Chapter 2
Integers

Abstract Integers are perhaps the most important class of numbers. This is
certainly true in the case of computers. In this chapter we dive into the integers
and how computers represent and operate on them. Without these operations,
digital computers would not function. We begin with some preliminary notation
and terminology. Next we take a detailed look at the unsigned integers. We follow
this with an examination of negative integers and their operations. Lastly, we finish
with a look at binary coded decimals.

2.1 Bits, Nibbles, Bytes, and Words

Our tour of integers will be easier if we get some terminology out of the way first.
This will make it just that much easier to talk about the way numbers are actually
represented inside a computer. We’ll start small and work our way up.

Bits As we have seen, computers work with binary numbers. A single binary digit
is known affectionately as a bit. This bit is either zero or one, off or on, false or true.
The word bit is short for binary digit and appears in Claude Shannon’s classic 1948
paper A Mathematical Theory of Communication [2]. Shannon attributed bit to John
Tukey who used it in a Bell Labs memo dated January 9, 1947. Note, throughout
this book we will play fast and loose with the bit terminology and freely alternate
between “on” and “true” for when a bit is set to one and “off” or “false” when a bit
is set to zero. The choice of word will depend on the context.

Since a bit is so simple, just a zero or a one, it is the smallest unit of information
in the digital world. Still, this small unit can be very important. A status bit set to one
may indicate that the rocket is ready to launch while a status bit set to zero indicates
a fault. Indeed, some microcontroller devices, like the 8051, make excellent use
of their limited resources and support single bit data. We will make extensive use
of bits in the remainder of this chapter. Zero or one, how hard can it be? Still, as
useful as a bit is, it is just, well, a bit. You need to group them together to get more
expressive numbers.

Nibbles A nibble (sometimes nybble) is a four bit number. As a four bit number a
nibble can represent the first 16 integers with 0000, = 0 and 1111, = 15. And,
as we now know, the numbers 0 through 15 are exactly the digits of a hexadecimal
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number. So, a nibble is a single hexadecimal digit. This makes sense since with
four bits we can represent 2* = 16 possible values. A nibble is also the amount
of information necessary to represent a single binary-coded decimal digit but we
are getting ahead of ourselves and will talk about binary-coded decimal later in this
chapter. The origin of the word nibble is related to the origin of the word byte so we
will expand on it below.

Modern computers do not use nibbles as a unit of data for processing. However,
the very first microprocessors, like the TMS 1000 by Texas Instruments and the
4004 by Intel, both introduced in 1971, were 4-bit devices and operated on 4-bit
data. This makes the nibble a bit like octal numbers: appearing in the shadows but
not a real player in modern computing.

Bytes For a modern computer, the smallest unit of data that it will work with is
the byte which is an eight bit binary number. This means that the integers from
0...255 can be represented in a single byte. We’ll ignore the concept of negative
numbers for the time being.

The term byte was first used by Werner Buchholz in July 1956 during the design
of the IBM Stretch computer and was an intentional misspelling of “bite” to avoid
confusion with “bit” [3]. Since byfe came from “bite” it is natural to be tempted to
call half a byte, which is a four bit number, a “nibble” since a nibble is a small bite.
Hence the origin of nibble above.

Buchholz intended a byte to represent a character. We still use bytes to represent
characters in ASCII, but have since moved on to larger numbers for characters in
Unicode. In this book, however, to keep things simple, we will make an implicit
assumption that characters are bytes. So, a text that contains 1000 characters will
take 1000 bytes of memory to store. The universal use of bytes when working
with computers leads to the frequent appearance of the numbers 28 = 256 and
28 — 1 = 255. For example, colors on computers are often represented as triplets
of numbers to indicate the amount of red, green, and blue that make up the color.
Typically, these triplets are given as a set of three bytes to indicate the amount so
that 000000;¢ is black and 00FF00;¢ is bright green. This is just one example,
bytes are everywhere. The relationship between bits, nibbles and bytes is visualized
in Fig.2.1. Here we see that a byte can be thought of as two nibbles, each a
hexadecimal digit, or as eight bits, each a binary digit.

Fig. 2.1 A byte which ;
consists of two nibbles and nlbble
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Words A byte is two nibbles, so, is a word two bytes? Well, sometimes, yes. And
sometimes it is four bytes, or eight, or some other value. Unfortunately, the term
word is not generic like bit and byte, instead it is tied to a particular computer
architecture and describes the basic data size of the architecture.

Historically, the word size of a computer could be anywhere from four bits for
early microprocessors (Intel 4004) to 60 bits for early mainframes (CDC 6600) but
modern computers have settled on powers of two for their word sizes, typically 32
or 64 bits with some second generation microprocessors using 16 bit words (Intel
8086, WDC 65816). For our purposes, we can assume a 32 bit word size when
describing data formats. On occasion we will need to be more careful and explicitly
declare the word size we are working with.

With these preliminaries now under our belt, it is time to start working with actual
data representations. We start naturally with unsigned integers.

2.2 Unsigned Integers

Unsigned integers are our first foray into the depths of the computer as far as
numbers are concerned. These are the basic numbers, the positive integers, that find
frequent use in representing characters, as counters, or as constants, really anything
that can be mapped to the set {0, 1,2, .. .}. Of course, computers have finite memory
so there is a limit to the size of an unsigned integer and we will get to that in the
next section.

2.2.1 Representation

Integers are stored in memory in binary using one or more bytes depending on the
range of the integer. The example in Fig. 2.1 is a one byte unsigned integer. If we
are working in a typed language like C we need to declare a variable that will store
one byte. Typically, this would mean using an unsigned char data type,

unsigned char myByte;

which can store a positive integer from 00000000, = 0t0 11111111, = 255.
This is therefore the range of the unsigned char data type. Note how C betrays
its age by referring to a byte number as a character. Unsigned integers larger than
255 require more than one byte, but we will get to that in the next section.

Table 2.1 shows standard C types for unsigned integers and the allowed range for
that type. These are fixed in the sense that numbers must fit into this many bits at all
times. If not, an underflow or overflow will occur. Languages like Python abstract
integers for the programmer and only support the concept of integer as opposed
to a floating-point number. The unsigned integer operations discussed later in the
chapter work nicely with Python but the concept of range is a little nebulous in that
case since Python will move between internal representations as necessary.
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Table 2.1 Unsigned integer declarations in C

Declaration Minimum Maximum | Number of bits
unsigned char 0 255 8
unsigned short 0 65,535|16
unsigned int 0 4,294,967,295 |32
unsigned long 0 4,294,967,295 |32
unsigned long long 0 18,446,744,073,709,551,615 |64

The declaration, minimum value, maximum value and number of data bits are given

If a number like 11111111, = 255 is the largest unsigned number that fits in
a single byte how many bytes will be needed to store 2567 If we move to the next
number we see that we will need nine bits to store 256 which implies that we will
need two bytes. However, there is a subtlety here that needs to be addressed. This
is, if the number is to be stored in the computer’s memory, say starting at address
1200, how should the individual bits be written to memory location 1200 and the
one following (1201, since each memory location is a byte)? This question has
more than one answer.

2.2.2 Storage in Memory: Endianness

Addresses In order to talk about how we store unsigned integers in computer
memory we have to first talk a bit about how memory is addressed. In this book,
we have a working assumption of a 32-bit Intel-based computer running the Linux
operating system. Additionally, we assume gcc to be our C compiler. In this case,
we have byte-addressable memory meaning that even though the word size is four
bytes, we can refer to memory addresses using bytes. For example, this small C
program,

1 /#include <stdio.h>

2

3/int main() {

4 unsigned char =*p;

5 unsigned short n = 256;

6

7 p = (unsigned char «)é&n;

8 printf ("address of first byte = %p\n", &pl0]);
9 printf ("address of second byte = %p\n", &pll]);
10

11 return 0;

12/}

when compiled and run produces output similar to,

address of first byte = 0xbfdafe9e
address of second byte = Oxbfdafedf
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where the specific addresses, given in hexadecimal and starting with the ox prefix
used by C, will vary from system to system and run to run. The key point is that
the difference between the addresses is one byte. This is what is meant by a byte-
addressable memory. If you don’t know the particulars of the C language, don’t
worry. The program is defining a two byte number in line 5 (n) and a pointer to a
single byte number in line 4 (p). The pointer stores a memory address which we
set to the beginning of the memory used by # in line 7. We then ask the computer
to print the numeric address of the memory location (line 8) and of the next byte
(line 9) using the & operator and indexing for the first (p [0] ) and second (p [1])
bytes. With this in mind, let’s look at actually storing unsigned integers.

Bit Order To store the number 11011101, = 221 in memory we use the eight
bits of the byte at a particular memory address. The question then becomes, which
bits of 221 map to which bits of the memory? If we number the bits from 0 for the
lowest-order bit, which is the right-most bit when writing the number in binary, to
7 for the highest-order bit, which is the left-most bit when writing in binary, we get
a one-to-one mapping,

7 6 5 4 3 2 1 0
11 0 1 1 1 o0 1

so that the highest-order bit of the number is put into the highest-order bit of the
memory address. This seems sensible enough but one could imagine doing the
reverse as well,

7 6 5 4 3 2 1 0
1 0 1 1 1 o 1 1

So, which is correct? The answer depends on how bits are read from the memory
location. In modern computer systems, the bits are read low to high meaning the
low-order bit is read first (bit 0) followed by the next higher bit (bit 1) so that the
computer will use the first ordering of bits that maps 76543210 t0 11011101.

Byte Order Within a byte, bits are stored low to high. What about the bytes of
a multibyte integer? We know that the number 100000000, = 256 requires two
bytes of memory, one storing the low set of eight bits 00000000, and another
storing the high set of eight bits 00000001, where leading zeros are used to
indicate that it is the first bit position set and the rest of the bits in the byte are
clear (set to zero). But, what order in memory should we use,

Memory address: 1200 1201
Low first: 00000000 00000001
High first: 00000001 00000000

low first or high first? The answer is either. If we put the low order bytes of a
multibyte number in memory first we are using little-endian storage. If we put
the high order bytes first we are using big-endian or network order. The choice
is the endianness of the number and both are in use typically as a function of the



24 2 Integers

microprocessor, which has a preferred ordering. The terms little-endian and big-
endian are derived from the book Gulliver’s Travels by satirist Jonathan Swift [4].
Published in 1726 the book tells the story of Gulliver and his travels throughout
a fictional world. When Gulliver comes to the land of Lilliput he encounters two
religious sects who are at odds over whether to crack open their soft-boiled eggs
little end first or big end first. Intel based computers use little-endian when storing
multibyte integers. Motorola based computers use big-endian. Additionally, big-
endian is called network order because the Internet Protocol standard [5] requires
that numeric values in packet headers be stored in big-endian order.

Let’s look at some examples of little and big endian numbers. To save space, we
will use a 32-bit number but represent the numbers showing only the hexadecimal
values of the four bytes such a number would occupy. For example, if the 32-bit
number is,

10101110111100000101011010010110, = AE;¢ FO16 5616 9616

we will write it as AEF05696 dropping the 16 base indicator for the time being.
Putting this number into memory starting with byte address zero and using big-
ending ordering gives,

Address: 0 1 2 3
Value: AE FO 56 96

where the first byte one would read, pulling bytes from address zero first, is the
high-order byte. If we want to use little-endian we would instead put the lowest
order byte first to fill in memory with,

Address: 0 1 2 3
Value: 96 56 FO AE

which will give us the low-order byte first when reading from address zero. Note,
within a particular byte we always still use the bit ordering that maps the high-order
bit (bit 7) to the high-order bit of the number. Reversing the bits within a byte when
using little-endian is an error.

When we are working with data on a single computer within a single program,
we typically do not need to pay attention to endianness. However, when transmitting
data over the network or using data files written on other machines it is a good idea
to consider what the endianness of the data is. For example, when reading sensor
values from a CCD camera, which are typically 16-bit numbers requiring two bytes
to store, it is essential to know the endianness otherwise the image generated from
the raw data will look strange because the high-order bits which contain the majority
of the information about the image will be in the wrong place. From the examples
above, we see that correcting for endianness differences is straightforward, simply
flip the order of the bytes in memory to convert from little-endian to big-endian and
vice versa.
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2.3 Operations on Unsigned Integers

Binary and unary operations on unsigned integers is the heart of what computers do.
In this section we go over all the common operations, bit by bit, and mention some
of the key things to look out for when working with unsigned integers of fixed bit
width. Examples will use byte values to keep it simple but in some cases multibyte
numbers will be shown. Specific operations will be shown in C and Python. Though
the Python syntax is often the same as C, the results may differ because the Python
interpreter will change the internal representation as necessary.

2.3.1 Bitwise Logical Operations

Bitwise operators are binary operators, meaning they operate on two numbers
(called operands), to produce a new binary number. In the previous sentence the first
instance of “binary” refers to the number of operands or arguments to the operation
while the second instance of “binary” refers to the base of the operands themselves.
This is an unfortunate but common abuse of notation.

Digital logic circuits, which are fascinating to study but well beyond the purview
of this book, are built from logic gates which implement in hardware the logical
operations we are discussing here. The basic set of logic operators are given names
which relate to Boolean logic: AND, OR, XOR, and the unary NOT. Negated versions
of AND and OR, called NAND and NOR, are also in use but these are easily constructed
by taking the output of AND and OR and passing it through a NOT so we will ignore
them here.

Logical operations are most easily understood by looking at their truth tables
which illustrate the function of the operator by enumerating the possible set of inputs
and giving the corresponding output. They are called truth tables because of the
correspondence between the 1 and 0 of a bit and the logical concept of true
and false which goes back to Boolean algebra developed by George Boole in the
nineteenth century [6].

A truth table shows, for each row, the explicit inputs to the operator followed by
the output for those inputs. For example, the truth table for the AND operator is,

AND

0
1
0

R P O O
R O O O

1

which says that if the two inputs to the AND, recall the inputs are single bits, are 0
and 0 that the output bit will also be 0. Likewise, if the inputs are 1 and 1 the output
will also be 1. In fact, for the AND operation the only way to get an output of 1 is
for both input bits to be set. We can think of this as meaning “only both”.
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The two other most commonly used binary logic operators are OR and XOR. The
latter is a called exclusive-OR and is sometimes indicated with EOR instead of XOR.
Their truth tables are,

OR XOR

0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

where we see that OR means “at least one” and XOR means “one or the other but
not both”. The last of the common bitwise logical operators is NOT and it has a very
simple truth table,

NOT
0 1
1 0

where the operation is simply turn 1 to 0 and 0 to 1.

If we look again at the truth tables for AND, OR and XOR we see that there are
four rows in each table which match the four possible sets of inputs. Looking at these
rows we can interpret the four bits in the output as a single four bit number. A four bit
number has sixteen possible values from 00005 to 1111, which implies that there
are sixteen possible truth tables for a binary bitwise operator. Three of them are AND,
OR and XOR and another three are the tables made by negating the output of these
operators. That leaves ten other possible truth tables. What do these correspond to
and are they useful in computer programming? The full set of possible binary truth
tables is given in Table 2.2 along with an interpretation of each operation. While all
of these operators have a name and use in logic many are clearly of limited utility in
terms of computer programming. For example, always outputting 0 or 1 regardless
of the input (FALSE and TRUE in the table) is of no practical use in helping the
programmer. The negated versions of the three main operators, NAND, NOR and
XNOR, are naturally built by adding a “not” word to the positive versions and are
therefore useful.

Now that we know the basic operators and why this set is most useful to computer
programmers let’s look at a few examples. First the AND operator,

10111101 = 189
AND 11011110 = 222
10011100 = 156

where the binary representation of the number is in the first column and the decimal
is in the second. We see that for each bit in the two operands, 189 and 222, the
output bit is on only if the corresponding bits in the operand were on. If the operands
were simply zero or one the output would be one only if the inputs were both one.
Since this is exactly what we mean when we use “and” in a sentence we can use this
operator to decide if two things are both true. A natural place to use this ability is in
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Table 2.2 The sixteen possible binary bitwise logical operators

o

XOR
OR
NOR
XNOR

PRk |Rr|RP PR olojlo|lo|jlo/o|lo|lo|lo o
PRk ko ololo Rk r|loo|lo|lo|r

ploor R olor| R loo|Rr R oO|lo|lo R
or|lor|lor ok olr or|lor oOlr R

NAND
TRUE

H
-
-
-

always false

pandgq

if p then not ¢ else false
14

if not p and ¢

q

p or g but not (p and q)
P> qor(pand g)

not OR

not XOR

not ¢

if g then p else true
not p

if p then g else true
not AND

always true

If a common name exists for the operation it is given in the first
column. The top two rows labeled p and ¢ refer to the operands
or inputs to the operator. A 0 is considered false while 1 is true.
A description of the operator is given in the last column. In the
description the appearance of p or ¢ in an if-statement implies that

the operand is true

an if-statement and many programming languages, C and Python included, use the
concept that zero is false and one is true. Actually, C and Python extend this concept
and declare anything that is not zero to be true. It should be noted that Python also
supports Boolean variables and treats the keywords True and False as true and

false respectively.

We look next at the OR and XOR operators. For OR we have,

10111101
OR 11011110
11111111

189
222
= 255

which means at every bit position at least one of the operands has a bit set. The XOR

operator will give us,

10111101
XOR 11011110
01100011

189
222
= 99

One useful property of the XOR operator is that it undoes itself if applied a second
time. Above, we calculated 189 XOR 222 to get 99. If we now perform 99 XOR
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222 we get, giving us back what we started with. As an aside, this is a useful

01100011 = 99
XOR 11011110 = 222
10111101 = 189

simple way to encrypt data. If Alice wishes to encrypt a stream of n bytes (M), which
may represent any data at all, so that she can send it (relatively) securely to Bob, all
she need do is generate a stream of n random bytes (S) and apply XOR, byte by byte,
to the original stream M to produce a new stream, M’. Alice can then transmit M’
to Bob any way she wishes knowing that if Carol intercepts the message she cannot
easily decode it without the same random stream S. Of course, Bob must somehow
have S as well in order to recover the original message M. If S is truly random, used
only once and then discarded, this is known as a one-time pad encryption. The keys
are that S is truly random and that it is only used once. Of course, this does not cover
the possibility that Carol may get her hands on S as well, but if she cannot, there is
(relatively) little chance she will be able to recover M from just M’.

Another handy use for XOR is that it allows us to swap two unsigned integers
without using a third variable. So, in C, instead of,

unsigned char a,b,t;

t = a;

a = b;
b = t;
We can use,

unsigned char a,b;

“=b; // a=a"Db;

a
b *= a;
a *= b;

where * is the C operator for XOR and a *= bisshorthand fora = a * b. Why
does this work? If we write out an example in binary, we will see,

a = 01011101
b = 11011011

a "= b 01011101 * 11011011 — a=10000110
b *= a 10000110 * 11011011 - b=01011101
a *=b 10000110 * 01011101 - a=11011011

As mentioned above, if we do @ XOR b — ¢ and then ¢ XOR b we will get a back.
If we instead do ¢ XOR a we will get b back. So, the trick makes use of this by first
doing a XOR b and then using that result, stored temporarily in a, to get a back
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but this time storing it in b and likewise for getting b back and storing it in a. This,
then, swaps the two values in memory. This trick works for unsigned integers of
any size. Another common use of XOR is in parity calculations. The parity of an
integer is the number of 1 bits in its binary representation. If the number is odd,
the parity is 1, otherwise it is 0. This can be used as a simple checksum when
transmitting a series of bytes. A checksum is a indicator of the integrity of the data.
If the checksum calculated on the receiving end does not match then there has been
an error in transmission. If the last byte of data is the running XOR of all previous
bytes the parity of this byte can be used to determine if a bit was changed during
transmission. In order to see how to use XOR for parity calculations we need to wait
a little bit until we talk about shifts below.
The effect of NOT is straightforward to illustrate,

NOT 10111101 = 189
01000010 66

it simply flips the bits from 0 to 1 and 1 to 0. We will see this operation again when
we investigate signed integers.

Figure 2.2 gives a C program that implements the AND, OR, XOR and NOT logical
operators. This illustrates the syntax. Note that the C example uses the unsigned
char data type. This is an 8-bit unsigned integer like we saw in the examples above.
The operators work with any size integer type so we could just as well have used
unsigned short orunsigned int, etc. Figure 2.3 gives the corresponding
Python code.

The standard C language does not support direct output of numbers in binary
so the example in Fig. 2.2 instead outputs in decimal and hexadecimal. Recall that
in Chap. 1 we learned how to easily change hexadecimal numbers into binary by
replacing each hexadecimal digit with four bits representing that digit. The Python

1|#include <stdio.h>

2

3|void pp(unsigned char z) {

4 printf ("$3d (%02x)\n", z, z);

5}

6

7lint main () {

8 unsigned char z;

9
10 z = 189 & 222; ppl(z); // '&" is AND
11 z = 189 | 222; vpp(z); // "|’" is OR
12 z = 189 ~ 222; ppl(z); // '"' is XOR
13 z =z ~ 222; pp(z); // returns 189
14 z = "z; pp(z); // '~' is NOT
15
16 return 0;
17}

Fig. 2.2 Bitwise logical operators in C
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Fig. 2.3 Bitwise logical l|def pp(z):

operators in Python 2 print "{0:08b}".format (z & Oxff)
3
4|def main () :
5 z = 189 & 222; pp(z) # & is AND
6 z = 189 | 222; opp(z) # '|’ is OR
7 z = 189 ~ 222; vpp(z) # '’ is XOR
8 z =z © 222; pp(z) # returns 189
9 z = "z; pp(z) # '°’ is NOT
10
11|{main ()

code makes use of standard string formatting language features to output in binary
directly. As Python is itself written in C and the language was designed to show
that heritage, the syntax for the bitwise logical operators is the same. There is one
subtlety with the Python code you may have noticed. The function pp () uses “z
& 0xff”inthe format () method call where you might have expected only “z”.
If we do not AND the output value with FF;, we will output a full range integer
and as we will see later in this chapter, that would be a negative number to Python.
The AND keeps only the lowest eight bits and gives us the output we would expect

matching the C code in Fig. 2.2.

2.3.2 Testing, Setting, Clearing, and Toggling Bits

A common operation on unsigned integers is the setting, clearing and testing of
particular bits. Setting a bit means to turn that bit on (1) while clearing is to turn the
bit off (0). Testing a bit simply returns its current state, 0 or 1, without changing
its value. In the embedded computing world this is often done to set an output line
high or low or to read the state of an input line. For example, a microcontroller uses
specific pins on the device as digital inputs or outputs. Typically, this requires setting
bits in a control register or reading bits in a register to know whether a voltage is
present or not on pins of the device.

The bitwise logical operators introduced above are the key to working with bits.
As Fig. 2.3 already alluded to, the AND operator can be used to mask bits. Masking
sets certain bits to zero and some examples will make this clear. First, consider a
situation similar to the Python code of Fig. 2.3 that keeps the lower nibble of a byte
while it clears the upper nibble. To do this, we AND the byte with 0F ¢,

10111101 = BD
AND 00001111 = OF
00001101 = OD

where we now display the binary and hexadecimal equivalent. The output byte will
have all zeros in the upper nibble because AND is only true when both operands are
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one. Since the second operand has all zeros in the upper nibble there is no situation
where the output can be one. Likewise, the lower nibble is unaffected by the AND
operation since every position where the first operand has a one the second operand
will also have a one leading to an output of one but every position where the first
operand has a zero the second operand will still have a one leading to an output of
zero, which is just what the first operand has in that position. A quick look back at
the truth table for AND (above) will clarify why this masking works.

This property of AND can be used to test if a bit is set. Say we wish to see if bit
3 of BDy is set. All we need to do is create a mask that has a one in bit position 3
and zeros in all other bit positions (recall that bit positions count from zero, right to
left),

10111101 = BD
AND 00001000 = 08
00001000 = 08

if the result of the AND is not zero we know that the bit in position 3 of BD;¢ is
indeed set. If the bit was clear, the output of the entire operation would be exactly
zero which would indicate that the bit was clear. Since C and Python treat nonzero
as true the following C code would output “bit 3 on”,

if (0xBD & 0x08) {
printf ("bit 3 on\n");
}

as would this Python code,
if (0xBD & 0x08):
print "bit 3 on"

We use AND to test bits and mask bits but we use OR to actually set bits. For
example, to actually set bit 3 and leave all other bits as they were we would do
something like this, which works because OR returns true when either operand

10110101 = BS
OR 00001000 = 08
10111101 = BD

or both have a one in a particular bit position. Just as AND with an operand of all
ones will return the other operand, so an OR with all zeros will do likewise. In order
to set bits, then, we need OR, a bit mask, and assignment as this C code shows,

#include <stdio.h>

int main()
unsigned char z = 0xB5;

z =z | 0x08; // set bit 3

o

printf ("$x\n", z);
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z |= 0x40; // set bit 6

°

printf ("$x\n", z);

return 0;

}

which outputs BD;¢ and FDy ¢ after setting bits 3 and 6. Since we updated z each
time the set operations are cumulative.

We’ve seen how to test and set bits now let’s look at clearing bits without
affecting other bits. We know that if we AND with a mask of all ones we will get
back our first operand. So, if we AND with a mask of all ones that has a zero in the
bit position we want to clear we will turn off that bit and leave all other bits as they
were. For example, to turn off bit 3 we do something like this, where the mask

10111101 = BD
AND 11110111 = F7
10110101 = BS

value for AND is F7;4. But, this begs the question of how we get the magic F7:¢
in the first place? This is where NOT comes into play. We know that to set bit 3 we
need a mask with only bit 3 on and all others set to zero. This mask value is easy to
calculate because the bit positions are simply powers of two so that the third position
is 2° = 8 implying that the mask is just 8 = 00001000,. If we apply NOT to this
mask we will invert all the bits giving us the mask we need: 11110111,. This is
readily accomplished in C,

unsigned char z = 0xBD;
z =z & (~0x08);
printf ("$x\n", z);

which outputs B5; = 10110101, with bit 3 clear. The same syntax will also
work in Python.

Our last example toggles bits. When a bit is toggled its value is changed from
off to on or on to off. We can use NOT to quickly toggle all the bits, since this is
what NOT does, but how to toggle only one bit and leave the rest unchanged? The
answer lies in using XOR. The XOR operator returns true only when the operands
are different. If both are zero or one, the output is zero. This is what we need. If we
XOR our value with a mask that has a one in the bit position we desire to toggle we
will get something like this for bit 1,

10111101 = BD
XOR 00000010 = 02
10111111 = BF

where we have turned bit 1 on when previously it was off. If bit 1 was already on
we would have 1 XOR 1 = 0 which would turn it off in the output. Clearly, we can
toggle multiple bits by setting the positions we want to toggle in the mask and then
apply the XOR. In C we have,
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unsigned char z = 0xBD;
z =z ~ 0x02;
printf ("$x\n", z);

which will output BF;4 = 10111111, as expected.

2.3.3 Shifts and Rotates

So far we have looked at operations that manipulate bits more or less independently
of other bits. Now we take a look at sliding bits from one position to another within
the same value. These manipulations are accomplished through the shift and rotate
operators. A shift is as straightforward as it sounds, just move bits from lower
positions in the value to higher, if shifting to the left, or from higher positions to
lower if shifting to the right. When shifting, bits simply “fall off” the left or right
if they hit the end of the integer. This implies something, namely, that we impose
a specific number of bits on the integer. For our examples we will stick with 8-bit
unsigned integers though all of these operations work equally well on integers of any
size. Let’s look at what happens when we shift a value to the left one bit position
using binary notation,

10101111 <~ 1 =01011110

where we use the <— symbol to mean shift to the left and the 1 is the number of bit
positions. The leading 1 drops off the left end and a zero moves in from the right
end to fill in the empty space. All other bits move up one bit position. Now, what
happens when only a single bit is set and we shift one position to the left,

00000010 <1 =00000100

we see that we started with a value of 2! = 2 and we ended with a value of 2> = 4.
Therefore, a single position shift to the left will move each bit to the next highest
bit position which is the same as multiplying it by two. Since this will happen to all
bits, the net effect is to multiply the number by two. Of course, if bits that were set
fall off the left end we will lose precision but the remaining bits will be multiplied
by two. For example,

00101110« 1 =01011100

which takes 00101110, = 46 t0 01011100, = 92 which is 46 x 2. Shifting to
the left by more than one bit position is equivalent to repeated shifts by one position
so shifting by two positions will multiply the number by 2 x 2 = 4,

00101110 «-2 =10111000

giving 10111000, = 184 as expected.
It is natural to think that if a left shift multiplies by two a right shift would divide
by two and this is indeed the case,

00101110 - 1 =00010111
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gives 00010111, = 23 which is 46 = 2. Just as bits falling off the left end of the
number will result in a loss of precision so will bits falling off the right end with
one significant difference. If a bit falls off the right end of the number it is lost from
the ones position. If the ones position is set, that means the number is odd and not
evenly divisible by two. If the bit is lost the result is still the number divided by two
but the division is integer division which ignores any remainder. Information is lost
since a right shift followed by a left shift results in a number that is one less than
what we started with if the original number was odd. We can see this by shifting two
positions to the right,

00101110 — 2 = 00001011

to get 00001011, = 11 which is 46 + 4 ignoring the remainder of 2.

Both C and Python support shifts using the << and >> operators for left and
right shifts respectively. The « operator is frequently used with an argument of 1 in
order to quickly build bit masks,

1l << 3=00001000,
1l << 5=00100000;

which is a pretty handy way to move bits into position.

Before we leave shifts, let’s return to the parity calculation mentioned above.
Recall that the parity of a number is determined by the number of 1 bits in its binary
representation. If odd, the parity is 1, otherwise it is 0. The key observation here
is that XOR preserves the parity of its arguments. For example, if, in binary, a =
1101 and b = 0111 then the parity of the two together is zero since there are a
total of six on bits. If we apply XOR we geta XOR b = 1010 which also has an
even number of on bits and therefore has the same parity. This suggests the trick. If
we XOR a number with itself but first shift the number half its bit width the resulting
bits of the lower half of the output of XOR will have the same parity as the original
number. We can see this if we lookat a = 01011101 and XOR it with itself after
shifting down by four bits, which is half the width of the number,

01011101
XOR 00000101
xxxx1000

where we are ignoring the upper four bits. The original number has 5 on bits
therefore the parity is 1. If we look at the lower four bits after the XOR we see it
also has a parity of 1. If we repeat the process but using the new value and this time
shifting by half its effective width, which is 4 bits, we will end up with a number that
has the same parity as we started with and the same parity as the original number. If
we repeat this all the way the final result will be a one bit number that is the parity
of the original number. Therefore, for 01011101,
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original 01011101
right shift4 00000101
XOR 01011000
right shift2 00010110
XOR 01001110
right shift I 00100111
XOR 01101001
parity bit XXXXXKX1

For an 8-bit number we can define a parity function in C as,

unsigned char parity(unsigned char x) ({

A

X = (x >> 4) X;
X = (x >> 2) ©~ x;
x = (x >> 1) ©~ x;

return x & 1;

}

where the return x & 1; line returns only the lowest order bit since all other
bits are meaningless at this point. The extension of this function to wider integers is
straightforward.

Shifting moves bits left or right and drops them at the ends. This is not the only
option. Instead of dropping the bits we might want to move the bits that would have
fallen off to the opposite end. This is a rotation which like a shift can be to the
left or right. Unfortunately, while many microprocessors contain rotate instructions
as primitive machine language operations neither C nor Python support rotations
directly. However, they can be simulated easily enough in code and an intelligent
compiler will even turn the simulation into a single machine instruction (eg, gcc).

Again, to keep things simple, we will work with 8-bit numbers. For an 8-bit
number, say AB;s = 10101011,, a rotation to the right of one bit looks like this,

10101011 = 1 =11010101

where we introduce the = symbol to mean rotation to the right instead of simple
shifting (—). Rotation to the left one bit position gives,

10101011 <1 =01010111

where we see that the bit that would have fallen off at the left end has now moved
around to the right side.

To simulate rotation operators in C and Python we use a combination of << and
>> with an OR operator. We need to pay attention to the number of bits in the data
type in this case. For example, in C, we can define rotations to the right by any
number of bits using,

unsigned char rotr (unsigned char x, int n) {
return (x >> n) | (x << 8 - n);
}
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with a similar definition for rotations to the left,

unsigned char rotl (unsigned char x, int n) {
return (x << n) | (x >> 8 - n);
}

where we have changed << to >> and vice versa. One thing to note is the 8
in the second line of these functions. This number represents the number of bits
used to store the data value. Since we have declared the argument x to be of
type unsigned char we know it uses eight bits. If we wanted to modify the
functions for 32-bit integers we would replace the 8 with 32 or, in general, use
sizeof (x) = 8 to convert the byte size to bits.

The Python versions of the C rotation functions are similar.

def rotr(x,s):
return ((x >> s) | (x << 8 - 8)) & Oxff

and,

def rotl(x,s):
return ((x << s) | (x >> 8 - 8)) & Oxff

where the only change is that the return value is AND’ed with FF;¢ which as we
have seen will keep the lowest eight bits and set all the others to zero. This is again
because Python uses 32-bit integers internally and we are interested in keeping the
output in the 8-bit range. If we wanted these functions to work with 16-bit integers,
we would replace the 8 with 16, as in the C versions, but we would also need to
make the mask keep the lowest 16 bits by replacing Oxff with Oxffff.

The rotation functions are helpful, but why do they work? Let’s take a look by
breaking the operations up individually and seeing how they combine to produce the
final result. We start with the original input, AB;s = 10101011,, and show, row
by row, the first shift to the left, then the second shift to the right, and finally the OR
to combine them. The values between the vertical lines are those that fit within the
8-bit range of the number, the other bits are those that are lost in the shift operations,

10101011 AB,

01010101 1 ABic >> 1
1010101 @ 10000000 AB;s <<8—1

11010101 OR

where we see that the bit lost when shifting to the right one position has been added
back at the front of the number by the shift to the left and the OR operation. Since the
shifts always introduce a zero bit the OR will always set the output bit to the proper
valuebecausel OR 0 = land0 OR 0 = 0. This works for any number of bits
to rotate,

10101011 AB.,
00101010 & 11 ABis >> 2
1010101 @ 11000000 ABjs << 8—2

11101010 OR
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A
A>B
NOT AND
A=B
NOR
A<B
B
AND

Fig. 2.4 A 1-bit digital comparator. The three output values represent the three possible relation-
ships between the input values A and B. Recall that input values are 0 or 1. The output is 1 for the
relationship that is true and 0 for those that are not meet. Cascades of this basic form can be used
to create multi-bit comparators

2.3.4 Comparisons

Magnitude comparison operators take two unsigned integers and return a truth value
about whether or not the relationship implied by the operator holds for the operands.
Here we look at the basic three, equality (A = B ), greater than (A > B ), and less
than (A < B). There is a second set which can be created easily from the first: not
equal (A # B), greater than or equal (A > B ), and less than or equal (A < B) by
using NOT and AND operators.

At its core, a computer uses digital logic circuits to compare bits. Figure 2.4
illustrates the layout of a 1-bit comparator. Comparators for larger numbers of bits
are repeated instances of this basic pattern. As this not a book on digital logic we
will go no further down this avenue but will instead talk about comparing unsigned
integers from a more abstract point of view.

Most microprocessors have primitive instructions for comparison of integers as
this operation is so fundamental to computing. In addition to direct comparison,
many instructions affect processor flags based on privileged numbers like zero. For
example, to keep things simple, the 8-bit 6502 microprocessor, which has a single
accumulator, A, for arithmetic, performs comparisons with the CMP instruction but
also sets processor status flags whenever a value is loaded from memory using the
LDA instruction. There are other registers and instructions, of course, but we focus
on the accumulator to keep the example simple. The 6502 uses branch instructions
like BEQ and BNE to branch on equal or not equal respectively. This also applies
to the implied comparison with the special value 0 which happens when the LDA
instruction loads the accumulator.

Armed with this brief review of an old 8-bit microprocessor we can see that the
following set of instructions would indeed perform an 8-bit comparison between
2214 already in the accumulator via the first LDA instruction and 12, stored in
memory location 203514 and branch if they are not equal. Additionally, we will
also perform an implicit comparison of the value of memory location 20FE;¢ with
zero and branch if it is,
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LDA #522 ;i A= $22

CMP $2035 ; compare to location $2035

BNE noteql ; branch to "notegl" if not equal
LDA #S$20FE ; A = contents of $20FE

BEQ iszero ; branch to "iszero" if zero

where we use the classic notation of $22 = 225.

Why bring up this example? In part to show that comparison is very fundamental
to computers and is done as efficiently as possible in hardware and to set the stage for
our less efficient alternatives to digital logic. The comparisons we are implementing
in code are pure hardware even in the simplest of microprocessors.

Since for any two integers A and B exactly one of the following is true: A = B,
A < B, or A > B, it follows that if we know how to test for any two the last
condition is simply when neither of the two we can test for applies. In our case, we
look at the situation where we know how to test for equality (A = B ) and greater
than (A > B ). We do this with two predicate functions that simply return 1 if the
relationship holds for the arguments and 0 otherwise. Let’s call these predicates
isZero(A) and isGreater (A,B) and see how we might implement them
directly in C for 8-bit values using the unsigned char data type.

You may be wondering why we chose to use isZero (A) instead of the perhaps
more obvious isEqual (A, B). If so, good, you are paying attention. Given our
experience with the XOR operator we now know that,

a XOR a—0

so we can immediately see that,
isEqual (A,B) = isZero (A XOR B)

but how do we implement isZero (A) ? One approach in code would be to shift
the bits and test the lowest order one. If we find one that is not zero then the number
is not zero. The test is via an OR which is only zero when both operands are zero.
We use AND to do the bit comparison and then shift the result down so that the
compared bit is in the lowest position. Then, the OR of all these tests will be 1 if any
bits are set and 0 if not. This is the exact opposite of what we want so we add a NOT
to reverse the sense of the logic and a final AND with 1 to mask out all other bits
and return the state of the lowest bit only. This, then, is the full predicate function
isZero(x),

unsigned char isZero (unsigned char x) ({
unsigned char ans;

return ~(((x & (1<<7)) >> 7) | // test bit 7
((x & (1<<6)) >> 6) ‘
((x & (1<<5)) >> 5) ‘
((x & (1<<4)) >> 4) ‘
((x & (1<<3)) >> 3) ‘
((x & (1<<2)) >> 2) ‘
((x & (1<<1)) >> 1) ‘
(x & 1)) & 1; // test bit 1
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Notice that there are no actual comparison operators in this function, only logical
bitwise operators. With this we can quickly implement isEqual (x,y),

unsigned char isEqual (unsigned char x,
unsigned char y) {
return isZero(x * vy);

}

We now need isGreater (A,B) which is implemented with bit operators,
shifts,and acallto isZero (x).Thisis why we started with isZero (x) instead
of isEqual (x,y). The C code for our function is given first followed by the
explanation of why it works,

l|unsigned char isGreater (unsigned char a,

2 unsigned char b) {
3 unsigned char x,y;

4

5 X = ~a & b;

6 y = a & ~b;

7

8 x=x | (x > 1);

9 X = X | (x >> 2);

10 X =x | (x >> 4);

11

12 return ~isZero(~x & y) & 1;
12/}

In order to tell if a is greater than b we need to know the first place where their
respective bits do not agree. Once we know this bit position we know that a is
greater than b if at that bit position a has a 1 while b has a 0. So, we need to find
the locations of where the bits differ. To make the example concrete, we let a be
00011101, =29andbbe 00011010, = 26. If we look at line 5 we see,

X = ~a & b;

which sets x to the AND of the NOT of a and b. This leaves x with a 1 in all the
positions where the bit in a is less than the same bit in b. For our example this
sets x to 00000010, which tells us that the only bit position in a that is less than
the corresponding bit position in b is bit 1. Likewise, line 6 asks where are the bit
positions where a is greater than b? In this case, we set y to 00000101, to indicate
that in bit 0 and bit 2 the value of a is greater than b. In order to see if a is greater
than b we need to find the highest bit position where the two differ and see if that bit
is set. We can do this if we take the value in x, which tells us where a bits are less
than b bits, and build a mask which is 1 for all bit positions at or below the highest
bit position where a is first less than b. We do this with lines 8 through 10. This
operation which ORs the value with shifted versions of itself duplicates the highest
1 bit among all the lower bits. In this case,
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x — 00000010
x =x | (x >> 1) — 00000011
x =x | (x > 2) — 00000011
x =x | (x >>4) — 00000011

where the last two steps add nothing new since x >> 2 and x >> 4 both result in
zero which will set no new bits. We now have a mask in x that tells us all the bit
positions below the first place where the bit in a is less than the bit in b. If we NOT
this mask, = 00000011 — 11111100, we can use the new mask to tell us all
the bit positions where a was not less than b. Lastly, with this mask and the value in
y which tells us where the bits in a were greater than the bits in b, we can perform
one final AND, ~x & Yy, which will result in zero if a < b since no bits will be
set in y in the region where the bits of a were greater than those of b, or a nonzero
value since at least one bit will be set in y in that region. Line 12, then, asks if this
result is zero by passing the output to isZero. It then applies NOT to change the
output of isZero since the result is zero when a < b and not zero when a > b.
The final AND with 1 gives us only the final bit since the NOT will change all the
bits of the result of i sZero.

We are nearly finished with our comparison operators. We have equality
(1isEqual) and greater than (isGreater). With these we see that isLess
would be,

unsigned char isLess (unsigned char x,

unsigned char y) {
return (!isEqual(x,y)) && (!isGreater(x,vy));

}

which is reasonable since for any two unsigned integers A and B, if A # B then
A < B must be true. Testing for not equal is even simpler,
unsigned char isNotEqual (unsigned char x,

unsigned char y) {
return !isEqual (x,V);

}

since the only way for A to not not equal B is if the two are indeed equal. Less than
or equal and greater than or equal follow directly from the functions already defined,
unsigned char isLessOrEqual (unsigned char x,

unsigned char y) {
return isEqual(x,y) || isLess(x,y);

1
and

unsigned char isGreaterOrEqual (unsigned char x,
unsigned char y) {
return isEqual (x,y) || isGreater(x,y);

}

which completes our implementation of comparison operators using only bitwise
operations.
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2.3.5 Arithmetic

Just as comparison is a fundamental microprocessor operation, so is arithmetic. In
this section we look at arithmetic with unsigned binary integers, first from the point
of view of doing it “by hand” and then from the point of view of a simple 8-bit
microprocessor. These two approaches should illustrate the mechanism behind the
operations. We will not, however, attempt to implement these operations in C as
we did above for the comparison operators though we will use C to demonstrate
overflow and underflow conditions.

The addition facts in binary are,

0O + 0 = 0
o + 1 = 1
1 + 0 = 1
1 4+ 1 = Ocarryl

from which we see that one of them produces a carry since it results in a two digit
number. Just as in decimal, the carry is applied to the next digit over to the left. So,
to add two unsigned 8-bit binary numbers we move right to left, bit by bit, adding
and moving any carry to the next digit to the left,

11111 < carry
01101110 < first operand

4+ 00110101 <« second operand
10100011 < answer

where the carry from the second to leftmost bit does not cause difficulty since the
highest bits of each number are zero. However, what would happen if there was a
carry from the leftmost bit? In mathematics, nothing special would happen, there
would simply be a new leftmost bit, but in computers this is not the case. Recall
that we are working with 8-bit unsigned numbers which means that all numbers
fit in eight bits in memory. If we use eight bits for numbers we have no place in
which to put any final carry bit. This results in an overflow condition. The computer
simply discards this new highest value bit and retains the lowest eight bits which fit
in memory,

11111
11101110 EEq¢
+ 00110101 3516

1 00100011 12316

which is stored as 2314 discarding the carry on the leftmost bit. This is precisely
what we see with the following C code,
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#include <stdio.h>

int main() {
unsigned char x, vy, z;

x = OxEE;
y = 0x35;
Z =X + V;

printf ("$x\n", z);

}

Let’s take a look at how a simple 8-bit microprocessor would implement an addition.
In this case, we look at an unsigned 16-bit addition which requires two addition
operations. Working again with the 6502 processor mentioned above we see that
an 8-bit addition between a value in memory locations 2314 and 25,4 will involve
a load into the accumulator (LDA), a clearing of the carry flag which catches any
overflow bit (CLC) and an addition with memory (ADC). Specifically, we assume
memory location 234 contains EE;s, memory location 2514 contains 3515. We
then load the accumulator, clear the carry and add,

LDA $23 A < EE

CLC C<0

ADC $25 A<—A+35+C
A<23,C«1

with the accumulator set to 231 ¢, the lowest eight bits of the sum of EE;5 and 35,
and the carry flag set to 1 to indicate an overflow happened. This setting of the carry
flag is the key to implementing multibyte addition. In C, we would simply declare
the variables to be of data type unsigned short which is 16-bits and add as
before. For example, in C we have,

#include <stdio.h>

int main()
unsigned short x, y, z;

X = O0xEE;
y = 0x35;
Z =X +Y;

printf ("$x\n", z);

}

which gives us a 16-bit answer of 123;¢. In memory, using little-endian represen-
tation for multibyte numbers, we have,

memory location $24 : 23
$25 : o1

since we store the lowest byte first.
In the simpler world of the 8-bit microprocessor we store the lowest part of the
sum, the low byte, and add the high bytes without clearing the carry. Assuming
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memory is set to

memory location $23 : EE
$24 : o0
$25 : 35
$26 : 00

we clear the carry flag, add the two low bytes, store the partial sum, add the high
bytes with any carry, and store the final part of the sum like this,

LDA $23 A < EE

CLC C<0

ADC $25 A<—A+35+C, A=23
STA $27 $27 «—23,C«1

LDA $24 A<0

ADC $26 A<—A+0+C, A=1]
STA $28 $28 <« 1

where we have introduced a new instruction, STA, which stores the accumulator in
memory. When this sequence of instructions is complete we have the final answer
in memory locations $27 and $28 as 23,¢ and 1,4 respectively, as we expect for a
little-endian number.

The addition above is equivalent to this single 16-bit addition

1 11111
00000000 11101110 EEi6
+ 00000000 00110101 3516

00000001 00100011 12316

where we have separated the upper eight bits of the high byte from the lower eight
bits of the low byte.

Addition of unsigned binary numbers is by now straightforward. We add, left to
right, bit by bit with carry bit when necessary. If the result is too large, we overflow
and retain the lowest n bits where 7 is the width of the number in bits. We now move
on to subtraction of unsigned binary numbers.

The subtraction facts in binary are,

o — 0 = 0
0 — 1 = 1,underflow
1 - 0 = 1
1 - 1 = 0

where the underflow condition will require a borrow from the next higher bit
position. Like overflow, underflow is the situation where we cannot properly
represent the number using the number of bits we have to work with. In this case,
the underflow happens when we attempt to subtract a larger number from a smaller
and we have no way to represent the resulting negative number. We’ll address this
issue below.
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To continue with the example we used for addition, we now evaluate EE;4—351¢
to get B91¢. In binary, using the subtraction facts, we have,

01
01 01
11101110 EEq¢
- 00110101 3516
10111001 B9¢
with each borrow written above the bit and the next bit set to one less than it was. If

a second borrow is necessary for a bit position, we write it above again. Let’s look
at the subtraction again, bit by bit, right to left, we are computing,

bit 0 10 — 1 = 1,borrow
bit 1 0O — 0 0
bit 2 1 - 1 0
bit 3 1 — 0 1
bit 4 10 — 1 1, borrow
bit5 10 — 1 1, borrow
bit 6 0O — 0 =0
bit 7 1 — 0 = 1

which, reading from bottom to top, gives 10111001, = B9, as expected.
What happens if we need to borrow across more than one bit position? For
example, in base 10 a problem like,

7003
— 972
6031

involves borrowing across two digits in order to subtract the 7 of 972 which we can
write as,

69'03
- 9 72
6031

where we change the 700 into 69'0 to subtract 9 7 giving the partial result 603.
We subtracted one from the next two digits and added it in as a ten to the digit we
were working with. The same thing happens in binary. Consider this subtraction
problem,

01
101016'01 A9,
- 101001 10 A6,
00000011 0316
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where we attempt to subtract 1 from 0 in the second bit position (bit 1, since we
always count from zero and from right to left). We need to borrow from bit 2, but
since this is also zero, we instead borrow from bit 3 and change 100 into 01'0 in
order to do the subtraction.

As we are working with 8-bit unsigned integers one will eventually be tempted
to ask what happens if we try to subtract 1 from 0 since we cannot represent - 1.
What happens is we get the result we would get if we had an extra bit at left-most
position and borrowed from it like so,

0 1111111
1 66600066'0

— 0000000 1
11111111

meaning that subtracting one from the smallest number we can represent, namely
zero, results in the largest number we can represent which for an 8-bit unsigned
integer is every bit set, 28 — 1 = 255. Another way to think about it is that the
numbers form a loop with 00000000 and 11111111 set next to each other. If
we move one position down below zero we wrap around to the top and get 255.
Likewise, if we move one position up from 255 we will wrap around to the bottom
and get zero. Moving down below zero is an underflow condition while moving up
above 255 is an overflow.

Before we move on to multiplication and division of unsigned integers, let’s look
at one more subtraction example that would result in a negative number. We’ll use
our running example but swap the operands,

1 00110101 354
- 11101110 EEie
01000111 4716

where we have indicated the implied 1 bit from which we can borrow. This implied
1 bit is in the bit position for 28 = 256 which suggests another way to think
about the answer we would expect if we go negative in a subtraction of unsigned
numbers. For our example, 35, — EE;¢ = —185, but if we add in 256 which is
essentially what we are doing in thinking there is an implied extra high bit, we get
—185 4 256 = 71 = 4715 which is the answer we found previously. We have
been working with 8-bit wide unsigned integers. If we are using 16-bit integers
the implied bit 16 (recall, we count bits from zero) is 216 = 65536 which means
we would add 65536 to any negative value to get the result we would expect from
unsigned subtraction.

The following C example demonstrates that what we have been discussing is
indeed the case,

#include <stdio.h>

int main()
unsigned char x=0xEE, y=0x35, z;

zZ =X - Y;
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printf ("$X\n", z);

Z =y - X;
printf ("$X\n", z);

z =0 -1;

printf ("$X\n", z);

}

The output of this program is,

B9, = 10111001,
47,6 = 01001110,
FF¢ = 11111111,

which is exactly what we saw in the examples above.

Now that we know how to subtract in binary we can examine a useful trick
involving AND. If one bit in a number is set this implies that the number is a power of
two since every position in a binary number is, by definition, a power of two. If we
know which bit we want to test for, which power of two, it is straightforward to use
a mask and check that bit. But, what if we wanted to know if the number in question
was any power of two? We can use AND here along with an observation about bits
that are on in a number that is a power of two. For example, if the number we want
to testis 00100000, = 32 we see that it is a power of two and only one bit is on.
Now, subtract one from this number. In this case, we will get 00011111, = 31.
What has happened is that the single bit that was on is now off and some of the
bits that were off are now on. Finally, what happens if we AND these two values
together? We get,

00100000 = 32
AND 00011111 = 31
00000000 = 0O

which is exactly zero. From this we see that we will only get exactly zero when one
of two conditions are met: either the number is itself zero or it is a power of two
which had only one bit set. This is nicely captured in a simple C function,

unsigned char is power of two (unsigned char n) ({
return (n == 0) ? 0
: (n & (n-1)) == 0;

}

which returns 1 if the argument is a power of two and 0 otherwise. The function
checks if the argument is zero, if so, return 0. If not, then check whethern & (n-1)
is exactly 0. If it is, the expression is true and the function returns 1 to indicate a
power of two, otherwise it returns 0. While written for unsigned char datatype
the function will work for any unsigned integer type.

We’ve looked in detail at addition and subtraction, now we turn our attention
to multiplication and division. Modern microprocessors perform multiplication and
division as operations in hardware. This is a very good thing but makes it difficult
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for us in a sense so we will, as before, look at more primitive approaches which
might be used in small 8-bit microcontrollers that lack hardware instructions for
multiplication and division. To keep things simple we will illustrate the algorithms
in C even though this would never be done in practice.

Since multiplication is really repeated addition one approach to finding n x m,
where n and m are unsigned integers, would be to add n to itself m times or vice
versa. Naturally, it would make sense to run the loop as few times as possible so we
would loop over the smaller of n or m adding the other number. In C we have,

unsigned short multl(unsigned char n, unsigned char m) {
unsigned char i;
unsigned short ans = 0;

if (n < m) {
for(i=0; i < n; i++)
ans += m;
} else {
for(i=0; 1 < m; 1i++)
ans += n;

}

return ans;

}

which leaves the product of the 8-bit numbers in n and m in the now possibly 16-bit
value p. Why is the product possibly 16-bits? Because the largest possible number
we can get by multiplying two 8-bit numbers requires 16-bits to store it in memory
since 255 x 255 = 65025 which is above 28 — 1 = 255 meaning it needs more
than 8-bits to store but is below 2'¢ — 1 = 65535 which is the maximum for a
16-bit unsigned integer.

Is this really a good way to multiply numbers, however? Probably not. The loop
needs to be repeated for the smaller of n or m which may be up to 255 times. Given
we must do 16-bit addition inside the loop, recalling the example above, we see
that the simple multiplication may turn into many thousands of individual machine
instructions. Surely we can do better than this? To answer this question, let’s look a
little more closely at multiplication in binary as we might do it by hand,

00010100 14, = 20
x 00001110 0Eic = 14
00000000
00010100
00010100
+ 00010100
00100011000 118, = 280
in which we see that if the binary digit in the multiplier is 0 we simply copy down

all zeros and if it is a 1 we copy the multiplicand lining it up beneath the multiplier
bit as we would do in decimal. Then, again as in decimal multiplication, we add all
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the partial products to arrive at the final answer. For simplicity we did not write the
leading zeros which would be present if showing all 16-bits of the result.

This method suggests a possible improvement over our existing multiplication
function, mult 1. Rather than repeatedly add the multiplier or multiplicand, we can
copy the process just shown by shifting the multiplicand into position and adding it
to the partial product if the multiplier bit is 1 otherwise ignore those that are 0. This
leads to a second multiplication function in C,

unsigned short mult2 (unsigned char n, unsigned char m) {
unsigned char i;
unsigned short ans = 0;

for(i=0; i < 8; i++) {
if (m & 1) {
ans += n << 1i;

return ans;

}

which, when compared to mult1 and run ten million times proves to be about 1.6x
faster. Let’s look at what mult?2 is actually doing.

We are multiplying two 8-bit numbers so we need to look at each bit in the
multiplier, m. This is the source of the for loop. The if statement AND’s the
multiplier with 1 to extract the lowest bit. If this bit is set, we want to add the
multiplicand, n, to the partial product stored in ans. Note, though, that before we
add the multiplicand, we need to shift it up to the proper bit position. Note also that
this works because the result of the operation is a 16-bit value which will not lose
any of the bits of n when we do the shift. Regardless of whether we add anything
to the partial product we need to shift the multiplier down one bit so that in the next
pass through the loop the if will be looking at the next highest bit of the original
m. Lastly, we see that there are no side-effects to this function because C passes all
arguments by value meaning n and m are copies local to the function.

The speed improvement between multl and mult2 becomes much more
dramatic when we move from multiplying two 8-bit numbers to multiplying two
16-bit numbers. To do this, we take the source for multl and mult2 and replace
all instances of unsigned char by unsigned short and all instances of
unsigned short by unsigned int. Lastly, we change the loop limit in
mult2 from 8 to 16 since we are multiplying two 16-bit numbers. When this done
we see that mult2 is nearly 3500x faster than mult1l for the same arguments
(assuming both to be near the limit of 65535).

What about division? We cover two operations with division since the algorithm
returns the quotient and any remainder. The operations are integer division (/) which
returns the quotient and modulo (%) which returns the remainder. For example, we
need an algorithm that produces these answers,
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123 / 4 = 30
123 5 4 = 3

since 123 /4 = 30 with a remainder of 3.

We could implement division by repeated subtraction. If we count the number of
times we can subtract the divisor from the dividend before we get a partial result
that is less than the divisor we will have the quotient and the remainder. We might
code this in C as,

unsigned char divl (unsigned char n,
unsigned char m,
unsigned char *r) ({

unsigned char g=0;

while (xr > m) {

q++;
*r -= m;
return q;

}
and test it with,

int main()
unsigned char n=123, m=7;
unsigned char g, r;

g = divl(n, m, &r);
printf ("quotient=%d, remainder=%d\n", q,r);

}

which prints quotient=30, remainder=3 which is the answer we are expecting.

This function requires three arguments since we want to return the quotient as
the function value and the remainder as a side-effect value. This is why we pass the
remainder as a third argument using a pointer. Inside of div1 we set the remainder
(r) to our dividend and continually subtract the divisor (m) until we get a result less
than the divisor. While doing this we keep count of the number of times we subtract
in g which we return as the quotient.

Like our multl example above, div1l is an inefficient way to implement
division. What happens if the dividend is large and the divisor is small? We must
loop many times in that case before we are done. The problem is even worse if we
use integers larger than 8-bits. What to do, then?

Just as we did for multiplication, let’s look at binary division by hand. Unlike
decimal long division, binary division is rather simple, either the divisor is less than
or equal to the dividend in which case the quotient bit is 1, otherwise, the quotient bit
is 0; there are no trial multiplications. Dividing 123 = 01111011, by 4 = 100,
in this way gives,
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00011110
100)01111011
0
01
0
011
0
0111
100
0111
100
0110
100
0101
100
11
0
11

with 00011110, = 30 and a remainder of 11, = 3 as expected.

As we have seen several times already, modern microprocessors implement such
a fundamental operation as division in hardware, but we can look at unsigned
division in the way it might be implemented in a more primitive microprocessor
or microcontroller. For simplicity, we again implement the algorithm in C. With all
of this in mind, we get Fig. 2.5 which will require a bit of explanation.

The key to understanding what Fig. 2.5 is doing it to observe that binary division
by hand is really a matter of testing whether or not we can subtract the divisor from
the partial dividend. If so, we set a one in that bit of the quotient, otherwise we set
a zero. The algorithm of Fig.2.5 is setup for 8-bit division using 8-bit dividends
and divisors, and by implication quotients. Therefore, we need to examine all eight
bits of the dividend starting with the highest bit. To do this, and to save space as
this algorithm is often implemented in hardware, we take advantage of the fact that
C passes arguments by value and use n to be both dividend and quotient. When
we have examined all eight bits the value in n will be the quotient. We can do this
because as we look at each bit of the dividend we shift it out to the left while shifting
in the new bit of the quotient from the right.

We store the remainder in r and pass it back out of the function by using a pointer.
To start the division process we set r to zero and the quotient to the dividend in n.
Since n already has the dividend there is no explicit operation to do this, we get it for
free. If we call div2 (123, 4, &r) to continue with our running division example,
the state of affairs in binary after the execution of line 6 in Fig. 2.5 is,
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1| unsigned char div2 (unsigned char n,

2 unsigned char m,

3 unsigned char *r) {
4 unsigned char i;

5

6 *r = 0;

7

8 for (i=0; 1<8; 1i++) {

9 *r = (xr << 1) 4+ ((n & 0x80) != 0);
10 n <<= 1;
11
12 if ((*r-m) >= 0) {
13 n |=1;
14 *r —= m;
15 }
16 }
17
18 return n;
19| 1}

Fig. 2.5 Shift, test, and restore unsigned integer division

i r n m
undefined 00000000 01111011 100

where the dividend is in n and the remainder is zero. We next hit the loop starting
in line 8. This loop executes eight times, once for each bit of the dividend. Lines 9
and 10 perform a double left shift. This is the equivalent of treating r and n as a
single 16-bit variable with r the high order bits. First we shift r one bit to the left
(xr << 1) and then comes the rather cryptic expression,

((n & 0x80) != 0)

which tests whether the highest bit in n, our dividend and quotient is set. Recall our
discussion of AND above. If it is set, we add it into r. This is because we are about
to left shift n one bit and if the bit we are shifting out of n is set, we need to move
it to r to complete the virtual 16-bit shift of r and n. We then shift n in line 10.

Line 12 checks whether or not we can subtract the divisor in m from the partial
dividend which is being built, bit by bit, in r. If we can, we set the first bit of n, our
quotient, in line 13 and then update the partial dividend by subtracting the divisor in
line 14. Recall, we are examining the dividend one bit at a time by moving itinto r.
We are simultaneously storing the quotient in n one bit at a time by putting it in on
the right side. Since we already shifted to the left the first bit in nn is always zero, we
only update it if the subtraction succeeds. After this first pass through the loop we
have,

i r n m
0 00000000 11110110 100
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with the first bit of the quotient, a zero, in the first bit of n. If we continue through
the loop we will get the following sequence of values,

i r n m

1 00000001 11101100 100
2 00000011 11011000 100
3 00000011 10110001 100
4 00000011 01100011 100
5 00000010 11000111 100
6 00000001 10001111 100
7 00000011 00011110 100

where we end with a quotient of 30 in n which is the return value of the function and
a remainder in r of 3. Notice how n changes as we move through the loop. Each
binary digit is shifted into r from the right as the new quotient bits are assigned
from the left until all bits are examined. This algorithm, unlike the div1 example,
operates in constant time. There are a fixed number of operations needed regardless
of the input values.

2.3.6 Square Roots

We briefly consider here a simple integer square root algorithm which makes use
of an interesting mathematical fact. This algorithm works by counting the number
of times an ever increasing odd number can be subtracted before reaching or going
below zero. The algorithm itself is easy to implement in C,

unsigned char sqr (unsigned char n)
unsigned char c=0, p=1;

while (n >= p) {

n -=pj

p += 2;

C++;
return c;

}

where we again make use of the fact that C passes arguments by value which allows
us to modify n in the function without changing it outside of the function. Our
count, which will be the square root of n, is initialized to zero in c. We start our odd
number in p at 1 and then move to 3, 5, 7, and so on. The while loop is checking
to see if our n value is still larger or the same as p and if so, we subtract p and count
one more subtraction in ¢. When n is less than p we are done counting and return ¢
as the square root. Naturally, this algorithm is only approximate by underestimating
when n is not actually a perfect square.

If we call sqr with 64 as the argument, we get the following sequence of values
in the while loop,
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n P c
63 3 1
60 5 2
55 7 3
48 9 4
39 11 5
28 13 6
15 15 7
0 17 8

where the final value of n is zero since 64 is a perfect square and c is 8, which is
the square root of 64. We see that the algorithm works, but why?

The trick is the observation that the sum of the sequence of odd numbers is always
a perfect square. For example,

1 = 1
143 = 4

14345 = 9
143+5+7 = 16
143454749 = 25

or more compactly,

ﬁim—lzﬁ
i=1

where n? is the argument to sqr and 7 is the square root.

Another way to see this, courtesy of Eric Spellman, is to consider the difference
between n? and (n + 1)2. The latter is n> 4+ 2n + 1 which implies that the difference
between a squared integer and the next integer squared is 2n + 1 which is, always,
an odd number. For example, we can apply this same observation to computing
the unsigned cube root of an integer. In this case, we have n® and (n + 1)® =
n® + 3n? 4+ 3n 4 1 implying that the difference between cubes is 3n? 4 3n + 1. With
this in mind a simple modification of the square root code above will now return the
cube root of the argument,

unsigned int cbroot (unsigned int n) {
unsigned int c=0, p=1;

while (n >= p) {
n -=pj
C++;
P = 3xCxC+3*C+1;

}

return c;

}

where instead of adding 2 to p every iteration we compute p = 3¢* + 3¢ + 1.
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2.4 What About Negative Integers?

In the previous section we took a thorough look at unsigned integers and the sorts of
operations computers typically perform on them. Without a doubt, unsigned integers
are the mainstay of computers, but often it is necessary to represent quantities
that are less than zero. What do we do about that? In this section we examine
three options, two in detail, for tracking the sign of an integer and performing
operations with signed integers. We will naturally build on what we have learned
about unsigned integers and bear in mind that, as before, while we may show
examples using 8-bit numbers for simplicity, everything immediately translates to
numbers with more bits, be they 16, 32, or larger.

The most common techniques for handling signs are sign-magnitude, one’s
complement, and two’s complement.

2.4.1 Sign-Magnitude

Perhaps the most natural way to represent the sign of an integer is to reserve one bit
of its representation for the sign and this is precisely what early computers did. If
we decide that we will keep the highest-order bit of the number for the sign we can
use the remainder of the bits to represent the magnitude as an unsigned integer and
this is the sign-magnitude form,

01111111 = 127
00000010 = 2
00000001 = 1
00000000 = 0
10000001 = -1
10000010 = -2
11111111 = -127

This seems to be a perfectly reasonable way to store a signed integer but notice a
few things,

* We lose range in terms of magnitude. An unsigned 8-bit number can take values
from 0 to 255 while a sign-magnitude number is restricted to -127 to +127.
As we will see, keeping track of the sign always results in a loss of magnitude
range.
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e There are two ways to represent zero: +0 = 00000000 and -0 = 10000000.
This seems unnecessary and wasteful of a bit pattern.

* Arithmetic becomes more tedious since we need to bear the sign of the number
in mind at all times. It would be nice to be able to do some arithmetic without
requiring separate logic for the sign.

For the reasons given above, especially the additional hardware logic, the sign-
magnitude representation for integers has been abandoned by modern computer
systems. Let us now turn our attention to possible replacements.

2.4.2 One’s Complement

Our first candidate for a suitable replacement to the sign-magnitude form is called
one’s complement. In this notation we represent negative numbers by taking the
positive form and calculating the one’s complement. The one’s complement is
simple to do, just negate (logical NOT) every bit in the positive form of the number.
So, we have,

01111111 = 127
00000010 = 2
00000001 = 1
00000000 = 0
11111110 = -1
11111101 = -2
10000000 = -127

which again seems good in that we can look at the highest order bit to see if the
number is negative or not and as we will shortly see, we can use this notation for
arithmetic without too much trouble, but we do still have two ways to represent zero
since 00000000 — 11111111.

2.4.3 Two’s Complement

The one’s complement of a positive number is the bit pattern we get when we change
all the zero bits to one and all the one bits to zero. The two’s complement of a positive
number is the bit pattern we get when we take the one’s complement and then add
one to it. This is the notation that has been accepted as the way to represent negative
integers and the advantages will be come clear when we look at operations on signed
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integers. As with one’s complement integers, a positive two’s complement integer
is represented in just the same way as an unsigned integer. With two’s complement
we have,

01111111 = 127
00000010 = 2
00000001 = 1
00000000 = 0
11111111 = -1
11111110 = -2
10000000 = -128

where we now have only one way to represent zero,

00000000 — 11111111 — 00000000
positive one’s complement two’s complement

since adding one to 11111111 maps back around to 00000000 with the overflow
bit ignored. Additionally, we have increased our range by one since we can represent
numbers from -128 to +127 instead of -127 to 127 as with one’s complement or
sign-magnitude.

2.5 Operations on Signed Integers

We would like to be able to perform operations on signed integers. The bit level
operations like AND, OR and NOT work the same way with signed integers as with
unsigned integers. To these operators, the bits are just bits, the “fact” of a negative
integer is just a convention forced on certain bit patterns. Since this is the case, we
need only look at how to compare negative integers, how to perform arithmetic on
negative integers, and, as a special operation, how to deal with the sign of a two’s
complement integer when changing the number of bits used to represent the number.
Let us first start with comparing two signed integers.

2.5.1 Comparison

Comparison of two signed integers, A and B, implies determining which relational
operator, <, >, or =, should be put between them. When we compared unsigned
integers we looked at the bits from highest to lowest. We still do that for signed
integers but we need to first consider the signs of the two numbers. If the signs differ
we know very quickly the relationship between the numbers without considering
all the bits. If the signs match, either both positive or both negative, we need to
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1|signed char bset (signed char v,

2 signed char n) {

3 return (v & (1 << n)) != 0;

4|}

5

6[signed char scomp(signed char a,

7 signed char b) {

8 unsigned char i;

9

10 if ((bset(a,7) == 0) && (bset(b,7) == 1))
11 return 1;

12 if ((bset(a,7) == 1) && (bset(b,7) == 0))
13 return -1;

14

15 for (i=0; 1i<7; i++) |

16 if ((bset(a,6-1) == 0) && (bset(b,6-1) == 1))
17 return -1;

18 if ((bset(a,6-1) == 1) && (bset(b,6-1) == 0))
19 return 1;
20 }
21
22 return 0;
23|}

Fig. 2.6 Comparison of two signed integers a and b. The function returns 0 ifa = b, 1ifa > b
and -1ifa< b

look at the magnitude bits to see where they might be different. This will tell us
the relationship between the two numbers. Naturally, if the bits are all the same,
position for position, then the two numbers are equal.

We can use a C function like the one in Fig. 2.6, with included helper function
to determine whether or not a particular bit position is on, to compare two signed
numbers in two’s complement notation. Note that we are now working with
variables of type signed char which are 8-bit signed integers.

The helper function (bset, lines 1-4) returns 1 if the nth bit of v is on, otherwise
it returns a 0. It uses the shift and AND mask trick we saw above to test a bit position
value. The main function, scomp, looks first at the signs of the arguments (lines
10-13) and returns the relationship if they differ. If the sign bit of a is zero, a is
positive. If the sign bit of b is one, then b is negative and a must be greater than b
so return 1 to indicate a > b. If the signs are reversed, a is less than b so return -1
to indicate a < b.

If the signs of a and b match, either positive or negative, we then look at the
remaining bits from highest to lowest to see where there are any differences. This is
the loop of lines 15 through 20 in Fig.2.6. If we find a bit position where a has a
zero and b has a one we know that a < b must be true so we return -1. Likewise,
if we find that a is one and b is zero at that bit position we know that a > b so we
return 1. Finally, if we make it through all the bits and find no differences the two
integers are equal so we return 0. With a comparison function like scomp it is easy
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to create predicate functions checking for equal, less than and greater than. Recall
that a predicate function is a function that returns true or false. For example,

unsigned char isEqual (signed char a,
signed char b) {
return scomp(a,b) == 0;

}

unsigned char isLessThan(signed char a,
signed char b) {
return scomp(a,b) == -1;

}

unsigned char isGreaterThan(signed char a,
signed char b) {
return scomp(a,b) == 1;

}

define functions which return true (1) when a = b, a < b, and a > b, respectively.

2.5.2 Arithmetic

Let’s take a look at the basic arithmetic operations (4,—,x,+, and %) as they
apply to signed numbers. For addition and subtraction we will consider both
one’s and two’s complement negative numbers to show why two’s complement is
often preferable. We focus on operations involving negative numbers as operations
involving positive numbers follow the techniques described earlier in the chapter for
unsigned integers.

Addition and Subtraction Addition in one’s complement notation is nearly
identical to unsigned addition with one extra operation should there be a final carry.
To see this, let’s take a look at adding two negative integers represented in one’s
complement,

11000000 -63

+ 11000010 -61
1 10000010 -125
10000011 -124

(one’s complement)

where the carry at the end, shown by the extra 1 on the left, is added back into the
result to get the correct answer of -124. This adding in of any carry is called the
end-around carry and is the extra twist necessary when adding one’s complement
numbers.

The same addition in two’s complement notation produces a carry which we
ignore,
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11000001 -63
+ 11000011 -61 (two’s complement)
1 10000100 -124

since we see that 10000100 is -124 by making it positive,

01111011
+ 00000001
01111100 124

Addition of a positive and negative number works in the same way for both one’s
and two’s complement numbers. For example, in one’s complement we have,

+ 01111100 124
11000010 -61

1 00111110 62
00111111 63

(one’s complement)

where we have again made use of the end-around carry to give us the correct answer.
The two’s complement version is similar,

+ 01111100 124
11000011 -61 (two’s complement)
1 00111111 63

where we again ignore the carry and keep only the lower eight bits. Recall, we are
giving all examples as signed or unsigned 8-bit numbers. If we were working with
16-bit or 32-bit numbers we would keep that many bits in the answer.

Computers implement subtraction by negation and addition. This allows for only
one set of hardware circuits to be used for both operations. With that in mind,
subtraction becomes particularly simple. If we want to calculate 124 — 61 = 63 we
actually calculate 124 4 (—61) = 63 which is exactly the example calculated above.
For calculation by hand it is helpful to think of subtraction as an actual operation
but, as we see here, when done with the appropriate notation for negative numbers,
subtraction is really an “illusion” and is nothing more than addition with a negative
number.

While addition and subtraction are straightforward, especially with two’s com-
plement notation, we have to consider one question: what happens if the result of the
operation does not fit in the number of bits we are working with? For our examples,
this means that the result does not fit in eight bits taking the sign into account. Let’s
consider only two’s complement numbers. We already saw in the examples above
that we could ignore the carry to the 9th bit and saw that the lower eight bits were
correct. Is this always the case?

A signed 8-bit two’s complement number has a range from -128 to 127. If we
attempt an operation that falls outside of this range we will not be able to properly
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represent the answer. We call this condition an overflow. How can we detect this?
By following two simple rules,

1. If the sum of two positive numbers is negative, overflow has happened.
2. If the sum of two negative numbers is positive, overflow has happened.

We need not worry about the sum of a positive and negative number because both the
positive and negative number are already in the allowed range and it is impossible,
because of the difference in sign, for the sum to be outside the allowed range. This
is why we ignored the last carry bit when adding —61 to 124. Let’s look at cases that
prove the rules. If we try to calculate 124+ 124 = 248 we know we will have trouble
because 248 is greater than 127 which is the largest 8-bit positive two’s complement
number. We get,

+ 01111100 124
01111100 124 (two’s complement)
11111000 -8

which is clearly a wrong answer. According to our rule for addition of two positive
numbers we know overflow has happened because the sign bit, bit 7, is one,
indicating a negative answer. Similarly, two large negative numbers added will prove
our second rule,

+ 10000100 -124
10000100 -124 (two’s complement)
00001000 8

where we have ignored the carry to the 9th bit. We see that the result is positive since
bit 7 is zero. This proves our second rule and we know that overflow has happened.

Multiplication We now consider multiplication of signed integers. One approach
to signed multiplication would be to make use of the rules for products to track
the sign of the result. If we do this, we can make any negative number positive,
do unsigned integer multiplication as described above in Sect.2.3.5, and negate
the result if necessary to make it negative. This approach will work for both one’s
and two’s complement numbers. As we recall from school, when multiplying two
numbers there are four possible scenarios related to the signs,

. positive X positive = positive

. positive X negative = negative
. negative X positive = negative
. negative X negative = positive

AW N =

with this in mind it is simple to extend our mult2 example from Sect.2.3.5 to
check the signs of the inputs and negate the negative numbers to make them positive
before multiplying. Then, the result can be negated to make it negative if the result
should be negative. In C this gives us Fig. 2.7

where the main loop in lines 18 through 21 has not changed but before we run it we
check the signs of the inputs to see if we need to negate any negative numbers to
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1| signed short signed mult2(signed char n, signed char m) {
2 unsigned char i, s=0;

3 signed short ans=0;

4

5 if ((n > 0) && (m < 0)) |
6 s = 1;

7 m = -m;

8 }

9 if ((n < 0) && (m > 0)) |
10 s 1;

11 n = -n;

12 }

13 if ((n < 0) && (m < 0)) |
14 n -n;

15 m = -m;

16 }

17

18 for(i=0; 1 < 8; i++) {

19 if (m & 1) ans += n << i;
20 m >>= 1;
21 }
22
23 if (s) ans = -ans;
24 return ans;
251 1}

Fig. 2.7 Unsigned integer multiplication modified for signed numbers

make them positive. The variable s holds the flag to tell us that the answer needs to
be negative. We initially set it to O with the assumption that the inputs, n and m, will
both be positive. In lines 5 through 16 we check this assumption. If n is positive and
m is negative, we set s in line 6 and make m positive. Likewise, in line 9 we check
to see if n is negative and m is positive and make n positive if this is the case. We
also set the flag in s since we know the answer needs to be negative. Lastly, if both
n and m are negative we make them both positive and leave the flag in s unset. Then
we multiply as before. In line 23 we check to see if the negative flag is set, if so, we
make the answer negative before returning it.

In this example we have taken advantage of the fact that the C compiler will
properly negate a value as in line 7 regardless of the underlying notation used for
negative numbers. We know, however, in practice that this will typically be two’s
complement. Can we multiply numbers directly in two’s complement? Yes, in fact,
there are several existing algorithms which to exactly that. Let’s consider one of the
more popular of them, the Booth algorithm [1] which was developed by Andrew
Booth in 1950. A C implementation of this algorithm for multiplying two signed
8-bit integers is given in Fig. 2.8. Let’s take a look at what it is doing.

Booth’s essential insight was that when we multiply two binary numbers a string
of ones can be replaced by a positive and negative sum in the same way that 16x6 =
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1| signed short multb8 (signed char m, signed char r) {
2 signed int A, S, P;
3 unsigned char i;
4
5 A =m << 9;
9 S = (-m) << 9;
7 P = (r & Oxff) << 1;
8
9 for (i=0; 1 < 8; i++4) {
10 switch (P & 3) {
11 case 1: // 01
12 P += A;
13 break;
14 case 2: // 10
15 P += S;
16 break;
17 default: // 11 or 00
18 break;
19 }
20 P >>= 1;
21 }
22
23 return P>>1;
241 }

Fig. 2.8 The Booth algorithm for multiplication of two’s complement 8-bit integers

16 x (8 —2) but since we are in binary we can always write any string of ones as the
next higher bit minus one. So, we have,

00011100=00100000+000000-10

where we have written a -1 for a specific bit position to indicate subtraction. This
means, if we scan across the multiplicand and see that at bit position i and i — 1 there
is a 0 and 1, respectively, we can add the multiplier. Similarly, when we see a 1 and
0, respectively, we can subtract the multiplier. At other times, we neither add nor
subtract the multiplier. After each pair of bits, we shift to the right.

In Fig. 2.8 we initialize the algorithm by setting A to the multiplier, m, shifted
nine places to the left, and similarly set S to the negative of the multiplier (two’s
complement form), also shifted nine positions to the left. The product, P, is
initialized to the multiplicand in r but shifted one position to the left. This is done
in lines 5 through 7. Why all the shifting? We are multiplying two eight bit signed
numbers so the result may have as many as 16 bits, hence using signed int for
A, S and P. This is the origin of eight of the nine bit positions. The extra bit position
for A and S, and the single extra bit for P (line 7), is so that we can look at the
last bit position and the one that would come after which we always set to zero.
This means that the last bit position, bit 0, and the next, bit —1, could be 1 and 0 to
signal the end of a string of ones. We mask the multiplicand, r, with 0XFF to ensure
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that the sign is not extended when we move from the signed char to signed int
data type. See the next section for a description of sign extension.

The loop in lines 9 through 21 examines the first two bits of P, which are the
two we are currently considering, and decides what to do based on their values. Our
options are,

bit i biti—1 operation
0 0 do nothing
0 1 add multiplier to product
1 0 subtract multiplier from product
1 1 do nothing

which is reflected in the switch statement of line 10. The phrase P & 3 masks
off the first two bits of P, which is what we want to examine. After the operation,
we shift the product (P) to the right to examine the next pair of bits. When the loop
finishes, we shift P once more to the right to remove the extra bit we added at the
beginning in line 7. This completes the algorithm and we have the product in P,
which we return. This algorithm substitutes a starting add and ending subtraction
for what might be a long string of additions for each 1 bit in a string of 1 bits.
Also, when not adding or subtracting, we simply shift bits. This makes the algorithm
particularly efficient.

Sign Extension and Signed Division Just as we did for multiplication above, we
can modify the unsigned integer algorithm for division in Fig.2.5 to work with
signed integers by determining the proper sign of the output, then making all
arguments positive and dividing, negating the answer if necessary. However, before
we do that, let’s take a quick look at sign extension.

Sign Extension What happens if we take an 8-bit number and make it a 16-bit
number? If the number is positive, we simply set the upper eight bits of the new
16-bit number to zero and the lower eight bits to our original number like so,

00010110 — 0000000000010110

which is pretty straightforward. Now, if we have a negative 8-bit signed integer in
two’s complement notation we know that the leading bit will be a 1. If we simply
add leading zeros we will get,

11011101 — 0000000011011101

which is no longer a negative number because the leading bit is now a 0. To avoid
this problem and preserve the value we extend the sign when we form the 16-bit
number by making all the new higher bits 1 instead of 0,

11011101 — 1111111111011101

which we know is the same value numerically and we can check it by looking at the
magnitude of the number. Recall, we convert between positive and negative two’s
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complement by flipping the bits and adding one. So, the 8-bit version becomes,

11011101 — 00100010 + 1 — 00100011 = 35y

and the 16-bit version becomes,

1111111111011101—>0000000000100010+1—>0000000000100011 = 35

which means that both bit patterns represent —35 as desired. We intentionally
frustrated sign extension in Fig.2.8 by masking r with OxXFF before assigning it
to P which was a 32-bit integer.

Signed Division Figure 2.5 implements unsigned division. If we track the signs
properly we can modify it to work with signed integers. Division actually returns
two results. The first is the quotient and the second is any remainder. The sign we
should use for the quotient is straightforward enough,

Dividend Divisor Quotient
+ + +
+ — —
— + —
- - +

ambiguity arises when we think about what sign to apply to the remainder. It turns
out that different programming languages have adopted different conventions. For
example, C chooses to make the remainder have the same sign as the dividend while
Python gives the remainder the sign of the divisor. Unfortunately, the situation is
more complicated still. When dividing negative numbers we are often returning an
approximate quotient (unless the remainder is zero) and that approximate quotient
has to be rounded in a particular direction. All division algorithms in programming
languages satisfy d = ng + r which means that the quotient, ¢, times the divisor, n,
plus the remainder, r, equals the dividend, d. However, we have choices regarding
how to set the signs and values of g and r. There are three options,

1. Round towards zero. In this case, we select g to be the integer closest to zero that
when multiplied by # is less than or equal to d. In this case, if d is negative, r
will also be negative. For example, —33/5 = —6 with a remainder of —3 so that
—33 = 5(—6) + (—3). This is the option used by C.

2. Round towards negative infinity. Here we round the quotient down and end up
with a remainder that has the same sign as the divisor. In this case, —33/5 = —7
with a remainder of 2 giving —33 = 5(—7)+2. This is the option used by Python.

3. Euclidean definition. This definition makes the remainder always positive. If n >
0 then g = floor(d/n) and if n < 0 then g = ceil(d/n). In either case, r is always
positive, 0 < r < |n|.

Let’s make these definitions more concrete. The table below shows the quotient
and remainder for several examples in both C and Python. These will give us an
intuitive feel for how these operations work.
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Dividend Divisor Quotient Remainder

33 7 4 5 C
4 5 Python

-33 7 —4 -5 C
-5 2 Python

33 =7 —4 5 C
=5 -2 Python

-33 =7 4 -5 C
4 -5 Python

We see that differences only arise when the signs of the dividend and divisor
are opposite. It is here that the C choice of rounding towards zero and the Python
choice of rounding towards negative infinity come into play. The C choice seems
more consistent at first because it always results in quotients and remainders with
the same magnitude, only the signs change, but from a mathematical point of view
it is less desirable because certain expected operations do not give valid results.
For example, to test whether or not an integer is even it is common to check if the
remainder is zero or one when dividing by two. If the remainder is zero, the number
is even, if one, it is odd. This works in Python for negative integers since -43 %
2 = 1 as expected, but in C this fails since we get -43 % 2 = -1 because of the
convention to give the remainder the sign of the dividend.

With all of the above in mind, we can now update our div2 algorithm in
Fig.2.5 to handle signed integers. We show the updated algorithm, now called
signed div2,in Fig.2.9. Let’s look at what has changed.

The actual division algorithm in lines 20 through 30 is the same as in Fig.2.5
since we are still performing unsigned division. Lines 6 through 18 check whether
any of the arguments, dividend (n) or divisor (m) or both, are negative. We use
two auxiliary variables, sign and rsign, to track how we deal with the sign
of the answer. If the dividend is negative but the divisor is positive the quotient
should be negative so we set sign to 1. If the dividend is positive but the divisor
is negative, we also need to make the quotient negative. If both the dividend and
divisor are negative, the quotient is positive. In all cases we make the dividend and
divisor positive after we know how to account for the sign of the quotient. For the
remainder, we use the variable rsign to decide when to make it negative. The
division algorithm itself will make the remainder, in *r, positive but in order for
our answer to be sound we must sometimes make *r negative. When to do this? A
sound answer will always satisfy,

n=mxq-+r

so if the dividend in n was negative, we will require the remainder to be negative as
well. In this case we follow the C convention.

If we run signed_div2 onn = 123 andm = 4 with all combinations of
signs, we get the following output,
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1| signed char signed div2(signed char n,
2 signed char m,
3 signed char xr) {
4 unsigned char i, sign=0, rsign=0;
5
6 if ((n < 0) && (m > 0)) {
7 sign = rsign = 1;
8 n = -n;
9 }
10 if ((n > 0) && (m < 0)) {
11 sign = 1;
12 m = -m;
13 }
14 if ((n < 0) && (m < 0)) {
15 rsign = 1;
16 n = -n;
17 m = -m;
18 }
19
20 *r = 0;
21
22 for (i=0; i<8; i++) {
23 *r = (xr << 1) + ((n & 0x80) != 0);
24 n <<= 1;
25
26 if ((*r-m) >= 0) {
27 n |=1;
28 *r —= m;
29 }
30 }
31
32 if (sign) n = -n;
33 if (rsign) *xr = -xr;
34
35 return n;
36| }

Fig. 2.9 Shift, test, and restore unsigned integer division updated to handle signed integers

n m q r ‘ mxgq-—+r
123 4 30 3| 4(30)+3
-123 4 -30 -3 | 4(-30)-3
123 -4 -30 3 -4(-30)+3
-123 -4 30 -3 | -4(30)-3

where the column on the right shows that our choice of sign for the remainder is
correct.

In this section we have reviewed implementations of signed arithmetic on
integers. In some cases we were able to build directly on existing algorithms for
unsigned arithmetic while in some we worked directly in two’s complement format.
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There is no need to talk about signed integer square root since the square root of
a negative number is imaginary and we are not yet ready to work with complex
numbers.

2.6 Binary-Coded Decimal

Binary-Coded Decimal (BCD) numbers make use of specific bit patterns corre-
sponding to the digits 0...9 in order to store one or two decimal digits in each
byte. Storing numbers in this format allows for decimal operations in place of binary
and, indeed, some early microprocessors such as the Western Digital 6502 had BCD
modes. In this section we describe how to encode numbers in BCD and how to do
simple arithmetic with those numbers.

2.6.1 Introduction

As we saw earlier in this chapter, working with numbers expressed in binary can be
cumbersome. Binary is the natural base for a computer to use given its construction
but humans, with ten fingers and ten toes, generally prefer to work in decimal.
One possibility is to encode decimal digits in binary and let the computer work
with data in this format. Binary-coded decimal does just this. For our purposes we
will work with what is generally called packed BCD where we use each nibble of
a byte to represent exactly one decimal digit. Historically, other sizes were used,
one digit per byte (unpacked) for example, or even other values, typically with
early computers. We will examine one of these formats below (zoned decimal). In
addition, while any set of distinct bit patterns can be used to represent decimal digits
we will use the obvious choice, 0 = 0000,1 = 0001, ...,9 = 1001, so there is a
direct conversion between a decimal digit and its BCD bit pattern. The remaining
six bit patterns, 1010... 1111 are not used or allowed in properly formatted BCD
numbers. In the previous sections we ignored the difficulties of converting human
entered decimal data to binary and vice versa. BCD simplifies this process. BCD is
no longer frequently used but it will turn up again when we consider some of the
more specialized ways in which computers represent numbers, particularly Decimal
Floating-Point numbers, Chap. 7.

If we consider only positive numbers, a single byte can represent decimal
numbers from O through 99 as so,
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BCD | Decimal

00 0
01 1
02 2
10 10
11 11
98 98
99 99

where the two digits in the BCD column on the left represent the two 4-bit nibbles of
the byte. This works but does not allow for negative numbers. Historically, several
variations were used for storing a sign with a BCD number. The form we will use
is directly analogous to signed binary integers but instead of two’s complement we
will use fen’s complement with a leading nibble to represent the sign. If the leading
nibble is 0000 the number is positive, if 1001 the number is negative and the
value is in ten’s complement format. We use the leading sign nibble because unlike
two’s complement where the leading bit is always 1 if the number is negative, ten’s
complement has no such quick test.

In two’s complement we negate a number by flipping all the digits making 0 —
1 and 1 — 0 and then add one. For the ten’s complement of a decimal number we
first find the nine’s complement which involves subtracting the number from 99, for
a single byte, and then add one. So, we see that the BCD number 51 can be thought
of as —49 because,

99 —51 =48, 484+1=49

A multidigit BCD number is represented with multiple bytes. Endian issues arise
again in this case and we chose to use big-endian so that it is easier to see the decimal
numbers in the binary bit patterns. With this convention, including the sign nibble,
the decimal number 123 is represented in BCD as,

+ 0 1 2 3
0000 | 0000 0001 | 0010 0011

where we need the leading 0 digit to fill out the byte representing the leading two
digits. Similarly, using the negative sign nibble we can represent —732 as,

- 0 2 6 8
1001 | 0000 0010 | 0110 1000

because 999 — 732 = 267, 267 4+ 1 = 268 is the ten’s complement of 732.
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2.6.2 Arithmetic with BCD

Let’s look at arithmetic using BCD numbers. We only consider addition and subtrac-
tion as multiplication and division are rarely performed in BCD. For performance
reasons in software it is faster to convert from BCD to binary, do the multiplication
or division in binary, and then convert the answer back to BCD.

Addition of two BCD numbers is straightforward at first glance. We simply add
nibble by nibble since each nibble is a digit,

123 0000 0001 0010 0011
+ 732 + 0000 0111 0011 0010
855 0000 1000 0101 0101

where for each nibble we simply add in binary as if the numbers were unsigned
binary integers. For this example, everything works out nicely. But consider this,

123 0000 0001 0010 0011
+ 738 + 0000 0111 0011 1000
861 0000 1000 0101 1011

here we have a small problem, the sum of the first digits gives us 1011 which is
11, not an allowed bit pattern in BCD. We see the source of the problem which is
that 3 + 8 = 11 so we have produced a carry. A simple way to deal with any carries
is to take the resulting bit pattern, 1011, and add six, 0110, which will give us
the correct bit pattern for the decimal digit and a carry of 1 for the next digit. This
correction gives,

1011 + 0110 =1 0001

with the carry separated from the remaining digit which is now the BCD represen-
tation of 1. Applying this correction to the addition leads to the correct result,

123 0000 0001 0010 0011

+ 738 + 0000 0111 0011 1000
0000 1000 0101 1011

861 0000 1000 0110 0001

where we have added the carry into the next digit to change the 5 to a 6. Why add
six? There are 16 possible 4-bit nibbles but we are only using the first 10 of them
for decimal digits. If we exceed 10 for any single digit adding six will wrap the bit
pattern around to the digit we would get if we, in decimal, subtracted ten. It also
leaves the carry set for the next digit. If adding the carry to the next higher digit
results in 10 or greater the “add six” trick can be used again and repeated as many
times as necessary until the BCD number is in the proper form, each time moving
to the next higher digit position.

We have chosen to represent negative BCD numbers using ten’s complement.
This format works in the same way as two’s complement so that in order to subtract
we simply add. For example, consider,
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123 0000 0001 0010 oOO011

- 732 + 1001 0010 0110 1000
1001 0011 1000 1011

—609 1001 0011 1001 o001

where the overflow in the first digit was addressed by adding six and then adding
the carry to the next higher digit. The sign is negative and the BCD number reads as
391. Since the number is negative, we expect that 391 is the ten’s complement form
of —609 which is the actual answer. To see that it is, we negate it,

999 — 391 = 608, 608 + 1 = 609

so we know that we have, in fact, reached the correct result.

2.6.3 Conversion Routines

Binary to BCD and BCD to binary conversion is straightforward. First, let’s consider
binary to BCD. This routine could be used during multiplication or division of BCD
numbers or might be used on its own to prepare for output of a binary value as
a decimal number. Once the value is in BCD conversion to ASCII for output is
straightforward, simply examine each nibble, add it to 48 which is the ASCII code
for “0” and output the resulting byte as an ASCII character.

Our binary to BCD conversion routine will convert an 8-bit unsigned binary
number to a three digit BCD number. It goes by the amusing name of the “double
dabble” algorithm and we present our implementation in Fig. 2.10. The routine itself
is referred to briefly in [7].

What is this code doing? We have an unsigned 8-bit binary number passed in as b.
We will return the three digit BCD number in p. Since a single byte can hold any
value from 0 to 255 we need exactly 12 bits to store the equivalent BCD number.
Using an unsigned short as a return value gives us 16 bits, the top four of
which we leave as zero. Inside the algorithm we work with p as an unsigned
int so that we have 32-bits to work with. The algorithm is going to perform eight
shifts to the left so that it can examine each of the eight bits in b. For example, if
bis 123 = 01111011, we initialize p with b so that at the start p looks like,

p
0000 0000 0000 0000 O00O0OO0O 0000 0111 10112
100s 10s Is

where the bit positions of the hundreds, tens and ones digits for our BCD
representation are indicated.

The loop in lines 7 through 24 runs eight times and shifts p one bit position
to the left each time. However, before the shift we look at each of the BCD digit
locations to see if the value there is five or greater. If it is, we add three before
shifting to the left. Line 8 pulls out the four bits representing the ones value in the
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1| unsigned short bin2bcd8 (unsigned char b) {
2 unsigned int p=0;
3 unsigned char i, t;
4
5 p = (unsigned int)b;
6
7 for (i=0; 1i<8; 1i++) {
8 t = (p & 0x£f00) >> 8;
9 if (£ >= 5) {
10 t += 3;
11 P = ((p>>12)<<12) | (t<<8) | (p&Oxff);
12 }
13 t = (p & 0x£000) >> 12;
14 if (t >= 5) {
15 t += 3;
16 p = ((p>>16)<<16) | (t<<12) | (p&Oxfff);
17 }
18 t = (p & 0xf0000) >> 16;
19 if (t >= 5) {
20 t += 3;
21 p = ((p>>20)>>20) | (£t<<16) | (p"Oxffff);
22 }
23 p <<= 1;
24 }
25
26 return (unsigned short) (p>>8);
271 1}

Fig. 2.10 Unsigned 8-bit binary to three digit BCD conversion

BCD representation. Specifically, it first masks p with 0x£00 which leaves only the
four bits in the ones place nonzero. It then shifts to the right eight bits and assigns
this value to t. This sets t to the ones value. Line 9 asks if this value is greater than
or equal to five. If so, line 10 increments t by three. Line 11 then updates the proper
position in p with the new value of t. Let’s look at this line more closely. Recall that
OR combines bits and here three pieces are combined to replace the proper four bits
of p with the value of t. First, ( (p>>12)<<12) loses the lower 12 bits of p, which
includes the four bits of the BCD ones digit along with the eight bits originally set to
b. It then shifts back up so that the net result is a value that has the lowest 12 bits set
to zero and the remaining bits set to whatever they were previously. This is OR-ed
with t shifted up eight bits so that the lower four bits of t, which are the only ones
to have a nonzero value, are in the proper position to be the BCD ones digit. Lastly,
p & 0xff keeps the lowest eight bits of p and OR’s them in as well. When each of
these operations is complete p is the same as it was previously with the exception
that the four bits in the BCD ones position have been increased by three. We will
see below why three was added and why five was the cutoff value. Lines 13 through
22 perform the same check for the BCD tens and BCD hundreds digits. The only
change is the mask and shift values to isolate and work with the correct four bits of
p. Lastly, line 23 shifts all of p one position to the left to move the next bit of b (in
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the lowest eight bits of p) into position. After all bits of b have been examined the
final BCD result is in bits 9 through 20 so we shift down eight positions to get the
final BCD value.

The operation of the entire algorithm is shown below for b = 123. For
convenience we ignore the top three nibbles of p, a 32-bit unsigned integer. This
leaves us with,

100s 10s Is b comment
0000 0000 0000 0111 1011 initial
0000 0000 0000 1111 0110 shift 1
0000 0000 0001 1110 1100 shift 2
0000 0000 0011 1101 1000 shift 3
0000 0000 0111 1011 0000 shift 4
0000 0000 1010 1011 0000 add 3, ones
0000 0001 0101 0110 0000 shift 5
0000 0001 1000 0110 0000 add 3, ones
0000 0011 0000 1100 0000 shift 6
0000 0110 0001 1000 0000 shift 7
0000 1001 0001 1000 0000 add 3, tens
0001 0010 0011 0000 0000 shift 8

which after the last left shift has 123 as a BCD number in the indicated columns.
The return statement shifts this value to the right eight bits to return the final
three digit BCD number.

This shows us that the algorithm works but not why it works. The key to
understanding the algorithm is to recall that to convert a BCD digit that is not a
proper digit, say 1011 which is 11, to a proper digit is to add six, 0110. This will
produce a carry bit to the next BCD digit position while preserving the proper value
in the existing digit. So, one way to think of how to convert binary to BCD is to look
at each digit position and if it is greater than ten subtract ten before doubling. This
is to say, calculate,

2x+6
for cases where the digit, x, is ten or greater before looking at the next bit of our

binary number. This is equivalent to considering if the value is greater than five and
if so adding three and then doubling because,

2x+ 6 =2(x+ 3)
which has the added advantage of not requiring an extra bit since 2x + 6 may be

greater than 15 while x+-3 never will be for x a valid BCD digit. This is the approach
of the double-dabble algorithm shown in Fig. 2.10.
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Conversion from a three digit BCD number to binary is especially straightfor-
ward. We simply examine each nibble, multiply it by the proper power of 10, and
accumulate the result,

unsigned char bcd2bin8 (unsigned short b)
unsigned char n;

= (b & 0x0f) ;

>>= 4;

+= 10%x (b & 0x0f) ;
>>= 4;

+= 100% (b & 0x0f) ;

BoBUOB

return n;

}

The phrase b & 0x0f masks off the lowest nibble of b. This is the ones digit, so
we simply set the output value in n to it. We then shift b to the right by four bits
to make the lowest nibble the tens digit. We add this to the running total after first
multiplying it by ten. We then shift one last time to make the hundreds digit the first
nibble, multiply it by 100 and add to n to get the final value of the three digit BCD
number.

2.6.4 Other BCD Encodings

So far in this section we have used packed BCD encoding. Here we explore two
others: zoned decimal and densely packed decimal (DPD). We will only briefly
discuss densely packed decimal because we cover it in detail in Sect. 7.2 as it is a
critical part of the IEEE decimal floating-point format.

Densely Packed Decimal The DPD format encodes three decimal digits using ten
bits. It is a refined version of Chen-Ho encoding [8] and is used by the IEEE 754-
2008 Decimal Floating-Point Format [9] to encode the significand in base ten. There
is a two bit savings in storage over packed BCD which requires 12 bits to encode
three decimal digits.

Packing three BCD numbers into a DPD declet is straightforward. We label the
bits of each BCD digit as abcd, efgh, and ijkm. Using these labels for the bits we
can take any set of three BCD digits and encode them into a DPD declet using Table
2.3. The ten bits of the declet are labeled pgr stu v wxy which can be read from the
table by finding the row matching the aei bit values from the input BCD numbers.

For example, to create a declet encoding the number 359 we first encode the
digits in packed BCD as 0011, 0101, and 1001, and then look for the row in
Table 2.3 that starts with 001 (the first bits of each packed BCD digit). This directs
us to line 2 so that we can map the remaining input bits to the output DPD bits
like so,
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Table 2.3 Packing three
BCD numbers (abcd efgh
ijkm) into a declet (pgr stu v
wxy)

Table 2.4 Unpacking a
declet (pgr stu v wxy) by
translating it into three groups
of binary digits representing
three decimal digits (abcd

efgh ijkm)

N R

bed

fgh
1

00m

2 Integers
aei | pqr |stu |v |wxy
000 |bed |[fgh |0 |jkm
001 |bed |fgh |1 |00m
010 |bed |jkh |1 |Olm
011 |bed [ 10h |1 |11m
100 |jkd |fgh |1 |10m
101 |[fgd [Olh |1 |1lm
110 |jkd |00h |1 |11m
111 |00d [ 11h |1 |11lm

Locate the row by matching the
first bit of each BCD number
to the value under the aei col-
umn, then, the bits of the declet
are read from the remaining
columns of that row. After [11]

vxwst abced | efgh | ijkm

0---- |Opgr |Ostu |Owxy
100-- |Opgr |Ostu | 100y
101-- |Opgr |100u |Osty
110-- | 100r |Ostu |Opqy
11100 |100r |Opqu | 100y
11110 |Opgr |100u | 100y

11111

100r | 100u | 100y

After [11]

011
101
1
001

so that the final output decletis 011 101 1 001.

A declet can be unpacked using Table 2.4 by forming the value vxwst and
locating the matching row. For example, to undo the example above where 359 —
011 101 1 001 (pgr stuv wxy), we form vxwst = 10010 which matches line 2
of Table 2.4 so that the bits of the unencoded declet become,

abcd — Opqr
efegh —

ijkm

as we expect.

Ostu
100y

0011
0101
1001

3
= 5
= 9

Zoned Decimal Zoned decimal is a storage format that was supported on early
IBM mainframes starting with the IBM 360, if not earlier. The format is still used,
in fact, and is supported by certain programming languages, for example, RPG

IV [10].
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Zoned decimal is a BCD format used primarily during input and output. While
packed BCD stores two decimal digits per byte, zoned decimal stores only one in
the lower nibble. The upper nibble, the “zone”, is used to store a value that makes
the entire byte a valid EBCDIC or ASCII character code for the number itself. In
this way, output is made simple. The only twist is storing the sign of the decimal
number. In this case, the upper nibble of the lowest order digit is altered to indicate
that the entire number is negative. We will implement zoned decimal routines that
store up to eight digits in an unsigned 64-bit integer. If we do this we see that,

8 — FOFOFOFOFOFOFOF8

—8 — FOFOFOFOFOFOFODS
8675309 —  FOF8F6F7F5F3F0OF9
—8675309 — FOF8F6F7F5F3F0D9

where we are using the EBCDIC representation which uses F for the high nibble
and D if the number is negative. For ASCII the conversion is similar but 3 is used
for the high nibble and 7 if the number is negative.

For example, the single decimal digit, 8, maps to FOFOFOFOFOFOFOF8 where
the number is stored in the 64-bit unsigned integer with leading zeros, seven of
them, as F0, the EBCDIC code for “0”, followed by F8 for the digit, “8”. For —8
the conversion is the much the same but the lowest order byte is now D8 to indicate
that the entire number is negative. Notice that an unsigned 64-bit integer can store
eight bytes and that each zoned decimal digit is a byte so the range of representable
integers is [—99999999, +99999999], which fits in a standard C signed integer. The
code for converting a signed integer to zoned decimal is,

1 #include <inttypes.h>
2 |#define PNIB OxFO
3 |[#define NNIB 0xDO

4
5 luint64_t bin2zoned(int b)

6 uint8 t i,s = (b<0) 2 1:0;

7 uint64 t d,z=0,p=10000000;

8

9 b = abs(b);

10 for(i=7; i>0; i--) {

11 d=Db/ p;

12 b -=4d * p;

13 p /= 10;

14 z += (PNIB+d) << (uinté4_t) (ix8);
15 }

16 z += (s) ? (NNIB+b) : (PNIB+b);

17 return z;

18}

where we include the inttypes standard C library to access the uinte4 t data
type. Lines 2 and 3 define the upper nibbles for the EBCDIC representation. Replace
these with 0x30 and 0x70 respectively for ASCII. The bin2zoned function
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(line 5) accepts a standard signed integer value ( b) and returns the eight digit
zoned decimal representation. Line 6 sets the sign of the input (s) and then works
with the positive version (line 9). The loop starting in line 10 sets the highest seven
digits of the output. The last digit is a special case because the upper nibble changes
if the input is negative. The output value is in  z.

Line 11 sets d to the integer part of the input divided by the power of ten the
current zoned digit represents (p, initialized in line 7). The loop counts down so
that we process the input from most-significant to least-significant digit. Line 12
subtracts the digit value from the input. Line 13 drops p to the next lower power of
ten. Finally, line 14 adds the digit value to the positive upper nibble value, PNIB+d,
and shifts it into the proper byte position, 1+ 8.

The lowest-order digit in handled in line 16. At this point the value in b is the
digit we need so we check the sign in s to decide which upper nibble to add before
adding the final digit value to z. Line 17 returns the zoned decimal representation.

Converting a zoned decimal back to binary is similarly straightforward,

1 |int zoned2bin(uinté64 t z) {
2 int32 t b=0,p=1;

3 int8 t i,s=1;

4

5 for (i=0; i<8; i++) {

6 b += (z & 0xF) * p;
7 p *= 10

8 if ((z & OxFO0) == NNIB) s=-1;
9 zZ >>= 8;

10 }

11 return sxb;

12]}

where we loop over each digit in the input, lowest to highest, starting in line 5.
The output is stored in b and we mask off the lowest nibble of the input, z, and
multiply it by the current power of ten represented by that digit, p (line 6). Line 7
moves to the next higher power of ten. Line 8 checks if the current zoned digit’s
high nibble is negative. If so, it sets the sign in s. Line 9 shifts the input down so
that the highest zoned digit is now in the first byte. The binary value is multiplied
by the sign and returned (line 11). Conversion from zoned decimal to packed BCD
is left as an exercise for the reader (see Problem 2.9).

2.7 Chapter Summary

In this lengthy but essential chapter we covered a lot of important topics. We
learned key terminology regarding bits, bytes, and words. We explored unsigned
integers at length learning how to perform such low-level functions as manipulation
of individual bits to the basic logic operations of AND, OR, NOT and XOR.
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We completed our tour of low-level manipulation by studying shifts and rotates and
how they affect the value of an unsigned integer. We then examined how to compare
the magnitude of two unsigned integers.

Unsigned integer arithmetic was our next topic and with it we learned how to
implement the basic operations of addition, subtraction, multiplication and division
with remainder. To round out the unsigned integers we reviewed one approach for
calculating the square root of a number.

Signed integers were our next target. We built upon what we learned with
unsigned integers and delved into the main ways signed data is stored: sign-
magnitude, one’s complement and two’s complement. We learned how to compare
signed integers and how to either extend existing unsigned arithmetic routines to
handle signed arguments or how to implement algorithms that operate on two’s
complement numbers directly.

To round out our examination we took a look at binary-coded decimal numbers,
how to add and subtract them, in ten’s complement, and how to convert between
binary-coded decimal and pure binary as well as vice versa.

It would not be too much to say that integers are the heart of computers.
We now know how to work with them at any level. There are more specialized
representations of integers, and we will examine them in other chapters, but for
the vast majority of computer work involving data that does not need fractions,
including characters which are represented as integer codes, fixed-width integers
are our main tools and understanding them in some detail is well worth the effort.

Exercises

2.1 Interpret the following bit patterns first as little-endian then as big-endian
unsigned short integers. Convert your answer to decimal.

¢ 1101011100101110
e 1101010101100101
e 0010101011010101
e 1010101011010111

2.2 Given A = 6B;¢ and B = D6, write the result of each expression in binary
and hexadecimal.

* (A AND B) OR (NOT A)
* (A XOR B) OR (A AND (NOT B))
* ((NOT A) OR (NOT B)) XOR (A AND B)

2.3 Using C syntax write an expression that achieves each of the following. Assume
that the unsigned char A = 0x8A.

e Set bits 3 and 6 of A.
* Keep only the low nibble of A.
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e Set unsigned char B to 100 if bit 3 of A is not set.
* Clear bit 1 of A.
* Toggle bits 4 and 5 of A.

2.4 Using C syntax write an expression for each of the following.

* Swap the upper and lower nibbles of unsigned char v = 0xC4.
e Multiply v by 5 using at least one shift operation.

2.5 Express each of the following numbers in one’s and two’s complement notation.
Write your answer in binary and hexadecimal. Assume 8-bit signed integers.

. —14
. —127
. -1

2.6 Write a function to reverse the bits of an unsigned 8-bit integer. *
2.7 Write a function to count the number of 1 bits in an unsigned 32-bit integer. *

2.8 Modify the cube root algorithm in Sect.2.3.6 to work properly with signed
integers.

2.9 Modify the zoned2bin function of Sect.2.6.4 to return a packed BCD repre-
sentation of the input. Call this new function zoned2bcd. Note, the input is an
unsigned 64-bit integer representing 8 digits so the packed BCD representation will
require 32-bits and will fit in an unsigned 32-bit integer.

2.10 The Hamming distance between two integers is the number of places where
their corresponding bits differ. For example, the Hamming distance between 1011
and 0010 is 2 because the numbers differ in bits O and 3. Write a function to
calculate the Hamming distance between two unsigned short integers. *

2.11 A Gray code is a sequence of bit patterns in which any two adjacent patterns
in the sequence differ by only one bit. Gray codes were developed to aid in error
correction of mechanical switches but are used more generally in digital systems.
For example, for four bits, the first six values in the Gray code are: 0000, 0001,
0011, 0010, 0110, 0111. The rule to convert a binary number »n into the
corresponding Gray code g is to move bit by bit, from lowest bit to highest bit,
setting the output bit to the original bit or inverted if the next higher bit is 1. So, to
change n = 0011 to g = 0010 we output a 0 for bit O of g since bit 1 of n is set and
output the existing bit value of n for all other positions since the next higher bit is
not set.

Using this rule, write a C function that calculates the Gray code g for any
unsigned short n input. (Hint: there are many ways to write a function that works
but in the end it can be accomplished in one line of code. Think about how to check
if the next higher bit of the input is set by shifting and how to invert the output bit if
it is.) **
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