Sequential Monte Carlo Sampling for State
Space Models

Mario V. Wiithrich

Abstract The aim of these notes is to revisit sequential Monte Carlo (SMC)
sampling. SMC sampling is a powerful simulation tool for solving non-linear and/or
non-Gaussian state space models. We illustrate this with several examples.

1 Introduction

In these notes we revisit sequential Monte Carlo (SMC) sampling for (non-linear
and non-Gaussian) state space models in discrete time. SMC sampling and non-
linear particle filters were introduced in the 1990s by Gordon et al. [7] and Del
Moral [3]. Meanwhile there is a vast literature on SMC sampling and there are
excellent (overview) contributions such as Del Moral et al. [4, 5], Johansen and
Evers [9], Doucet and Johansen [6] and Creal [2]. In fact, we have learned SMC
methods from these references, in particular, from Doucet and Johansen [6]. The
reason for writing these notes is that we had to prepare for a tutorial lecture on SMC
sampling. For this purpose it is always advantageous to develop and implement own
examples to understand and back-test the algorithms. These own examples and their
implementation are probably our only real contributions here, but nevertheless they
might be helpful to a wider audience who wants to get familiar with SMC sampling.

Organization. We start by giving three explicit examples of state space models in
Sects. 2 and 3, the sampling algorithms are only presented later in Sect. 4. In Sect.2
we give two examples of linear state space models: (1) a Gaussian linear state
space model and (2) a non-Gaussian linear state space model. These models can
be solved with the Kalman filter technique that is exact in the former case and that
is an approximation in the latter case. In Sect.3 we consider (3) a non-Gaussian
and non-linear state space model. Moreover, we present the corresponding densities
of all three models. Section4 is devoted to the sampling algorithms. We start with
importance sampling, then discuss sequential importance sampling (SIS) and the last
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algorithm presented is a SMC sampling one. These algorithms are useful to solve the
three models introduced above. This is demonstrated in the examples Sect. 5. In this
section we also provide another practical example that corresponds to a stochastic
volatility model (that is inspired by the Heston [8] model) and we describe backward
smoothing of the resulting estimates.

2 Linear State Space Models

In this section we present two explicit examples of linear state space models: (1)
a Gaussian one in Sect.2.1 and (2) a non-Gaussian one in Sect.2.2. Moreover, we
present the Kalman filter technique that solves these models.

2.1 Gaussian Linear State Space Models and the Kalman
Filter

In many situations Gaussian linear state space models are studied. These are either
exact or used as an approximation to the full problem. Therefore, we start by
describing Gaussian linear state space models. Such models typically consist of
two processes: (i) a transition system, which describes the latent risk factor process,
and (i) a measurement system, that describes the observable process.

The following structure gives a (one-dimensional) Gaussian linear state space
model:

(i) The transition system is described by a process (©;);en, With &y = 6, and for
t>1
O, =a+bO,_, + 7, (D

fora,b € R, 7 > 0 and (7,);>; being i.i.d. standard Gaussian distributed.
(i) The measurement system is described by a process (X;);cn With forz > 1

X = O; +ogy, (2)

for 0 > 0 and (g,),>; being i.i.d. standard Gaussian distributed and being inde-
pendent of the process (7,);>1.

For given parameters 60, a, b, 7, o one aims at inferring the (unobservable, latent)
vector @, = (O, ..., ®,) from given observations X, = (X1, ..., X;). The tech-
nique usually used is the so-called Kalman filter [10] which can be interpreted as
an exact linear credibility estimator, see Sect.9.5 in Bithlmann and Gisler [1]. The
Kalman filter provides the following algorithm:
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Step 1 (anchoring). Initialize
0o =E[O1|X10l =a+bb and 7, = Var (O | X1) = 7°,

where the empty vector X .o is assumed to generate the trivial o-field, leading to
E[©,]X 0] = E[@,] and Var(®;]|X},0) = Var(6).

Step 2 (forecasting the measurement system). At time t > 1 we obtain forecast
X—1 = B[ X (X141 | = B[O [X1-1 | = 01,
and prediction variance
sti_1 = Var (X, |X1y_1) = Var (& |[X1y_1) + 0> =7;,_, + 0"
One period later, for given observation X,, we receive (observable) prediction error
G=X —E[X/[X1u1] = Xi — X1
Step 3 (Bayesian inference of the transition system). This prediction error (;, is used to
update the transition system at time 7. Using inference we obtain Bayesian estimate
O =E [0/ X1,] =E [0, |X1y1 |+ KiG = 01 + KiG,

with the so-called Kalman gain matrix (credibility weight)

K, = Var (6, |X1,—1) Var (X | X15-1) " =771 /71
and the variance 7}2\;—1 is updated by

71, = Var (0,|X1,) = (1 — K,) Var (&, [X1,—1) = (1 — K) 7;,_,.

Step 4 (forecasting the transition system). For the latent risk factor we obtain forecast

i1 =E[O1 1X14 | = a+bE[O; | X1, ] = a + bby,,
and prediction variance

T = Var (@ [X1y) = b* Var (0, |X1y) +7° = b7, + 7°.

Remark We emphasize the distinguished meanings of 6,1, x;;—1 and 6. The
former two 6;,— and x,;_; are predictors to forecast &, and X, based on the
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information X._; the latter 0, is an estimator for the latent &, based on the infor-
mation X;.,. These predictors and estimators are exact and optimal (in a Bayesian
way) for Gaussian innovations in linear state space models. In fact, we obtain the
following exact credibility formula in Step 3 (weighted average between observation
X, and (prior) forecast 6;;_1):

9t|t = E[@1|X1:t] = Gr\r—l + KICI = KtXt + (1 - Kz) 0t|t—1a
with credibility weight (Kalman gain matrix)

2
Tie—1

K, = =
2 2 2.2
Tii—1t 0O l+o /Tr|r—1

e (0,1).

This credibility estimator 8y, is exact in the Gaussian linear state space model and it
can be used as best linear approximation (for the quadratic loss function) for other
state space models, see Chap.9 in Biihlmann and Gisler [1].

The main question we would like to address here is: how can we optimally infer &,
in non-Gaussian and non-linear state space models? Before addressing this question
we briefly consider a non-Gaussian linear state space model.

2.2 Non-Gaussian Linear State Space Models

We present for illustration one example of a non-Gaussian linear state space model.
Therefore, we replace (1)—(2) by the following structure:

(i) The transition system is described by a process (©;);en, With &y = 6y and for
t>1
6, =bO,_; + Mt s 3)

for b € R and (7;);>1 being i.i.d. gamma distributed with E[7,] =a and
Var(n,) = 1°2.
(ii) The measurement system is described by a process (X;);en With for ¢ > 1

X, = 0, + oz, “4)

for 0 > 0 and (¢,),> being i.i.d. standard Gaussian distributed and being inde-
pendent of process (7;)>1.

Observe that the measurement systems (2) and (4) are identical, conditionally given
(®;)sen,- The transition systems (1) and (3) differ, but not in the first two moments,
that is,

E[6 O, 1]=a+bO,.; and Var (&6, =T (5)
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This implies that linear credibility filtering provides the same Kalman filter results
in both models, see Chap.9 in Biihlmann and Gisler [1].

3 Non-Gaussian and Non-linear State Space Models

3.1 Illustrative Example

We consider the following non-Gaussian and non-linear state space model:

(i) The transition system is described by a process (©;);en, With @y = 0y = 1 and
forr >1

O, =bO;_; + VO 11, (6)

for b >0 and (7);>; being i.i.d. gamma distributed with E[7,] =a and
Var(n,) = 7°.
(i) The measurement system is described by a process (X;);en With for ¢ > 1

X, =0, + oz, )

for o > 0 and (¢,),>; being i.i.d. standard Gaussian distributed and being inde-
pendent of process (7;)>1.

Note that in all three examples we consider the same measurement system (2), (4)
and (7), but the three transition systems (1), (3) and (6) differ. Below, we will choose
0p=1landb =1—a € (0, 1), see (21). These parameter choices imply for the first
two linear state space models (1) and (3), see (5),

, 1—b* <2 1 .
1 —b? 1—102

E[@]=1 and Var(®,) = 7

The non-linear model (6) is mean reverting in the following sense, assume b =
1—ae(0,1),

< O, ife,_; > 1,
E[@z| @z—l] =(1-a)®;,_1 +/6;_1a = O ife,_; =1,
> (")t,1 if@tfl < 1.
Fort = 1 and ®y = 6, = 1 we obtain

E[©]O@] = (1 —a) Oy +a/Oy = 1.

By induction, using the Markov property of (©;);cn,. the tower property of condi-
tional expectations and applying Jensen’s inequality, we obtain for ¢ > 2
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E [6/] @] = E[E[6/]6,,]| @] = E[(l—a)@zq-l-a O

@0]

172

< (I —a)E[O_1| O] + aE [ O;_1]| O] 1.

3.2 Bayesian Inference of the Transition System

The state space models introduced above can be interpreted as Bayesian models. This
is highlighted next. In general, we will use letter 7 to denote (conditional) densities
that belong to the transition system and letter f for (conditional) densities that belong
to the measurement system.

We start with the non-Gaussian and non-linear state space model (6)—(7). Choose
parameters 7, ¢ > 0 such that E[n,] = v/c = a and Var(s,) = v/c? = 72. Given
the transition system @, the observations X., have the following joint (product)
density

t
Xialonzo ~ f @l i) =[] f @160

s=1
_ H P C
B s V2mo P 202 .

The joint (prior) density of the vector @, is given by (for later purposes we indicate
0y in the notation)

t
Orilg, ~ 7 Bral6) = []7 Os165-1)

s=1
t

y—1
1 1 (6,—b0, ,\ o 0, — bo,_,
= —C _—
Wormro\ /i P o

X 119,20, }-

This implies that the posterior density of ®,.,, conditionally given (X, 6), satisfies

T Ol X1, 00) o f (X1l O1:) 7 (O14160) = []f (Xcl69) 7 (6:165-1)

s=1

H bea 1 i ex _(Xx _03‘)2 _c 93‘ _box—l
1V s 1 \/ P 202 03—]

X 119,20, )- (®)
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Thus, we can determine the posterior density 7(61..| X1, 8p) in model (6)—(7) up to
the normalizing constant, but we do not immediately recognize that it comes from
a well-understood (multivariate) distribution function. Therefore, we determine the
posterior distribution numerically.

For completeness we also provide the posterior distribution in the linear state
space models of Sect.2. In model (1)—(2) it is derived as follows. Given the vector
1., the observations X ., have the following joint (product) density

s _9.
Xiiloy=0,y ~ f Gl 1) = H \/—g [—%] .

The joint (prior) density of the vector @ is given by

Oy —a— bas—l)2
exp | — 2 )

1

1

Orsls, ~ w(elz,wo):l_[ﬂ_
=1 T

This implies that the posterior density of ®1.,, conditionally given (X.,, 6p), satisfies

™ Ol X1, 00) < f (X1l O1:) 7™ 11 60) = [ £ (Xl 607 (051 65-1)

s=1

t _ 2 B - 2
o exp {_ Z (Xs 0&) + (gs a basfl) ] ) (9)

202 272
s=1
From this we see that the posterior of @, given (X.;, 0p), is a multivariate Gaussian
distribution (with known parameters) and any problem can directly be solved from
this knowledge. Observe that this slightly differs from the Kalman filter of Sect. 2.
In the Kalman filter we were estimating (the next) @, based on observations X,
which provided Bayesian estimate 6,,. The full posterior 7 (6| Xi.;, 6p) now also
allows us for backward smoothing, that is, we can study the Bayesian estimator of
©®; for any earlier time point s = 1, ..., ¢ given by

aslt =E [@s| Xl:f] .

The posterior distribution in model (3)—(4) is given by

T (0141 X1, 00) o f (Xl 01:0) 7 (0141 00) (10)
t
~y— (Xx - as)z
x I | (B — bb,_1) " exp T2 ¢ Oy —bbs—1) t Lio,>0, ,)-

s=1

The aim in the next section is to describe algorithms that allow us to simulate directly
from the posterior densities (8)—(10), respectively.
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4 Sequential Monte Carlo Sampling

In this section we follow Sect. 3 of Doucet and Johansen [6]. Throughout we assume
that all terms considered are well-defined, for instance, concerning integrability. The
aim is to sample from the (posterior) densities 7 (6,./| X, 6p) that are known up to
the normalizing constants, that is,

T (O] X1, 00) o< f (X14|010) T (0141 00) =2 v (014)

where the last identity defines ; which describes the functional form of the (posterior)
density up to a normalizing constant Z, that is given by

Z, = /’Yt (01:1) dby4.
In particular, this implies that we have (posterior) density
7 (014 X124, 00) = Z7" 7 (01).
We remark that the following algorithms are quite general. The careful reader will

notice that they require much less structure than the three models introduced above
possess.

4.1 Importance Sampling

A general way to obtain samples from a density 7(6.| X, 6p) that is only known
up to a normalizing constant is to apply importance sampling. Assume # is a well-
behaved measurable function and we aim at calculating the (posterior) mean

fh(el:t)’}’t (elzt) del:t
Eh@-z X1l = ho:t e:tX:z’e d9;,=
[2(O1:)] X1:4] / Or:)m (Oh:4] X141, 00) dO T (Or) dbirs

For importance sampling we choose an importance density ¢, that has at least the
same support as 7, and from which we can (easily) sample. The latter is important
because otherwise the problem will not be solved. Using this importance density ¢,
and assuming that (51;, ~ g, we can rewrite the above (posterior) mean as follows

E [h(O )| X ] . fh(elt);i((zlji%(alt)delr . E [l’l(ém)lﬂ,(ém” Xl:]]
Lt Lel = Y (01:) (eljt)delit - E [wt(éltl)| Xl;[] ’
1D

ql(gl:l)qt

where we have defined the unnormalized importance weights
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Ve (gl:t)
q:(01.) ’

w; (014) =

Remarks

e Identity (11) says that we can sample from a tractable density Oy ~ q;. To obtain
samples from v; we simply need to re-weight these samples using the importance
weights w,. Note that this requires that supp(y;) < supp(g;).

e Efficient algorithms to evaluate (11) numerically for arbitrary functions A will
consider importance densities g, such that w, has a small variance. This leads to
a fast convergence in the normalizing constant Z; (which is the denominator of
(11)). Ideally, one also wants to have fast convergence in the numerator of (11).
However, since this is not possible for arbitrary function /4, one only focuses on
the importance weights for the normalizing constant.

e Note that we condition on o{X.;, 0y} in (11) because (strictly speaking) the impor-
tance weights w, depend on these observations (if we are aiming at calculating the
posterior distributions). Moreover, also the choice of g;(-) = ¢,(:| X1, 6p) may
depend on these observations.

We now evaluate (11) empirically. Choose / € N independent samples @l 4 ™~
i =1,..., 1. We obtain empirical estimate

LS h(@{hw (61
%le L we( @1(l~z))

ih(m ACH)
i=1 ZJ 1wt(()l(]l))

ED [h(O1,)] X14] = (12)

This importance sampling algorithm proposes to evaluate the function /# under the
empirical (discrete) distribution

1
70 (014 X1, 00) = D° W) S0 (01:0),
i=1
with normalized importance weights
~ (@) (l)
0@ o (60)/a@)
1 50y =0 N
Y w@l) 3 v (817)/a61)

WOy =

Estimate (12) is consistent satisfying the central limit theorem with asymptotic vari-

ance as I — 00, see (27) in Doucet and Johansen [6],

L[ 7 Ol X1a, 0)°
/ —— = (h(01,) — E [h(O1:)] X1])* 6.

7 q:(01.4)
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Moreover, as mentioned in Doucet and Johansen [6], the asymptotic bias of this
empirical estimate is of order O(1/1), the asymptotic variance of order O(1/1), and
the mean squared error is asymptotically dominated by the variance term, see also
Theorem 2.2 in Johansen and Evers [9].

Note that so far we have not used the sequential product structure (8)—(10) of our
problems. This structure will help to control the computational complexity, this we
are going to explore next.

4.2 Sequential Importance Sampling

Observe that the evaluation of the importance weights w;, can be complex if we do
not benefit from the additional Markovian structure of problems (8)—(10). This can
be achieved by considering a product structure for the importance density g, i.e. we
choose (by a slight abuse of notation)

t
ar (O10) = g (Brs] X1, 00) = [ s (6s] X5, f051) - (13)

s=1

These (conditional) importance densities ¢, (0] X 1.5, 0.1 ) may also depend on X,
often this is not highlighted in the notation. In the sequel we drop “conditional” in
the terminology because notation already indicates this. Using (8) we calculate the
importance weights recursively

w @) =[] f(X5109) ™ (B5105-1)
1

’B (0‘v|X1:m 00;?—1)
S (X:10;) 7 (0:10:-1)
q: (9t|Xl:t7 00:[—1) ’

= wi—1(014-1)

with initialization wg(#,.9) = 1. This allows us to define the incremental importance
weights
f (X 10) 7 (0:10,-1)

o, (01,) =
e qr (01 X1, 00.1-1)

3

and then the unnormalized importance weights under (8)—(10) and (13) are written as

wy (Br) = w1 Bre—1) 0 Or) = [ [ eBrs).

s=1

Here, we see the sequential nature of the algorithm!
In view of the Markovian structure in (8)—(10) it makes sense to also choose a
Markovian structure in (13) because the numerator of the incremental importance
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weights « (01.,) only depends on X;, 6, and 6;_, thus we choose importance density

qr (01 X1, 0-1) = g0 (0,] X1, O0:-1) - (14)
This provides incremental importance weights

_ _ S (X:10) 7 (0;10,-1)
a(0-14) = oy (01) = 4 O,1X,.0,1) . (15)

We arrive at the following algorithm under (8)—(10), (13) and (14).

Sequential importance sampling (SIS) algorithm.
> Set 9(()1) = 6y and wo(Q%) =1lfori=1,...,1.
> Repeat for s =1,...,t:

e repeat fori=1,...,1:
ke 60 ([x.,80).
— calculate the importance weights
7 (%69 x (89
as (@gi)

ws(65)) = ws_1 (65 _1) as(81.,);

o))

as(éé?l:s) = N(l)
XS? 8371)

)

e calculate for i = 1,...,I the normalized importance weights
50 w.(6) 0
VVS(ngl) = 171~(]) X ws(eg:l)'
Z]’:l ws(O7;)

This SIS algorithm provides empirical distributions for any s = 1, ..., ¢

1
7O Ors] X1, 60) = D~ Wo(OF) S50 (Bi) - (16)

i=1

If we are only interested in s = f we would not need to calculate Wi ( (51(';) fors < tin
the SIS algorithm, however this is going to be important in the refinement of the SIS
algorithm. Note that any marginal 7D (G,]X 1., 0) can easily be obtained, for s = ¢
this refers to Step 3 in the Kalman filter, for s < ¢ this refers to backward smoothing.

A main deficiency of the SIS algorithm is that the variance increases rapidly in
the number of periods ¢ considered, and thus a large number I of simulations is
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needed in order to get accurate results, Doucet and Johansen [6] provide an example
in Sect. 3.3. Therefore, variance reduction techniques should be applied and the SIS
algorithm needs to be refined.

4.3 Sequential Monte Carlo with Adaptive Resampling

The SIS algorithm provides empirical distributions 7D G151 X 1.5, 0p) for s =1,

., t, see (16). These empirical distributions are estimates for the true distribu-
tions 7w(61.5] X1, 0o). Resampling the particle system means that we sample from
these empirical distributions w(’)(91X|X 15, 0p), that is, we may sample @1(’3
7D (0141 X 15, 0p) idd. for j =1,..., 1. Denote fori =1, ..., 1

N© = Z(s o (e).

the number of times that @(’) was re-chosen among the / trials 61(13 s @1(;)- This
provides a second (resampled) empirical distribution
1 .
N®
T Orsl Xis. 60) = D —— dgp (1) (a7

i=1

This resampled empirical distribution 7D (01.5] X 1.5, 00) serves as an approximation
to the empirical distribution 7 (0| X .5, 6p) and henceforth to 7 (0| X ., o).

The important remark here is that this resampling does not necessarlly reduce
the variance, but it may remove particles O( D that have low weights Wi (O1 Dy (are
in an unlikely region of the probability space) and we only work in the part of the
probability space that has a sufficiently high probability mass. There are the following
important remarks:

e There are more efficient resampling techniques than the i.i.d. resampling one
proposed above (which in fact provides a multinomial distribution). Doucet
and Johansen [6] support the systematic resampling technique. It samples U; ~
Uniform[0, 1] and then defines U;,y = Uy +i/I fori = 1,...,1 — 1. An unbi-
ased resampled distribution is obtained by setting

1

N — 18
) Z_: [ZW<0:‘3><U < ZW@{?) (1%
= k=

e For convergence results we refer to the literature mentioned in Doucet and
Johansen [6].
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e The resampling step may lead to degeneracy of 7 (6,.,| X .s, o) with positive
probability. Therefore, one should always back-test whether the resulting empirical
distribution is sufficiently rich for the indexes s = 1, ..., ¢ under consideration.

e In many cases one applies adaptive resampling, i.e. the resampling step is only
applied if the weights are too disperse. One way to measure dispersion is the
effective sample size (ESS) defined by

E -1
ESS, = (Z (Ws(@ffﬁ))z) € [L1]. (19)

i=1

The resampling is then only applied if the ESS is too small. Note that if all particles
have the same weight 1/, then ESS; is equal to 7, if one particle concentrates the
entire probability mass, then ESS; is equal to 1.

This provides the following algorithm under (8)—(10), (13) and (14) and given resam-
pling threshold x € [1, I].

Sequential Monte Carlo (SMC) with adaptive resampling algorithm.
> Set 9((]1) =0y and wo(Q%) =1fori=1,...,1
> Repeat for s =1,...,t:

e repeat fori=1,...,1:
— sample 9( 7V qs ( ‘Xg,Qé )1)
— calculate the importance weights
o A(x]e) « (89]612)
(@) _ N
as(esflzs) - =~ (i) 2 O) ’
0 (69| x,,6%,)

ws(0) = we1(6Y)_,) as(6,.,);

e calculate for ¢ = 1,...,I the normalized importance weights
wy(O1)
7 R

Zj:l WS(ng)
and the corresponding ESS; according to (19);

e if ESS, < x resample oV ,65{3 from (16) and set for i =1,...,1

1:s>

Ws(6) = o w1 (O)_1) ag(8W),

(2 A 1
ws(ggl) = 1’ WS(Qg?s) =

)

Operation @f’g “«~ @f’f is an assignment in the R coding language sense.
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This SMC with adaptive resampling algorithm provides empirical distributions
foranys =1,...,¢

1
T Orss] X5, 00) = D Wo(OF) S0 (Or) - (20)

i=I

Note that the weights W, (© f’f ) and particles (51(’2 may now differ from the ones of the
SIS algorithm (16) due to the potential resampling step that is performed whenever
ESS, < x for u < s. Often one chooses resampling threshold x = 1/2.

5 Examples and Backward Smoothing

In Sect.5.1 we study the two linear state space models introduced in Sect.2, in
Sect.5.2 we explore the non-Gaussian and non-linear state space model of Sect. 3,
and in Sect.5.3 we consider a (new) model that may serve as a stochastic volatility
model for asset prices.

5.1 Linear State Space Models

We start by considering the linear state space models (1)—(2) and (3)—(4) in the
Gaussian and the gamma case, respectively. As parameters we choose

bo=1, a=1/10, b=9/10, 7=./1/10, o=1/2. (21

The transition systems (1) and (3) have the same first two moments, but different
distributional properties, in particular, the gamma one is bounded from below by
zero, whereas the Gaussian one is unbounded from below. In Fig. 1 (lhs) we plot 10
sample paths @;.,, r = 100, in the transition system for each of the two linear models.
This figure is complemented by the empirical means and the confidence bounds of
2 empirical standard deviations (of 1’000 simulations). We see that these measures
coincide for the Gaussian and gamma cases, however, the sample paths look rather
different in the two models. Based on two selected samples )., (darker trajectories)
in the transition system we draw a sample X ., (for each model) in the measurement
system according to (2) and (4), respectively. The ones given in Fig. 1 (rhs) are used
in the further analysis in order to infer ®, from X., i.e. we aim at calculating the
Bayesian estimate
91|t =E [6] X14].
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Gauss and gamma AR(1) process transition and measurement systems
— Gauss samples 11— Gauss transition
= Gauss selected . Gauss measurement
o empincal mean
""" empincal conf. bound

gamma samples

o = gamma selected -]
empirical mean * |= gamma transition
empirical conf, bound *  gamma measurement

T T T
0 20 40 60 80 100 0 20 40 60 80 100
time/step t time/step t

Fig. 1 (/hs) Simulated sample paths ®1.1g9 of the Gaussian linear transition system (1) and the
gamma linear transition system (3) for parameters (21) complemented by the empirical means and
the confidence bounds of 2 empirical standard deviations; the darker sample paths were selected
for the subsequent state space model analysis; (rhs) empirical samples X.100 and ®1.1¢p in the two
linear state space models (1)—(2) and (3)—(4) for parameters (21) and the selected sample paths of
the (lhs)

In the Gaussian linear state space model we can calculate 0;, exactly, using the
Kalman filter; in the gamma linear state space model the Kalman filter provides the
best linear (credibility) approximation to the conditional mean of ®,, given X,
see Chap.9 in Biihlmann and Gisler [1]. The Kalman filter results are presented in
Fig.2. We observe that the Kalman filter achieves to estimate the true ®;.,, quite
accurately, however the noise in X ., slightly distorts these estimates. Of course, the
bigger the parameter ¢ the harder it becomes to infer the transition system ®;., from
the observations X.;.

Next we explore the SIS and the SMC algorithms and compare the results to
the Kalman filter ones. We therefore need to choose importance densities g;. A
simple (non-optimal) way is to choose ¢, (:|X;, 6,—1) = 7(-|6;,_1), see also (14). This
choice provides incremental importance weights under model assumptions (2) and
(4) given by )

ar(bi—14) = f (X:]6;) = exp [_(Xlz—fl)] . (22)

o
Note that these incremental importance weights are uniformly bounded. In the case
of the Gaussian innovations (1) the choice of the importance density ¢, could be
improved because we can directly simulate from the posterior distribution (which is
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Fig. 2 (Estimated) posterior means ¢;, = E[®,|X ] using the Kalman filter complemented by
the (estimated) confidence bounds of 2 posterior standard deviations Var(®;|X1.;) 1/2: (Ihs) (exact)
Gaussian linear state space model posterior means and (rhs) (estimated) gamma linear state space
model posterior means

a multivariate normal one). However, we refrain from doing so because our choice
works in all three models introduced above and leads to identical incremental impor-
tance weights (22).

Finally, we choose I = 10’000 independent samples and for the SMC with adap-
tive resampling algorithm we choose resampling threshold x = 7/2. All parameters
are now determined and we can sample from to the SIS and SMC algorithms. In Fig. 3

Kalman filter, $1S and SMC Gauss Kalman, SIS and SMC to difference real sample
¥ — Gauss transition == Kalman difference
== Kalman filter o SIS difference
SIS slgosithm |- SMC difference
e |~ SMC algorithm

T 1
0 20 40 60 80 100 0 20 40 50 80 100
time/step t time/step t

Fig. 3 Comparison between the true sample ©1.,, the Kalman filter estimate 6;;, the SIS estimate
and the SMC estimate in the Gaussian linear state space model (1)—(2): (lhs) estimates and (rhs)
resulting differences to the true sample ©1.
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Fig. 4 Comparison between the true sample ©1.,, the Kalman filter estimate 6;,, the SIS estimate
and the SMC estimate in the gamma linear state space model (3)—(4): (lhs) estimates and (rhs)
resulting differences to the true sample ©@1.,

(Ihs) we provide the results for the Gaussian linear state space model (1)—(2). We
observe that the SMC estimates coincide almost perfectly with the (exact) Kalman
filter estimates 6;;. On the other hand the SIS estimates start to deviate from 0, after
roughly ¢ = 20 time steps because the normalized importance weights W, ((:51(',) ) start
to be too disperse and a resampling step should be applied. Figure 3 (rhs) shows the
differences between the estimates 0,, and the true factors @,. Also here we see that
the SIS estimates start to have difficulties with increasing 7.

Next we analyze the same plots for the gamma linear state space model (3)—(4). In
this model the Kalman filter gives a best linear credibility approximation to the true
posterior mean E[®;|X./], and the SIS and SMC estimates should be exact up to
simulation error. Also here we see that the SIS algorithm has a poor behavior for
bigger ¢t and one should prefer the SMC estimate. Interestingly, the SMC estimate
clearly differs from the Kalman filter estimate because of the different distributional
properties from the Gaussian ones. In particular, the Kalman filter has difficulties to
cope with the tails which leads to too extreme estimates. We conclude that we should
choose the SMC estimates, as soon as the number of samples / is sufficiently large
(Fig.4).

InFig. 5 we plot the posterior standard deviations Var (&, | X 1.)'/2 . In the Gaussian
model the SMC and the Kalman filter estimates coincide, whereas the SIS estimate
has a poor volatile behavior. In the gamma model the SMC estimate is also volatile
and of smaller size than the Kalman filter estimate (which is also not exact in the
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Fig. 5 (Estimated) posterior standard deviation Var(®;|X 1:)'/2 from the Kalman filter, the SIS
and SMC algorithms for the (/hs) Gaussian and the (ris) the gamma linear state space models

non-Gaussian case). Here one should probably use a smoothed version of the SMC
estimate because the Kalman filter over-estimates the posterior standard deviation
because it cannot cope with the tail of the gamma distribution.

5.2 Non-Gaussian and Non-linear State Space Models

In this section we explore the non-linear state space model (6)—(7). The posterior
density is given by (8) and under the choice g;(-|X,, 6;—1) = 7(-|0;—1) we obtain
incremental importance weights (22). These are, of course, again bounded and we can
apply the algorithm from before, the only change lies in the choice of the importance
distribution which now has a non-linear scaling, see (8).

In Fig. 6 (rhs) we provide an explicit sample @, for the transition system and
a corresponding sample X, for the measurement system. Note that we provide
exactly the same random samples, but with scaling (6) instead of scaling (3). Figure 7
then shows the resulting Kalman filter approximations, where for the non-linear
model (6) we use first order Taylor approximation ,/®;_; & 1 in the Kalman filter
application. Note that this could be refined by a second order Taylor approximation
m% 1+ (1 —1)/2.

In Fig. 8 we then compare the Kalman filter, SIS and SMC estimates of the poste-
rior means E[®;|X.;]. We observe that the Kalman filter receives too high peaks and
should not be used for the gamma non-linear state space model. The SIS estimate



Sequential Monte Carlo Sampling for State Space Models 43

linear and non-linear gamma transition system transition and measurement systems

non-lingar samples
= non-lingar selecled
— empirical mean
w - empirical conf. bound

empirical mean
empirical conf. bound

lingar samples = non-linear transition
— linear selected = * non-linear measurement

= linear transition
o= e lingar measuremeant
4 T

T T T T T

T
0 20 40 60 80 100 0 20 40 60 80 100
time/step t time/step t

Fig. 6 (lhs) Simulated sample paths ®1.19p of the gamma linear transition system (3) and the
gamma non-linear transition system (6) for parameters (21) complemented by the empirical means
and the confidence bounds of 2 empirical standard deviations; the darker sample paths were selected
for the state space model analysis; (ris) empirical samples X.100 and @j.1gp in the two models
(note that we give exactly the same random samples, only scaling in the transition system differs)
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Fig. 7 Estimated posterior means 6;; = E [®;] X1.,] using the Kalman filter complemented by
the estimated confidence bounds of 2 posterior standard deviations: (Ihs) gamma linear and (rhs)
gamma non-linear state space models; in the latter we approximate /®;_; =~ 1

becomes poorer for bigger ¢, hence the SMC estimate, that looks reasonable in Fig. 8
(rhs), should be preferred. In Fig. 9 we also see that the Kalman filter over-estimates
posterior variance because it cannot cope with the gamma distribution and it can-
not interpret scaling /©,_1 in (6). For this reason a smoothed version of the SMC
posterior standard deviation estimate should be used.
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Fig. 8 Comparison between the true sample ©1.,, the Kalman filter estimate 6;|;, the SIS estimate
and the SMC estimate in the gamma non-linear state space model (6)—(7): (lhs) estimates and (rhs)
resulting differences to the true sample @1,

Fig. 9 Estimated posterior Std.dev. Kalman, SIS and SMC (non-linear)
standard deviation ———
Var(6;|X1,)'/? from the = SIS algorithm
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5.3 Stochastic Volatility Model for Asset Prices

We close this section with an example that considers stochastic volatility modeling
in the transition system and (de-trended) logarithmic asset prices in the measurement
system. Inspired by the Heston [8] model we consider a gamma non-linear transition
system for the stochastic volatility process and a log-normal model for the de-trended
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asset prices. Note that de-trended asset prices means that the log-normal distribution
has to have a negative mean parameter being equal to minus one half of the variance
parameter. This motivates the following model:

(i) The transition system is described by a process (©;);en, With @y = 0y = 1 and
fortr > 1
O, =bO;_1 + /O 17, (23)

for b € R and (7,);>1 being i.i.d. gamma distributed with E[7,] =a and

Var(n,) = 7°2.
(i1) The measurement system is described by a process (X,),;cy With for # > 1

= —0°0,/2 + 0Oz, (24)

for o > 0 and (¢/),> being i.i.d. standard Gaussian distributed and being inde-
pendent of process (1);)>1.

The posterior density of ©®y., for given observations X ., is given by

T (014 X1, 00) f (X141 01:) ™ (0141 Oo) (25)

X exp (Xs + 0293/2)2 93 - b9571 1
Xpq— —C (65 =b0;—1}+
2020, 0, !

The transition system of the stochastic volatility process (®;);cn, given in (23) is
exactly the same as (6). Therefore, Fig. 6 (lhs) provides typical trajectories for the
parameters (21). In contrast to the previous models we now also have a non-linearity
in the measurement system (24). We would like to indicate two different extreme
cases: (i) for o > 1 very large we obtain

X, = — 020,24 0yOie, & —%6,/2. (26)

For this reason we expect to detect the transition system rather accurately in this case
(in fact the filter becomes almost superfluous); (ii) for o <« 1 very small we obtain

X, = —020,/24+ 005, ~ 0/Osc,. 27)

In this case we expect the de-trending term —o2@, /2 to be almost useless in sup-
porting the filtering algorithm.

For the transition system we use the parameters (21) and the importance density
q:(:|1X;, 0,—1) is chosen as 7w (-|6,_1). In Fig. 10 we present the SIS and SMC algo-
rithm results for o = 0.25. These results are compared to the SMC algorithm results
provided by model (27) (since o = 0.25 is comparably small). The first observation
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Fig. 10 Comparison between the true sample ., the SIS estimate and the SMC estimate in the
stochastic volatility model (23)—(24) for 0 = 0.25: (lhs) estimates and (rhs) resulting differences to
the true sample @.;; the approximation on the (/hs) uses (27) with SMC and it is almost identically
equal to the original SMC estimate (and therefore not visible in the plot)
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Fig. 11 Comparison between the true sample @, the SIS estimate and the SMC estimate in the
stochastic volatility model (23)—(24) for o = 10: (lhs) estimates and (rhs) resulting differences to
the true sample ®1.;; the approximation on the (/As) uses (26)

is that we cannot distinguish the SMC results from models (24) and (27), thus, our
de-trending term is too small to be helpful to improve inference of the transition
system. Secondly, we observe based on scaling (27) that the transition innovation 7,
and the measurement innovation ¢, live on a competing scale which makes it difficult
to infer ®; from X, . In fact, as can be seen from Fig. 10 (lhs), this leads to a visible
delay in the filtered estimation of @,. This is quite a typical phenomenon in filtering
and it comes from the fact that “we cannot look into the future for smoothing”.

In our second example we choose a large 0 = 10 and compare the solution of
model (24) to the (deterministic) one of model (26), see Fig. 11 (lhs). We see that
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Fig. 12 Estimated posterior standard deviation Var(®;|X ;t)l/ 2 from the SIS and SMC algorithms
for stochastic volatility model (23)—(24) for (lhs) o = 0.25 and (rhs) o = 10

approximation (26) clearly fluctuates around the true @;, but fluctuation is still a
bit too large to directly extract ®, from the observations X,. This means that o is
not sufficiently large and we should use SMC filtering. The SMC filter provides
very good results, in fact much better results than in the previous example o = 0.25,
because the predictive power of the de-trending term is already quite large in this
situation. This can also be seen by comparing Figs. 10 (rhs) and 11 (rhs). Finally, in
Fig. 12 we present the posterior standard deviations which (in a smoothed version)
allow us to construct confidence bounds for the prediction. For o = 0.25 they are in
the range of 0.4, for 0 = 10 they are of size 0.1 which is clearly smaller (due to the
higher predictive power of the de-trending term).

5.4 Backward Smoothing and Resample-Moves

In Fig. 10 (lhs) we have seen that the filter estimates 6;, always come with a delay in
reaction. Backward smoothing means that we use later information to re-assess the
value of ®,. We have already met this idea in Sect.3.2 and after the description of
the SIS algorithm. Basically this means that we infer &, by considering

Oqr =E [0;] X1.7] for later time points T > .

Using the simulated samples we calculate empirically at time 7' > ¢, see also (12),

1
ED [0, Xi.rl =Y 6

i=1

wr(0)7)
S wr @)
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Fig. 13 Comparison between the true sample @, the SIS estimate and the SMC estimate in the
stochastic volatility model (23)—(24) for o = 0.25: ({hs) SIS estimates of ¢;|; and of 6;|;42 and 6100
(backward smoothed) and (lhs) SMC estimates of 6, and of 0;;1> (backward smoothed)

This seems straightforward, however, this empirical method needs some care! It can
be done in a direct manner for the SIS algorithm. We provide the results in Fig. 13
(Ihs) for the stochastic volatility model with 0 = 0.25 for T =t 4+ 2 and T = 100.
We see a clear left shift of the estimates 0,7, that is, for more information X .7 we
can better distinguish the competing innovations €, and 7,. If T is too large the model
looks like it is over-smoothing, which means that an appropriate time lag 7 — ¢ needs
to be determined for smoothing.

For the SMC algorithm backward smoothing is much more delicate due to the
resampling step. Observe that the resampling step (17) at time s tends to select only
the particles @f’; that have a sufficiently large importance weight W; (@l('g) From
these selected particles I new trajectories are simulated into the future after time s.
But, this selection also implies a thinning of the past trajectories (because part of the
particles are dropped in the resampling step and, thus, also their history). Applying the
resampling step several times therefore leads to very poor properties at the beginning
of the trajectories because of the successive selection of the fittest particles. For this
reason in SMC sampling it is preferable to do backward smoothing for time lags that
are smaller than the time lags between adaptive resampling steps. An example for
T =1t + 2 is presented in Fig. 13 (rhs). We see that also here backward smoothing
leads to better inference compared to the true value &, (which can be seen by the
left shift of 0,,4» versus 6y,).

There are ways to deal with the deficiency of the SMC algorithm that it cannot be
used for arbitrary backward smoothing because of potential degeneracy of trajectories
for big time lags. Ways to fix these problems are, for instance, a resample-move or
a block sample step. Such methods mainly aim at spreading the degenerate part of
the trajectories by a Markov chain Monte Carlo (MCMC) step using the Metropolis—



Sequential Monte Carlo Sampling for State Space Models 49

Hastings algorithm, the Gibbs sampler or related techniques. We briefly explain the
resample-move, for more details we refer to Doucet and Johansen [6].

Consider the posterior density 7w (6;.,|X 1., 6y) as the invariant (stationary limit)
distribution of a Markov process (©{"),cx having transition kernel K (8% [6)).
As a consequence we obtain identity

/7T (014 X1, 00) K (9/1;;|01:r) doy, =m (0/1;,|X1:z»90)~

This immediately implies that for given ®1,, ~ 7(-| Xy, 6p) we can resample from
the transition kernel ®{, ~ K(-|®;,/) and the resulting sample is still distributed
according to 7 (| X, ). As a consequence if we obtain in the adaptive resampling
step of the SMC algorithm Nt(i) > 1 particles that have the same past history (:51(';,
see (17), we can spread these particles by applying an independent resample-move

to each particle using transition kernel K (-|@1(fl) ). In addition, MCMC sampling
theory provides explicit constructions of transition kernels K for given invariant
distributions 7(-|X.;, 0p) as soon as the latter are known up to the normalizing
constants (which is the case in our situation, see for instance (8)). In practice, only
a fixed time lag is resampled by this MCMC step, firstly because then one does not
need to deal with different lengths of resample-moves as ¢ increases, and secondly
because filtering is also only applied to limited time lags (to preserve stationarity in

real world time series).

6 Conclusions and Outlook

Gaussian linear state space models can be solved with Kalman filter techniques. Non-
Gaussian or/and non-linear state space models can only be solved numerically. A
powerful simulation method is sequential Monte Carlo (SMC) sampling. The result-
ing sampler is a version of importance sampling that benefits from the underlying
Markovian structure of state space models. We have presented the SMC sampler and
we have illustrated it in terms of several examples.

This outline and the examples presented were always based on known densities
(up to the normalizing constants). Unknown model parameters add an additional
complexity to the problem. Solving the latter problem may take advantage of Markov
chain Monte Carlo (M CMC) methods, in particular, the particle marginal Metropolis-
Hastings (PMMH) algorithm may be useful.
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