (a),
MΦ = 67.5° (b) and MΦ = 90° (c)).
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Fig. 3 Bode diagrams for CRONE controller CF(s) for MΦ = 45° (a), MΦ = 67.5° (b) and
MΦ = 90° (c)
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Fig. 4 Bode diagrams for the open loop transfer function over the interval [10−6 rad/s; 10 rad/s]
(a, c, e), and with a zoom around the gain crossover frequency ωu = 1 rad/s (b, d, f), for
MΦ = 45° (a, b), MΦ = 67.5° (c, d) and MΦ = 90° (e, f)
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Figure 4 shows the open loop Bode diagrams over the frequency bandwidth
[10−6 rad/s; 10 rad/s] in (a) (c) (e), with a particular zoom around the open-loop
gain crossover frequency ωu = 1 rad/s in (b) (d) (f), for MΦ = 45° (a) (b),
MΦ = 67.5° (c) (d) and MΦ = 90° (e) (f).

Figure 5 presents the Black-Nichols plots of the open loop transfer function over
the interval [−40 dB; 180 dB] in (a) (c) (e) with a particular zoom around the
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Fig. 5 Black-Nichols plots for the open loop transfer function over the interval [−40 dB; 180 dB]
(a, c, e) and with a zoom around the gain crossover frequency ωu = 1 rad/s (b, d, f), for MΦ = 45°
(a, b), MΦ = 67.5° (c, d) and MΦ = 90° (e, f)
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open-loop gain crossover frequency ωu = 1 rad/s in (b) (d) (f), for MΦ = 45°
(a) (b), MΦ = 67.5° (c) (d) and MΦ = 90° (e) (f).

Figure 6 shows the gain diagrams for the sensitivity functions S(jω) in (a) (c)
(e) and T(jω) in (b) (d) (f), for MΦ = 45° (a) (b), MΦ = 67.5° (c) (d) and MΦ = 90°
(e) (f).
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Figure 7 presents the gain diagrams of the sensitivity functions SC(jω) in (a) (c)
(e) et SP(jω) in (b) (d) (f), for MΦ = 45° (a) (b), MΦ = 67.5° (c) (d) and MΦ = 90°
(e) (f).

10-2 10-1 100 101 102
-30

-25

-20

-15

-10

-5

0

5

10

15

Frequency (rad/s)

G
ai

n 
S

C
 (

dB
)

Alu.
Cop.
Iron

10-2 10-1 100 101 102
-60

-50

-40

-30

-20

-10

0

Frequency (rad/s)

G
ai

n 
S

P
 (

dB
)

Alu.
Cop.
Iron

-30

-25

-20

-15

-10

-5

0

5

10

15

G
ai

n 
S

C
 (

dB
)

Alu.
Cop.
Iron

-60

-50

-40

-30

-20

-10

0
G

ai
n 

S
P

 (
dB

)
Alu.
Cop.
Iron

-30

-25

-20

-15

-10

-5

0

5

10

15

G
ai

n 
S

C
 (

dB
)

Alu.
Cop.
Iron

-60

-50

-40

-30

-20

-10

0

G
ai

n 
S

P
 (

dB
)

Alu.
Cop.
Iron

(a) (b)

10-2 10-1 100 101 102

Frequency (rad/s)

10-2 10-1 100 101 102

Frequency (rad/s)

(c) (d)

10-2 10-1 100 101 102

Frequency (rad/s)

10-2 10-1 100 101 102

Frequency (rad/s)

(e) (f)

Fig. 7 Gain diagrams for the sensitivity functions: SC(jω) (a, c, e) and SP(jω) (b, d, f), for
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Finally, Fig. 8 shows the output temperature variations for step input of
amplitude 1 °C in (a) (c) (e) and for the control signal in (b) (d) (f), for MΦ = 45°
(a) (b), MΦ = 67.5° (c) (d) and MΦ = 90° (e) (f).
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Fig. 8 Time domain responses for a step input of 1 °C: output temperature (a, c, e) and control
signal (b, d, f), for MΦ = 45° (a, b), MΦ = 67.5° (c, d) and MΦ = 90° (e, f)
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The robustness study is also presented in these figures as the plots contain the
behavior of the three different materials.

3.1.2 Second Generation CRONE Controller

Let’s start by a review of the plant simplified transfer function. In fact, the model
P2.1(s) will be used to synthesize the second generation CRONE controller. Its
transfer function is as follow:

P2.1 sð Þ=H*
0

1 + s ω̸Lð Þ0.5
s ω̸L

, ð42Þ

where

H*
0 =

H0

ω0.5
L

, ð43Þ

and where the values of the variables H0 and ωL were already presented in Eq. (14)
along with their intervals (system (19)).

As for the CRONE controller synthesis, it is done a posteriori when applying the
second generation. Hence, the open loop transfer function is expressed as follow:

βðsÞ= β0
1 + s ω̸l

s ω̸l

� �nl 1+ s ω̸h

1+ s ω̸l

� �n 1
1+ s ω̸hð Þnh , ð44Þ

where ωl and ωh represent the transitional low and high frequencies, n a real
non-integer order between 1 and 2 near the frequency ωu, nl and nh are the orders of
the asymptotic behavior at low and high frequencies and β0 a constant which
ensures unity gain at frequency ωu.

Thus, after defining the open loop transfer function, the computation of the
fractional order CRONE controller is defined as follow:

CF sð Þ= β sð ÞP− 1
2.1 sð Þ. ð45Þ

Hence, CF(s) could be written as follow:

CF sð Þ= β0
1 + s ω̸l

s ω̸l

� �nl 1+ s ω̸h

1+ s ω̸l

� �n 1
1+ s ω̸hð Þnh

s ω̸L

H*
0 1 + s ω̸Lð Þ0.5 . ð46Þ

Referring to the user specifications already shown at the start of this section, the
parameters values of Eq. (46) are set as follow:

• nl = 2, in order to get a null static error;
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• n = (180° − MΦ)/90°, in order to have a phase margin MΦ ∈ 45◦; 90◦½ �; thus
n∈ 1; 1.5½ �;

• nh = 1.5, in order to limit the input sensitivity;
• ωunom = 1 rad/s, value defined by the user and applied for all examples for a

comparative study.

Hence, expression (46) can be rewritten as follow:

CF sð Þ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �2− n 1+ s ω̸h

1+ s ω̸L

� �0.5

, ð47Þ

where

C0 =
β0 ωl

H*
0 ωL

. ð48Þ

As for the first generation, this paragraph will also study the system behavior
while applying the second generation CRONE controller for three different cases
when the phase margin MΦ is equal to 45°, 67.5° and 90°.

Example 4: Phase Margin MΦ = 45°

If MΦ = 45°, then n= ð180◦ −MΦÞ ̸90◦ =1.5. The open loop transfer function can
be expressed as follow:

βðsÞ= β0
1 + s ω̸lð Þ0.5

s ω̸lð Þ2 , ð49Þ

and the controller transfer function would be:

CF sð Þ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸L

� �0.5

. ð50Þ

If we suppose that ωl = ωL, CF(s) can be rewritten as shown in Eq. (51):

CF sð Þ=C0
ωl

s

� �
. ð51Þ

This expression is identical to the one of the first generation CRONE controller
obtained in example 1 of Sect. 3.1.1.
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Example 5: Phase Margin MΦ = 67.5°

If MΦ = 67.5°, then n = (180° − MΦ)/90° = 1.25. The open loop transfer function
can be expressed as shown in Eq. 52:

βðsÞ= β0
ωl

s

� �2 1 + s ω̸lð Þ0.75
1 + s ω̸hð Þ0.25 . ð52Þ

Thus, the controller transfer function would be as follow:

CF sð Þ=C0
ωl

s

� � 1+ s ω̸lð Þ0.75
1 + s ω̸Lð Þ0.5

1

1+ s ω̸hð Þ0.25 . ð53Þ

As for the first example, if we choose ωl = ωL, the form of CF(s) will be similar
to the first generation CRONE controller as it appears in Eq. (54)

CF sð Þ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.25

. ð54Þ

Example 6: Phase Margin MΦ = 90°

If MΦ = 90°, then n = (180° − MΦ)/90° = 1. The open loop transfer function can
be expressed as shown in Eq. (55):

CFðsÞ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.5

. ð55Þ

Hence, the controller CF(s) transfer function would be:

CF sð Þ=C0
ωl

s

� � 1+ s ω̸lð Þ
1+ s ω̸Lð Þ0.5

1

1 + s ω̸hð Þ0.5 . ð56Þ

As the two previous cases, when choosing ωl = ωL, the form of CF(s) of the
second generation will be similar to the first generation CRONE controller as
presented in relation (57):

CF sð Þ=C0
ωl

s

� � 1+ s ω̸l

1+ s ω̸h

� �0.5

. ð57Þ
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Performances

In this last section, the study will be divided into two parts referring to value of x.

For x = 0

To sum up, for the three cases studied regarding the value of the phase margin
(MΦ = 45°, 67.5° and 90°), the form of the synthesized controller when using the
first generation and the second generation CRONE controllers is the same. Thus,
the transfer function of this controller is the same for examples 1 and 4.

However, some small differences exist between examples 5 and 6 on one hand
and examples 2 and 3 on the other hand because of the choice of ωl = ωL. This
assumption leads to ωl = 0.97 10−4 rad/s (nominal case for the Aluminum for
L = 1 m). In fact, in the open loop, this difference can be expressed by the absence
of an asymptotical behavior around the phase −135° over the interval [10−4 rad/s;
10−2 rad/s] as it was the case for examples 2 and 3.

Nevertheless, for the low frequencies (ω < 10−4 rad/s), around the open-loop
gain crossover frequency ωu = 1 rad/s and at high frequencies, the open loop
behavior is identical when comparing examples 2 and 5 or examples 3 and 6. This
can explain the fact that the closed loop dynamics are similar for both CRONE
generations.

For X > 0

It is important to analyze the sensitivity of the stability degree at position of
x through the phase margin a posteriori when controlling the temperature T(0,t) for
x = 0 and studying the influence of the temperature sensor when this latter is not
placed at x = 0 exactly.

Hence, for x > 0, the open loop transfer function β(s, x) can be expressed as
follow:

β s, xð Þ=C sð ÞP2.1 sð Þ e− s
ωxð Þ0.5 , ð58Þ

which can be simplified when introduction the nominal open loop transfer function
βnom(s),

β s, xð Þ= βnom sð Þ e− s
ωxð Þ0.5 , ð59Þ

whose frequency response β(jω, x) is of the following form

β jω, xð Þ= βnom jωð Þ e− j ωωxð Þ0.5 . ð60Þ
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Knowing that

e− j ωωxð Þ0.5 =m x,ωð Þe− jθ x,ωð Þ where m x,ωð Þ= e−
ω

2ωxð Þ0.5 = e
− x ω

2αd

� �0.5

θ x,ωð Þ= − ω
2ωx

� �0.5
= − x ω

2αd

� �0.5
8><
>: ,

ð61Þ

the open loop gain and phase can be expressed as follow:

β jω, xð Þj j= βnom jωð Þj jm x,ωð Þ
arg β jω, xð Þ= arg βnom jωð Þ+ θ x,ωð Þ

	
. ð62Þ

The expression of the phase margin MΦ(x) at the gain crossover frequency, ωu,
can be represented as follow:

MΦ xð Þ= π + arg β x, jωuð Þ
= π + arg βnom jωuð Þ+ θ x,ωuð Þ

= π − n
π

2

� �
−

ffiffiffiffiffiffiffiffi
ωu

2αd

r
x.

ð63Þ

Referring to Eq. (63), one can conclude the following:

• Concerning well defined values of n, ωu and αd, MΦ(x) is a decreasing linear
function depending on x;

• The negative slope is proportional to ωu and inversely proportional to the
thermal diffusivity of the material αd;

• The value of the order n selected based on the phase margin value does not
affect the slope; thus, it does not alter the sensitivity of the stability degree of the
controller for position x.

However, a special sensor placement, noted xcrit, allows to get a null phase
margin (which yields to an oscillatory system on closed loop). Above this value, the
system becomes unstable. Thus, the value xcrit is the following:

MΦ xð Þ=0 ⇒ xcrit = π − n
π

2

� � ffiffiffiffiffiffiffiffi
2αd
ωu

r
. ð64Þ

When x varies between 0 and xcrit, another particular position exists. It will be
known as the limit position, xlim, which corresponds to a minimal phase margin,
MΦmin, that will be set depending on the user specifications as shown in Eq. (65):

xlim =

ffiffiffiffiffiffiffiffi
2αd
ωu

r
π − n

π

2
−MΦmin

� �
∈ 0; xcrit½ �. ð65Þ
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Thus, Fig. 9 shows the variation of the position x for the three materials when
the phase margin MΦ(x) varies between 45° and 0°. For this example, the critical
values are: 0.65 cm for the iron, 1.52 cm for the aluminum and 1.91 cm for the
copper. Another example resides by the determination of the phase margin when
x is equal to 0.5 cm: for the iron, MΦ = 10.5°, for the aluminum, MΦ = 30.2° and
MΦ = 33.2° for the copper.

As an example, two simulations were realized when using the controller
obtained through example 4 (MΦ(0) = 45°). In the first simulation (Fig. 10a), the
feedback is realize based on the temperature value T(t,0) measured at x = 0 cm.
The temperature variation T(t,0) at x = 0 and T(t,x) at x = 5 mm are shown in
Fig. 10a, c, e). In the second simulation (Fig. 10b), the feedback is realized using
temperature value T(t,x) measured at x = 5 mm. The temperature variation T(t,0) at
x = 0 and T(t,x) at x = 5 mm are shown in Fig. 10b, d, f. Through this second case
study, the influence of the sensor position uncertainties (by a value of 5 mm) is
shown clearly.

Thus, Fig. 11 shows the responses for the temperature T(t,0) at x = 0 (figures a
et b), T(t,x) at x = 5 mm (figures c et d) at the corresponding control signal u(t)
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Fig. 9 Phase margin
variation MΦ(x) for n = 1.5
with respect to the position
x (in cm) and of the used
material
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Fig. 10 Control blocks of the two study cases based on the synthesized controller of example 4
(MΦ(0) = 45°): a feedback realized based on the temperature at x = 0 ; b feedback realized based
on the temperature at x = 5 mm
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Fig. 11 Temperature response of T(t,0) at x = 0 (1st line: a, b T(t,x) at x = 5 mm (2nd line: c,
d) and for the control signal u(t) (3rd line: e, f) for a step input of 1 °C for the aluminum, the
copper and the iron, when considering a feedback control based on the temperature at x = 0
(figures a, c, e) and for a temperature measured at x = 5 mm (figures: b, d, f)
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(figures e et f) for a step input of 1 °C for the aluminum, the copper and the iron
when considering a feedback control based on the temperature at x = 0 (figures a, c
et e) and for a temperature measured at x = 5 mm (figures: b, d et f). Based on these
figures, one can conclude the following:

When the positioning sensor uncertainties are absent at x = 0 mm, the
robustness of the stability degree is confirmed (Fig. 11a). Thus, the three step
responses are almost equal. So, when comparing them with the nominal response
obtained for the aluminum, the two other responses would be expressed as a
dilatation (for the copper) or a contraction (for the iron) concerning the time domain
axis. However, when x > 0 mm, this property is no more conserved (referring to
the simulation where the sensor is positioned at 5 mm—Fig. 11c).

However, when the positioning uncertainties are present at x = 5 mm, the
robustness of the stability degree is no more conserved whatever the material in use
is and for any positioning of the temperature sensor (for x = 0, Fig. 11b). This
result is logic as the variation of x affects the phase margin as already presented in
Fig. 8.

A particular attention should be point out on the control signal u(t) whose value
remains below the saturation limit (Umax = 12 W).

4 Conclusions

In this chapter, we have introduced first the general transfer function of a finite
diffusive interface medium in order to study the heat diffusion across its central axis.
The study is conducted over three different materials (Iron, Copper and Aluminum)
to study the robustness of the controller.

The CRONE controller was the one used in this study. The first two generations
were applied. The controller of the first generation is calculated a priori where the
phase is constant over all the frequency bandwidth whereas the second generation is
deduced using the loop shaping and it applies whenever the phase is constant with
gain variations for the plant.

Two scenarios were proposed: the first one shows a gain variation with a con-
stant phase and both CRONE generations were applied. All results were almost
similar. For the second scenario, the plant’s gain was varying while the phase was
maintained constant around ωu which yield in the use of the second CRONE
generation.

Concerning the future works, lot of adjustments could be made to enrich this
work. First, some new scenarios could be proposed in order to analyze the behavior
of the third generation CRONE controllers and to compare this controller to other
ones. Added to that, the implementation of some observers could be interesting as
we will not be able to measure the temperature at any point of the bar due to some
physical/technical limitations. The last and most interesting point is to implement
physically this system and to be able to compare the real measurements to the
simulated ones. Whenever the test bench is realized, the identification of the
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equation that would model this system will be made and a comparison between the
real one and the approximated one will be proposed. Then, the control of this plant
using the LabView software along with the data acquisition board will be per-
formed. The performance analysis of the observers will be a novel study applied in
a fractional order environment.
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