
Context-Passing and Underspecification
in Dependent Type Semantics

Daisuke Bekki and Koji Mineshima

Abstract Dependent type semantics (DTS) is a framework of discourse semantics
based on dependent type theory, following the line of Sundholm (Handbook of Philo-
sophical Logic, 1986) and Ranta (Type-Theoretical Grammar, 1994). DTS attains
compositionality as required to serve as a semantic component of modern formal
grammars including variations of categorial grammars, which is achieved by adopt-
ing mechanisms for local contexts, context-passing, and underspecified terms. In
DTS, the calculation of presupposition projection reduces to type checking, and the
calculation of anaphora resolution and presupposition binding both reduce to proof
search in dependent type theory, inheriting the paradigm of anaphora resolution as
proof construction.

1 Introduction

1.1 Natural Language Semantics via Dependent Type Theory

In the late 1980s, against the backdrop of the rapid development of model-theoretic
discourse semantics such as Discourse Representation Theory (DRT) (Kamp 1981),
File Change Semantics (FCS) (Heim 1982), and Dynamic Predicate Logic (DPL)

Our sincere thanks to Kenichi Asai, Nicholas Asher, Kentaro Inui, Yusuke Kubota, Sadao
Kurohashi, Robert Levine, Zhaohui Luo,RibekaTanaka andAyumiUeyama formany insightful
comments. We also thank to Youyou Cong, Yuri Ishishita, Ayako Nakamura, Yuki Nakano,
Miho Sato and Maika Utsugi for helpful discussions. This research is partially supported by
JST, CREST.

D. Bekki (B) · K. Mineshima
Ochanomizu University/CREST, Japan Science and Technology Agency (JST),
Tokyo, Japan
e-mail: bekki@is.ocha.ac.jp

K. Mineshima
e-mail: mineshima.koji@ocha.ac.jp

© Springer International Publishing AG 2017
S. Chatzikyriakidis and Z. Luo (eds.), Modern Perspectives
in Type-Theoretical Semantics, Studies in Linguistics
and Philosophy 98, DOI 10.1007/978-3-319-50422-3_2

11

12 D. Bekki and K. Mineshima

(Groenendijk and Stokhof 1991), Martin-Löf and Sundholm noticed that dependent
type theory (DTT),1 which extends simply typed lambda calculus by adding depen-
dent types, may provide semantic representations of discourses involving dynamic
binding, which are parallel to their syntactic structures. This idea can be elabo-
rated as a solution to the compositionality problem, that is, the discrepancy between
syntactic structures and semantic representations (SRs) of certain sentences: a sen-
tence including donkey anaphora (Geach 1962) as the sentence (1); E-type anaphora
(Evans 1980) as the sentences (2); and, more generally, discourse referents as dis-
cussed in Karttunen (1976).2

(1) Every farmer who owns [a donkey]i beats iti.
(2) a. [A man]j entered.

b. Hej whistled.

1.2 Compositionality Problem of Discourse Anaphora

Let us briefly summarize the compositionality problem of discourse anaphora, which
has been repeatedly discussed in the literature, starting fromGeach (1962) and Evans
(1980). For the donkey sentence (1), a first-order formula (3), whose truth condition
is the same as that of (1), is a candidate of its SR.

(3) ∀x(farmer(x) → ∀y(donkey(y) ∧ own(x, y) → beat(x, y)))

The problem of (3) as the SR of (1) is that translation from the sentence (1) to (3)
is not straightforward since (i) the indefinite noun phrase a donkey is translated into
a universal quantifier in (3) instead of an existential quantifier, and (ii) the syntactic
structure of (3) does not corresponds to that of (1).

The syntactic parallel of (1) is, rather, the SR (4), in which the indefinite noun
phrase is translated into an existential quantification. However, (4) does not represent
the truth condition of (1) correctly since the variable y in beat(x, y) fails to be bound
by ∃.
(4) ∀x(farmer(x) ∧ ∃y(donkey(y) ∧ own(x, y)) → beat(x, y))

Therefore, neither (3) nor (4) qualifies as the SR of (1). Similar arguments apply to
the case of the E-type anaphora in (2) aswell. The first-order SR (5), which represents
the truth condition of (2), is a candidate of the SR of (2), but the syntactic structure

1The representative version of dependent type theory is Martin-Löf Type Theory (MLTT) (Martin-
Löf 1984), which is also known as Constructive Type Theory or Intensional Type Theory. In this
article, we use the term “dependent type theory” as a term to refer to any type theory with dependent
types, includingMLTT, λP (Barendregt 1992), Calculus of Construction (CoC) (Coquand and Huet
1988), and Unified Type Theory (UTT) (Luo 2012b).
2The subscripts i and j signify that we focus on judgments under a specified reading in which the
antecedent of it is a donkey in (1), and the antecedent of He is A man in (2).

Context-Passing and Underspecification in Dependent Type Semantics 13

of the SR (5) does not correspond to that of (2) either, since the mini-discourse (2)
consists of two independent sentences.

(5) ∃x(man(x) ∧ enter(x) ∧ whistle(x))

The sentential boundary of (2) should prefer the first-order representation (6), but
the truth condition of (6) is different from that of the mini-discourse (2) since the
variable x in whistle(x) is not bound by ∃.
(6) ∃x(man(x) ∧ enter(x)) ∧ whistle(x)

We should elaborate on the difficulty of composing (5) from the SRs of (2a)
and (2b), which may be decomposed into the following three questions.

Question 1: What is the SR of (2a)?
Question 2: What is the SR of (2b)? In particular, what is the SR of He?
Question 3: How is the SR (5) compositionally obtained from the answers for

Questions 1 and 2?

Recall that, until the emergence of discourse semantics such as DRT, FCS, and
DPL, it was not straightforward to give a single solution to these questions, since
the three questions are entangled with each other. This is revealed by putting the
following three naïve assumptions together.

Assumption 1: The SR of (2a) is ∃x(man(x) ∧ enter(x))
Assumption 2: The SR of (2b) is whistle(x)
Assumption 3: The SR of two assertive sentences is obtained by conjoining their

SRs with ∧.
If wemaintain all three assumptions, we obtain (6). So we have to abandon at least

one of these assumptions or other hidden assumptions behind this naïve analysis. For
example, DRT abandons Assumptions 1 and 3, and also the direct compositionality
of meaning. DPL abandons Assumption 1, and also the standard model-theoretic
interpretation of first-order logic, so that (5) and (6) become equivalent.

As will be seen, dependent type theory succeeds in solving the compositional-
ity problem of discourse by abandoning Assumption 2, and by substituting model-
theoretic interpretations of SRs with proof-theoretic interpretations, which provides
not only a key idea for solving the particular problem of anaphora, but an alternative
perspective for the theory of meaning.

1.3 Partial Solutions in Dependent Type Theory

In natural language semantics based on dependent type theory, the meaning of a
declarative sentence is represented by a type, which is a collection of proofs under a
given context. This is a major divergence from the model-theoretic semantics dating
back toMontague (1974), in which a proposition denotes a truth value or a set of pos-
sible worlds. In dependent type theory, a type has no denotation; instead, its meaning

14 D. Bekki and K. Mineshima

Table 1 DTS-style versus standard notations for dependent types

DTS-style notation Standard notation

Dependent function type
(Π -type)

(x : A) → B (Πx : A)B

Dependent product type
(Σ-type) (x : A) × B,

[
x : A
B

]
(Σx : A)B

is defined by the inference rules, which consist of formation rules, introduction rules,
and elimination rules, as shown in Definitions 1 and 2. These rules specify how a
type (as a proposition) can be formed and proved under a given context. In partic-
ular, introduction rules and elimination rules provide verificational and pragmatist
accounts of a given constructor, and the former is considered as primary, according to
Gentzen (1935), in the sense that the latter can be derived from the former. Thus, the
meaning of a sentence in proof-theoretic semantics lies in its verification condition,
in line with the philosophy of language that originates in Dummett (1975, 1976)
and Prawitz (1980).3

Definition 1 (Dependent function type) For any (s1, s2) ∈ {(type, type), (type,

kind), (kind, type), (kind, kind)}, s ∈ {type, kind},

A : s1

x : A....
B : s2

i

(x : A) → B : s2 (ΠF),i
A : s

x : A....
M : B

i

λx.M : (x : A) → B
(ΠI),i

M : (x : A) → B N : A
MN : B[N/x] (ΠE)

Definition 2 (Dependent product type) For any (s1, s2) ∈ {(type, type), (type,

kind), (kind, kind)},

A : s1

x : A....
B : s2

i

[
x : A
B

]
: s2

(ΣF),i
M : A N : B[M/x]
(M,N) :

[
x : A
B

] (ΣI)
M :

[
x : A
B

]
π1M : A (ΣE)

M :
[
x : A
B

]
π2M : B[π1M/x] (ΣE)

In dependent type theory, two kinds of dependent types are added to simply-typed
lambda calculus: dependent function type or Π -type (notation (x : A) → B) and
dependent product type or Σ-type (notation (x : A) × B) as shown in (Table 1).4 By

3Francez and Dyckhoff (2010) and Francez et al. (2010) also pursued a proof-theoretic semantics of
natural language. The difference in their approach is that the meaning of a word itself is defined via
its verification conditions, whereas in our approach the meaning of a word is represented by a term
in dependent type theory, as a contribution to the meaning of a sentence it may participate in. Luo
(2014) provides a comparison between Francez’s approach and dependent-theoretic approaches,
together with an interesting discussion on the proof-theoretic and model-theoretic status of natural
language semantics via dependent type theory.
4DTS also employs a two-dimensional notation for Σ-types as shown in Definition 2, which is
reminiscent of the notation for record types in Cooper (2005).

Context-Passing and Underspecification in Dependent Type Semantics 15

Curry–Howard correspondence between types and propositions, a type (x : A) → B
corresponds to a universal quantification (∀x : A)B, and also an implication A → B
when x /∈ f v(B).5 A type (x : A) × B corresponds to an existential quantification
(∃x : A)B, and also a conjunction A ∧ B when x /∈ f v(B).

In a standard setting of dependent type theory, more types are employed: inten-
sional equality type, disjoint union type, enumeration types (including � and ⊥; the
latter is used to define negation) and natural number type. We assume that dependent
type theory includes such types that are necessary for representing logical operators
in natural language semantics, and also the basic rules such as the type formation
rule, the conversion rule and the weakening rule given as Definition 3. For details,
please refer to Nordström et al. (1990).6

Definition 3 (Basic rules)

type : kind (typeF)
M : A
M : B (CONV)

where A =β B

M : A N : B
M : A (WK)

The SR of a donkey sentence (1) in our analysis is as in (7).7

(1) Every farmer who owns [a donkey]i beats iti.

(7)

⎛
⎜⎜⎜⎜⎝u :

⎡
⎢⎢⎢⎢⎣
x : entity⎡
⎢⎢⎣
farmer(x)⎡
⎣v :

[
y : entity
donkey(y)

]
own(x,π1v)

⎤
⎦

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ → beat(π1u,π1π1π2π2u)

The syntactic structure of the SR (7) parallels that of (1). Moreover, the uni-
versal and existential quantifications are uniformly translated to dependent function
types and dependent product types, respectively. Recall that the SR (3) translates the
indefinite noun phrase to ∀ and fails to preserve the constituent structure of (1).

It follows from the inference rules inDefinitions 1 and2 that a proof of (x : A) → B
is a (fibred) function from A to B, while a proof of (x : A) × B is a (fibred) pair of
A and B. The operators π1 and π2 are, respectively, the first and second projections
from a given pair. Thus, in the SR (7), the type

5We denote the set of free variables in B by f v(B).
6DTS employs two sorts: type and kind, and its terms are stratified into three levels: terms of type
A where A is a type, types of sort type, kinds of sort kind. The only axiom is (typeF) in Definition
3. The (ΠF) rule allows the four patterns (type, type), (type, kind), (kind, type) and (kind, kind)
as in Definition 1, and the (ΣF) rule allows the three patterns (type, type), (type, kind) and (kind,
kind) as in Definition 2. Thus, in this article, DTS employs dependent type theory in which type is
an impredicative universe with respect to Π . This setting is stronger than the predicative dependent
type theory that Bekki (2014) is founded on, but not too strong to construct a proof of Girard’s
paradox (Girard 1972; Coquand 1986; Hook and Howe 1986). We are grateful to Zhaohui Luo
(personal communication) for discussions and comments on this issue.
7Following the notation in logic,wewrite farmer(x) for (farmer x) andown(x, y) for (own y) x, and
so on. More generally, for an n-place predicate f, we often write f(x1, . . . , xn) for (. . . (f xn) . . . x1).

16 D. Bekki and K. Mineshima

⎡
⎢⎢⎢⎢⎣
x : entity⎡
⎢⎢⎣
farmer(x)⎡
⎣v :

[
y : entity
donkey(y)

]
own(x,π1v)

⎤
⎦

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

represents a collection of a nested pair, each comprising an entity, its proof of being
a farmer, another entity, its proof of being a donkey, and a proof of an owning
relation between them. This setting lets the representation of the pronoun it, namely,
π1π1π2π2u—which stays in the scope of u but is outside the scope of x—refer to the
donkey in question.

This analysis naturally extends to the semantics of discourse including E-type
anaphora. The SR of the mini-discourse (2) in our analysis is (8).

(2) a. [A man]i entered.
b. Hei whistled.

(8)

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

Note that (8) preserves the constituent structure of (2). The representation of He
in (2b) is π1π1v, which correctly picks up the first element of a proof of the first
sentence, even though it stays outside the scope of x. However, coming back to the
compositionality problem and the questions in Sect. 1.2, the adequacy of (8) requires
coherent answers to the following questions:

(i) Does (8) correctly represent the meaning of (2)? This question needs particular
attention, given that the meaning of a sentence is not its truth condition in proof-
theoretic semantics.

(ii) If the answer to (i) is positive, and we adopt Assumption 1 in Sect. 1.2, namely,
that the SR of (2a) is (9) below, then what are the answers to Questions 2 and 3?

(9)

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

We will answer (i) positively in Sect. 2, by advocating a methodology which we
call “inferences as tests”. As for (ii), for which no previous approaches in dependent
type theory succeeds in providing a satisfactory answer, we will present the context-
passing mechanism of dependent type semantics (DTS) in Sect. 3.

Context-Passing and Underspecification in Dependent Type Semantics 17

1.4 The Interpretation of Common Nouns in Dependent
Type Theory

The SRs given in (7) and (8) are different from those proposed in the previous
literature onnatural language semantics usingdependent type theory.Thus, according
to the original proposal in Sundholm (1986), Ranta (1994) and Dávila-Pérez (1994),
the SR of the sentence (1) is as given in (10) and that of (2) is as given in (11).8

(10)

⎡
⎢⎢⎣u :

⎡
⎣x : farmer[

y : donkey
own(x, y)

]⎤
⎦

beat(π1u,π1π2u)

⎤
⎥⎥⎦

(11)

⎡
⎣u :

[
x : man
enter(x)

]
whistle(π1u)

⎤
⎦

The crucial difference between our approach and these previous approaches lies in
the interpretation of common nouns; in our approach, common nouns such as farmer,
donkey, and man are analyzed as predicates of type entity → type.9 In the previous
approaches with dependent types, by contrast, common nouns are treated as types;
thus, the common noun man corresponds to a type man, not to a predicate. One
attractive feature of the common-nouns-as-types view is that it can assign simplified
SRs as shown in (10) and (11), as compared to the DTS-style SRs given in (7) and
(8). This view has also been adopted by Modern Type Theory (MTT) (Luo 2012a, b;
Chatzikyriakidis and Luo 2014) and applied to a variety of issues in lexical semantics
such as selectional restriction and coercion.

Despite its initial attractions, however, there is a problem with this approach.10

Consider the following example:

8Here we use the notation in DTS.
9Note that the notion of predicate in a dependently typed setting is different from that used in a
simply typed setting—the type theory that underlies Montague semantics (Montague 1974) and
the standard framework of formal semantics (Heim and Kratzer 1998). In the simply typed setting,
we usually use base type e for the type of entities and t for the type of truth-values, that is, we
have e : type and t : type; given these base types, a one-place predicate is assigned type e→ t
and a two-place predicate type e→e→ t, and so on. In our dependently typed setting, by contrast,
we have entity : type and assign type entity → type to one-place predicates and type entity →
entity → type to two-place predicates. In this sense, a predicate in our setting is not a function
from entities to truth-values (or, equivalently, a set of entities) but a function from entities to types
(that is, propositions); note also that the meanings of types are specified in terms of inference rules,
not in terms of their denotation.
10The problem of negated and conditional forms of predicational sentences is discussed in Tanaka
et al. (2015). See also Chatzikyriakidis and Luo (2016) and footnote 1 of that paper for more
information.

18 D. Bekki and K. Mineshima

(12) John is a student.

This is a predicational sentence and the NP a student is a predicate nominal.11 One
way of looking at a predicational sentence from the common-nouns-as-types view
is to analyze it as a judgement

(13) john : student
where the common noun student corresponds to the type student. However, it is then
not clear how to represent the negated sentence in (14) and the conditional sentence
in (15), since a judgement itself cannot be negated nor appear in the antecedent of
implication.

(14) John is not a student.
(15) If John is a student, I will be surprised.

Also, it is not clear how to represent complex constructions involving predicate
nominals, such as (16a–c).

(16) a. John might be a doctor.
b. Susan became a painter.
c. Bob considers Mary a genius.

For instance, it seems natural to take the judgement john : doctor to be involved in
the SR for the modal construction in (16); however, it is not evident how to give such
an SR, or more generally, how to model the interaction of the common-nouns-as-
types-view with the semantics of modals. Similarly for (16b) and (16c).

Another potential analysis is to adopt the Russell-Montague’s analysis of predica-
tional sentences (Russell 1919; Montague 1974), according to which the predication
of the form t is an F is analyzed as having the logical form ∃x(Fx ∧ x = t). We can
import this analysis into dependent type theory in the following way:

(17) a. John is a student.

[
x : student
john =student x

]

b. John is not a student. ¬
[
x : student
john =student x

]

c. If John is a student, then ...

[
x : student
john =student x

]
→ · · ·

This analysis allows us to represent the SR for John is a student as a type (i.e., a propo-
sition), not a judgement, hence we can represent the negation and the implication as
(17b) and (17c), respectively.

This analysis immediately faces a serious problem, however.Note that the equality
in dependent type theory has the formation rule of the form:

A : type t : A u : A
t =A u : type (=F)

11For a recent survey on the interpretation of predicational sentences and predicate nominals, see
Mikkelsen (2011).

Context-Passing and Underspecification in Dependent Type Semantics 19

Accordingly, john =student x is well-formed only if john : student is provable. Note
also that negation and implication have the following formation rules12:

A : type
¬A : type (¬F)

A : type B : type
A → B : type (→F)

This means that if the negative form of SR in (17b) and the implicational form of SR
in (17c) are well-formed, the judgement john : student must be provable. In other
words, the SRs in (17b) and (17c) presuppose that John is a student.13 Clearly, this
is an undesirable consequence.

It is easily seen that the common-nouns-as-predicates view in our dependently
typed setting avoids all these problems. Overall, an advantage of using type entity
and assuming SRs like (7) and (8) rather than (10) and (11) is that it makes relatively
easy to combine rich type structures and proof-theoretic machinery of dependent
type theory with various analyses proposed in formal semantics of natural language.
The DTS-style approach can make use of the expressive power of dependent type
theory to analyze recalcitrant problems about discourse anaphora without losing the
possibility of combining it with well-understood theories of formal semantics.14

Chatzikyriakidis and Luo (2016) propose a new analysis of negation and con-
ditional in the context of MTT that sets out to avoid the problem of nagated and
conditional forms of predicational sentences.15 This proposal introduces the pred-
icational form of a categorical (non-hypothetical) judgement as in (13) and then
extends it to negated and hypothetical judgements, thereby avoiding the undesirable
consequences. A detailed comparison between the two approaches has to be left for
another occasion.

2 Verification Conditions of Discourse and Empirical Tests

Regardless of whether a theory states the meaning of a given sentence in the form
of truth or verification conditions, its adequacy cannot be directly checked by our
intuition nor linguistic data; what we can test are its predictions. Verification con-
ditions, along with a proof theory that introduces them, predict entailment relations

12See Sect. 4.2 for more discussion on the formation rule of negation.
13Wewill give amore detailed discussion of the notion of presupposition in the context of dependent
type theory in Sect. 4.
14Sundholm (1989) gives an analysis of generalized quantifiers in the framework of dependent type
theory in which common nouns are treated as types. Tanaka (2014) points out that Sundholm’s
approach faces an “over-counting” problem in the interpretation of the proportional quantifiermost,
and provides a refined analysis by interpreting common nouns as predicates in the framework of
DTS. Also, Tanaka et al. (2014) combines the framework of DTS with the semantics of modals
that allows explicit quantification over possible worlds and applies it to the analysis of modal
subordination phenomena.
15The analysis of negation goes back to Chatzikyriakidis and Luo (2014).

20 D. Bekki and K. Mineshima

between sentences. Since we may judge an arbitrary entailment between sentences
that includes a sentence in question, a set of such judgments serves as a set of tests for
a semantic theory.We call this paradigm of testing a semantic theory as the inferences
as tests paradigm (see also Sect. 3.7). For example, the sentences in (2) participate
in the entailment relations listed in (18).

(18) a. [A man]i entered. Hei whistled. ⇒ A man entered.
b. [A man]i entered. Hei whistled. ⇒ A man whistled.
c. A man entered and whistled. ⇒ [A man]i entered. Hei whistled.

In DTS, (18a), (18b) and (18c) are predicted by constructing proofs for the infer-
ences in (19) respectively,16 where K is a set of background knowledge represented
as a global context.17

(19) a. K, w :

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦ true

b. K, w :

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

⎡
⎣u :

[
x : entity
man(x)

]
whistle(π1u)

⎤
⎦ true

c. K, w :

⎡
⎢⎢⎣
u :

[
x : entity
man(x)

]
[
enter(π1u)
whistle(π1u)

]
⎤
⎥⎥⎦

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦ true

The inference (19a) is provable in a straightforwardmanner since the consequence
of (19a) is just the first projection of the last premise. Assuming that the premise
is inhabited by a term t, we obtain the following proof diagram in dependent type
theory.

16The definition of the judgment of the form Γ
 M : A is that there exists a proof diagram from
the assumptions Γ to the consequence M : A. The judgment of the form Γ
 A true holds if and
only if there exists a proof term M such that Γ
 M : A.
17In DTS, we assume that the global context K at least includes:

• The basic ontological commitment (e.g. entity : type)
• The arities of predicates (e.g. whitsle : entity → type)

• Ontological knowledge (e.g. john : entity, f :
(
u :

[
x : entity
cat(x)

])
→ animal(π1u)).

Context-Passing and Underspecification in Dependent Type Semantics 21

(20)

t :

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

π1t :
⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

(ΣE)

The entailments in (18b) and (18c) are even more complex, but we have proofs
as shown in (21) and (22).18

(21)

t :

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

π1t :
⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

π1π1t :
[
x : entity
man(x)

] (ΣE)

t :

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

π2t : whistle(π1π1π1t)
(ΣE)

(π1π1t,π2t) :
⎡
⎣u :

[
x : entity
man(x)

]
whistle(π1u)

⎤
⎦

(ΣI)

(22)

t :

⎡
⎢⎢⎣
u :

[
x : entity
man(x)

]
[
enter(π1u)
whistle(π1u)

]
⎤
⎥⎥⎦

π1t :
[
x : entity
man(x)

] (ΣE)

t :

⎡
⎢⎢⎣
u :

[
x : entity
man(x)

]
[
enter(π1u)
whistle(π1u)

]
⎤
⎥⎥⎦

π2t :
[
enter(π1π1t)
whistle(π1π1t)

] (ΣE)

π1π2t : enter(π1π1t)
(ΣE)

(π1t, π1π2t) :
⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

(ΣI)

t :

⎡
⎢⎢⎣
u :

[
x : entity
man(x)

]
[
enter(π1u)
whistle(π1u)

]
⎤
⎥⎥⎦

π2t :
[
enter(π1π1t)
whistle(π1π1t)

] (ΣE)

π2π2t : whistle(π1π1t)
(ΣE)

π2π2t : whistle(π1π1(π1t, π1π2t))
(CONV)

((π1t, π1π2t), π2π2t) :

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

(ΣI)

Thus, all the inferences in (19) are provable. This gives a proof-theoretic account
of the data in (18). A more precise formulation of the inferences-as-tests paradigm
will be given in Sect. 3.7.

18The use of the (CONV) rule in (22) depends on the β-equivalence whistle(π1π1t) =β

whistle(π1π1(π1t,π1π2t)), which is omitted for the sake of space.

22 D. Bekki and K. Mineshima

3 Toward Dependent Type Semantics

Regarding how one gets to a representation in dependent type theory from a given
sentence (or a discourse), earlier works have provided different approaches. Ahn
and Kolb (1990) proposed a translation algorithm from discourse representation
structures to SRs in terms of dependent type theory. Dávila-Pérez (1995) proposed
an integration of dependent type theory and Montagovian categorial grammar, and
tried to provide a compositional setting (this has not been entirely successful, as
discussed in Bekki 2014).

Then, the seminal work of Ranta (1994)—a compilation of this discipline in the
mid-1990s—appeared as providing a theory that covers a broad range of linguistic
phenomena including anaphora inaccessibility (seeSect. 3.6), descriptions, tense, and
modality. However, Ranta’s work is initially formulated as a theory of sentence gen-
eration, which needs to be reformulated if one is to adopt it as a semantic component
of a modern formal syntactic theory. This problem further involves how to formu-
late a problem of anaphora resolution and presupposition binding/accommodation
as achieved in van der Sandt (1992), Geurts (1999), and Bos (2003) within the DRT
framework.

Since then, researchers including Ranta himself have proposed various solutions,
such as in Ranta (1994, Chap.9), Krahmer and Piwek (1999), Piwek and Krahmer
(2000), Mineshima (2008, 2013), and Bekki (2013, 2014). With regard to the prob-
lems of earlier approaches, please refer to the discussions in Bekki (2014).

Interestingly, the pursuit of this problem led to a paradigm called “anaphora res-
olution as proof construction” (Krahmer and Piwek 1999), which unified analyses
of anaphora resolution and presupposition binding/accommodation, and analyses of
sentential entailments.

The notable features of DTS, which are absent in other approaches using depen-
dent type theory, or any other dynamic semantics, are its compositionality and the
double role of SRs: On one hand, the meaning of a given sentence, which we assume
is its verification condition as discussed in Sect. 1.3, is purely composed of lexical
contributions of its words, in a standard way that most lexical grammars assume.
On the other hand, the context for any proof construction for anaphora resolution or
presupposition binding triggered within or around the sentence, is also composed of
the same lexical contributions of words. Thus, in DTS, the SR of a word represents
its contribution to both the meaning of a sentence and to the contexts for anaphora
resolution/presupposition binding that the sentence is involved in.

DTS obtains these features, which provide a complete solution to the composi-
tionality problem mentioned in Sect. 1.2, by employing two apparates: the context-
passing mechanism and underspecified terms.

Context-Passing and Underspecification in Dependent Type Semantics 23

3.1 Context-Passing Mechanism

According to the discussion inSect. 2,we assume that theSRof themini-discourse (2)
is (8). Moreover, if we maintain Assumption 1 in Sect. 1.2, the SR of (2a) is (9). Then
Question 2 is understood aswhat is the SR of (2b), andQuestion 3 as how to construct
the SR (8) from the SR (9) and the SR of (2b).

(2) a. [A man]i entered.
b. Hei whistled.

(8)

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

(9)

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

Since (9) is a subformula of the SR (8), the first guess for an answer to Question
2 is that the SR of (2b) should be its remainder, namely (23).

(23) whistle(π1π1v)

However, this does not work since v appears free in (23). Suppose we adopt a dis-
course composition rule (as an answer to Question 3) that takes the SRsM,N of two
consecutive sentences and returns the following SR as a conjunction of these two
sentences.

(24)

[
v : M
N

]
Then the variable-name convention of lambda calculus would rename this v if it
appears free in N , which makes v in (23) unbound.

Since v is a proof of the first sentence (9), the immediate remedy for the first
guess is to revise (23) and (24) so that the proof of the first sentence is passed to the
SR of the second sentence. Let us tentatively assume that the SR of (2b) is as (25),
a λ-abstraction of the type whistle(π1π1c) by the variable c.

(25) λc.whistle(π1π1c)

Moreover, let us revise (24) as (26), bywhich the SR (8) is obtained in a compositional
way from (9) and (25).

(26)

[
u : M
Nu

]
This remedy works well in this particular case but is not satisfactory if we further

consider the following two cases:

(I) M may also contain occurrences of discourse anaphora.

24 D. Bekki and K. Mineshima

(II) The antecedent of a discourse anaphora in N may not be found inM and instead
be found in the discourse that precedes M.

(I) suggests that we should λ-abstract not onlyN butM as well and passM a proof
of the discourse that precedes M. We call this the local context of M. (II) implies
that what should be passed to N is not just the proof ofM, but the local context ofM
plus the proof of M. Thus, the SR of (2a) is not as simple as that of (9), but should
be revised as (27). This is the answer to Question 2 in DTS.

(27) λc.

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

The answer to Question 3 is that two sentential SRs are merged into one by the
following dynamic conjunction operation.19

Definition 4 (Dynamic conjunction)

M;N def≡ λc.

[
u : Mc
N(c, u)

]
where u /∈ f v(N)

A local context c is a device to compose the SRs M and N of two consecutive
sentences. First, the local context c for M;N is passed toM, u being a proof of Mc,
then the pair (c, u) is passed toN . This predicts the following asymmetry betweenM
and N : discourse anaphora in N can refer to both antecedents in the local context
and M, while discourse anaphora in M can only refer to antecedents in the local
context.20

Since the SR of (2a) is (27) and the SR of (2b) is as (25), the SR of the mini-
discourse (2) is obtained by the dynamic conjunction between (27) and (25), which
is calculated (and then β-reduced) as follows:

(28)

λc.

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦ ;λc.whistle(π1π1π2c)

def≡ λc.

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1π2(c, v))

⎤
⎥⎥⎦ =β λc.

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(π1π1v)

⎤
⎥⎥⎦

19The dynamic conjunction rule is an extension of the progressive conjunction rule in Ranta (1994)
with a context-passing mechanism.
20The types of the context c and the pair of contexts (c, u) are different. Thus, the two dynamic
propositionsM andN should be assigned different types. However, this does not require a polymor-
phic setting at the object-language level sinceM and N are preterms, and polymorphism is handled
at the metalanguage level when type inference takes place.

Context-Passing and Underspecification in Dependent Type Semantics 25

3.2 Underspecified Terms

The analysis in the previous section that the SR of (2b) is given as (25) still has the
following problems:

1. It is as if the hearer knew the antecedent of a pronoun before a preceding discourse
is provided.

2. An antecedent of anaphora is ambiguous in general. For example, in the most
natural readings of the following two sentences, it in (29a) refers to a lion, while
it refers to a zebra in (29b).21

(29) a. A Lion hunted a zebra. It was hungry.
b. A Lion hunted a zebra. It was delicious.

According to our discussion so far, the sentences (29a) and (29b) have the SRs (30)
and (31):

(30)

⎡
⎢⎢⎢⎢⎢⎢⎣
u3 :

⎡
⎢⎢⎢⎢⎣
u1 :

[
x : entity
lion(x)

]
⎡
⎣u2 :

[
y : entity
zebra(y)

]
hunt(π1u1,π1u2)

⎤
⎦

⎤
⎥⎥⎥⎥⎦

hungry(π1π1u3)

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

⎡
⎢⎢⎢⎢⎢⎢⎣
u3 :

⎡
⎢⎢⎢⎢⎣
u1 :

[
x : entity
lion(x)

]
⎡
⎣u2 :

[
y : entity
zebra(y)

]
hunt(π1u1,π1u2)

⎤
⎦

⎤
⎥⎥⎥⎥⎦

delicious(π1π1π2u3)

⎤
⎥⎥⎥⎥⎥⎥⎦

This means that the SRs of the second sentences of (29a) and (29b) are given as
follows:

(32) a. λc.hungry(π1π1π2c)
b. λc.delicious(π1π1π2π2c)

How can we specify an SR of the pronoun it that incorporates the difference
between (32a) and (32b)? What do the two terms π1π1π2c and π1π1π2π2c have in
common? The answer to the latter is that they are of the same type under the same
global context:

21Examples taken from “The Winograd Schema Challenge” (Levesque 2011), slightly adapted.

26 D. Bekki and K. Mineshima

(33)

K, u3 :

⎡
⎢⎢⎢⎢⎣
u1 :

[
x : entity
lion(x)

]
⎡
⎣u2 :

[
y : entity
zebra(y)

]
hunt(π1u1,π1u2)

⎤
⎦

⎤
⎥⎥⎥⎥⎦
 π1π1u3 : entity

K, u3 :

⎡
⎢⎢⎢⎢⎣
u1 :

[
x : entity
lion(x)

]
⎡
⎣u2 :

[
y : entity
zebra(y)

]
hunt(π1u1,π1u2)

⎤
⎦

⎤
⎥⎥⎥⎥⎦
 π1π1π2u3 : entity

Nowwe are ready to give a full answer to Question 2, including specifying the SR
of a pronoun. The idea, which plays a central role in the discourse representation of
DTS, is that anaphora (and presupposition triggers) are represented by underspecified
terms @i, which obey a certain typing judgment. In the above example, the SRs of
the second sentences of (29a) and (29b) are the following:

(34) a. λc.hungry(@1c)
b. λc.delicious(@2c)

where @1 and @2 are different underspecified terms, but both of them obey the
following type judgment.

(35) K, u3 :

⎡
⎢⎢⎢⎢⎣
u1 :

[
x : entity
lion(x)

]
⎡
⎣u2 :

[
y : entity
zebra(y)

]
hunt(π1u1,π1u2)

⎤
⎦

⎤
⎥⎥⎥⎥⎦
 @iu3 : entity

Thus, the SR of (2b) is, finally, fixed as follows:

(36) λc.whistle(@1c)

3.3 Syntactic Calculus and Semantic Composition

Along with a syntactic calculus, through the disambiguation process if necessary, the
SR of a sentence is composed. This is a preterm of dependent type theory extended
with underspecified terms.

The lexical items required to derive these sentences are listed in Table2. Through-
out this paper, DTS is presented as a semantic component of combinatory categorial
grammar (Steedman 1996), but it is naturally available for other lexical grammars
as well.

Context-Passing and Underspecification in Dependent Type Semantics 27

Table 2 Lexical items in DTS

PF CCG categories Semantic representations in DTS

if S/S/S λp.λq.λc. (u : pc) → (q(c, u))

everynom T/(T\NP)/N λn.λp.λc.

(
u :

[
x : entity
nxc

])
→ (p(π1u)(c, u))

everyacc T\(T/NP)/N λn.λp.λx.λc.

(
v :

[
y : entity
nyc

])
→ (p(π1v)x(c, v))

anom T/(T\NP)/N λn.λp.λc.

⎡
⎢⎣u :

[
x : entity
nxc

]

p(π1u)(c, u)

⎤
⎥⎦

aacc T\(T/NP)/N λn.λp.λx.λc.

⎡
⎢⎣v :

[
y : entity
nyc

]

p(π1v)x(c, v)

⎤
⎥⎦

man N λx.λc.man(x)

who N\N/(S\NP) λp.λn.λx.λc.

[
nxc

pxc

]

whom N\N/(S/NP) λp.λn.λx.λc.

[
nxc

pxc

]

entered S\NP λx.λc.enter(x)

whistled S\NP λx.λc.whistle(x)

heinom T/(T\NP) λp.λc.p(@ic)c

it jacc T\(T/NP) λp.λc.p(@jc)c

Here, @i and @j are underspecified terms

The conditional if and the universal quantifier every are constructed from depen-
dent function types, while the indefinite article a is constructed from a dependent
product type, following Sundholm (1986). The relativizer who takes a subjectless
sentence and a common noun, and statically conjoins them.

Following the “presupposition as anaphora” paradigm advocated in van der Sandt
and Geurts (1991), van der Sandt (1992) and Geurts (1999) that anaphora resolu-
tion and presupposition binding are the same operation, DTS uniformly represents
anaphora and presupposition triggers as underspecified terms.

To see this, let us take an example of a derivation of (2). The sentences (2a)
and (2b) are derived as (37) and (38), respectively.

28 D. Bekki and K. Mineshima

(37)
A

T/(T\NP)/N

: λn.λp.λc.

⎡
⎣u :

[
x : entity
nxc

]
p(π1u)(c, u)

⎤
⎦

man
N

: λx.λc.man(x)

T/(T\NP)

: λp.λc.

⎡
⎣u :

[
x : entity
man(x)

]
p(π1u)(c, u)

⎤
⎦

>

entered
S\NP

: λx.λc.enter(x)

S

: λc.

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

>

(38)
He

T/(T\NP)

: λp.λc.p(@ic)c

whistled
S\NP

: λx.λc.whistle(x)

S
: λc.whistle(@ic)

>

Then, the dynamic conjunction operation is applied to (37) and (38), yielding an
SR for the mini-discourse (2), as follows.

(39) λc.

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦ ; λc.whistle(@1c)) = λc.

⎡
⎢⎢⎣v :

⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

whistle(@1(c, v))

⎤
⎥⎥⎦

3.4 Type Checking as the Felicity Condition

The anaphora resolution for the SR s is launched by type checking of the judgment
K, δ : type
 s : δ → type. This reflects a requirement that the SR of a sentence
must be of the sort type under an assumption that the SR of the preceding discourse
is of type δ, which we call the felicity condition of a sentence. The variable δ will be
instanciated with the type � when there is no preceding discourse for s.

Following Mineshima (2008, 2013), Bekki (2013, 2014), and Bekki and Sato
(2015), the presupposition projection is calculated via type-checking. In DTS, the
type checking calculates, as a side effect, the judgment that each of@i must satisfy.22

This reflects a view that presupposition is about the well-formedness or the felicity
of a sentence, not about its verification condition.

22Bekki and Sato (2015) defined a fragment of dependent type theory with underspecified terms
which has a decidable type-checking and inference algorithms.

Context-Passing and Underspecification in Dependent Type Semantics 29

The felicity condition invokes the type-checking algorithm presented in Bekki
and Sato (2015), which returns the type that the underspecified term @1 contained
in the above SR must be assigned under a given global context, as (40):

(40) K, δ : type, c : δ
 @1 :

⎡
⎢⎢⎣

δ⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

⎤
⎥⎥⎦ → entity

The underspecified term@1 could be any term that satisfies (40), but the type (40)
must be inhabited for this mini-discourse to be felicitously uttered. Now the hearer
of this mini-discourse has the two options: binding or accommodation.

3.5 Anaphora Resolution and Presupposition Binding

Following the “anaphora resolution as proof construction” paradigm in Krahmer and
Piwek (1999) and Piwek and Krahmer (2000), anaphora resolution and presupposi-
tion binding are uniformly treated as a proof search for a term that can replace each
underspecified term.

The proof search for (40) finds that the type (40) inhabits a proof term λc.π1π1π2c
as shown in (41).

(41)

c :

⎡
⎢⎢⎣

δ⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

⎤
⎥⎥⎦

1

π2c :
⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

(ΣE)

π1π2c :
[
x : entity
man(x)

] (ΣE)

π1π1π2c : entity (ΣE)

λc.π1π1π2c :

⎡
⎢⎢⎣

δ⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

⎤
⎥⎥⎦ → entity

(ΠI),1

The first option for the hearer is to assume the following equation (at the top level
of inferences).

30 D. Bekki and K. Mineshima

(42) @1 = λc.π1π1π2c :

⎡
⎢⎢⎣

δ⎡
⎣u :

[
x : entity
man(x)

]
enter(π1u)

⎤
⎦

⎤
⎥⎥⎦ → entity

This process corresponds to the binding of the presupposition triggered by@1. In
words, there is an entity in a given context to which the pronoun He can refer. This
is exactly the presupposition that the pronoun triggers. Anaphora in (30) and (31)
can be resolved in this way, and these resolutions correspond, respectively, to the
anaphoric links established in (29a) and (29b).

More formally, anaphora resolution and presupposition binding are the processes
defined as below (Bekki 2014).

Definition 5 (Anaphora resolution/presupposition binding in DTS) Suppose that
Γ
 @i : A and Γ
 M : A. Then a resolution of @i byM under the context Γ is an
equation @i = M : A.

Another option in sentence understanding is to choose not to search for a proof,
and just assume that there is a term@1 that satisfies the judgment (40). This process
corresponds to the accommodation of the presupposition triggered by @1.

Note that the DTS version of accommodation does not involve any transformation
of the representations, unlike the case in van der Sandt (1992) andKrahmer andPiwek
(1999).

3.6 (In)accessibility

While the accessible anaphoric links are well represented, the inaccessible anaphora
such as (43), listed in Karttunen (1976), are simply not representable with dependent
types, as argued in Ranta (1994), Dávila-Pérez (1994), and Fox (1994a).

(43) a. Everybody bought [a car]i. *Iti stinks.
b. If John bought [a car]i, iti must be a Porsche. *Iti stinks.
c. John didn’t buy [a car]i. *Iti stinks.

This is because universal quantification, implication, and negation are represented
by dependent function types that are data types of functions, fromwhich the intended
antecedents cannot be picked up. This is an explanation based purely on the structures
of proofs, which is fundamentally different from the explanation in DRT and other
dynamic semantics.

3.7 Inferences as Tests

Now we can formally state the inferences as tests paradigm in DTS as follows:
Let S1, . . . , Sn, Sn+1 (n ≤ 1) be a sequence of sentences such that S1, . . . , Sn ⇒

Context-Passing and Underspecification in Dependent Type Semantics 31

Sn+1 empirically (i.e., one cannot conceive of a situation in which S1, . . . , Sn is
true and Sn+1 is not). This inference relation is explained if their respective SRs
S′
1, . . . , S

′
n, S

′
n+1 satisfy the relation K, u : (S′

1; . . . ; S′
n)()
 S′

n+1((), u) true, where
() is the proof term for �. Since there is no discourse that precedes S1, the type of
the preceding discourse for S1, . . . , Sn, Sn+1 is given as � as mentioned in Sect. 3.4.

4 Presuppositions as Type Inferences

What is characteristic of our treatment of anaphora and presupposition is that the
process of resolving anaphora and presupposition is analyzed as the process of type-
checking/inference. In this section, wewill see inmore detail how our underspecified
semantics can account for various presupposition phenomena discussed in the formal
semantics literature.

4.1 Presupposition Phenomena

We first focus on the existence presupposition triggered by a definite description.
Some other type of presupposition triggers will be discussed subsequently.

There are two characteristic properties of presuppositions.23 First, a presuppo-
sition projects out of certain embedded contexts. Thus, we can naturally infer that
France has a king not only from (44a) but also when the description occurs in the
negated sentence (44b) or in the antecedent of a conditional (44c).

(44) a. The king of France is wise. ⇒ France has a king.
b. The king of France is not wise. ⇒ France has a king.
c. If the king of France is wise, I will be happy. ⇒ France has a king.

These examples show a striking contrast with the case of entailment as exemplified
in the following examples.

(45) a. John is an American pianist. ⇒ John is American.
b. John is not an American pianist. � John is American.
c. If John is an American pianist, he is skillful. � John is American.

The sentence (45a) entails that John is American, but this entailment does not survive
in the environments (45b, c), in contrast to the case of presupposition in (45b, c)

Second, a presupposition is filtered when it occurs in contexts such as the second
sentence in the conjunction (46a) or in the conditional (46b).

(46) a. France has a king and the king of France is wise.
b. If France has a king, the king of France is wise.

23See Soames (1989) and Beaver (2001) for useful surveys on the topic.

32 D. Bekki and K. Mineshima

The problem posed by these examples is to account for the fact that while a simple
sentence The king of France is wise presupposes that France has a king, neither (46a)
nor (46b) inherits this presupposition.

4.2 Projection

The projection and filtering inferences of presupposition can be naturally accounted
for within the framework of DTS. We will take a look at each in turn.

Consider first how to derive the presupposition projected out of the negated sen-
tence in (44b). Note first that as is standard in constructive logic, negation is defined
to be an implication of the form¬A ≡ A → ⊥, where⊥ is the absurdity type, i.e., the
type that has no inhabitants. Given the formation rule for the absurdity type shown
on the left below, the formation rule for negation can be derived as on the right:

⊥ : type (⊥F)
A : type

¬A : type (¬F)

We analyze the definite article the as follows. Here, a lexical entry is specified in
the form Surf ; Syn; Sem, where Surf is a surface form, Syn a CCG syntactic category,
and Sem a semantic representation in DTS.

(47) the; (S/(S\NP))/N ; λn.λp.λc. p

(
π1

(
@ic :

[
x : entity
nxc

]))
c

A term of the form @ic : � is called type annotation and specifies that the term
@ic has type �. In the case of (47), the term @ic is annotated with a Σ-type (x :
entity) × nxc. This means that the underspecified term @i is a function that takes a
local context c as argument and returns a term having the Σ-type. In this case, such
a term is a pair of an entity x and a proof that x satisfies the condition n. Then its first
projection, i.e., an entity x, is applied to a given predicate p.

The relevant part of the derivation tree for the sentence (44b) runs as follows.24

(48)
The

(S/(S\NP))/N

: λnpc. p

(
π1

(
@1c :

[
x : entity
nxc

]))
c

king of France

N
: λxc. kof(x)

NP/(S\NP)

: λpc. p

(
π1

(
@1c :

[
x : entity
kof(x)

]))
c

>

is not

S\NP/(S\NP)

: λpxc.¬(pxc)

wise

S\NP
: λxc.wise(x)

S\NP
: λxc. ¬wise(x)

>

S

: λc. ¬wise
(

π1

(
@1c :

[
x : entity
kof(x)

])) >

As we saw in Sect. 3.4, the anaphora/presupposition resolution for the SR A is trig-
gered by the judgement K, δ : type
 A : δ → type, where K is a global context

24We abbreviate λx1 . . .λxn.M as λx1 . . . xn.M.

Context-Passing and Underspecification in Dependent Type Semantics 33

representing the background knowledge. This means that the presupposition reso-
lution is amount to proving that the SR in question is well-formed given the local
context c of type δ and the global context K.

Assuming that wise : entity → type is in the global context, the proof that the
SR yielded by (48) is well-formed runs as follows.

(49)

wise : entity → type

@1 : δ →
[
x : entity
kof(x)

]
c : δ

1

@1c :
[
x : entity
kof(x)

] (ΠE)

π1

(
@1c :

[
x : entity
kof(x)

])
: entity

(ΣE)

wise
(

π1

(
@1c :

[
x : entity
kof(x)

]))
: type

(ΠE)

¬wise
(

π1

(
@1c :

[
x : entity
kof(x)

]))
: type

(¬F)

λc.¬wise
(

π1

(
@1c :

[
x : entity
kof(x)

]))
: δ → type

(ΠI), 1

Note that the proof uses the formation rule (¬F) for negation, according to which
both the propositionA and its negation¬A have the samewell-formedness condition.

What is presupposed by the original sentence in (44b) can be read off from the
open branch ending with the judgment having the underspecified term @1. For the
given SR to be well-formed, one has to find a term that can replace @1 in (50).

(50) @1 : δ →
[
x : entity
kof(x)

]
That is to say, given the input context represented by δ, one has to find a proof term
for the proposition that there is a king of France. In this way, we can derive the
existence presupposition for the negated sentence (44b), as well as for the positive
counterpart (44a). As is easily seen by the definition ¬A ≡ A → ⊥, the same infer-
ence is triggered for the antecedent of a conditional sentence in (44c). Thus we can
also account for presupposition projection for conditionals as exemplified in (44c).

4.3 Filtering

The present account can explain the filtering phenomena in (46) without further
stipulation. The relevant derivation for (46a) goes in the same way as the case of
anaphora resolution for the mini-discourse (2) discussed in Sect. 3. Here we will take
a brief look at the case of a conditional sentence in (46b).

To begin with, the SR of the sentence (46b) is compositionally obtained via the
following derivation tree.

34 D. Bekki and K. Mineshima

(51)

If

S/S/S
: λpqc. (u : pc) → q(c, u)

France has a king

S

: λc.

[
x : entity
kof(x)

]

S/S

: λqc.

(
u :

[
x : entity
kof(x)

])
→ q(c, u)

>
the king of France is wise

S

: λc.wise
(

π1

(
@1c :

[
x : entity
kof(x)

]))

S

: λc.

(
u :

[
x : entity
kof(x)

])
→ wise

(
π1

(
@1(c, u) :

[
x : entity
kof(x)

])) >

Then the following type inference is triggered:

(52)

....[
x : entity
kof(x)

]
: type

wise
: entity → type

@1 :
⎡
⎣δ[

x : entity
kof(x)

]⎤
⎦ →

[
x : entity
kof(x)

]
c : δ

2
u :

[
x : entity
kof(x)

] 1

(c, u) :
⎡
⎣δ[

x : entity
kof(x)

]⎤
⎦

(ΣI)

@1(c, u) :
[
x : entity
kof(x)

] (ΠE)

π1

(
@1(c, u) :

[
x : entity
kof(x)

])
: entity

(ΣE)

wise
(

π1

(
@1(c, u) :

[
x : entity
kof(x)

]))
: type

(ΠE)

(
u :

[
x : entity
kof(x)

])
→ wise

(
π1

(
@1(c, u) :

[
x : entity
kof(x)

]))
: type

(ΠF), 1

λc.

(
u :

[
x : entity
kof(x)

])
→ wise

(
π1

(
@1(c, u) :

[
x : entity
kof(x)

]))
: δ → type

(ΠI), 2

In this case, one can find a term that can replace @1 without using the information
in the context δ, namely, the term λc.π2c. This accounts for the fact that the presup-
positional inference is filtered out in sentences like (46a, b). By substituting λc.π2c
for @1, one can obtain a fully specified representation for the sentence (46b), which
captures the intended reading.

(53) λc.

(
u :

[
x : entity
kof(x)

])
→ wise(π1u)

4.4 Bridging Inferences and Gender Presuppositions
of Pronouns

It is often the case that the information that is not explicitly provided in a discourse
plays a role in the process of presupposition resolution. There are two important
examples. One is the so-called bridging inference (Clark 1975).

Context-Passing and Underspecification in Dependent Type Semantics 35

(54) John bought a car. He checked the motor.

The definite description the motor in the second sentence does not have an overt
antecedent, but the hearer can easily infer the existence of a motor using the implicit
knowledge that a car has a motor. Such a bridging inference is special in that the
antecedent is inferred using some relevant background knowledge, with the help
of the information explicitly provided in a previous discourse (Krahmer and Piwek
1999). Due to this inferential character, it is not straightforward to handle bridging
inferences in standard dynamic theories of anaphora such as DRT (van der Sandt
1992; Geurts 1999; Kamp et al. 2011).

The other is concerned with the gender information of pronouns. It has been
widely observed that pronouns introduce gender information as presupposition.25

In the case of (54), the assumption that John is male plays a role in identifying the
antecedent of he with John.

In DTS, the process of anaphora/presupposition resolution essentially involves a
process of proof search. As a consequence, it can treat presupposition resolution and
inference with implicit world knowledge in a unified way.

As an illustration, consider how to handle the example in (54). In a similar way
to the example (2) discussed in Sect. 3, the SRs for the first and the second sentences
in (54) can be derived as (55a) and (55b), respectively.

(55) a. λc.

⎡
⎣v :

[
x : entity
car(x)

]
buy(j,π1v)

⎤
⎦

b. λc. check
(

π1

(
@1c :

[
x : entity
male(x)

])
,π1

(
@2c :

[
x : entity
motor(x)

]))
Here the pronoun he introduces the underspecified term@1 to which theΣ-type (x :
entity) × male(x) is annotated. Then by combining the two SRs using the dynamic
conjunction and then simplifying the resulting expression, the SR for the whole
discourse in (54) is derived as follows.

(56) λc.

⎡
⎢⎢⎢⎢⎣
u :

⎡
⎣v :

[
x : entity
car(x)

]
buy(j,π1v)

⎤
⎦

check
(

π1

(
@1(c, u) :

[
x : entity
male(x)

])
,π1

(
@2(c, u) :

[
x : entity
motor(x)

]))
⎤
⎥⎥⎥⎥⎦

It is easily checked that for the SR (56) to have the type δ → type given the context
K, δ : type, the underspecified terms @1 and @2 are required to have the types in
(57a) and (57b), respectively.

25The treatment of gender information of pronoun as presuppositions goes back at least to Cooper
(1983). See Sudo (2012) for a recent discussion.

36 D. Bekki and K. Mineshima

(57) a. @1 :

⎡
⎢⎢⎣

δ⎡
⎣v :

[
x : entity
car(x)

]
buy(j,π1v)

⎤
⎦

⎤
⎥⎥⎦ →

[
x : entity
male(x)

]

b. @2 :

⎡
⎢⎢⎣

δ⎡
⎣v :

[
x : entity
car(x)

]
buy(j,π1v)

⎤
⎦

⎤
⎥⎥⎦ →

[
x : entity
motor(x)

]

Let us assume that the global context K contains the judgements in (58) which
represent the background knowledge.

(58) j : entity, k : male(j), f :
(
u :

[
x : entity
car(x)

])
→

⎡
⎣v :

[
y : entity
motor(y)

]
have(π1u,π1v)

⎤
⎦

Then one can construct a term having the type in (57a) asλc. (j, k) and one having the
type in (57b) as λc.π1(f (π1(π2c))). Substituting these terms for @1 and @2 in (56),
respectively, we can obtain the SR in (59), which captures the correct information
derivable from the discourse in (54).

(59) λc.

⎡
⎢⎢⎣u :

⎡
⎣v :

[
x : entity
car(x)

]
buy(j,π1v)

⎤
⎦

check (j,π1(f (π1u)))

⎤
⎥⎥⎦

These examples suggest that presuppositions are resolved in various ways. In
simple cases, the presupposed information is merely identified with some element
present in the previous discourse via presupposition binding or copied in a suit-
able place via presupposition accommodation. These possibilities are accounted for
within the framework of DRT (van der Sandt 1992; Geurts 1999; Kamp et al. 2011).
In general cases, however, the antecedents of presuppositions need to be inferred
using the assumptions that are not explicitly established in a previous discourse.
The presupposition-as-type-inference view formulated within our proof-theoretic
framework correctly captures this essentially inferential character of presupposition
resolution.

4.5 Factive Presupposition

Factive presuppositions triggered by predicates like know and regret can also be
handled using underspecified terms.26 For instance, as the following set of examples
shows, the factive predicate know presupposes that the embedded proposition is true.

26See Tanaka et al. (2015) for more details. Earlier work using dependent type theory to analyze
factivity includes Fox (1994b), Ranta (1994), and Krahmer and Piwek (1999).

Context-Passing and Underspecification in Dependent Type Semantics 37

(60) a. John knows that Mary came. ⇒ Mary came.
b. John does not know that Mary came. ⇒ Mary came.
c. If John knows that Mary came, she will be surprised. ⇒ Mary came.

This fact can be captured by assuming that while a non-factive predicate like believe
takes an entity and a proposition as argument, a factive predicate takes a proof term
for the embedded proposition as an extra argument. We can read believe(x,P) as
“the agent x believes the proposition P”, and know(x,P, t) as “the agent x has
evidence t of the proposition P”. To capture the presuppositional inference, we use
an underspecified term for the position t in know(x,P, t) which is to be filled by a
proof term for P. Thus, the non-factive predicate believe and the factive predicate
know have the following lexical entries:

(61) believe; (S\NP)/S; λp.λx.λc.believe (x, pc)
(62) know; (S\NP)/S; λp.λx.λc.know (x, pc,@ic : pc)
The SR for the sentence (60a) is derived as in (63).

(63)

John
NP
: j

knows
(S\NP)/S

: λp.λx.λc.know (x, pc,@1c : pc)

that
S/S

: λp.p

Mary came

S
: λc.came(m)

S
: λc.came(m)

>

S\NP
: λx.λc.know (x, came(m),@1c : came(m))

>

S
: λc.know (j, came(m),@1c : came(m))

<

It is easily checked that the underspecified term @1 has the type δ → came(m),
where δ : type. This is the case even when the factive predicate appears in sentences
like (60b) and (60c). Thus, in the same way as the examples in the previous sections,
presuppositional inferences triggered by factive predicates can be derived as type
inferences.

There are other important classes of presupposition triggers which cannot be
discussed in this paper, including additive particles like too (Kripke 2009), cleft con-
structions (Atlas and Levinson 1981), and selection restrictions of predicates (Asher
2011; Magidor 2013). The framework of DTS is general enough to accommodate
these cases as well. However, a detailed discussion has to be left for another occasion.

38 D. Bekki and K. Mineshima

5 Conclusion

The dynamic setting of DTS, which consists of a context-passing mechanism and
underspecified terms, solves the problem of proper formulation of anaphora resolu-
tion/presupposition binding and provides a compositional framework of discourse
semantics based on dependent type theory.

As DTS is established as a semantic component of modern formal grammars due
to the compositionality it attains, particularly (various kinds of) categorial grammars,
the empirical coverage of DTS has been broadened to include linguistic phenomena
such as generalized quantifiers (Tanaka et al. 2013; Tanaka 2014), modal subordina-
tion (Tanaka et al. 2014), conventional implicatures (or expressive content) (Bekki
and McCready 2014), honorification in Japanese (Watanabe et al. 2014), and factive
presuppositions (Tanaka et al. 2015).

References

Ahn, R., & Kolb, H.-P. (1990). Discourse representation meets constructive mathematics. In
L. Kalman & L. Polos (Eds.), Papers from the Second Symposium on Logic and Language.
Akademiai Kiado.

Asher, N. (2011). Lexical Meaning in Context: A Web of Words. Cambridge: Cambridge University
Press.

Atlas, J., & Levinson, S. (1981). It-clefts, informativeness and logical form: Radical pragmatics. In
P. Cole (Ed.), Radical Pragmatics (pp. 1–61). Cambridge: Academic Press.

Barendregt, H. P. (1992). Lambda calculi with types. In S. Abramsky, D.M. Gabbay, & T.Maibaum
(Eds.), Handbook of Logic in Computer Science (Vol. 2, pp. 117–309). Oxford: Oxford Science
Publications.

Beaver, D. I. (2001). Presupposition and Assertion in Dynamic Semantics. Studies in Logic, Lan-
guage and Information. Stanford: CSLI Publications & FoLLI.

Bekki, D. (2013). Dependent type semantics: an introduction. In the 2012 Edition of the LIRa
Yearbook: A Selection of Papers. Amsterdam: University of Amsterdam.

Bekki, D. (2014). Representing anaphora with dependent types. In N. Asher& S. V. Soloviev (Eds.),
Proceedings of the Logical Aspects of Computational Linguistics (8th International Conference,
LACL2014, Toulouse, France, June 2014), LNCS (Vol. 8535, pp. 14–29). Springer, Heiderburg.

Bekki, D., &McCready, E. (2014). CI via DTS. In Proceedings of LENLS11 (pp. 110–123). Tokyo.
Bekki, D., & Sato, M. (2015). Calculating projections via type checking. In The Proceedings of
TYpe Theory and LExical Semantics (TYTLES), ESSLLI2015 Workshop. Barcelona, Spain.

Bos, J. (2003). Implementing the binding and accommodation theory for anaphora resolution and
presupposition projection. Computational Linguistics, 29(2), 179–210.

Chatzikyriakidis, S., & Luo, Z. (2014). Natural language inference in Coq. Journal of Logic, Lan-
guage and Information, 23(4), 441–480.

Chatzikyriakidis, S., & Luo, Z. (2016). On the Interpretation of Common Nouns: Types v.s. Predi-
cates. In Modern Perspectives in Type Theoretical Semantics, Studies of Linguistics and Philos-
ophy. Heidelberg: Springer.

Clark, H. H. (1975). Bridging. In S. Roger, & B. L. Nash-Webber (Eds.), In the Proceedings
of TINLAP’75: Proceedings of the 1975 Workshop on Theoretical Issues in Natural Language
Processing (pp. 169–174). Cambridge, Massachusetts. (Association for Computational Linguis-
tics, Stroudsburg, PA, USA).

Cooper, R. (1983). Quantification and Syntactic Theory. Dordrecht: Reidel.

Context-Passing and Underspecification in Dependent Type Semantics 39

Cooper, R. (2005). Austinian truth, attitudes and type theory. Research on Language and Compu-
tation, 3, 333–362.

Coquand, T. (1986). An analysis of Girard’s paradox. In The Proceedings of the First Symposium
on Logic in Computer Science (pp. 227–236). IEEE Computer Society: Washington, D.C.

Coquand, T., & Huet, G. (1988). The calculus of constructions. Information and Computation,
76(2–3), 95–120.

Dávila-Pérez, R. (1994). Translating English into Martin-Löf’s Theory of Types: A Compositional
Approach, Technical report, University of Essex.

Dávila-Pérez, R. (1995). Semantics and Parsing in Intuitionistic Categorial Grammar”, Ph.d. thesis,
University of Essex.

Dummett, M. (1975). What is a theory of meaning? In S. Guttenplan (Ed.), Mind and Language
(pp. 97–138). Oxford: Oxford University Press.

Dummett, M. (1976). What is a theory of meaning? (II). In Evans & McDowell (Eds.), Truth and
Meaning (pp. 67–137). Oxford: Oxford University Press.

Evans, G. (1980). Pronouns. Linguistic Inquiry, 11, 337–362.
Fox, C. (1994a). Discourse representation, type theory and property theory. In H. Bunt, R. Muskens
&G. Rentier (Eds.), The Proceedings of the InternationalWorkshop on Computational Semantics
(pp. 71–80). Tilburg: Institute for Language Technology and Artificial Intelligence (ITK).

Fox, C. (1994b). Existence presuppositions and category mistakes. Acta Linguistica Hungarica,
42(3/4), 325–339. (Published 1996).

Francez, N., & Dyckhoff, R. (2010). Proof-theoretic semantics for a natural language fragment.
Linguistics and Philosophy, 33(6), 447–477.

Francez, N., Dyckhoff, R., & Ben-Avi, G. (2010). Proof-theoretic semantics for subsentential
phrases. Studia Logica, 94(3), 381–401.

Geach, P. (1962). Reference and Generality: An Examination of Some Medieval and Modern The-
ories. Ithaca, New York: Cornell University Press.

Gentzen,G. (1935).Untersuchungen über das logischeSchliessen I,II.MathematischeZeitschrift39,
pp. 176–210, 405–431. (Translated as ‘Investigations intoLogicalDeduction’, and printed inM.E.
Szabo, TheCollectedWorks ofGerhardGentzen,Amsterdam:North-Holland, 1969, pp. 68–131).

Geurts, B. (1999). Presuppositions and Pronouns. Oxford: Elsevier.
Girard, J.-Y. (1972). Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. Thése de doctorat d’état: Université Paris VII.

Groenendijk, J., & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and Philosophy, 14,
39–100.

Heim, I. (1982). The Semantics of Definite and Indefinite Noun Phrases, Ph.d dissertation, Univer-
sity of Massachusetts. Published 1989 by Garland Press, New York.

Heim, I., & Kratzer, A. (1998). Semantics in Generative Grammar. Malden: Blackwell Publishers.
Hook, J. G., & Howe, D. J. (1986). Impredicative Strong Existential Equivalent to Type:Type,
Technical Report TR 86–760. Department of Computer Science, Cornell University.

Kamp, H. (1981). A theory of truth and semantic representation. In J. Groenendijk, T. M. Janssen &
M. Stokhof (eds.), Formal Methods in the Study of Language. Amsterdam: Mathematical Centre
Tract 135.

Kamp, H., J. van Genabith, & U. Reyle. (2011). Discourse representation theory. In D. M. Gabbay
& F. Gunthner (Eds.), Handbook of Philosophical Logic (Vol. 15, pp.125–394). Doredrecht,
Springer.

Karttunen, L. (1976). Discourse referents. In J. D. McCawley (Ed.), Syntax and Semantics 7: Notes
from the Linguistic Underground (Vol. 7, pp. 363–385). New York: Academic Press.

Krahmer, E., & Piwek, P. (1999). Presupposition projection as proof construction. In H. Bunt & R.
Muskens (Eds.), Computing Meanings: Current Issues in Computational Semantics, Studies in
Linguistics Philosophy Series. Dordrecht: Kluwer Academic Publishers.

Kripke, S. (2009). Presupposition and anaphora: remarks on the formulation of the projection
problem. Linguistic Inquiry, 40(3), 367–386.

40 D. Bekki and K. Mineshima

Levesque, H. J. (2011). The winograd schema challenge. In The Proceedings of AAAI Spring
Symposium: Logical Formalization of Commonsense Reasoning.

Luo, Z. (2012a). Common nouns as types. In D. Béchet & A. Dikovsky (Eds.), Proceedings of the
Logical Aspects of Computational Linguistics, 7th International Conference, LACL2012, Nantes,
France, July 2012 (pp. 173–185). Heidelberg: Springer.

Luo, Z. (2012b). Formal semantics in modern type theories with coercive subtyping. Linguistics
and Philosophy, 35(6), 491–513.

Luo, Z. (2014). Formal semantics in modern type theories: is it model-theoretic, proof-theoretic,
or both? In N. Asher & S. V. Soloviev (Eds.), Logical Aspects of Computational Linguistics (8th
International Conference, LACL2014, Toulouse, France, June 2014 Proceedings), LNCS 8535
(pp. 177–188). Toulouse: Springer.

Magidor, O. (2013). Category Mistakes. Oxford: Oxford University Press.
Martin-Löf, P. (1984). Intuitionistic Type Theory, G. Sambin (Ed.). Naples, Italy: Bibliopolis.
Mikkelsen, L. (2011). Copular clauses. In Semantics: An International Handbook of Natural Lan-
guage Meaning, HSK 33.2 (pp. 1805–1829). Berlin: de Gruyter.

Mineshima, K. (2008). A presuppositional analysis of definite descriptions in proof theory. In: K.
Satoh, A. Inokuchi, K. Nagao & T. Kawamura (Eds.), New Frontiers in Artificial Intelligence:
JSAI 2007 Conference and Workshops, Revised Selected Papers, Lecture Notes in Computer
Science (Vol. 4914, pp. 214–227). Heidelberg: Springer.

Mineshima, K. (2013). Aspects of Inference in Natural Language, Ph.d. thesis, Keio University.
Montague, R. (1974). Formal Philosophy. New Haven: Yale University Press.
Nordström, B., Petersson, K., & Smith, J. (1990). Programming in Martin-Löf’s Type Theory.
Oxford: Oxford University Press.

Piwek, P., & Krahmer, E. (2000). Presuppositions in context: constructing bridges. In P. Bonzon,
M. Cavalcanti, & R. Nossum (Eds.), Formal Aspects of Context, Applied Logic Series. Dordrecht:
Kluwer Academic Publishers.

Prawitz, D. (1980). Intuitionistic Logic: A Philosophical Challenge. In G. vonWright (Ed.), Logics
and Philosophy. The Hague: Martinus Nijhoff.

Ranta, A. (1994). Type-Theoretical Grammar. Oxford: Oxford University Press.
Russell, B. (1919). Introduction to Mathematical Philosophy. Crows Nest: George Allen & Unwin.
Soames, S. (1989). Presupposition. InD.Gabbay&F.Guenthner (Eds.),Handbook of Philosophical
Logic (Vol. 4, pp. 553–616). Dordrecht: Reidel.

Steedman, M. J. (1996). Surface Structure and Interpretation. Cambridge: The MIT Press.
Sudo, Y. (2012). On the semantics of Phi features on pronouns, Doctoral dissertation, MIT.
Sundholm, G. (1986). Proof theory and meaning. In D. Gabbay & F. Guenthner (Eds.), Handbook
of Philosophical Logic (Vol. III, pp. 471–506). Reidel: Kluwer.

Sundholm, G. (1989). Constructive generalized quantifiers. Synthese, 79, 1–12.
Tanaka, R. (2014). A proof-theoretic approach to generalized quantifiers in dependent type seman-
tics. In R. de Haan (Ed.), The Proceedings of the ESSLLI 2014 Student Session, 26th European
Summer School in Logic, Language and Information (pp. 140–151). Tübingen, Germany.

Tanaka, R., Mineshima, K., & Bekki, D. (2014). Resolving modal anaphora in dependent type
semantics. In The Proceedings of the Eleventh International Workshop on Logic and Engineering
of Natural Language Semantics (LENLS11), JSAI International Symposia onAI 2014 (pp. 43–56).
Tokyo.

Tanaka, R., Mineshima, K., Bekki, D. (2015). Factivity and presupposition in dependent type
semantics. In The Proceedings of Type Theory and Lexical Semantics (TYTLES), ESSLLI2015
Workshop.

Tanaka, R., Nakano, Y., & Bekki, D. (2013). Constructive generalized quantifiers revisited. In
The Proceedings of Logic and Engineering of Natural Language Semantics 10 (LENLS 10) (pp.
69–78). Tokyo.

van der Sandt, R. (1992). Presupposition projection as anaphora resolution. Journal of Semantics,
9, 333–377.

Context-Passing and Underspecification in Dependent Type Semantics 41

van der Sandt, R., & Geurts, B. (1991). Presupposition, anaphora, and lexical content. In O. Herzog
& C.-R. Rollinger (Eds.), Text Understanding in LILOG (pp. 259–296). Berlin: Springer.

Watanabe, N., McCready, E., & Bekki, D. (2014). Japanese honorification: compositionality and
expressivity. InS.Kawahara&M. Igarashi (Eds.),TheProceedings ofFAJL7:FormalApproaches
to Japanese Linguistics, the MIT Working Papers in Linguistics 73 (pp. 265–276). International
Christian University, Japan.

http://www.springer.com/978-3-319-50420-9

	Context-Passing and Underspecification in Dependent Type Semantics
	1 Introduction
	1.1 Natural Language Semantics via Dependent Type Theory
	1.2 Compositionality Problem of Discourse Anaphora
	1.3 Partial Solutions in Dependent Type Theory
	1.4 The Interpretation of Common Nouns in Dependent Type Theory

	2 Verification Conditions of Discourse and Empirical Tests
	3 Toward Dependent Type Semantics
	3.1 Context-Passing Mechanism
	3.2 Underspecified Terms
	3.3 Syntactic Calculus and Semantic Composition
	3.4 Type Checking as the Felicity Condition
	3.5 Anaphora Resolution and Presupposition Binding
	3.6 (In)accessibility
	3.7 Inferences as Tests

	4 Presuppositions as Type Inferences
	4.1 Presupposition Phenomena
	4.2 Projection
	4.3 Filtering
	4.4 Bridging Inferences and Gender Presuppositions of Pronouns
	4.5 Factive Presupposition

	5 Conclusion
	References

