
Chapter 2
Basic Mathematics

Abstract The basic mathematics useful for this book is divided into discrete least
squares theory, collocation, coordinate systems, Legendre’s polynomials, spherical
and ellipsoidal harmonics, the fundamentals of potential theory and regularization.
Most numerical applications are based on linear least squares theory, either in the
spatial domain (mainly for local studies) or by spherical harmonics in regional and
global applications. For example, linear regression analysis, discrete and continuous
least squares collocation are described. As problems in geodesy and geophysics are
frequently non-linear, the linearization of such a problem is also presented. After
introducing Legendre’s polynomials and spherical harmonics, the latter type of
series is used for spectral smoothing and combining sets of data. The gravitational
potential on and outside the ellipsoid is also presented in ellipsoidal harmonics. One
section is devoted to the basics of potential theory, including some basic concepts,
Newton’s integral for the potential, Laplace’s and Poisson’s equations and Gauss’
and Green’s formulas, as a well as basic boundary value problems, as a background
for the rest of the book. Considering that most problems related with gravity
inversion are inverse problems, regularization is needed to reach a practical solu-
tion. Hence, various approaches to regularization of solutions to inverse problems
are shortly described and compared.

Keywords Basic mathematics � Collocation � Coordinate systems � Least squares
theory � Legendre’s polynomials � Spherical harmonics � Potential theory �
Regularization

2.1 Least Squares Adjustment Theory

Least squares treatment of large data sets is common in geodesy, surveying and
geophysics. Least squares collocation, widely used in geodesy, is closely related
with kriging, frequently applied in geophysical prospecting. This book will apply
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least squares in various ways in physical geodesy and geophysics, and the basics are
provided in this section.

Definition 2.1 Let x be a stochastic estimator for the parameter l: If the stochastic
expectation Efxg ¼ l holds, we say that x is an unbiased estimator of l and its
variance is given by:

r2x ¼ E x� lð Þ2
n o

: ð2:1Þ

Definition 2.2 If E xf g 6¼ l, then x is a biased estimator of l, and its Mean Square
Error,

MSE xf g ¼ E x� lð Þ2
n o

¼ r2x þ bias2x ; ð2:2aÞ

is the sum of its variance given by (2.1) and the bias squared, the bias given by:

biasx ¼ E xf g � l: ð2:2bÞ
Equation (2.2a) follows directly from the relation:

MSE xf g ¼ E x� lð Þ2
n o

¼ E x� E xf gþE xf g � lð Þ2
n o

: ð2:3Þ

2.1.1 Adjustment by Elements

Let us assume that L is a vector of n observations with a random error vector e. If
L is related with the unknown parameter vector X (with m < n elements) by the
linear matrix equation (system of observation equations)

AX ¼ L� e; ð2:4Þ

where A is called the design matrix, assumed to be of full rank, the least squares
solution to (2.4), minimizing the weighted sum of squares of errors, eTPe, is:

bX¼ ATPA
� ��1

ATPL: ð2:5aÞ

The error vector and covariance matrix of the unknowns become:

ê ¼ L� AbX ð2:5bÞ
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and

QX ¼ r20 ATPA
� ��1

: ð2:5cÞ

Here P is a positive definite weight matrix among the observations, ð Þ�1 is the
inverse of the matrix in the bracket and r20 is the variance of unit weight. The latter
can be unbiasedly estimated by:

s2 ¼ êTPê=ðn� mÞ ¼ LTP L� AbX� �
= n� mð Þ; ð2:5dÞ

where n and m are the numbers of observations and unknown parameters,
respectively.

Example 1 Consider a linear regression in time tið Þ with observation equations

aþ bti ¼ li � ei; i ¼ 1; . . .; n; ð2:6aÞ

or, in a matrix equation

1 t1
:: ::
1 tn

24 35 a
b

� �
¼

l1
::
ln

24 35� e ð2:6bÞ

with the least squares solution for the parameters a and b

â
b̂

� �
¼

n
Pn
i¼1

tiPn
i¼1

ti
Pn
i¼1

t2i

2664
3775
�1 Pn

i¼1
liPn

i¼1
tili

2664
3775 ð2:6cÞ

If one substitutes ti by Dti ¼ ti � t0, where t0 ¼
Pn

i¼1 ti
� �

=n is the mean of the
observation times, one obtains:

Xn
i¼1

Dti ¼ 0;

implying that the off-diagonal elements of the normal matrix ATA vanish, yielding
a diagonal matrix, and the above solution is simplified to:

â ¼
Xn
i¼1

li=n and b̂ ¼
Xn
i¼1

Dtili=
Xn
i¼1

Dt1ð Þ2 ð2:6dÞ
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with standard errors

sâ ¼ s=
ffiffiffi
n

p
and sb̂ ¼ s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Dt1ð Þ2
s

; ð2:6eÞ

where the variance of unit weight (s) is given by Eq. (2.5d).
This solution is useful in estimating the secular change/trend parameter b of the

set of observations lð Þ observed at different epochs. In particular, if the time interval
(Dt) between successive epochs is constant, it follows that:

b̂ ¼ 2
Dt

Pn
i¼1 2i� n� 1ð ÞliPn
i¼1 2i� n� 1ð Þ2 and sb ¼

s

Dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 2i� n� 1ð Þ2
q : ð2:6fÞ

One may also eliminate the constant a in Eq. (2.6a) by substituting each
observation li by li ��l, where �l is the mean of the observations.

The estimated secular trend b̂
� �

may be sensitive to periodic signals not included
in the regression analysis, in particular for long-periodic terms. If the periods Tj

� �
are known, their causes can be included in the adjustment by the revised formula

aþ bti þ
XJ
j¼1

cj cosxjti þ dj sinxjti
� � ¼ li � ei; i ¼ 1; . . .; n; ð2:6gÞ

where xj ¼ 2p=Tj and J is the number of periodic signals included in the
adjustment.

If the set of observations are evenly distributed over the period and includes one
or a multiple of periods, the effect of the periodic term is eliminated. More gen-
erally, the regression formula is extended to multiple regression analysis by
including several types of correlated observables. Then the normal matrix ATPA of
the solution (2.5a) will be a full matrix, and, for example, the simple solution for the
trend parameter in (2.6f) does not hold, implying that the unknown parameters are
correlated and mutually affect the solutions of the individual parameters.

– Special Cases:

• Frequently the underlying function fiðXÞ for the observation li is non-linear:

li � ei ¼ fiðXÞ; i ¼ 1; . . .; n; ð2:7aÞ

and by Taylor expansion of all observation equations the system may be
linearized to the matrix equation
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ADX ¼ DL� e; ð2:7bÞ

where A is the design matrix as above, DX is the (unknown) improvement of
X versus the approximate value X0 and

DL ¼ L� f1 X0ð Þ; . . .; fn X0ð Þ½ �T ð2:7cÞ

Here L is the vector of observations li: By solving (2.7b) as in (2.5a), the
least squares solution is achieved. As the original equations are non-linear,
the solution may need to be iterated for convergence.

• If there are a priori information X� of the unknown vector X with covariance
matrix QX , the matrix equation (2.4) can be augmented by the equation

IX ¼ X� � ex; E exe
T
x

� � ¼ QX ; ð2:8aÞ

and assuming also that the observations X� and L are uncorrelated, the
improved least squares solution becomes (e.g. Sjöberg 2013, Sect. 12.1):

bX ¼ N�1 Q�1
X X� þATQ�1L

� � ð2:8bÞ

or

bX ¼ X� þK L� AX�ð Þ; ð2:8cÞ

where:

N ¼ Q�1
X þATQ�1A and K ¼ QXA

T AQXA
T þQ

� ��1
; ð2:8dÞ

and the covariance matrix of the solution vector can be written:

QbX¼ N�1 ¼ QX�KAQX: ð2:8eÞ

It is obvious that this solution is both more stable and precise than the
original solution (2.5a).
As an example, the solution of Eqs. (2.8c) and (2.8e) is useful in gravity
inversion when a preliminary model of Earth parameters X�ð Þ are at hand
from a previous analysis, and new data Lð Þ are available to improve the
model. In the case that the new observation equation is non-linear, it can be
linearized as described above. Several other ways of adjusting the non-linear
equations in combination with the preliminary model are discussed at length
in Tarantola (1987).
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• Closely related adjustment schemes are condition adjustment and condition
adjustment with unknowns. See, e.g. Bjerhammar (1973, Chaps. 12 and 20),

A discrete least squares problem may be rank deficient or ill-conditioned,
leading to proper and numerical singularities, respectively, in the systems of
equations. In the first case, there is no unique solution. In the second case, a unique
solution may exist, but the system is badly conditioned such that the numerical
solution may fail or be badly contaminated by errors. In solving geoscience
problems by gravity inversion, the systems of equations are frequently
ill-conditioned, as such problems are typically ill-posed, which can be handled by
some type of regularization (see Sect. 2.8).

2.2 Least Squares Collocation

2.2.1 Discrete Collocation

Least Squares Collocation (LSC) is a type of interpolation and/or prediction of
stochastic variables, either within one type of observable or from the observations
of one type to another. In addition, the covariances among the observables as well
as between these and the predicted variable are assumed to be known.

Let x and y be stochastic variables with expectations zero. The variable y is
assumed to be estimated (predicted) from observations of x. The auto-covariance
and error covariance matrices (C and D) among the observations in the observation
matrix X, as well as the cross-covariance vector c between y and X, are known.
Moreover, if the variance of y, r2y , is known, the prediction variance can also be
estimated. In this case y can be optimally estimated/predicted in a least squares
sense by the formula (Moritz 1980, Part B)

ŷ¼ cT CþDð Þ�1X; ð2:9aÞ

and the prediction variance becomes:

r2ŷ ¼ r2y � cT CþDð Þ�1c: ð2:9bÞ

Proof Consider the general linear estimator

~y ¼ aTX; ð2:10aÞ

where a is an arbitrary vector and the error of X is e with expectation zero. Then the
prediction error becomes:
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e~y ¼ ~y� y ¼ aTX� y; ð2:10bÞ

and by assuming that e and y are uncorrelated, the prediction variance becomes:

r2~y ¼ E e2~y

n o
¼ r2y þ aTE ðXþ eÞ Xþ eð ÞT	 


a� 2aTE ðXþ eÞyf g
¼ r2y þ aT CþDð Þa� 2aTc ¼ r2y � cT CþDð Þ�1c

þ a� CþDð Þ�1c
h iT

CþDð Þ a� CþDð Þ�1c
h i

� r2y � cT CþDð Þ�1c; ð2:10cÞ

where C ¼ E xxTf g, D ¼ E eeTf g and c ¼ E xyf g. This shows that the optimum
predictor is provided for a ¼ CþDð Þ�1c, and the predictor and its variance follow
from (2.9a, b).

If the expectation of x does not vanish, collocation can still be applied as above
after first removing the bias, trend or systematic error by a least squares adjustment
by elements as above. The whole procedure, including trend removal, is the general
form of least squares collocation (Moritz 1980, Parts B and C).

When collocation is applied to the gravity field of the Earth, it is unrealistic to
assume that the signal (but, on the contrary, the error) is stochastic, and this can
only be assumed as an approximate model. As a result, also the signal covariance
functions needed are in doubt. In the application of collocation the statistical
expectation operator is replaced by a space average operator, which is not trivial.
Lauritzen (1973) even proved that a Gaussian stochastic process of gravity is not
ergodic, implying that “even if we knew gravity all over the Earth, we would not be
able to find the true covariance function”. If there is only one realization available
of the stochastic process, we cannot determine the true covariance function.

Nevertheless, discrete collocation is an important method for inter- and extrap-
olation that also provides an approximate estimate of the prediction variance. Even if
this method is not the most precise technique, it is frequently also used for deter-
mining various quantities from gravity data. However, one should also bear in mind
that collocation leads to large matrix systems when many observations are at hand.

In geology and geophysics, a similar concept named kriging has been developed
for applications in geostatistics (see, e.g. Matheron 1963). The essential difference
to collocation is the variogram that replaces the covariance function used in col-
location. See, e.g. Dermanis (1984) for further details.

2.2.2 Continuous Collocation

Let x be a continuous stochastic process on the sphere with expectation zero and
auto-covariance function cxxðP;QÞ. Its observation �x is contaminated by the error e,
which is assumed to be uncorrelated with the true signal x, has expectation 0 and
auto-covariance function dðP;QÞ:
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Problem It is requested to determine the least squares solution to the linear con-
tinuous estimator on the sphere:

~yP ¼
ZZ
r

h�xdr; ð2:11Þ

where h is an unknown kernel function to be determined such that the variance of ~y
is a minimum. Here r is the unit sphere. In addition, the cross-covariance function
between the signals y and x, i.e. cyxðP;QÞ ¼ cxyðP;QÞ, is assumed to be known.

Solution (Sjöberg 1979): The error of ~y is:

ey ¼ ~y� y ¼
ZZ
r

h�xdr� y; ð2:12Þ

with the prediction variance

r2~yðPÞ ¼ E ~y� yð Þ2
n o

¼ r2yðPÞ � 2
ZZ
r

hðP;QÞcyxðP;QÞdrQ

þ
ZZ
r

hðP;QÞ
ZZ
r

hðP;Q0Þ cuuðQ;Q0 þ d ðQ;Q0ð Þf gdrQ0

24 35drQ : ð2:13Þ

It follows that the minimum prediction variance

r2ŷðPÞ ¼ r2yðPÞ � 2
ZZ
r

ĥðP;QÞcyxðP;QÞdrQ ð2:14Þ

is obtained by:

cyxðP;QÞ ¼
ZZ
r

ĥðP;Q0Þ cuuðQ;Q0Þ þ d Q;Q0ð Þf gdrQ0 : ð2:15Þ

which is the so-called Wiener-Hopf integral equation for the kernel function h. The
least squares solution is thus given by Eq. (2.11) with h given by Eq. (2.15).

If there are two different sets of stochastic processes, x1 and x2 on the sphere,
observed with random errors e1 and e2, and all covariance functions are known
(with obvious notations similar to the above example), a related stochastic process
y can be optimally estimated from the general combined estimator

~yP ¼
ZZ
r

h1ðP;QÞ�x1ðQÞþ h2ðP;QÞ�x2ðQÞð Þdr: ð2:16Þ
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The least squares solution for functions h1 and h2 are the solutions to the integral
equations

cyx1ðP;QÞ ¼
ZZ
r

ĥ1ðP;Q0Þ�c11ðQ0;QÞþ ĥ2ðP;Q0Þc12ðQ0;QÞ� �
dr0 ð2:17aÞ

and

cyx2ðP;QÞ ¼
ZZ
r

ĥ2ðP;Q0Þ�c22ðQ0;QÞþ ĥ1ðP;Q0Þc21ðQ0;QÞ� �
dr0; ð2:17bÞ

where:
�c11 ¼ c11 þ d11 and �c22 ¼ c22 þ d22; dii are the respective noise covariance

functions.
The expected least squares prediction variance becomes:

r2ŷðPÞ ¼ r2yðPÞ �
ZZ
r

ĥ1ðP;QÞ
ZZ
r

�c11ðQ;Q0Þĥ1ðP;QÞþ 2c12ðQ;Q0Þĥ2ðP;Q0Þ	 

dr0

24 35dr
�
ZZ
r

ĥ2ðP;QÞ
ZZ
r

�c22ðQ;Q0Þĥ2ðP;Q0Þ	 

dr0

24 35dr: ð2:18Þ

The solutions to the kernel functions hi can be conveniently determined from
Eqs. (2.17a, b) by expressing all functions in spherical harmonics (see Sect. 2.8.2).
If the stochastic processes are harmonic in the exterior of the sphere (which is the
case if they are related with the gravity field and there are no topographic and
atmospheric masses outside the sphere), the predictions ŷp can be extended to any
point on or outside the sphere (Sjöberg 1979). The Wiener filter is further discussed
in Sect. 2.8.2 as a method of regularization.

2.3 Coordinate Systems

Consider the point P in an Earth-fixed Cartesian coordinate system x; y; zð Þ, with
origin at the Earth’s centre of gravity, the z-axis along the Earth’s axis of rotation
and the x; yð Þ-plane in the equatorial plane with the x-axis in Greenwich meridian
and y-axis at right angle to the east.

Then the Cartesian coordinates can also be expressed in spherical coordinates
(see Fig. 2.1)

x ¼ r cosw cos k

y ¼ r cosw sin k

z ¼ r sinw;

ð2:19Þ
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where r and w are the geocentric radius and latitude, respectively, and k is the
longitude.

The geodetic coordinates u; k; hð Þ = (latitude, longitude, height) are related to
the Cartesian coordinates by the formulas (see Fig. 2.2)

x ¼ ðNþ hÞ cosu cos k

y ¼ ðNþ hÞ cosu sin k

z ¼ Nð1� e2Þþ h
� �

sinu;

ð2:20Þ

where:

N ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2 u

q
ð2:21Þ

is the radius of curvature in the prime vertical of the reference ellipsoid with
semi-major and semi-minor axes a and b, and e2 ¼ a2 � b2ð Þ=a2 is the eccentricity
of the ellipsoid squared.

Fig. 2.1 Relation between
Cartesian and spherical
coordinates

Fig. 2.2 Relation between
Cartesian and geodetic
coordinates
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Next we present the relationship between the Cartesian and ellipsoidal coordi-
nates u; b; kð Þ (see Fig. 2.3)

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þE2

p
cos b cos k

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þE2

p
cos b sin k

z ¼ u sin b;

ð2:22Þ

where:

E ¼ ae ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p

is the linear eccentricity.
By considering a point on the reference ellipsoid (i.e., with h ¼ 0 and u ¼ b), it

follows from the above equations that geocentric, geodetic and reduced latitudes
w;u; bð Þ are related by the equations

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ¼ tanw ¼ 1� e2
� �

tanu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
tan b: ð2:23Þ

The Cartesian coordinates can be determined from the curvilinear coordinates
above by straightforward transformations. The inverse transformations are much
more cumbersome to derive, unless the computational point is located on the ref-
erence ellipsoid. An exception is the longitude, which for all three curvilinear
coordinate systems above is the same and can be determined by:

k ¼ 2 arctan
y

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p : ð2:24Þ

Fig. 2.3 Relations between Cartesian coordinates and geocentric, geodetic and reduced latitudes
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Equation (2.19) can be inverted to provide the spherical coordinates r;wð Þ from
the Cartesian ones by:

tanw ¼ z
p

and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ z2

p
; ð2:25aÞ

where:

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: ð2:25bÞ

From Eq. (2.22) one obtains the inverse transformation from Cartesian coordi-
nates to ellipsoidal coordinates by:

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w4 þ 4E2z2

p� �r
=
ffiffiffi
2

p
ð2:26aÞ

and

tan b ¼ z
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E=uð Þ2

q
; ð2:26bÞ

where:

w2 ¼ p2 þ z2 � E2: ð2:26cÞ

There are numerous solutions in the literature to the geodetic latitude u and height
h; some solutions are iterative (e.g. Heiskanen and Moritz 1967, p. 183; Fukushima
2006; others are approximate, (e.g. Hoffmann-Wellenhof et al. 2008, p. 280):

u ¼ arctan
zþ e0ð Þ2b sin3 o
p� e2 cos3 o

; ð2:27aÞ

where the auxiliary argument o is given by:

tan o ¼ z= p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p� �
and e0ð Þ2¼ a2 � b2

� �
=b2; ð2:27bÞ

and there are also several exact solutions (see below).
Two efficient iterative methods were presented by Fukushima (2006) by

applying Halley’s third-order method to solve non-linear equations (Danby 1988).
This method can be derived as follows. By squaring and adding the first two of
Eq. (2.20), one obtains:

p ¼ ðNþ hÞ cosu; ð2:28Þ
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and from this equation, and the last equation of (2.20) h can be eliminated, resulting
in an equation in u alone:

f uð Þ ¼ p tanu� z� e2a
sinuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2 sin2 u
p ¼ 0; ð2:29aÞ

and by taking advantage of Eq. (2.23), one finally obtains:

FðTÞ ¼ PT � Z � e2
Tffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ T2
p ¼ 0; ð2:29bÞ

where P ¼ p=a, Z ¼ z=a and T ¼ tan b.
Applying Halley’s third-order method, the iteration for T uses the formula

Tnþ 1 ¼ Tn � FðTnÞ
F0 Tnð Þ � F00 Tnð ÞFðTnÞ= 2F0 Tnð Þð Þ ; ð2:30aÞ

where n is the iteration step and the first- and second-order derivatives are:

F0 Tnð Þ ¼ P� e2= 1þ T2
n

� �3=2
and F00ðTnÞ ¼ 3e2Tn= 1þ T2

n

� �5=2
: ð2:30bÞ

As the second-order derivative is rather cumbersome, it may be neglected,
yielding Newton’s second-order iteration formula

Tnþ 1 ¼ Tn � FðTnÞ
F0 Tnð Þ : ð2:31Þ

A suitable start value for Tn could be T0 ¼ Z= P 1� e2ð Þ½ �.
Fukushima (2006) showed that this iterative method is faster than any of the

other methods published for the transformation of Cartesian to geodetic coordinates
at an accuracy within 6’’ � 10−6 for elevations ranging between −10 and
30,000 km.

Note that the iteration using the latitude as an argument will have a problem for
high latitudes. In such situations, Sjöberg (1999) proposed iteration by using the
co-latitude. Another way to circumvent the problem close to the pole is to substitute
the unknown latitude u by: / ¼ u� p=4:

An exact solution of geodetic height and latitude (Sjöberg 2008; slightly revised)
reads as follows.

By introducing the new unknown k ¼ ðNþ hÞ=N one obtains the following
equations from Eqs.(2.20), (2.21) and (2.23):

P ¼ x2 þ y2
� �

=a2 ¼ k2cos2b ð2:32aÞ
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and

Q ¼ z2 1� e2
� �

=a2 ¼ k � e2
� �2

sin2 b; ð2:32bÞ

and by combining these two equations such that b is eliminated, one arrives at a
fourth-order equation in k:

P
k2

þ Q

k � e2ð Þ2 ¼ 1: ð2:32cÞ

Using the notations

r ¼ PþQ� e2
� �

=6 and s ¼ PQe4=ð4r3Þ ð2:33Þ

followed by

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sþ s2

p3
q

; u ¼ r 1þ tþ t�1� �
; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ e4P

p
and w ¼ e2

vþ u� P
2v

;
ð2:34aÞ

the only real and positive solution for k becomes

k ¼ wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ vþ u

p
and also W ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

k2 � e2P

r
: ð2:34bÞ

Inserting (2.21) into the definition of k above (2.32a) the geodetic height can
now be determined by

h ¼ a
W

k � 1ð Þ: ð2:35Þ

If P is small vs. Q then the latitude is given by Eq. (2.32a) as

u ¼ � arccosðW
ffiffiffi
P

p
=kÞ(with the same sign as z): ð2:36aÞ

Otherwise Eq. (2.32b) yields

u ¼ � arcsin
k

k � e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

k2 � e2P

r !
(with the same sign as z): ð2:36bÞ
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2.4 Legendre’s Polynomials

Legendre’s polynomials and spherical harmonics are important in regional and
global data representations. The generating function for Legendre polynomials is
the inverse distance between two points P0 and P, located on a sphere of radius
R and outside the sphere at distance rP from the centre of the sphere, respectively:

l�1
P0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2P þR2 � 2rPRt
p ¼ 1

rP
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2 � 2st

p ; ð2:37aÞ

where s ¼ R=rP and t ¼ cosw; w being the centric angle between the radius vectors
for P0ðR;u0; k0Þ and P rP;u; kð Þ (see Fig. 2.4). The angle is related to the latitudes
and longitudes of the points by the cosine formula from spherical trigonometry:

cosw ¼ sinu0 sinuþ cosu0 cosu cos k� k0ð Þ: ð2:37bÞ

Equation (2.37a) can be expanded as a Taylor/binomial series in s, which can be
re-arranged into a series in Legendre’s polynomials Pn tð Þ as:

l�1
P0 ¼ 1

rP

X1
n¼0

snPn tð Þ; s\1: ð2:38aÞ

If P is located inside the sphere, the series becomes:

l�1
P0 ¼ 1

R

X1
n¼0

s�nPnðtÞ; s[ 1: ð2:38bÞ

On the sphere (with s = 1), the series converges for w 6¼ 0:

l�1
P0 ¼ 1

R

X1
n¼0

PnðtÞ: ð2:38cÞ

ψ

P0

0 P

R
Pr

Pl
Fig. 2.4 Spherical distance/
geocentric angle w between
the radius vectors for points
P0 and P
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Differentiate each side of Eq. (2.38a) w.r.t. rP, multiply by �2rP and subtract the
inverse distance. Then, after a few manipulations, one obtains Poisson’s kernel
function

rP r2P � R2
� �

l3P0
¼
X1
n¼0

2nþ 1ð ÞRn

rnP
PnðtÞ; rP [R: ð2:39Þ

This function is important in solving Dirichlet’s problem, the first boundary
value problem of physical geodesy (see Sect. 2.7.5).

Exercise 2.1 Make a Taylor expansion of the inverse distance and compare with
(2.38a) to show that P0ðtÞ ¼ 1, P1ðtÞ ¼ t and P2 tð Þ ¼ 3t2 � 1ð Þ=2:

The solution is given in Appendix.
Legendre’s polynomials have the following important properties:

Pnj j 	 1; Pnð1Þ ¼ 1; Pnð�1Þ ¼ �1ð Þn ð2:40Þ

and

Pn tð Þ ¼ 2n� 1
n

tPn�1 tð Þ � n� 1
n

Pn�2 tð Þ; n� 2: ð2:41Þ

By the recursive formula Eq. (2.41) the Legendre’s polynomial can be deter-
mined numerically to any degree.

Legendre’s polynomials are orthogonal in the interval −1 to 1, i.e.:

Z1
�1

P2
n tð Þdt ¼ 2

2nþ 1
and

Z1
�1

Pn tð ÞPmðtÞdt ¼ 0; if n 6¼ m: ð2:42Þ

Exercise 2.2 Verify (2.42) for n = 0–2.
The solution is given in Appendix.
Legendre’s polynomials can also be determined by Rodrigues’s formula:

Pn tð Þ ¼ dn t2 � 1ð Þn
2nn!dtn

; ð2:43Þ

but this formula is less practical on a computer than the recursive formula.
From the ordinary Legendre’s polynomials, the (associated) Legendre functions

can be defined:

PnmðtÞ ¼ 1� t2
� �m=2 dmPnðtÞ

dtm
; m	 n; ð2:44Þ

where m is the order. It is a basic component in spherical harmonics.
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2.5 Spherical Harmonics

A fully normalized (surface) spherical harmonic of degree n and order m can be
written (Sjöberg 1975, 1978):

Ynm h; kð Þ ¼ NnmPn mj jðcos hÞ sinmk if m[ 0
cosmk otherwise



; ð2:45aÞ

where:

Nnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2nþ 1Þ n� mj jð Þ!

nþ mj jð Þ!
q

if m 6¼ 0ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
m ¼ 0

(
ð2:45bÞ

is a normalizing factor that makes the harmonics orthonormal, i.e., they obey:

1
4p

ZZ
r

Y2
nmdr ¼ 1; ð2:46Þ

where h; kð Þ are the co-latitude and longitude, and they are orthogonal to each other
when averaged over the unit sphere rð Þ:

1
4p

ZZ
r

YnmYkldr ¼ 0; if n 6¼ k and=or m 6¼ l: ð2:47Þ

Note that we use the notations Ynm h; kð Þ; Ynm; Ynm Pð Þ interchangeably when
there could be no misunderstanding.

Let a distance between two points in space be given by lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2P þ r2 � 2rPrt

p
,

where t ¼ cosw and rP; r are the geocentric radii of the two points, separated by the
geocentric angle w. Then Eqs. (2.38a, b) can be generalized to:

1=lP ¼
X1
n¼0

rn

rnþ 1
P

Pn tð Þ; rP [ r external type seriesð Þ ð2:48aÞ

and

1=lP ¼
X1
n¼0

rnP
rnþ 1Pn tð Þ; if rP\r internal type seriesð Þ ð2:48bÞ

• The Legendre’s polynomial PnðcoswÞ is related with the spherical harmonics by
the addition theorem

2nþ 1ð ÞPnðcoswÞ ¼
Xn
m¼�n

YnmðPÞYnmðQÞ; ð2:49Þ

where P andQ are the endpoints of an arc on the unit sphere of geocentric angle w.
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• Any (decent) function f on a sphere can be expanded as a harmonic series:

f ¼ f h; kð Þ ¼
X1
n¼0

Xn
m¼�n

fnmYnm h; kð Þ; ð2:50aÞ

where:

fnm ¼ 1
4p

ZZ
r

fYnmdr: ð2:50bÞ

• The function f may also be written as a Laplace series

f ¼ f ðh; kÞ ¼
X1
n¼0

fn h; kð Þ; ð2:51aÞ

where:

fn h; kð Þ ¼ 2nþ 1
4p

ZZ
r

fPn coswð Þdr; ð2:51bÞ

or, using the addition theorem (2.49)

fn h; kð Þ ¼
Xn
m¼�n

fnmYnm h; kð Þ; ð2:51cÞ

which relates the Laplace harmonics to the spherical harmonics.
• The truncated series

f̂ h; kð Þ ¼
Xnmax

n¼0

Xn
m¼�n

fnmYnm h; kð Þ ð2:52aÞ

has 1þ 3þ 5þ � � � þ ð2nmax þ 1Þ ¼ 1þ nmaxð Þ2 terms and an approximate
resolution of:

m
 � 180
=nmax: ð2:52bÞ

For nmax = 2159 (which is the case for EGM2008; see below) there are
4.665.600 terms and a resolution of about 5′.

• The Newton integral of the Earth’s potential with l = gravitational constant
times density is:
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VðPÞ ¼
ZZ
r

Zrs
0

lr2

lP
drdr: ð2:53Þ

• It can be expanded in the external type harmonic series

VðPÞ ¼
X1
n¼0

R
rP

� �nþ 1

VnðPÞ; rP � rsð Þmax; ð2:54aÞ

where:

VnðPÞ ¼
Xn
m¼�n

YnmðPÞ
2nþ 1

ZZ
r

Zrs
0

l
rnþ 2

Rnþ 1drYnmdr: ð2:54bÞ

Here R is a selected radius (e.g. mean sea-level radius), and rs ¼ rs h; kð Þ is the
radius of the Earth’s topography.

• If rP\ðrsÞmax, the potential can be expanded in a combination of external and
internal type series

VðPÞ ¼
X1
n¼0

R
rP

� �nþ 1

Ve
nðPÞþ

X1
n¼0

rP
R

� �n
Vi
nðPÞ; ð2:55aÞ

where:

Ve
nðPÞ ¼

Xn
m¼�n

YnmðPÞ
2nþ 1

ZZ
r

Zrs
rP

l
rnþ 2

Rnþ 1drYnmdr; ð2:55bÞ

and

Vi
nðPÞ ¼

Xn
m¼�n

YnmðPÞ
2nþ 1

ZZ
r

Zrs
rP

l
Rn

rn�1drYnmdr: ð2:55cÞ

Note that the coefficients in (2.55b, 2.55c) change for each radius rP.

Disregarding the atmosphere, the external type series in Eq. (2.55a) definitely
converges outside the bounding sphere, the Brillouin sphere, which touches the
peak of Mt. Chimborazo in Ecuador at elevation 6267 m with an Earth centre radius
of 6384 km. Although, in the strict sense, the series is likely to diverge inside this
sphere but be asymptotically divergent (Moritz 1980, Chaps. 6 and 7), it can be
applied to very high degrees without notable commission errors also inside the
sphere. However, when applied (analytically continued) inside topographic masses,
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the series is biased and should be corrected for this error (see Sect. 5.2.6). This is in
agreement with the approximation theorems of Runge-Krarup (Krarup 1969) and
Keldysh-Laurentiev (Bjerhammar 1975), which states that there exist harmonic
series that approximate the external type harmonic series arbitrarily well above the
surface and down onto the surface of the Earth, respectively, and converge all the
way down to the internal (Bjerhammar) sphere.

Integral formulas and equations on the sphere can frequently be derived and
solved, respectively, in the spectral domain by spherical harmonics. For examples,
see Sects. 3.3, and 8.2.

2.5.1 Spectral Filtering and Combination

2.5.1.1 Introduction

Here we derive the local least squares spectral filter for a stochastic function on the
sphere based on the spectral representation of the observable and its error covari-
ance matrix. Second, the local least squares spectral combination of two erroneous
harmonic series is derived based on their full covariance matrices. In both problems,
the transition from spectral representation of an estimator to an integral represen-
tation is demonstrated. Practical examples are given for the spectral filter and for the
combination of a series and an integral formula.

Taking advantage of the full covariance matrices in the spectral combination
implies a huge computational burden in determining the least squares filters and
combinations for high degree spherical harmonic series. A reasonable compromise
could be to consider only one weight parameter/degree, yielding the optimum
filtering and combination of Laplace series as outlined in Sect. 7.5.

Spectral combination of harmonic functions has proved to be a practical tool to
match various observables in physical geodesy (see Sects. 2.8.4, 4.4.4–4.4.6 and
Chap. 6). Early models along this line were presented by Sjöberg (1979, 1980,
1981) as well as by Wenzel (1981). In Sjöberg (1979) and partly in Sjöberg (1980),
integral formulas were presented for least squares combination of stochastic, ran-
dom heterogeneous data, while otherwise, more realistically, only the errors of the
data were considered stochastic. All these models have in common that the cor-
relations between different spectral degrees of errors are disregarded, and frequently
the models are based on minimizing the global variance or mean square error. See
also Sjöberg (1984a, b, 1986), which provide the basics of least squares modifi-
cation of Stokes’ formula. Also, Sjöberg (2005) presents a local modification of
Stokes’ formula using weighting by degrees. Considering that Earth gravitational
models (EGMs) are usually provided together with their full covariance matrices, at
least up to some specific degrees, and that the qualities of the models vary over the
surface of the Earth, all the information contained in the covariance matrices should
be utilized in the combined solutions. This article derives such solutions for filtering
and combination of EGMs, as well as in the combination of an EGM with an
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integral formula. See also Sjöberg (2011a). Most of the following subsection is a
reprint of Sjöberg (2011b).

2.5.1.2 Local Spectral Filtering

Let the gravity field related function v be developed into a finite series of spherical
harmonics Ynm h; kð Þ on the sphere

v ¼ v h; kð Þ ¼
Xnmax

n¼0

Xn
m¼�n

vnmYnm h; kð Þ; ð2:56Þ

where vnm are the harmonic coefficients, nmax is the maximum degree of expansion
of the series and h; kð Þ is the (co-latitude, longitude) of the function. Consider the
unbiased and biased estimators of v:

~v0 ¼
Xnmax

n¼0

Xn
m¼�n

~vnmYnm h; kð Þ ¼ eTD~v; ð2:57aÞ

and

~v ¼
Xnmax

n¼0

Xn
m¼�n

pnm~vnmYnm h; kð Þ ¼ pTD~v ð2:57bÞ

where pnm is weighting parameter to be fixed,

~vnm ¼ vnm þ dvnm with E dvnmf g ¼ 0; ð2:57cÞ

and D is a diagonal matrix with nmax þ 1ð Þ2 elements ðY00; Y1�1; . . .; YnmaxnmaxÞ.
Furthermore p and ~v are vectors with obvious elements, and eT ¼ ð1; 1; . . .; 1Þ.

The error of the unbiased and biased estimators can be written:

d~v0 ¼
Xnmax

n¼0

Xn
m¼�n

dvnmYnm h; kð Þ ¼ eTDdv ð2:58aÞ

and

d~v ¼
Xnmax

n¼0

Xn
m¼�n

pnmdvnm þ vnm pnm � 1ð Þ½ �Ynm h; kð Þ ¼ pTDdvþ pT � eT
� �

Dv:

ð2:58bÞ
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Assuming that the covariance matrix of the error vector dv is Q, one obtains the
following variance and Mean Square Error (MSE) of ~v0 and ~v, respectively:

r2v0 ¼ eTDQDe ð2:59aÞ

and

MSEð~vÞ ¼ pTDQDpþ pT � eT
� �

DvvTD p� eð Þ: ð2:59bÞ

The spectral filter solutions are provided by Eq. (2.2b), and the optimum filter is
the one where the filter parameters pnm are chosen such that the MSE is a minimum.
This choice for filter parameters is thus obtained by differentiating the MSE w.r.t.
p and equating it to zero. The result is the matrix equation

DQDþDvvTD
� �

p� DvvTDe ¼ 0 ð2:60Þ

with the solution

p̂ ¼ DQDþDvvTD
� ��1

DvvTDe: ð2:61Þ

Hence, by inserting Eq. (2.61) into Eq. (2.2b), the Local Least Squares Spectral
Filter becomes:

v̂ ¼ pTD~v ¼ eT I� DQD DQDþDvvTD
� ��1

h i
D~v ð2:62aÞ

with the mean square error

MSE v̂f g ¼ eTDQDe� eTDQD DQDþDvvTD
� ��1

DQDe; ð2:62bÞ

and Eqs. (2.62a, b) can also be simplified to:

v̂ ¼ eTD~v� eTDQ Qþ vvT
� ��1

~v ð2:63aÞ

and

MSE v̂f g ¼ eTDQDe� eTDQ Qþ vvT
� ��1

QDe: ð2:63bÞ

Equations (2.59a) and (2.63b) show that the MSE of v̂ is smaller than the
variance of v0. As vvT is not known, there is a practical problem in applying
Eqs. (2.63a, b). However, Qþ vvT is unbiasedly estimated by ~v~vT, and, by this
substitution, the filter and its covariance matrix can be realized.
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2.5.1.3 Generalized Filtering

Here we assume that a function w h; kð Þ is related to function v h; kð Þ by the har-
monic series

w ¼ w h; kð Þ ¼
Xnmax

n¼0

Xn
m¼�n

knmvnmYnm h; kð Þ; ð2:64Þ

where knm are known coefficients (possibly functions of radial position). In analogy
with above, the general estimator

~w ¼
Xnmax

n¼0

Xn
m¼�n

qnm~vnmYnm h; kð Þ ¼ qTD~v ð2:65Þ

is optimized in the least squares sense by the weight vector

q̂ ¼ DQDþDvvTD
� ��1

DvvTDk ¼ I� DQD DQDþDvvTD
� ��1

h i
k; ð2:66Þ

yielding the least squares estimator

ŵ ¼ kTD~v� kTDQ Qþ vvT
� ��1

~v; ð2:67aÞ

with the minimum mean square error (with respect to choice of q)

MSE ŵf g ¼ kTDQDk� kTDQ Qþ vvT
� ��1

QDk: ð2:67bÞ

Comparing Eqs. (2.64) and (2.67a), we notice that q̂nm ¼ p̂nm, which we will
take advantage of in the integral representations that follow below.

2.5.1.4 Integral Representation of the Filter

Assuming that the spherical harmonics Ynm h; kð Þ are fully normalized, it means that
they are mutually orthonormal, i.e.:ZZ

r

YnmYkldr ¼ 4p; if n;mð Þ ¼ k; lð Þ
0 otherwise:



ð2:68Þ

Then we can express Eq. (2.67a) by the integral

ŵP ¼ 1
4p

ZZ
r

KðP;QÞ~vdr; ð2:69aÞ
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where the kernel function KðP;QÞ becomes:

KðP;QÞ ¼
Xnmax

n¼0

Xn
m¼�n

knmp̂nmYnm hP; kPð ÞYnm hQ; kQð Þ: ð2:69bÞ

Here Q is the integration point on the unit sphere (denoted by r).

Example 2.1 Use Eq. (2.69a) to estimate the disturbing potential TP at the radius rP
from the gravity anomaly D~g on the sphere of radius R.

Solution Choosing knm ¼ 0 for n\2 and knm ¼ rP=ðn� 1Þ R=rPð Þnþ 1 for n� 2, the
solution is obtained by:

T̂P ¼ rP
4p

ZZ
r

SðP;QÞD~gdr; ð2:70aÞ

where:

SðP;QÞ ¼
Xnmax
n¼2

1
n� 1

R
rP

� �nþ 1 Xn
m¼�n

p̂nmYnm Pð ÞYnm Qð Þ: ð2:70bÞ

2.5.1.5 Local Spectral Combination

Let ~u and ~v be two unbiased estimators of the finite harmonic series v, given by
Eq. (2.56). Let the estimators be expressed by the series

~u ¼
Xnmax

n¼0

Xn
m¼�n

~unmYnm h; kð Þ ¼ eTD~u ð2:71aÞ

and

~v ¼
Xnmax

n¼0

Xn
m¼�n

~vnmYnm h; kð Þ ¼ eTD~v; ð2:71bÞ

where both sets of coefficients ~unm and ~vnm are unbiased estimates of vnm with
random errors dunm and dvnm, respectively, and the last parts of the equations are
obvious matrix representations. We will assume also that the errors of the coeffi-
cients have expectations zero, and their covariance matrices will be denoted:
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E duduT
	 
 ¼ R; E dvdvT

	 
 ¼ Q; and E dudvT
	 
 ¼ X: ð2:72Þ

The general unbiased spectral combination of the two series of Eqs. (2.71a, b)
can be written:

~w ¼ pTD~uþ eT � pT
� �

D~v; ð2:73Þ

where, again, p is a weight vector. The error and variance of this estimator become:

dw ¼ pTDduþ eT � pT
� �

Ddv ð2:74Þ

and

r2w ¼ E dw2
	 
 ¼ pTDRDpþ eT � pT

� �
DQD e� pð Þ

þ pTDXD e� pð Þþ eT � pT
� �

DXTDp:
ð2:75Þ

The least squares choice of p minimizes the variance, and this minimum is
attained by differentiating Eq. (2.75) w.r.t. p and equating to zero. The result is:

DMDp� D Q�Xð ÞDe ¼ 0; ð2:76aÞ

where:

M ¼ RþQ�X�XT; ð2:76bÞ

with the solution

p̂ ¼ DMDð Þ�1D Q�Xð ÞDe ¼ D�1M�1 Q�Xð ÞDe: ð2:76cÞ

Hence, the least squares spectral combination becomes:

ŵ ¼ eTD Q�XT� �
M�1~uþ eTD R�Xð ÞM�1~v ð2:77aÞ

with the variance

r2ŵ ¼ eTDQDe� eTD Q�XT� �
M�1 Q�Xð ÞDe: ð2:77bÞ

2.5.1.6 Generalization

Let us assume that the function
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w ¼ w r; h; kð Þ ¼
Xnmax

n¼0

R
r

� �nþ 1 Xn
m¼�n

wnmYnm h; kð Þ; ð2:78Þ

where r�R, is a 3D function, unbiasedly estimable on and outside the sphere of
radius R by the functions ~u h; kð Þ and ~v h; kð Þ on the sphere. Then the general
unbiased estimators for w can be written:

~w1 ¼
Xnmax

n¼0

R
r

� �nþ 1 Xn
m¼�n

fnm~unmYnm h; kð Þ ¼ fTD~u ð2:79aÞ

and

~w2 ¼
Xnmax

n¼0

R
r

� �nþ 1 Xn
m¼�n

gnm~vnmYnm h; kð Þ ¼ gTD~v; ð2:79bÞ

where the given coefficients fnm and gnm bring the harmonics of u and v to those of
w, i.e. wnm ¼ fnmunm ¼ gnmvnm. Also, vectors f and g have the elements
R=rð Þnþ 1fnm and R=rð Þnþ 1gnm, with 0	 n	 nmax and �n	m	 n.
A general unbiased combined estimator for w can be written:

~w ¼
Xnmax

n¼0

Xn
m¼�n

pnmfnm~unmYnm h; kð Þþ
Xnmax

n¼0

Xn
m¼�n

1� pnmð Þgnm~vnmYnm h; kð Þ; ð2:80aÞ

where pnm are arbitrary degree/order weights. With matrix notations the estimator
becomes:

~w ¼ dT~uþ gTD� hT
� �

~v; ð2:80bÞ

where d ¼ Fp, h ¼ Gp and p is the vector with elements pnm. Here F and G are
diagonal matrices with elements from vectors Df and Dg, respectively.

The variance of ~w becomes:

r2~w ¼ dTRdþ gTD� hT
� �

Q Dg� hð Þþ dTX Dg� hð Þþ gTD� hT
� �

XTdT ;

ð2:81Þ

and its minimum is obtained by differentiating Eq. (2.81) w.r.t. p and equating it to
zero. The result is:

Hp�GQDgþFXDg ¼ 0; ð2:82aÞ
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where:

H ¼ FRFþGQG� FXG�GXTF: ð2:82bÞ

Hence, the optimum weight vector becomes:

p̂¼ H�1 GQ� FXð ÞDg; ð2:83Þ

yielding the optimum estimator for w

ŵ ¼ p̂TF~uþ gTD�p̂TG
� �

~v; ð2:84aÞ

with the variance

r2ŵ ¼ gTDQDg� p̂THp̂ ¼ gTD Q� QG�XTF
� �

H�1 GQ� FXð Þ� �
Dg:

ð2:84bÞ

2.5.1.7 Integral and Series Combination

The estimator ~w2 of Eq. (2.79b) can be expressed by the integral

~w2 ¼ 1
4p

ZZ
r

eM r; h; k; h0; k0ð Þ~v h0; k0ð Þdr0; ð2:85aÞ

where the kernel function is given by:

eM r; h; k; h0; k0ð Þ ¼
Xnmax

n¼0

R
r

� �nþ 1 Xn
m¼�n

gnmYnm h; kð ÞYnm h0; k0ð Þ: ð2:85bÞ

It follows that Eq. (2.80a) can be rewritten as

ŵ ¼ 1
4p

ZZ
r

M r; h; k; h0; k0ð Þ~v h0; k0ð Þdrþ
Xnmax

n¼0

Xn
m¼�n

p̂nmfnm~unmYnm h; kð Þ; ð2:86aÞ

where:

M r; h; k; h0; k0ð Þ ¼
Xnmax

n¼0

R
r

� �nþ 1 Xn
m¼�n

1� p̂nmð ÞgnmYnm h; kð ÞYnm h0; k0ð Þ: ð2:86bÞ
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Example 3.1 Geoid height estimation from an EGM and an integral formula with
estimated gravity anomaly D~g.

The least squares estimator for the geoidal height is given by Eqs. (2.86a, b) for
fnm ¼ R=c, ~unm ¼ ~Tnm, ~m ¼ D~g, gnm ¼ R= n� 1ð Þ, r ¼ R, and the degree summation
in Eq. (2.86b) starts at nmin ¼ 2. The result is:

bN ¼ R
4pc

ZZ
r

S h; k; h0; k0ð ÞD~gdrþ R
c

Xnmax

n¼2

Xn
m¼�n

p̂nmeTnmYnm h; kð Þ; ð2:87aÞ

where:

S h; k; h0; k0ð Þ ¼
Xnmax

n¼2

1
n� 1

Xn
m¼�n

1� p̂nmð ÞYnm h; kð ÞYnm h0; k0ð Þ: ð2:87bÞ

The least squares weights are given by Eq. (2.83) when considering the above
choices of fnm and gnm.

2.5.1.8 Filtering and Weighting by Laplace Harmonics

So far we considered filtering and weighting by spherical harmonics. From a
numerical point of view, when considering the large dimension of the matrices to be
inverted, e.g. Qþ vvT in Eq. (2.63a), it could be reasonable to modify the technique
to one weight factor/degree. This is obtained by considering that Eq. (2.56) can be
written as the series of Laplace harmonics

xn ¼ xn h; kð Þ ¼
Xn
m¼�n

vnmYnm h; kð Þ; ð2:88Þ

which yields:

v ¼
Xnmax

n¼0

xn: ð2:89Þ

Similarly, the estimator of Eq. (2.57b) and its error can be expressed as:

~v ¼
Xnmax

n¼0

pn~xn ¼ pT~x ð2:90aÞ
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and

d~v ¼
Xnmax

n¼0

pnd~xn þ pn � 1ð Þxn½ � ¼ pTdxþ pT � eT
� �

x: ð2:90bÞ

Hence, the MSE of ~v becomes:

MSEð~vÞ ¼ pTQxxpþ pT � eT
� �

xxT p� eð Þ ð2:91Þ

with the least squares choice for the weight vector:

p̂ ¼ Qxx þ xxT
� ��1

xxTe: ð2:92Þ

Finally, the filtered estimator becomes:

v̂ ¼ eT I�Qxx Qxx þ xxT
� ��1

h i
~x ð2:93aÞ

with the MSE

MSE v̂f g ¼ eTQxxe� eTQxx Qxx þ vvT
� ��1

Qxxe: ð2:93bÞ

Similarly the generalized filter of Eq. (2.64) can be obtained for the restriction of
the number of weights to one/degree, and the integral representation of the filter
becomes:

ŵP ¼ 1
4p

ZZ
r

KðP;QÞ~xdr; ð2:94aÞ

where:

KðP;QÞ ¼
Xnmax

n¼0

2nþ 1ð Þknp̂nPn coswð Þ: ð2:94bÞ

Here Pn coswð Þ is the n-th Legendre’s polynomial, and w is the geocentric angle
between the computation and integration points.

Finally the least square spectral combination for degree weighting corresponding
to Eqs. (2.77a, b) can be written:

ŵ ¼ eT Q�XT� �
M�1~uþ eT R�Xð ÞM�1~v ð2:95aÞ

with the variance:
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r2ŵ ¼ eTQe� eT Q�XT� �
M�1 Q�Xð Þe; ð2:95bÞ

where ~u and ~v now means vectors of Laplace harmonics, and Q;R;X are the
corresponding covariance matrices, and M is again defined by Eq. (2.76b).

2.5.1.9 Conclusions

The above solutions are the locally optimum spectral filters and combinations of
functions on the sphere in the sense of minimum MSE. They utilize the full
covariance matrices of the stochastic errors of the parameters representing the
functions. In the most advanced cases, this implies that the total covariance matrix
of a given EGM is employed, implying a considerable computational burden. This
workload can be relaxed by considering only spectral weighting by degree, yielding
the filter and spectral combination of Laplace series (see e.g. Sects. 2.8.4 and 7.6).

The above study includes the theoretical derivations of general filters and
spectral combinations of harmonic series or a harmonic series and an integral
formula, and the solutions should be suitable for solving both direct and inverse
problems on the sphere.

2.6 Ellipsoidal Harmonics

As the Earth is rather a two-axis ellipsoid than a sphere, ellipsoidal harmonics are
better suited than spherical ones for global modelling. The relation between
Cartesian and ellipsoidal coordinates was presented in Eq. (2.22). The Laplace
equation in ellipsoidal coordinates and its solution for the exterior case were derived
in Heiskanen and Moritz (1967, Sects. 1–19 and 1–20). The solutions are:

u2 þE2 cos2 h
� �

DV ¼ u2 þE2
� � @2V

@u2
þ 2u

@V
@u

þ @2V

@h2

þ cot h
@V
@h

þ u2 þE2 cos2 h

u2 þE2ð Þ sin2 h
@2V

@k2
¼ 0

ð2:96aÞ

and

Ve u; h; kð Þ ¼
X1
n¼0

Xn
m¼�n

Qnm iu=Eð Þ
Qnm ib=Eð Þ

eAnmYnm h; kð Þ; ð2:96bÞ

where Qnmð Þ are associate Legendre’s polynomials of the 2nd kind, and ~Anm are
normalized harmonic coefficients on the ellipsoid, while Ynm are the surface har-
monics. This implies that the potential on the ellipsoid can be expressed:
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Ve b; h; kð Þ ¼
X1
n¼0

Xn
m¼�n

eAnmYnm h; kð Þ; ð2:97Þ

where X ¼ 4pab is the area of the ellipsoid with a and b being the semi-axes of the
ellipsoid. Starting from Eq. (2.96b), the disturbing potential, the gravity anomaly
and other gravity related quantities can be represented in ellipsoidal harmonics.
Equation (2.97) indicates that a series of surface spherical harmonics can represent
a function (not necessarily a potential) on a rather arbitrary surface.

One important application of ellipsoidal harmonics was utilized in the devel-
opment of the Earth Gravitational Model 2008 (Pavlis et al. 2012). In this tech-
nique, which was already tested in earlier OSU EGMs, a preliminary EGM is first
determined from a global set of 5′ equal-area mean gravity anomalies analytically
downward extended to the reference ellipsoid. From this set of data, “terrestrial”
ellipsoidal potential coefficients were solved from an overdetermined linear system
of equations of coefficients ~Anm from harmonic degree 2 complete to degree and
order 2159, and these coefficients were transformed to spherical harmonics by the
method of Gleason (1988, Eq. 2.10). In a second least squares adjustment, the
satellite only spherical harmonic model ITG-GRACE03S, complete to degree 180,
and the “terrestrial” harmonics were merged into a final solution.

2.7 Fundamentals of Potential Theory

2.7.1 Basic Concepts and Formulas

Newton’s law of gravitation is fundamental to potential theory. It states that (the
magnitude of) the attracting force F between two point masses m1 and m2 at
distance l is:

F ¼ Gm1m2=l
2; ð2:98Þ

where G (�6:67� 10�11 Nm2/kg2) is the gravitational constant. From now on, we
set the attracted mass m1 to 1 (unit mass) at point P (x, y, z) and the attracting mass
m2 ¼ m at point Q n; g; fð Þ. Then the 3-D attraction force at P can be expressed:

F ¼ �G
m
l3
r; ð2:99Þ

or, in Cartesian components (see Fig. 2.5):

2.6 Ellipsoidal Harmonics 57



Fx

Fy

Fz

0@ 1A ¼ �G
m
l3

x� n
y� g
z� f

0@ 1A: ð2:100Þ

The potential energy V that the unit mass experiences at point P is called the
gravitational potential at P:

V ¼ G
m
l
; ð2:101Þ

and the potential is thus related to the vector of attraction (gravitation) by the
equation

F ¼ gradðVÞ ¼ @V
@x

@V
@y

@V
@y

� �T
ð2:102Þ

and its magnitude becomes:

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@V
@x

� �2

þ @V
@y

� �2

þ @V
@z

� �2
s

: ð2:103Þ

The potential is a scalar quantity, and it is additive. The latter property implies
that the potential at a point Pj can be determined as the sum of the potentials
generated by all surrounding point masses mi:

Vj ¼ G
Xn
i¼1

mi

lji
; ð2:104aÞ

where lji is the distance between points Pj and Pi. This equation can be generalized
to a closed body with volume t and density q:

Fig. 2.5 Components of the attraction force F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þF2

y þF2
z

q
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Vj ¼ G
ZZZ

t

dm
l

¼ G
ZZZ

t

qdt
l
; ð2:104bÞ

where l ¼ lji. According to Eq. (2.102), the force vector becomes:

Fj ¼ gradðVjÞ ¼ G
ZZZ

t

q @
@xj

; @
@yj

; @
@zj

� �T 1
l
dt: ð2:105Þ

• If the potential is generated by a materialized surface S with surface density
j ¼ dm=dS, the correspondence to the 3D-Newton integral (2.104b) is given by

V ¼ G
ZZ
S

j
l
dS: ð2:106aÞ

This potential is continuous on and outside the surface, but its derivatives are
discontinuous at the surface. Hence, the normal derivative on the surface
becomes

@V
@n

¼ G
ZZ
S

j
@

@n
1
l

� �
dS� 2pGj; ð2:106bÞ

where the minus/plus sign applies to the exterior/internal side of the surface.

• Introducing l ¼ gravitational constant times topographic density into
Eq. (2.104b), the Newton integral of the Earth’s potential, can be written:

VðPÞ ¼
ZZ
r

Zrs
0

lr2

lP
drdr; ð2:107Þ

where r is the unit sphere and rs is the radius of the Earth’s surface.

• The potential can be expanded in the external-type harmonic series

VðPÞ ¼
X1
n¼0

R
rP

� �nþ 1

VnðPÞ; rP � rsð Þmax; ð2:108aÞ

where:

VnðPÞ ¼
Xn
m¼�n

YnmðPÞ
2nþ 1

ZZ
r

Zrs
0

l
rnþ 2

Rnþ 1drYnmdr: ð2:108bÞ
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Here R is a selected radius (e.g. mean sea level radius), and rs ¼ rs h; kð Þ.
• If rP\ðrsÞmax, the potential can be expanded in a combination of external and

internal type series:

VðPÞ ¼
X1
n¼0

R
rP

� �nþ 1

Ve
nðPÞþ

X1
n¼0

rP
R

� �n
Vi
nðPÞ; ð2:109aÞ

where:

Ve
nðPÞ ¼

Xn
m¼�n

YnmðPÞ
2nþ 1

ZZ
r

Zrs
rP

l
rnþ 2

Rnþ 1drYnmdr; ð2:109bÞ

and

Vi
nðPÞ ¼

Xn
m¼�n

YnmðPÞ
2nþ 1

ZZ
r

Zrs
rP

l
Rn

rn�1drYnmdr: ð2:109cÞ

Note that the coefficients in (2.109b, 2.109c) change for each radius rP.

2.7.2 Laplace’s and Poisson’s Equations

A function V is called harmonic if it satisfies Laplace’s equation:

DV ¼ 0; where D ¼ grad � grad ¼ @2

@x2
þ @2

@y2
þ @2

@z2
: ð2:110Þ

Proposition 2.1 Every gravitational potential is harmonic outside the attracting
masses.

Proof Applying the Laplace operator to Eq. (2.104b), one obtains:

DVP ¼
ZZZ

t

qD
1
lP

� �
dt ¼ 0: ð2:111Þ

This is because as P is located outside the masses, D 1=lPð Þ ¼ 0 for all inte-
gration points in the body.

Corollary 2.1 (Poisson’s differential equation)
If P is located inside the attracting masses, then DVP ¼ �4pGqP:

Proof The proof will be presented as an application of Gauss’ theorem below.
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2.7.3 Laplace’s Equation and Its Solution
in Spherical Coordinates

Laplace’s equation in spherical coordinates reads (Heiskanen and Moritz 1967,
p. 20):

1
r2

@

@r
r2
@V
@r

� �
þ 1

r2
D�V ¼ 0; ð2:112aÞ

where D� is the Beltrami operator (“the Laplace operator on the sphere”) defined
by:

D� ¼ @2

@h2
þ cot h

@

@h
þ 1

sin2 h

@2

@k2
: ð2:112bÞ

By introducing V as a product of two functions that separate the variables
(variable separation):

Vðr; h; kÞ ¼ RðrÞY h; kð Þ; ð2:113Þ

Equation (2.112a) can be written:

1
R
@

@r
r2
@R
@r

� �
¼ �D�Y

Y
: ð2:114Þ

The two members can be separated by adding an arbitrary constant to each
member. As will be shown, successful solutions are obtained by subtracting the
constant n nþ 1ð Þ to both members of Eq. (2.114), which yields the two equations

1
R
@

@r
r2
@R
@r

� �
� n nþ 1ð ÞR ¼ 0 ð2:115aÞ

and

D�Y þ nðnþ 1ÞY ¼ 0: ð2:115bÞ

It can easily be checked that each solution to (2.115a) is an arbitrary constant
times rn or r�ðnþ 1Þ. Setting also Y ¼ Yn in (2.115b), one can show that its solution
for each n is a set of solutions of the surface spherical harmonics Ynm h; kð Þ, where
m ranges from –n to plus n.

Adding all partial solutions to V, its general solution becomes the sum of the
external and internal types of solutions in solid spherical harmonics:
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V ¼ Ve þVi; ð2:116aÞ

where:

Ve ¼
X1
n¼0

r�ðnþ 1Þ Xn
m¼�n

AnmYnm h; kð Þ ð2:116bÞ

and

Vi ¼
X1
n¼0

rn
Xn
m¼�n

BnmYnm h; kð Þ ð2:116cÞ

are the external and internal solutions to Laplace’s equation, respectively. Here the
constants Anm and Bnm are arbitrary, to be fixed for each specific problem with
gravitational masses at hand. On or outside the Brillouin sphere (surrounding all
masses), all Bnm are zero, while for the topographic potential representation at or
below the geoid (approximated by a sphere), all Anm vanish.

Note that Eq. (2.115b) implies that:

D�Ynm ¼ �nðnþ 1ÞYnm; for all n and m: ð2:117Þ

2.7.4 Gauss’ and Green’s Integral Formulas

Gauss’ and Green’s formulas are basic formulas for potential theory. Here we
present some of their varieties.

Gauss’ (divergence) theorem for a closed volume t with surface S applied to the
vector F reads: ZZZ

t

divFdt ¼
ZZ
S

F � ndS; ð2:118Þ

where n is the external normal unit vector to the surface S and

divF ¼ r � F ¼ @Fx

@x
þ @Fy

@y
þ @Fz

@z
ð2:119Þ

is the divergence of the vector F.
Assuming as above that F ¼ gradðVÞ, then divF ¼ DV , and one obtains Gauss’

integral formula for the potential as:
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ZZZ
t

divFdt ¼
ZZZ

t

DVdt ¼
ZZ
S

@V
@n

dS: ð2:120Þ

Green’s integral formulas are derived from Gauss’ formula by specifying the
components of F as:

FX ¼ U
@V
@X

; ð2:121Þ

where X ¼ x, y or z and U and V are potentials.

Then it holds that:

F � n ¼ Fn ¼ U
@V
@n

; ð2:122Þ

and from Eq. (2.119):

divF ¼ UDV þ @U
@x

@V
@x

þ @U
@y

@V
@y

þ @U
@z

@V
@z

; ð2:123Þ

so that Green’s formula I is obtained from Eq. (2.118) asZZZ
t

UDV þ @U
@x

@V
@x

þ @U
@y

@V
@y

þ @U
@z

@V
@z

� �
dt ¼

ZZ
S

U
@V
@n

dS: ð2:124Þ

If U and V are interchanged in Eq. (2.124), one obtains another equation, which,
subtracted from Eq. (2.124), yields Green’s formula IIZZZ

t

UDV � VDUð Þdt ¼
ZZ
S

U
@V
@n

� V
@U
@n

� �
dS: ð2:125Þ

In the above equations, it is assumed that U and V and their first- and
second-order derivatives are finite and continuous in the region t.

Finally, specifying U ¼ 1=l in Green II yields Green’s formula IIIZZZ
t

1
l
DVdt� pV ¼

ZZ
S

1
l
@V
@n

� V
@

@n
1
l

� �� �
dS: ð2:126Þ

where:

p ¼
4p; if P inside S
2p; if P on S
0; if P outside S:

8<: ð2:127Þ

Here P is the computation point.
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Green III also holds if t is the exterior space to the surface S and n is the interior
normal to S, where:

p ¼
�4p; if P outside S
�2p; if P on S
0; if P inside S:

8<: ð2:128Þ

Proof of Corollary 2.1 (Poisson’s differential equation)
From Eq. (2.120) one obtains for point P located inside the closed masses inside

volume #: ZZZ
#

DVPd# ¼
ZZZ

#e

DVPd# ¼ e2
ZZ
re

@V
@r

dr

¼ Ge2
ZZ
re

@

@e
q
e

� �
dr ! �4pGqP as e ! 0:

Here #e and re are the volume and surface of an infinitesimal sphere of radius e
centred at point P.

2.7.4.1 A Green’s Formula on the Sphere

Meissl (1971, p. 12), with reference to Hotine (1969), presented the following
integral relations derived from a Green’s formula on the sphereZZ

r

r�fð ÞT �r�gdr ¼ �
ZZ
r

fD�gdr ¼ �
ZZ
r

gD�fdr; ð2:129aÞ

where r� is the gradient operator on the unit sphere

r� ¼ @
@u

@
cosu@k

h iT
; ð2:129bÞ

which is related to the gradient operator on the sphere of radius R, r, by:

r ¼ 1
R
r� ¼ @

@x
@
@y

h iT
; ð2:129cÞ

where x and y are local horizontal coordinates on the sphere.
If one specifies f ¼ Ynm and g ¼ Ypq, it follows from Eqs. (2.129a) and (2.117)

that:
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ZZ
r

r�Ynmð ÞT �r�Ypqdr ¼ �
ZZ
r

YnmD
�Ypqdr

¼ 4pn nþ 1ð Þ; if n;mð Þ ¼ p; qð Þ
0 otherwise:


 ð2:130Þ

i.e. also the gradients of the surface spherical harmonics are orthogonal on the
sphere.

2.7.5 Boundary Value Problems

Stokes’ theorem states that, for a given potential V = VS on a surface S, there is only
one harmonic potential V in its exterior (if it exists).

Proof The proof follows from the following form of Green I

ZZZ
t

UDUþ @U
@x

� �2

þ @U
@y

� �2

þ @U
@z

� �2
 !

dt ¼
ZZ
S

U
@U
@n

dS: ð2:131Þ

Let us now assume that there are two potentials V1 and V2 in the exterior of S
that take on the same values on S. Then the difference potential U ¼ V1 � V2 on S
and its Laplaceian DU in t vanish, so that the integral reduces to:

ZZZ
t

@U
@x

� �2

þ @U
@y

� �2

þ @U
@z

� �2
 !

dt ¼ 0; ð2:132Þ

implying that U is a constant in t. As U vanishes on S, it must vanish also outside S,
and it follows that V1 ¼ V2 in t.

Stokes’ theorem confirms that the forward (direct) problem in potential theory
has a unique solution. On the other hand, the inverse problem (to determine the
mass distribution that generates the external gravity field) is not unique.

Here follow some specific forward problems:
Dirichlet’s (exterior) problem [or the first boundary value problem (bvp) of

potential theory] is to determine the potential V outside the closed surface S, given
the boundary values VS. If the surface is a sphere, the solution is Poisson’s integral
formula for the sphere.

Neumann’s (exterior) problem [or the second bvp of potential theory] is to
determine V on and in the exterior of S from the given function @V=@n on S. Here
n is the exterior normal to the surface. If the surface is a sphere, the solution on the
sphere is Hotine’s formula and in the exterior it is Hotine’s extended formula.

The third bvp is to determine the potential V in the exterior of S from boundary
values aV þ b@V=@n on S, where a and b are constants. If the boundary values are
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gravity anomalies, the 3rd bvp applies for determining the disturbing potential. If
S is a sphere the solution is Stokes’ formula, which is the basic formula for geoid
determination from gravity anomalies. As we will see in Sect. 3.3, all three bvps are
useful in physical geodesy.

2.8 Regularization

Geophysicists and physical geodesists are frequently confronted with linear-inverse
problems, which can be solved in various ways. An inverse problem generally deals
with the problem of converting observations ~g to information w (of physical or
other origin) that generates the observations. Frequently the problem is ill-posed,
implying that the available (type of) observations are not sufficient to determine a
unique solution for w. This can be illustrated by Poisson’s integral formula in the
exterior space of the sphere, Eq. (3.31a). Assuming that there are no masses outside
the sphere of radius R, the forward problem to determine the disturbing potential or,
in this case, the gravity anomaly DgP at any point P outside the sphere from gravity
anomalies w on the sphere is given by the spectral solution

DgP ¼
X1
n¼0

R
rP

� �nþ 2

wn h; kð Þ; rP [R ð2:133aÞ

where:

wn h; kð Þ ¼
Xn
m¼�n

wnmYnm h; kð Þ: ð2:133bÞ

Consider next that the gravity anomaly is known on an outer sphere of radius rP,
and the task is to solve the inverse problem of finding the anomaly on the lower
sphere of radius R. Then we may develop Dg into spherical harmonics on the
exterior sphere, yielding the coefficients Dgnm, and, by comparing the spectral
components with those in Eqs. (2.133a, b), one obtains the spectral equation and
solution:

Dgnm ¼ R
rP

� �nþ 2

wnm ) wnm ¼ rP
R

� �nþ 2
Dgnm; ð2:134aÞ

and formally the full solution becomes:

w h; kð Þ ¼
X1
n¼0

rP
R

� �nþ 2
Dgn h; kð Þ: ð2:134bÞ
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In this case, as there are no masses between the spheres, the solution exists for
erroneous observations, but in practice it will be severely ill-conditioned (more so
in higher-degree harmonics), due to inevitable erroneous observations.

A discrete ill-posed problem occurs from the discretization of an ill-posed
problem. A typical linear-inverse problem is that of estimating the density distri-
bution or density structure inside the Earth from gravity or related data observed on
or above the Earth’s surface. Such a problem can frequently be expressed as a linear
Fredholm integral equation of the 1st kind (e.g. Chambers 1976):

M K P;Qð Þ~wf g ¼ ~gðPÞ; ð2:135aÞ

where Mfg is the integral over the surface of the Earth, or it is the mean value
operator over the unit sphere rð Þ:

Mfg ¼ 1
4p

ZZ
r

fgdr; ð2:135bÞ

and K P;Qð Þ is the kernel function that relates the observations ~g at the observation
point P and ~w at the integration point Q. It goes without further discussion that
solving an integral equation (inverse problem) is a much more difficult problem
than that of just computing an integral formula expression (forward problem). This
is particularly the case if the integral equation is ill-posed.

A more general and difficult problem is that of solving a non-linear integral
equation. Such problems are treated in Ch. 8.

Below we will limit the discussion to that of solving Eq. (2.135a) in the case that
the kernel function is separable in the form of a series of Legendre’s polynomials
Pn coswð Þ, i.e.

K P;Qð Þ ¼
X1
n¼0

2nþ 1ð ÞknPn coswð Þ; ð2:136Þ

where w is the geocentric angle between the points P and Q. Inserting Eq. (2.136)
into Eq. (2.135a) and interchanging summation and integration one obtains:

X1
n¼0

kn~wnðPÞ ¼ ~gðPÞ ¼
X1
n¼0

~gnðPÞ; ð2:137aÞ

where:

~wnðPÞ
~gnðPÞ


 �
¼ 2nþ 1

4p
M

~w Qð Þ
~g Qð Þ
� �

Pn coswð Þ

 �

ð2:137bÞ
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are the Laplace harmonics of ~w and ~g. Although these harmonics are functions of
position, below we will usually not specify this unless necessary for understanding.

From Eq. (2.137a), we may identify a relation between the unknown ~wn and the
known ~gn as:

kn~wn ¼ ~gn or ~wn ¼ ~gn
kn

if and only if kn 6¼ 0; ð2:138Þ

and these relations hold also for the error free harmonics wn and gn.
In this study, we will always assume that kn 6¼ 0 for all degrees. Then, at least

tentatively, one may come up with a solution for the unknown as:

~wðPÞ ¼
X1
n¼0

~wn Pð Þ ¼
X1
n¼0

~gnðPÞ
kn

: ð2:139Þ

However, this series does not necessarily converge, but in order to do so, ~gn
must be smoother than kn. More precisely, a square integrable solution for ~w exists
if only if the Picard condition is satisfied, i.e.

X1
n¼0

~gn
kn

� �2

\1: ð2:140Þ

This condition can be satisfied either by truncating the unknown spectrum of
w to a finite degree, say, nmax, by smoothing the coefficients kn or both. In the first
case, despite the truncation, the solution will be affected also by high-degree signals
and the noise of the observations (spectral leakage; Trampert and Snieder 1996). In
the second case, by discretizing Eq. (2.135a), one implicitly smooths the solution
space to a finite set, corresponding to the selected block size on the sphere.
Approximately, by choosing the block size m
 � m
, the resolution of the solution
will be limited to harmonic degree nmax ¼ 180=m
. The smaller the block size, the
more ill-conditioned the system of equations will be. As an example, Martinec
(1998, Sect. 8.6) performed a discrete downward continuation of surface gravity
anomalies from elevations as high as 2.425 m to sea level in the Canadian Rocky
Mountains by discretizing Poisson’s integral equation Eq. (3.31a–c). The iterative
solution worked well for observation grid sizes larger than or equal to 5′, while it
failed for block sizes of 30″ � 60″ due to poor numerical conditioning.

Below we will study the solutions of Eq. (2.135a) by Tikhonov regularization,
Wiener filter and spectral smoothing and combination. Other types of discrete
regularization methods can be found in Hansen (1998).
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2.8.1 Tikhonov Regularization

One method for regularization of an ill-posed problem originates with Phillips
(1962) and AN Tikhonov in 1963 (see Tikhonov and Arsenin 1977). By this
method, Eq. (2.135a) is first discretized into a matrix observation equation, where
we assume that the system is over-determined, i.e. the number of observations is
larger than the number of unknowns. The result is:

K~w ¼ ~g� e ¼ g; ð2:141Þ

where K, ~w, ~g and e are the design matrix, vectors of unknowns, observations and
residuals, respectively. Assuming that the residuals are random with expectation
zero, and that there are no correlations among the individual residuals, the related
Tikhonov problem is to minimize the target function

E eTe
	 
þwTCTCw ð2:142Þ

for some choice of the Tikhonov matrix C. According to Ditmar et al. (2003), the
problem of regularization includes two aspects: (a) the optimal choice of the reg-
ularization technique (i.e. of the regularizing functional or the regularization matrix)
and (b) the optimal choice of the regularization parameter. The regularization
matrix C ¼ aQ can be divided into three categories: zero-order Tikhonov regu-
larization with Q ¼ I and first- and second-order regularizations, where Q is either
first- or second-order derivative operators (see Eqs. 2.143c, 2.143d). For C ¼ aI,
where a is a small positive constant and I is the unit matrix, the solution to the
minimization is given by the modified normal matrix equation

KTKþ a2I
� �

ŵ ¼ KT~g ð2:143aÞ

with the solution

ŵ ¼ KTKþ a2I
� ��1

KT~g; ð2:143bÞ

where the matrix a2I stabilizes the original least squares solution obtained for
a ¼ 0. As the stabilization has the less desired effect of making the solution biased,
the size of a should be a compromise between the bias and the expected observation
error propagation, and it must be sufficiently large to match the computer capacity
to solve Eq. (2.143a). Higher-order Tikhonov regularization operators are given by
(Hansen 1998, Chap. 8):
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Qðn�1Þ�n ¼

�1 1 0 � � � 0 0
0 �1 1 � � � 0 0
..
. ..

. ..
. ..

. ..
. ..

.

0 0 � � � �1 1 0
0 0 � � � 0 �1 1

266664
377775 ð2:143cÞ

and

Qðn�2Þ�n ¼

1 �2 1 0 � � � 0 0 0 0
0 1 �2 1 � � � 0 0 0 0
..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 � � � 1 �2 1 0
0 0 0 0 � � � 0 1 �2 1

266664
377775; ð2:143dÞ

which represent the first- and second-derivative operators, respectively.
Applying singular value decomposition, matrix K can be decomposed into:

K ¼ UDVT ; ð2:144Þ

where U and V are matrices containing all the eigen-vectors Ui and Vi of K, and
D is a diagonal matrix constructed by the singular values (i.e., squares of the
eigen-values ki of K) As the eigen-vectors are orthonormal, it follows that
Eq. (2.143a) has the solution

ŵ ¼ V D2 þ a2I
� ��1

DUT~g ¼
Xq
i¼1

k2i U
T
i ~g

k2i þ a2
Vi ¼

Xq
i¼1

fi
UT

i ~gVi

ki
; ð2:145Þ

where the filter factor fi ¼ k2i = k2i þ a2
� �

smooths the solution for w. By taking the
statistical expectation of Eq. (2.145) and inserting the expected value for ~g from
Eqs. (2.134a, b), it follows that each component ŵi of the computed vector is biased
by �a2wi= k2i þ a2

� �
.

Note. Here we discuss only the simple Tikhonov regularization by Eq. (2.145).
Other important methods can be found, e.g. in Hansen (1998, Sect. 5.1). In sta-
tistical literature Tikhonov’s method is known as ridge regression, e.g. Marquardt
(1970). Xu and Rummel (1994) presented such a technique, by introducing more
than one regularization parameter, based on the criterion of minimizing the trace of
the mean square error of the solution, to determine gravity potential harmonic
coefficients from satellite gravimetric data.

Let us finally mention that one simple way of smoothing the Tikhonov type of
solution is to limit the number of unknowns in Eq. (2.141), which corresponds to
limiting the number of discrete surface elements in the integral of Eq. (2.135a), see
for example the numerical study performed by Martinec (1998, Sect. 8.6).
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2.8.1.1 Numerical Methods for Determining the Regularization
Parameter a

There are some numerical methods for computing the regularization parameter a
given in Eq. (2.145). Most important are the L-curve and generalized
cross-validation methods (see Hansen 1998, Sect. 2). The L-curve displays the
trade-off between minimizing the residual norm ( ek k2¼ KW� ~gk k2) and the
solution norm ( ~wk k2) in the regularization problem of Eq. (2.143a). For discrete
ill-posed problems, it turns out that the L-curve, when plotted in logarithmic scale,
almost always has a characteristic L-shaped appearance. Using this technique, we
search for the point with maximum curvature as illustrated in Fig. 2.6. L-curve is
the most suitable graphical tool to compute the regularization parameter, which is a
plot for all regularization parameters of the norm of the regularized solution versus
the corresponding residual norm. This method plays a major role in connection with
regularization methods for discrete ill-posed problems.

Generalized cross-validation (GCV) is based on the assumption that, if the i-th
arbitrary element of w is left out, then the corresponding regularized solution should
predict this observation well, and the choice of regularization parameter should be
independent of an orthogonal transformation of w. Then the regularization
parameter, given in Eq. (2.145), is chosen such that the following function is a
minimum:

GCV ¼ Kŵ� ~gk k22
traceðIm �KK�1Þ� � ð2:146Þ

Fig. 2.6 The L-curve
(graphical tool for analysis of
discrete ill-posed problems)
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2.8.2 Wiener Filtering

In the Wiener filter (Wiener 1949), one assumes that the signals g with w and the
observation noise e are all stationary stochastic processes with expectations zero
with known spectral characteristics, i.e. their covariance and cross-covariance
functions are known. The solution is practically the same as that for least squares
collocation (Moritz 1980) and kriging (Matheron 1963) in geodesy and geostatis-
tics, respectively.

Introducing a general estimator for w from a surface integral on sphere by the
formula

~wðPÞ ¼ MQ h P;Qð Þ~gðQÞf g; ð2:147aÞ

where h is an arbitrary linear kernel function, the expected mean square error
(MSE) the estimator becomes:

~m2 ¼ E ~wðPÞ � wðPÞð Þ2
n o

¼ r2wðPÞ � 2MQ h P;Qð Þcgw Q;Pð Þ	 

þMQ hðP;QÞMX h P;Xð Þc~g~g Q;Xð Þ	 
� �

; ð2:147bÞ

where cgw and c~g~g are the cross- and auto-covariance functions between the signals
marked by the subscripts, and r2wðPÞ is the variance of w. The minimum of the MSE
is obtained for h satisfying the Wiener-Hopf equation (see also Sect. 2.2.2):

cwg P;Qð Þ ¼ MX ĥ P;Xð Þc~g~g Q;Xð Þ	 

; ð2:148Þ

yielding the MSE

m(
2 ¼ r2wðPÞ �MQ ĥðP;QÞMX ĥ P;Xð Þc~g~g Q;Xð Þ	 
� �

: ð2:149Þ

Assuming that the covariance functions are homogeneous and isotropic, they can
be written in the spectral forms

c~ggðX;QÞ ¼ cgg X;Qð Þþ cee X;Qð Þ ¼
X1
n¼0

c2n þ r2n
� �

PnðcoswÞ; ð2:150aÞ

and

cwg P;Qð Þ ¼
X1
n¼0

dnPnðcoswÞ: ð2:150bÞ

Here c2n and r2n are the signal and error degree variances of ~g, while dn ¼ dnðPÞ
are the signal degree variances of the cross-covariance function. Notice that the
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latter is a function of position/elevation (only) if the estimated quantity lies outside
the sphere of computation.

Inserting the above series of covariance functions, as well as the series repre-
sentation for the kernel function h,

hðP;QÞ ¼
X1
n¼0

hnPn coswð Þ ð2:151Þ

into Eq. (2.148), the least squares solution for h follows as:

ĥðP;QÞ ¼
X1
n¼0

2nþ 1ð Þ dn
c2n þ r2n

Pn coswð Þ: ð2:152Þ

Hence, by considering Eqs. (2.147a) and (2.149), the least squares solution for
w and its mean square error become:

ŵðPÞ ¼
X1
n¼0

dn
c2n þ r2n

~gn ð2:153aÞ

and

m̂2 ¼ r2w �
X1
n¼0

d2n
c2n þ r2n

: ð2:153bÞ

From Eq. (2.138), we also have the relation wn ¼ gn=kn, which yields:

ŵðPÞ ¼
X1
n¼0

fnk
�1
n ~gn; where fn ¼ c2n

c2n þ r2n
ð2:154aÞ

and

m̂2 ¼
X1
n¼0

k�2
n c2n �

X1
n¼0

k�2
n

c4n
c2n þ r2n

¼
X1
n¼0

k�2
n

c2nr
2
n

c2n þ r2n
: ð2:154bÞ

As an alternative, Eq. (2.154a) can be written in the space domain as:

ŵ Pð Þ ¼ 1
4p

ZZ
r

HðP;QÞ~g Qð ÞdrQ; ð2:155aÞ

where the kernel function is:
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HðP;QÞ ¼
X1
n¼0

2nþ 1ð Þk�1
n fnPn coswð Þ: ð2:155bÞ

2.8.3 Spectral Smoothing

Let us return to Eq. (2.154a)

~wðPÞ ¼
X1
n¼0

fnk
�1
n ~gn; ð2:156Þ

where fn are now arbitrary filter parameters to be estimated such that the mean
square error of ~w is minimized. As the error of ~w is given by its random error and
bias, i.e.

e~w ¼
X1
n¼0

fnk
�1
n en þ fn � 1ð Þk�1

n gn
� �

; ð2:157Þ

it follows the expected MSE becomes:

~m2 ¼ E M e2~w
	 
� � ¼X1

n¼0

k�2
n f 2n r

2
n þ fn � 1ð Þ2c2n

h i
; ð2:158Þ

where r2n and c2n are the error and signal-degree variances of ~g. The minimum MSE
is achieved by differentiating the MSE w.r.t. each of the smoothing factors and
equating to zero. The result is:

f̂n ¼ c2n
c2n þ r2n

; ð2:159Þ

and the least squares estimator ŵ and its MSE are the same as in Eqs. (2.154a, b).
Some of the theory and applicationswere presented in Sjöberg (1980, 1986, 2011a, b).

The practical formulation in the space domain again becomes Eqs. (2.154a, b).

2.8.4 Spectral Combination

We now assume that, in addition to the information given in above, there is an Earth
Gravitational Model (EGM) available to degree nmax that yields the unbiased
estimate w1 (unbiased through degree nmax)
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w1 ¼
Xnmax

n¼0

wGM
n ; ð2:160Þ

with the random error with expectation zero

dw1 ¼
Xnmax

n¼0

wGM
n ð2:161Þ

and the variance (composed of the error degree variances rGMn )

r2w1 ¼
Xnmax

n¼0

rGMn : ð2:162Þ

A general estimator for w, unbiased through degree nmax, can be formulated as:

~w ¼
X1
n¼0

k�1
n pn~gn þ

Xnmax

n¼0

1� pnð ÞwGM
n ; ð2:163Þ

with the MSE

~m2 ¼
X1
n¼0

k�2
n p2nr

2
n þ 1� pnð Þ2dcGMn

n o
; ð2:164aÞ

where:

dcGMn ¼ rGMn if n	 nmax

k�2
n c2n otherwise:



ð2:164bÞ

Here pn are arbitrary degree weights, which are optimized in a least squares
sense by differentiating ~m2 w.r.t. each of them and equating to zero. The result is:

p̂n ¼
rGMn

k�2
n r2n þ rGMn

if n	 nmax

c2n
c2n þ r2n

otherwise;

8<: ð2:165Þ

and the MSE becomes:

m̂2 ¼
Xnmax

n¼0

k2nr
2
nr

GM
n

r2n þ k2nr
GM
n

þ
X1

n¼nmax þ 1

k2nc
2
n

r2n þ k2nc
2
n
: ð2:166Þ

Finally, the spectral combination can be formulated also as the sum of a surface
integral and a spectral series:
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ŵ Pð Þ ¼ 1
4p

ZZ
r

KðP;QÞ~g Qð ÞdrQ þ
Xnmax

n¼0

1� p̂nð Þ2wGM
n ; ð2:167aÞ

where the kernel function is:

KðP;QÞ ¼
X1
n¼0

2nþ 1Þð Þk�1
n p̂nPn coswð Þ: ð2:167bÞ

For applications of spectral smoothing and combination, see Sects. 4.4.4 and 7.5.
See also Sjöberg (1981, 1986, 2011a, b).

2.8.5 Optimum Regularization

Based on the above experiences, one may ask whether Tikhonov regularization can
be modified to share the properties of the Wiener filter and/or spectral smoothing,
namely to be optimum in the sense of minimizing the MSE. There are numerous
publications solving Tikhonov’s regularization problem by minimizing the MSE of
the solution. However, each such solution is optimal only w.r.t. the specified target
function, Eq. (2.142), i.e. for a specified Tikhonov matrix C. Hence, the major
problem is thus to find the correct Tikhonov matrix for the optimum solution. For
this purpose, we rewrite Eq. (2.135a) as:

M K wð ÞþQ wð Þ½ �~wf g ¼ ~gðPÞ; ð2:168aÞ

where:

Q wð Þ ¼
X1
n¼0

2nþ 1ð ÞqnPn coswð Þ: ð2:168bÞ

Here qn are arbitrary parameters to be determined such that the target function,
the expected global MSE m2

w of ~w, is minimized. As the spectral form of
Eq. (2.168a) can be written:

~wn ¼ ~gn
kn þ qn

; ð2:169Þ

it follows that its error and global MSE become:

ewn ¼
~gn

kn þ qn
� gn

kn
and m2

wn
¼ k2nr

2
n þ q2nc

2
n

k4n þ k2nq
2
n

; ð2:170Þ

76 2 Basic Mathematics

http://dx.doi.org/10.1007/978-3-319-50298-4_4
http://dx.doi.org/10.1007/978-3-319-50298-4_7


and, by differentiating the MSE w.r.t. qn, one obtains the least squares choice of the
parameters:

q̂n ¼ knr
2
n=c

2
n: ð2:171Þ

Inserting this choice for qn in Eq. (2.169) and summing up, one obtains the
solution

ŵ ¼
X1
n¼0

c2n
c2n þ r2n

~gn
kn

; ð2:172Þ

which is the same as the solution by spectral filtering, Eqs. (2.156), with filter
factors given by Eq. (2.159).

However, the kernel function Q with parameters q̂n is a divergent series, as
r2n=c

2
n [ 1 for large n, which implies that the optimum regularization cannot be

realized in the limiting integral equation, Eq. (2.168a). However, in the numerical
approximation of the integral equation, we may approximate it by the matrix
equation

KþQ
� �

w ¼ ~g consistentð Þ ð2:173Þ

with the solution

w ¼ KþQ
� ��1

~g; ð2:174Þ

where the elements of Q are determined from a smoothed kernel function,
Eq. (2.168b), e.g. obtained by truncating the series to a maximum degree. (Such a
truncation is a reasonable approximation, as the numerical integration to a finite
number of integration blocks will automatically limit the frequency contained in the
solution.) In this way, the solution for w will be a smoothed spectral filter/Wiener
filter. The higher the degree of truncation in the kernel function for Q, and the more
precise the numerical integration is, the closer to the Wiener filter will be the
solution.

In the special case with all qn set to a constant a2, the function value for Q 0ð Þ is
still infinite, but the Tikhonov solution is consistent with the non-optimized Wiener
filter

ŵ ¼
X1
n¼0

c2n
c2n þ a2

~gn
kn

: ð2:175Þ
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2.8.6 Spherical Harmonic Analysis

Let the unknown w be represented by the truncated series of fully normalized
spherical harmonics Ynm:

~w Pð Þ ¼
Xnmax

n¼0

Xn
m¼�n

wnmYnm Pð Þ; ð2:176aÞ

where the harmonics are orthonormal, i.e.

M YnmYrsf g ¼ 1; if n;mð Þ ¼ r; sð Þ
0 otherwise:



ð2:176bÞ

The task is to determine the spherical harmonic coefficients wnm from
Eq. (2.168a). Hence, by inserting Eq. (2.176a) and using Eq. (2.176b), we obtain:

Xnmax

n¼0

kn þ qnð Þ
Xn
m¼�n

wnmYnm Pð Þ ¼ ~g Pð Þ: ð2:177Þ

Then, by multiplying each member of this equation by YnmðPÞ and averaging
over the unit sphere, one finally arrives at the solution for the harmonic coefficients

wnm ¼ 1
kn þ qn

M ~g Pð ÞYnm Pð Þf g: ð2:178Þ

If qn is chosen as knr2n=c
2
n, this solution for the harmonic coefficients will be

optimal in the sense of minimizing the MSE. Finally, by applying these coefficients
in Eq. (2.176a), the optimum, truncated estimate of w is obtained.

The solution by spherical harmonic analysis has the merits of being stable and
not prone to spectral leakage as previous methods (see the different approach of
Trampert and Snieder (1996) and Spetzler and Trampert (2003), which suffers from
the problem of leakage). Its major drawback is the requirement of a global,
homogeneous coverage of data on the sphere. Finally, we mention that if an
independent set of harmonics of w is available, it can be combined with the above
harmonics in an optimum sense.

This method was applied [with qn set to 0 in Eq. (2.178)] in computing some of
the OSU Earth Gravitational Models in the 1970s and 1980s; see e.g. Rapp (1981)
and Rapp and Cruz (1986).
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2.8.7 Comparison

Table 2.1 summarizes a comparison of the inverse solutions by Tikhonov’s method,
Wiener filtering and spectral smoothing and combination.

The most important results are the following:

• Tikhonov regularization is the solution by direct (approximate) solving the
original integral equation. The smoothing is performed in two ways: (1) the
original integral equation is approximated by a finite sum of unknowns and
surface elements, and (2) by adding the smoothing term a2I to the normal
matrix. All other methods use a direct integral formula for the solution.

• Although the spectral solution of Tikhonov regularization (Eq. 2.145) resembles
the spectral forms of the Wiener filter and spectral smoothing, they are not the
same, as the Tikhonov solution includes the singular values and eigen-vectors of
the normal matrix (including the smoothing term), which vary w.r.t. chosen
block size and number of unknown parameters, while the latter are based on the
kernel, signal and error spectra. This implies that the individual observations
used in Tikhonov’s method can be weighted, but the additional feature of
spectral weighting in the other methods, is not possible.

• The Wiener filter and the spectral smoother are identical solutions. However, the
assumptions and target functions differ. The former minimizes the (local) MSE
based on the known signal and covariance functions (correlation functions),
while the latter minimizes the global MSE base on known signal and error
degree variances.

Table 2.1 Comparison of regularization methods (Sjöberg 2012)

Method Equation Extra
info.

Target
function

Assumptions

Tikhonov
regularization

Integral
equation

a eTeþ a2I E ef g ¼ 0

Wiener filter Integral
formula

c2n;r
2
n; dn MSE Stochastic processesa

Spectral smoothing Integral
formula

c2n;r
2
n; dn Global MSE Stochastic processesb

Spectral combination Integral
formula

c2n;r
2
n; dn Global MSE Stochastic processesb

Optimum
regularization

Integral
equation

c2n;r
2
n; dn Global MSE Stochastic processesc

Harmonic analysis Integral
formula

c2n;r
2
n MSE Global data on the

sphere
aThe stochastic processes are stationary processes with expected value zero
bThe expected values of the observation errors are zero
cThe optimum Q is approximated by the smoothed Q
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• The Wiener filter assumes stationary stochastic processes with statistical
expectations zero, while spectral smoothing and combination only assumes that
the observation errors are zero in expectations.

• By spectral combination the integral solution can be combined in an optimum
way with a priori information of the unknown function in the spectral domain.

• The solution by optimum regularization, described in Sect. 2.8.5, is the space
domain representation of spectral smoothing. The solution is a smoothed
spectral/Wiener filter. In the continuous case, the problem cannot even be for-
mulated, as the corresponding integral equation does not exist.

• Harmonic analysis needs data from all over the sphere. Among its merits are
resistance to spectral leakage and ill-conditioning.

2.8.8 Concluding Remarks

As discussed above, the numerical solution to an integral equation is frequently
ill-conditioned, and for ill-posed problems this is always the case. Then, a unique
and stable solution can be obtained, at the prize of a bias, by introducing some kind
of smoothing. The numerical Tikhonov types of solutions involve solving a matrix
equation, where the biases are based on some criterions. In contrast, the solutions
by Wiener filter and spectral smoothing and combination are more computationally
efficient, as they employ forward integration, or, numerically, matrix multiplica-
tions. This implies that Tikhonov types of solutions are particularly sensitive to the
choice of block-size in the numerical integration of the coefficients of the design
matrix, and the bias term a2 must increase when the block-size decreases. This
problem is not the case for the direct integration methods of Wiener and spectral
filtering and spectral combination, as well as harmonic analysis.

Finally we emphasize that spectral combination is more flexible than the other
methods, as it enables an optimal (with respect to minimum MSE) merging of dif-
ferent data. Also, harmonic analysis (possibly including spectral combination) is a
viable alternative, provided that the data can bemade available globally on the sphere.

Appendix: Answers to Exercises
Exercise 2.1 From Eq. (2.37a) one obtains the Taylor series

l�1
P0 ¼ r�1

P 1� 1
2

s2 � 2st
� �þ � 1

2

� � �1� 1
2

� �
1� 2

s2 � 2st
� �2 þ � � �

� �
¼ r�1

P 1þ stþ s2
3t2 � 1

2
þ � � �

� �
;

and by comparing with Eq. (2.38a) the solution follows.

80 2 Basic Mathematics



Exercise 2.2 The left member of Eq. (2.42) yields for n = 0, 1 and 2:

Z1
�1

1dt ¼ 2;
Z1
�1

t2dt ¼ 2=3 and
Z1
�1

3t2 � 1
2

� �2

dt

¼
Z1
�1

9t4 � 6t2 þ 1
4

� �
dt ¼ 1

4
9t5

5
� 6t3

3
þ t

� �1
�1
¼ 2

5
;

The second equation in Eq. (2.42) is shown in the same way.
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