
Chapter 2
Turning Electronic Circuits Features into
On-Chip Locks

Brice Colombier, Lilian Bossuet and David Hély

2.1 Introduction and Context

Following Moore’s law, electronic systems are increasingly complex and powerful.

Their complexity is following a similar trend, forcing designers to adopt a modular

approach when designing such systems. Thus, a design-and-reuse approach is fol-

lowed, in which functional building blocks are put together by system integrators.

These blocks are provided by IP cores designers, who must transfer their complete

design in order to have it implemented correctly. However, such a situation neces-

sarily leads to abuses, since the designer cannot control the number of instances

implemented from its original design. It results in overbuilding IP cores and coun-

terfeiting of integrated circuits, and the trend is growing. Multiple cases have been

reported in recent years [1–3].

In order to answer this issue, the circuit can be provided as initially locked. It is

then nonfunctional and should be unlocked in order to be used. The unlocking pro-

cedure can be initiated only by the designer, allowing precise audit of the number of

instances of the protected design. This is referred to as hardware metering [4]. In case

the design has been obtained illegally, either from overbuilding or counterfeiting, it

remains locked and therefore unusable.

There are several ways to achieve locking of a circuit. Among them, modifying

the combinational logic is a way. It is presented in details in Chap. 3.
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Another interesting approach is to look into hardware Trojans [5] that target

Denial-Of-Service attacks. Such attacks are closely related to the kind of remote

locking we want to achieve here. Therefore, the actual means that are used by hard-

ware Trojans to trigger and achieve a Denial-Of-Service attack could be turned into

remote locking techniques. It effectively turns malicious hardware into salutary hard-

ware [6]. In order to be worth considering from the designer’s perspective, a design

protection scheme must also be cheap in terms of additional hardware resources

required to implement it. Indeed, if the economic losses associated with the ille-

gal actions are actually less expensive than the protection scheme itself, the latter

becomes unsuitable. Therefore, the protection scheme should be as lightweight as

possible, and occupy a very small area on the protected chip. This characteristic is

very common for hardware Trojans, which are usually found in the form of tiny and

stealthy modifications of the original design.

The point here is to achieve locking by targeting very sensitive components. These

components should be crucial to the proper functioning of the system. Thus, their

disablement will render the system absolutely unusable, indeed achieving locking of

the whole design. These points of action can be thought of as single points of failure,

which correct behaviour is absolutely necessary to the overall system.

In this chapter, we show that such points can be found in the vast majority of

complex electronic systems [7]. This is valuable since the design protection scheme

should be usable for any type of design and should not depend on specific design

features.

This chapter is organised as follows. Section 2.2 identifies the features which

could be turned into on-chip locks and provides a comparison of them using several

criteria. Section 2.3 shows how such features can be modified to disturb the circuit’s

operation. Section 2.4 gives implementation results on FPGA. Two reference designs

and two FPGA families were used. Section 2.5 proposes a discussion on partial lock-

ing, which is an interesting way to provide a circuit in evaluation mode.

2.2 Features Usable as Locking Means

Figure 2.1 shows a complex electronic system. We highlighted the following com-

mon features which can be turned into on-chip locks:

1. The clock circuitry,

2. The inputs/outputs,

3. The processor,

4. The interconnection buses,

5. The system controller,

6. The analogue components.



2 Turning Electronic Circuits Features into On-Chip Locks 17

Fi
g.
2.
1

S
o
C

fe
a
tu

r
e
s

w
h
ic

h
c
a
n

b
e

tu
r
n
e
d

in
to

o
n
-
c
h
ip

lo
c
k

s



18 B. Colombier et al.

2.2.1 Clock Circuitry

The first feature that is immediately identifiable as a locking point is the clock circuit.

Indeed, it is a universal feature found in most digital designs. Moreover, good oper-

ation of the circuit is heavily dependent on the clock signal. Thus by acting on the

clock signal, it is possible to disable the circuit, making it effectively locked. Another

interesting characteristic of the clock is that its frequency is related to the device’s

performances. Hence by dynamically shifting the clock frequency, it is possible to

alter the performances of the circuit. This could be used to provide an evaluation

version of the device, operating at a lower frequency and exhibiting a lower level of

performance.

2.2.2 Inputs/Outputs

All electronic designs have input and output ports to interact with other components.

By temporarily disabling these ports, it is possible to prevent new data to be sent to

the design. Even though it does not make the design unusable itself, it makes it almost

useless, since it is then not possible to interact with it anymore.

2.2.3 Processor

When a processor is present in a digital design, it is usually a central compo-

nent. Such processor can be either hardwired or soft-core. A soft-core processor

is described in a hardware description language and implemented in reconfigurable

resources. In essence, the processor executes a sequence of instruction. One way to

alter its functionality is then to prevent the execution of new instructions.

2.2.4 Buses

Interconnection buses are the backbone of complex systems. They allow multiple

IP cores to communicate. The integrity of the information exchanged between the

different sub-modules of a system is a crucial requirement. Therefore, by altering

this information, it is possible to render the system nonfunctional.

2.2.5 System Controller

The control logic of complex designs is usually handled by an FSM. By modifying

this FSM’s states, it is possible to alter the operation of the circuit. Another possi-

bility is to add extra states to control access to the normal mode of operation.
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2.2.6 Analogue Components

In order to handle physical data, a design can integrate analogue components. Such

components are precisely calibrated to suit the needs of the designer. By altering this

calibration, their behaviour can be altered.

Another important analogue component of the design is the power supply module.

By shutting down specific areas of the design, they can be efficiently disabled. This

feature is called power gating and is already implemented in some designs to reduce

power consumption.

2.2.7 Global Comparison

After identifying these features, we can have a first overview of their pros and cons.

Table 2.1 presents a qualitative comparison.

The first criterion used to evaluate the features is the impact on performance.

It describes how the performance of the circuit is affected during normal operation.

Modifying the clock circuitry has low impact on the performance, although the clock

characteristics such as the jitter can be affected if the modification is poorly handled.

Acting on the inputs/outputs, the FSM or the processor does not have any impact

on the circuit’s performance. Conversely, modifying the buses can lead to slower

data rates and increase the latency. Similarly, modifying the calibration of analogue

components can reduce their efficiency.

The second criterion is the ease of locking/unlocking. It quantifies how simple it

is to implement locking using the corresponding feature. It also shows how easy it

is to fall back into normal behaviour after an unlocking request has been received.

For example, acting on the clock circuitry or the inputs is simple. They can be easily

disabled and enabled again. On the other hand, modifying the processor to be able

Table 2.1 Qualitative comparison of the presented features when being used as on-chip locks

Feature modified

for locking

Evaluation criterion

Impact of the

locking scheme

on performance

Ease of dynamic

(un)locking

Efficiency/impact

on functionnality

Partial

locking

Overall

suitability

Clock Low High High yes ∙ ∙ ∙
Inputs/outputs None High Medium no ∙ ∙ ◦
Processor None Medium High no ∙ ∙ ◦
Buses Medium Medium High no ∙◦◦
FSM None Low High no ∙◦◦
Analogue parts Medium Low Medium yes ∙◦◦
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to stop it can be complicated. Similarly, tampering with the buses can lead to unex-

pected behaviour. In both cases, correctly coming back to normal behaviour might

not be guaranteed. When modifying the FSM, locking refers to entering “hidden”

states, corresponding to altered operation. Therefore, locking or unlocking requires

to have access to the FSM inputs. This is not guaranteed, and most designs do not

allow to transition between FSM states so easily. Similarly, modifying the calibration

of analogue components can be hard to achieve.

When modifying a feature to achieve locking, the impact on the circuit function-

ality should be as high as possible, to make is completely unusable. Disabling the

clock, processor, buses or entering “hidden” FSM states systematically leads to com-

plete locking. On the other hand disabling the inputs/outputs or altering the char-

acteristics of analogue components has medium impact, which will depend on the

usage.

Finally, partial locking is possible with some of the described features. We define

partial locking as a state in which the design has a correct behaviour, but has a lower

level of performance. This is achievable only by acting on the clock or the ana-

logue components. Modifying the clock frequency directly affects the designs per-

formance. Likewise, altering the calibration of analogue components can make them

perform poorly.

The final column on the right of Table 2.1 gives an overall suitability estimation

for the feature. It estimates how suited the feature is in order to be turned into an

on-chip lock.

2.3 Practical Transformation into On-Chip Locks

We now give means how to turn the features presented in Sect. 2.2 into on-chip locks.

Analogue components modification is not discussed here.

2.3.1 Clock Circuitry

In practise, acting on the clock circuitry can be achieved in two ways. The first one

is to use a modified clock-gating module. The second one makes use of the recon-

figuration capabilities of some phase-locked loops (PLLs).

2.3.1.1 Clock Gating

An already approved method to act on the clock is clock gating. It is commonly

used to reduce power consumption by not clocking the unused regions of the circuit.

Therefore, it could also be used to make the circuit unusable.
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Fig. 2.2 Clock-gating module acting on a clock buffer (in dark-grey)

To achieve clock gating, we insert a specific module on the clock signal path. This

module is shown in Fig. 2.2. It does not require to add extra logic on the clock signal

path itself, but rather makes use of the clock-enable inputs of existing clock buffers.

Here, the clock-enable input can be driven by three different signals. The first

one, which corresponds to a high logic level (Vcc), allows to leave the clock signal

unchanged. In this case, the circuit is totally unlocked. The second one is the result

of the comparison between the output of an n-bit counter and the n-bit value 1. Thus,

the clock buffer is only active when the counter is equal to 1. In practical terms, the

output frequency is then divided by 2n, where n is the size of the counter.

In this case, the output clock does not have a 50 % duty cycle. Instead, the duty

cycle 𝛼 obtained from the division is given in Eq. 2.1.

𝛼 =
tH
T

=
t∕2
n.t

= 1
2n

(2.1)

In such case, if the frequency is chosen to be divided by a large number, the

duty cycle can drop to low values. However, if the setup times were not violated

with the original frequency, then they will not be either with the divided frequency.

The waveforms obtained from the three different modes presented here are shown

in Fig. 2.3: Fig. 2.3a shows the original clock and Fig. 2.3b shows the divided clock.

Here, the division factor is 2. We see that the duty cycle is not 50 % but 25 %. This

can be useful to provide the design in “evaluation” mode. The operating frequency

is twice lower, and so is the performance. Finally, Fig. 2.3c shows the gated clock.

In this mode, the design does not function at all.

Acting on the clock has multiple advantages. First of all, it is a powerful way

to completely disable the circuit. If the clock is not provided, most of the circuit’s

elements do not operate. Then, it requires very few additional logic resources. In the

module presented in Fig. 2.2, only one counter, one comparator, one multiplexer and

one D flip-flop are used. It also allows to reduce the operating frequency, effectively

getting the circuit to operate in evaluation mode.
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a Original clock

b Divided clock

c Gated clock

Fig. 2.3 a Original clock, b divided clock c gated clock

The main drawback of such a scheme is that it inherently requires to alter the clock

distribution network. This can be problematic in certain designs because the clock

distribution network is usually very precisely tuned to meet timing requirements.

Therefore, next subsection proposes another way to act on the clock signal, by

dynamically modifying the PLL configuration.

2.3.1.2 Dynamic Phase-Locked Loop (PLL) Reconfiguration

Another way to act on the clock signal is to directly deal with the phase-locked loop

(PLL). In most of the integrated circuits, the clock signal is handled by a PLL. It

allows to generate multiple clean clock signals, which can have a different frequency,

to different parts of the circuit. It is then distributed by the clock tree.

In modern FPGAs, such as Altera Arria V, Cyclone V or Stratix V families [8], the

PLL can be dynamically reconfigured. That is, the multiplication and division factors

can be dynamically tuned. The PLL is then actually used as a frequency synthesiser.

The output frequency of the PLL is given by the following formula:

fout = fin.
M
N.C

(2.2)

C is the post-scale output counter. M is the feedback counter. N is the prescale

counter. The values for M, N and C can be dynamically changed in order to tune the

operating frequency.

In order to do this on FPGAs, a vendor-specific IP core must be instantiated. It

is controlled by a dedicated finite state machine (FSM), responsible for providing

the C, M and N values. Once the parameters have been sent, the actual reconfigu-

ration starts. The PLL unlocks, and then locks again on the new frequency. This is

illustrated in Fig. 2.4.
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normal operation reconfiguration evaluation mode

Fig. 2.4 Output clock during a reconfiguration

The normal mode of operation corresponds to the maximum frequency. Then the

PLL is reconfigured, and locks again to the new frequency. This one is lower and

corresponds to the circuit operating in evaluation mode.

The main advantage of using the PLL as a frequency synthesiser is the flexibility

it provides. Indeed, by individually setting the M, N and C parameters, it is possi-

ble to precisely tune the frequency. Moreover, since the reconfiguration process is

natively supported by the PLL, the designer ensures that the output clock meets the

specifications.

On the other hand, such reconfiguration feature might not be found in all the PLLs.

For example, only recent versions of Altera’s FPGAs support this feature. Another

drawback is the area overhead. Indeed, instantiating the reconfiguration engine and

the controlling FSM requires a lot of logic resources. This will be extensively dis-

cussed in Sect. 2.4.1.

2.3.2 Inputs/Outputs

2.3.2.1 Embedded Flip-Flops

In most of the designs, the inputs are synchronised to be handlled properly and avoid

metastable states. The D flip-flops used to achieve this synchronisation often have an

enable input. This enable input prevents new data to be sampled by the D flip-flop

if it is driven low. By controlling this enable input, it is then possible to prevent the

design from receiving new data from its inputs.

For example, for most of the FPGAs, the input/output blocks embed this type of

D flip-flops. In order to specifically use this D flip-flop, some directives should be

inserted in the design.

For Altera devices:

ATTRIBUTE useioff : BOOLEAN;

ATTRIBUTE useioff OF e : SIGNAL IS true;
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For Xilinx devices:

ATTRIBUTE IOB : STRING;

ATTRIBUTE IOB OF e : SIGNAL IS‘‘TRUE’’;

For Lattice devices:

USE DIN TRUE CELL ‘‘e’’;

USE DOUT TRUE CELL ‘‘e’’;

The advantage of such technique is to reuse existing elements of the design. By

using flip-flops which are already implemented, the overhead is very limited. It also

has a strong impact on design operation, since it prevents new data to be loaded.

However, it requires a specific type of flip-flop, since an enable input is necessary.

2.3.2.2 Fuses/Anti-fuses

In 2014, Basak et al. also proposed to act on the inputs of a circuit to get it to operate

properly or not [9]. They propose to integrate anti-fuses in the chip’s pins. Those

anti-fuses are blown or not according to an authentication key. If the wrong key

is supplied, then the wrong fuses are blown and the device is not usable. After the

fuses are blown, the correct inputs and outputs are accessible and the device operates

normally.

An interesting feature here is that if a system integrator obtains an integrated cir-

cuit on which fuses are already blown, then it is obviously a refurbished one. There-

fore, such scheme also helps in fighting other types of threats on design intellectual

property.

2.3.3 Processor

2.3.3.1 Processor’s Programme Counter

Among complex systems, some integrate a soft-core processor in the FPGA fabric

in order to execute programmes. Such processor is described in a hardware descrip-

tion language and instantiated. Altera Nios II [10] and Xilinx MicroBlaze [11] are

examples of proprietary soft-core processors. An example of open-source soft-core

processor is the Plasma CPU, available on the IP cores repository Opencores [12].

Moreover, some SoC actually include a wired processor. For example, recent Altera

Cyclone V SoCs integrate a dual-core ARM Cortex-A9 processor.
1

1
https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html.

https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html
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In order to disable a processor, acting on the programme counter, also called

instruction pointer, is a very effective solution. The programme counter is a reg-

ister that gives the address of the instruction being currently executed. Therefore, by

controlling its value, it becomes possible to prevent new instructions from being exe-

cuted. This can effectively halt the processor. Moreover, such halting can be set and

released multiple times during the device’s lifetime, allowing to achieve evaluation

periods for instance. Therefore, acting on the programme counter is a versatile way

to license the device. In case of counterfeiting or overbuilding, it can also obviously

be used to render the processor unusable by permanently forcing the programme

counter to a fixed value.

The detailed locking process is presented in Algorithm 1.

Algorithm 1: Backup and locking procedure

if locking request then
if No branching or long instruction going on then

if No branching or long instruction coming then
PCbackup ← PC

Wait for ongoing instruction to finish then
PC ← “000...000”

instruction ← NOP
Locking completed

The first thing to do is to intercept the locking request. After that, it is important

to verify that no problematic instruction is currently being executed. Indeed, if this

is the case, then the return to normal operation is uncertain. Problematic instructions

are long and branching instructions. Long instructions cannot be stopped during their

execution and should terminate before. Similarly, during a branching instruction,

the locking request should be postponed. This might cause the branching instruc-

tion to be skipped. The locking request should also be postponed if a problematic

instructions is meant to be executed during the next clock cycle. In order to detect

these instructions, the opcodes corresponding to problematic instructions can be

read directly from the memory bus. These opcodes are provided by the processor’s

designer. This decision is based on practical experiments. It is important to ensure

that a correct backup of the processor’s current state is possible. Locking requests are

not time-critical and can be postponed for several clock cycles to ensure processing

integrity.

After that, the current value of the programme counter is stored in a dedicated

register: PCbackup. At the end of the running instruction, which is not problematic,

the programme counter is set to a nonfunctional value. In Algorithm 1, we took the

example of the zero value (“000...000”) but this can be different depending on the

processor. The instruction register is set to NOP. This is to avoid executing the same

instruction over and over when the processor is locked. It could modify its internal

state and make the return to normal operation impossible.



26 B. Colombier et al.

Finally, the locking process is considered as completed.

In order to return to normal operation, the previous programme counter value

should be restored. This is shown in Algorithm 2.

Algorithm 2: Restore procedure

if unlocking request then
PC ← PCbackup

Wait for instruction to be loaded then
Unlocking completed

An interesting feature of this locking scheme is that it is fully reversible. Indeed,

if the locking procedure has been followed properly, the instruction during which the

locking occurred is not problematic. Therefore, the system can then be unlocked and

start again without problem.

2.3.4 Buses

Buses integrity is crucial for correct communication between the different compo-

nents of a system. Integrity can be more precisely defined in two terms: value and

position. Thus data from a bus is sound if it has a correct value and it is correctly

ordered.

Therefore, by acting on either the value or the position of the bus data, we can

alter the bus operation. The first option is then to scramble the bus lines. The second

option is to randomly mask the bus data.

For the subsequent Sects. 2.3.4.1 and 2.3.4.2, we assume that the bus is error free.

The input value is identical to the output value during normal operation.

2.3.4.1 Deterministic Scrambling

A bus can be defined as the following function f :

f ∶ {0, 1}n → {0, 1}n (2.3)

∀x ∈ {0, 1}n ∶ f (x) = x (2.4)

It can thus be referred to as the identity function.

We define a deterministic scrambling function 𝜎 as :

𝜎 ∶ {0, 1}n → {0, 1}m with n ≥ m (2.5)
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∀x ∈ {0, 1}n ∶ 𝜎(x) ≠ x (2.6)

However, such function can be heavy to implement. The requirement given in

Eq. (2.6) is hard to fulfil for all x.

Therefore, we can define a relaxed version of the deterministic scrambling func-

tion 𝜎R as :

𝜎R ∶ {0, 1}n → {0, 1}m with n ≥ m (2.7)

such that for most of the input values:

𝜎R(x) ≠ x (2.8)

In fact, the relaxed version is sufficient for the usage we consider here. Indeed,

disturbing a bus for even half of the input values is enough to render the overall

system unusable.

The other point is to make the scrambling controllable by an additional input such

that the scrambler can be turned on and off. A simple 2-to-1 n-bit multiplexer can

be used to this end, selecting between the original bus data and the scrambled one.

This is shown on Fig. 2.5.

From a practical point of view, implementing a scrambler is trivial. An n-bit cir-

cular shifter defined as 𝜎R(xi) = xi−1 mod n and shown in Fig. 2.6 is efficient. It is only

a relaxed deterministic scrambler since it does not alter the data if it consists or only

0 s or only 1 s.

Fig. 2.5 Integration of the

scrambler on an n-bit bus

Fig. 2.6 8-bit circular

shifter
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However, there are even more trivial structures which can be used to scramble the

bus. We do not give more details here as the chosen method is strongly dependent

on the bus purpose.

Implementation details can require to add extra specifications to the scheme

shown in Fig. 2.5. As shown on Fig. 2.1 of this chapter, a scrambler can be added to

the address bus of the shared memory. This is a suitable choice, since reading from

a wrong memory address disturbs the system heavily. However, writing to an unau-

thorised memory address could potentially alter the ability of the system to recover

once the scrambler will be deactivated. For instance, the programme memory could

be irremediably altered. Therefore, in this case, the bus should be scrambled only

during read operations, not write.

2.3.4.2 Pseudo-random Masking

Another way to corrupt a bus is to act on the actual data which is transmitted through

it. To this end, pseudo-random masking can be used.

In order to get pseudo-randomness, we use a linear feedback shift register (LFSR).

Then, the shift register state bits are XOR-ed bitwise with the bus lines. For an n-bit

bus, an n-bit shift register is used. If the feedback polynomial is carefully chosen, i.e.

is primitive, a 2n − 1 clock cycles period can be obtained. This is shown in Fig. 2.7.

Similarly, the note made in the previous section about implementation-specific

issues also applies to the pseudo-random masking scheme.

In order to reduce the power overhead induced by the LFSR, it can be clocked at

a lower frequency then the nominal one of the design. Indeed, power consumption

is proportional to the operating frequency.

2.3.5 Finite State Machine

The first way to modify the FSM is to add extra states before the original reset state.

This is described in Sect. 2.3.5.1. The second option is to duplicate intermediate

states to stop normal operation if the correct key is not provided. This is detailed in

Sect. 2.3.5.2.

Fig. 2.7 Pseudo-random masking of a bus using an LFSR
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2.3.5.1 Pre-reset States

The first possibility to modify the FSM is to add extra states before the original reset

state [4, 13, 14]. This way, when the system is powered up or reset, it starts again

in these extra states. In order to reach normal operation, the design must transact

from one extra state to the other until it reaches the original reset state. If the state

transitions of the extra states are only known to the original designer, then an attacker

will not be able to reach the original reset state. The only possibility would be to

explore all the extra states until the original reset state is reached.

The extra states can come at no cost if the original state machine is encoded in a

way that so-called don’t care states exist. If the FSM’s states follow binary encoding,

then an M-state FSM must use at least ⌈log2(M)⌉ D flip-flops to store the current

state’s value. If the number of flip-flops used is n, then there are 2n −M states which

are not used. These are don’t care states. They can be used to encode the extra states.

A graphical representation of the modified FSM is shown in Fig. 2.8.

In this example, the original FSM includes five states. ⌈log2(5)⌉ = 3, so three

flip-flops are needed for state encoding. However, three flip-flops can encode 23 = 8
states. Therefore, the three don’t care states can be used as pre-reset states.

The new reset state is S′0. In order to transact to the original reset state S0, the

correct values for K0, K1 and K2 should be sent. If one key bit is wrong, then S′0 is

reached again.

The advantage of such technique is to have low overhead since it makes use of

don’t care states. It has several drawbacks though. First of all, from a security point

of view, this locking scheme exhibits a key even though it is not secure on its own.

This can be misleading and get the designer to consider the scheme secure. However,

security should rely on a cryptographic primitive. Second of all, transitions from one

state to the other could be detected by the transient power consumption of switching

flip-flops which encode the current state. Thus, finding the right key becomes trivial.

One option explored to make the scheme more secure is to initialise the state flip-

flops to a random value, given by the response of a PUF to a specific challenge [4].

Fig. 2.8 Pre-reset states with key (K0K1K2) = 110
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Since only the designer knows the PUF’s challenges/responses pairs, only he can

find out the start-up state associated with a challenge. Therefore, in order to reach

the original FSM, he must provide the system integrator with the right sequence of

inputs to provide to the FSM. However, this only makes each FSM instance behave

differently. It does not account for the two drawbacks previously described. Further-

more, it does not consider the variability of PUF’s responses. If the PUF’s response

differs, the start-up state expected by the designer is different than the actual one of

the powered-up device. Thus, the designer cannot provide the appropriate sequence

of inputs to unlock the circuit.

Another option to modify the FSM is to duplicate specific states. This is described

in the following section.

2.3.5.2 Duplicated States

Similarly, it is possible to use don’t care states to duplicate some intermediate states.

This is described in [15] and shown in Fig. 2.9. In this example, state S2 is duplicated.

The transitions from S1 to one of the duplicated states S21, S22, S23 and S24 is

controlled by the output of a PUF, called random unique block in [15]. After that,

in order to transition to the next state, here S3, a specific key must be applied to the

FSM’s inputs. This key is associated with the PUF’s response and known only by the

designer. If the wrong key is applied, the FSM does not transition to the next state

and remains locked.

The advantages and drawbacks of this method are the same as the ones describes

in Sect. 2.3.5.1.

Fig. 2.9 Duplicated states S21, S22, S23 and S24
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2.4 Implementation on FPGA and Results

We implemented the on-chip locks proposed in Sect. 2.3 on FPGA. We first give

the cost for all solutions in terms of hardware resources. We then them implement

on reference designs to estimate the implementation overhead. All the results are

given with optimisation for lowest area. We used Quartus II 13.1 and ISE 13.4 for

synthesis.

2.4.1 Hardware Resources

The experimental results obtained are given in Table 2.2. The implementation was

carried out on two FPGA families: Altera Cyclone III and Xilinx Spartan 3. They

are provided as the number of 4-input look-up tables (LUTs) and D flip-flops used

for the implementation.

First, we can see that logic resources usage is very low for all the locks, except for

the PLL reconfiguration. Indeed, in this case, the heaviest module is the one respon-

sible for achieving the reconfiguration. It is provided by the FPGA manufacturer and

can hardly be modified or optimised.

Conversely, all the other locks require very few logic resources. The most light-

weight one consists in acting on the enable input of the input/output flip-flops. For

buses, we give the required resources in terms of the bus width. They are always

proportional to the bus width. When extra states are added to the FSM, either as pre-

reset or duplicated states, the resources overhead grows logarithmically with respect

Table 2.2 Implementation results of on-chip locks alone on Altera Cyclone III and Xilinx Spartan

3

Modified feature On-chip lock #4-input LUTs #D flip-flops

Clock circuitry Reconfigurable PLL
a

(+ control FSM)

247(+55) 118(+18)

Clock-gating module 9 6

Inputs/outputs Inputs/outputs DFF

enable

0 0

Interconnection bus Deterministic

scrambling
b

8n/5 0

Pseudo-random

masking
b

n n

FSM Pre-reset states
c

log(n) log(n)

Duplicated states
c

log(n) log(n)

a
Only on Cyclone III, not available on Spartan 3

b
Of an n-bit bus

c
For n extra states
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Table 2.3 Required resources to implement the original designs

Unmodified Altera Cyclone III Xilinx Spartan 3

design #4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Ethernet

controller

275 108 357 99

Plasma CPU 2395 452 2901 394

to their number. We did not take into account here the possibility to reuse don’t care
states. This would reduce the required resources even further.

Modifying the programme counter is a specific process for each processor. This

is detailed in Sect. 2.4.2.2 for the Plasma CPU.

2.4.2 Reference Designs

We then propose to implement the locks on two reference designs: an Ethernet con-

troller and a soft-core processor. Both designs are available on the Opencores web-

site [12]. For comparison, we give the resources required to implement the original

designs in Table 2.3.

2.4.2.1 Ethernet Controller

The first reference design is an Ethernet controller. It is a fairly small design, mainly

consisting in an FSM.

We first modified the clock circuitry. On the one hand, the clock-gating module

requires 3 % more combinational fabric and 6 % more D flip-flops. The resources

overhead is then rather low. On the other hand, implementing a reconfigurable PLL

doubles the required resources, and is clearly not practical.

As expected, acting on the D flip-flop enable input requires no extra resources.

When acting on the bus, scrambling is cheaper than masking. We implemented

them both on a 32-bit bus. Scrambling requires extra combinational logic, around 9 %

more. On the other hand, pseudo-random masking needs D flip-flops to implement

the LFSR. Therefore, the associated overhead is quite high, around 30 % more D

flip-flops.

Finally, we also modified the FSM in both ways. First, we added 32 pre-reset

states. Even if it only requires one extra flip-flop, the combinational logic handling

the transitions between the extra states is heavy, and requires almost 25 % more

resources. Then, we duplicated one of the state 32 times. Similarly, only one extra

flip-flop was added to the design but the requirement for combinational logic exceeds

70 % here, which is excessive.
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Table 2.4 Implementation of on-chip locks on the Ethernet controller

Modified Altera Cyclone III Xilinx Spartan 3

design #4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Clock-gating

module

284 (+3 %) 114 (+6 %) 367 (+3 %) 105 (+6 %)

PLL

reconfiguration

522 (+90 %) 226 (+109 %) Not available

Inputs/outputs

DFF enable

275 (+0 %) 108 (+0 %) 357 (+0 %) 99 (+0 %)

Deterministic

scrambling
a

297 (+8 %) 108 (+0 %) 388 (+9 %) 99 (+0 %)

Pseudo-random

masking
a

313 (+14 %) 140 (+30 %) 391 (+9 %) 131 (+32 %)

32 pre-reset states 343 (+25 %) 109 (+1 %) 425 (+19 %) 100 (+1 %)

Duplicated state

(x32)

493 (+80 %) 109 (+1 %) 612 (+71 %) 100 (+1 %)

a
For a 32-bit bus

All the results of the implementation on the Ethernet controller are shown in

Table 2.4.

For a design of this size, we can then estimate that only input/output locking is

suitable. Adding a clock-gating module can be also considered, since the overhead

is still rather low. All the other modifications lead to an important overhead.

2.4.2.2 Plasma CPU

A larger design is now presented, the soft-core processor Plasma CPU.

Here, the clock-gating module is even cheaper in terms of resources. However,

PLL reconfiguration remains expensive, with 13 % more combinational resources

and 30 % more D flip-flops.

Like before, using integrated input/output D flip-flops adds no logic resources.

Modifying the bus becomes affordable with this kind of large designs. Scrambling

it in a deterministic way induces almost no overhead. Pseudo-random masking leads

to low overhead, below 8 % Therefore, it can be implemented as a powerful way to

disturb the bus data.

Since the Plasma CPU does not comprise an FSM, pre-reset and duplicated states

could not be implemented on this design.

Finally, being able to control the programme counter value is also quite expensive

and requires 10 % extra resources. However, this was implemented on an already

existing design. We assume it could be implemented in a more lightweight way if

this feature was taken into account during the design phase.

All the implementation results are provided in Table 2.5.
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Table 2.5 Implementation of on-chip locks on the Plasma CPU

Modified design Altera Cyclone III Xilinx Spartan 3

#4-input LUTs #D flip-flops #4-input LUTs #D flip-flops

Clock-gating

module

2399 (+0.17 %) 458 (+1 %) 2932 (+1 %) 400 (+2 %)

PLL

reconfiguration

2697 (+13 %) 588 (+30 %) Not available

Inputs/outputs

DFF enable

2395 (+0 %) 452 (+0 %) 2901 (+0 %) 394 (+0 %)

Deterministic

scrambling
a

2430 (+1 %) 452 (+0 %) 2894 (+0 %) 394 (+0 %)

Pseudo-random

masking
a

2446 (+2 %) 484 (+7 %) 2927 (+1 %) 426 (+8 %)

Programme

counter halt

Not implemented 3186 (+10 %) 428 (+9 %)

a
For a 32-bit bus

On larger designs, implementing more complex locks is possible. The associated

overhead is limited, and even multiple locks could be integrated.

2.5 Discussion: Partial Locking

For some of the features presented previously, it is possible to achieve partial locking.

Partial locking can refer to the following features:

∙ Lower performance: lower operating frequency...

∙ Less features: reduced instruction set...

∙ Limlited period of use: trial period.

However, the system is still perfectly functional.

Such partial locking feature is very interesting from the point of view of the

designer. In fact, it allows the designer to provide the design in evaluation mode.

This way, the design can be thoroughly tested by the future user before buying it.

With the increasing number of designs provided as IP cores, this allows to support

a business model similar to the one used in for software distribution. The product

is first provided as an evaluation version and can then be fully unlocked to perform

optimally. This offers interesting flexibility to the licensing model.

What is important to partially lock a design is to choose a locking scheme that

provides some granularity. Among the modifications we have shown in the previous

sections, acting on the clock circuitry is the only one able to achieve this. Indeed, as

said before, the clock frequency is directly related to the performance of the design.

Therefore, acting on the clock frequency using a clock-gating module or by dynam-

ically reconfiguring the PLL is a way to tune system performance.
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In order to implement this kind of functionality, a controller should also be imple-

mented to handle the different states in which the system can operate: locked, evalua-

tion or unlocked. Different commands and the associated unique keys are controlling

the transitions from one state to another. It leads to additional resources overhead,

which must be taken into account.

2.6 Conclusion

This chapter shows how some features, already existing in most electronic designs,

can be turned into powerful on-chip locks. Since they are already present, using

them lead to low resources overhead. We provide different techniques about how to

effectively implement these locks. We also give details on partial locking. This can

help to achieve a more flexible licensing model for IP cores, allowing to provide

devices in evaluation mode.

The most suited way to modify a design to make it lockable seems to be the mod-

ification of the clock circuitry. It is lightweight and can effectively tune the perfor-

mance of the design.
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