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Motivation and Objectives

In control theory, complex models of physical processes, such as systems of
differential or difference equations, are usually checked against simple specifica-
tions, such as stability and set invariance. In formal methods, rich specifications,
such as languages and formulas of temporal logics, are checked against simple
models of software programs and digital circuits, such as finite transition systems.
With the development and integration of cyber-physical and safety-critical systems,
there is an increasing need for computational tools for verification and control of
complex systems from rich, temporal logic specifications. For example, in a per-
sistent surveillance application, an unmanned aerial vehicle might be required to
“take photos of areas A and B infinitely often while always avoiding unsafe areas
C and D.” In the emergent area of synthetic biology, the goal is to design small
gene networks from specifications that are naturally given as temporal logic
statements about the concentrations of species of interest, e.g., “if inducer u1 is low
and inducer u2 is high, then protein y should eventually be expressed and remain in
this state for all future times.”

Central to the existing approaches for formal verification and control of
infinite-state systems is the notion of abstraction. Roughly, an abstract model can be
seen as a finite transition graph, whose states label equivalent sets of states of the
original system, and whose transitions match the trajectories of the original system
among the equivalence classes. Once constructed, such an abstraction can be used
for verification (using off-the-shelf model checking tools) or control (using auto-
mata game techniques) in lieu of the original system.

The main objective of this book is to present formal verification and control
algorithms for a class of discrete-time systems generically referred to as linear.
Most of the results are formulated for piecewise linear (or affine) systems, which are
described by a collection of linear (affine) dynamics associated to the regions of a
polytopic partition of the state space. Such systems are quite general, as they have
been shown to approximate nonlinear system with arbitrary accuracy. There also
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exist computational tools for identifying such systems (both the polytopes and the
corresponding dynamics) from experimental data.

This book is based on the work of the authors, and is, as a result, biased and
non-comprehensive. The specifications are restricted to formulas of Linear
Temporal Logic (LTL) and fragments of LTL, even though other temporal logics
have been used by other authors. While some of the results can be extended to
continuous-time systems, the focus is on discrete-time systems only. We only cover
deterministic and purely non-deterministic systems, even though existing results,
including ours, show that extensions to stochastic systems and probabilistic tem-
poral logics are possible. The equivalence notion that we use is classical bisimu-
lation—extensions to approximate bisimulations and probabilistic bisimulations
have been developed recently.

Intended Audience

This book is intended to a broad audience of scientists and engineers with interest in
formal methods and controls. In particular, it is our hope that this book will help
bridge the gap between the computer science and control theory communities.
Computer scientists are shown that simulations and bisimulations, normally used to
reduce the size of finite models of computer programs, can be used to abstract
infinite-state systems. The book also provides a self-contained exposition of tem-
poral logic control for finite non-deterministic systems, which is useful even for
seasoned formal methods researchers. Control theorists are introduced to notions
such as abstractions, temporal logics, formal verification, and formal synthesis, and
are shown that such techniques can be used for classical systems such as
discrete-time linear systems.

Book Outline and Usage

This book is self-contained. While some level of mathematical maturity is expected,
no mathematical background in control or automata theory is necessary. Most of the
formal definitions and algorithms are explained in plain language and illustrated
with several examples. Most examples include explanatory illustrations.

The book is organized in three parts. Part I covers the types of systems and
specifications used throughout the rest of the book. Specifically, it introduces
(non-deterministic) transition systems, a formalism that can be used to model a
large spectrum of dynamical systems. Simulation and bisimulations relations and
corresponding abstractions for transitions systems are defined. The syntax and
semantics of Linear Temporal Logic (LTL) and one of its fragments, called syn-
tactically co-safe LTL (scLTL), are introduced and illustrated with several
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examples. Finite state automata, Büchi automata, and Rabin automata accepting
languages satisfying LTL formulas are also defined.

Part II focuses on finite systems, i.e., transition systems with finitely many states,
inputs, and observations. After reviewing the classical LTL model checking
problem, we solve the problem of finding the largest set of states from which all
trajectories of a system satisfy an LTL formula. We show that the control version of
this problem can be mapped to a Büchi game, a Rabin game, or a graph reachability
problem depending on the structure of the specification formula. We present ready
to implement solutions to all these problems and include illustrative examples.

In Part III, which is the most involved part of the book, we bring together the
concepts and techniques introduced in Parts I and II and present computational
frameworks for verification and control of (infinite) discrete-time linear and
piecewise affine systems from LTL specifications. We cover LTL verification
problems for systems with fixed and uncertain parameters, parameter synthesis
problems, and control synthesis problems. We also provide algorithms for the
construction of finite bisimulations for some classes of discrete-time linear systems.
Finally, we establish a connection between optimality and correctness by requiring
a linear system to satisfy a temporal logic correctness requirement while optimizing
a cost function.

This book can be read and used in two ways. First, by covering Parts I and II
(excluding Sect. 1.2 from Chap. 1 in Part I), it can be used as a stand-alone
introduction to verification and control for finite non-deterministic transition sys-
tems from LTL formulas. This can be used as a first mini-course on formal methods
for engineers and computer scientists. It can also be useful for formal methods
researchers who have expertise in verification only. Second, the whole book can be
used as a graduate level course on formal methods for dynamical systems, with
particular focus on discrete-time linear and piecewise affine systems. Most of the
algorithms presented in this book were implemented as user-friendly software
packages that can be downloaded from the first author’s webpage or can be pro-
vided on request.

Related Books

The related books on formal methods for dynamical systems are [123, 5, 162, 144]:
[123, 5] are comprehensive expositions of theory and practice of embedded and
cyber-physical systems, together with corresponding verification and synthesis
techniques; [162, 144] are research monographs on formal methods for hybrid
systems, which combine continuous and discrete dynamics. The focus in [144] is on
theorem proving. The closest related to this book is [162].

There are three main features that set this book apart from [123, 5, 162, 144].
First, we provide a complete and self-contained treatment of the formal synthesis
problem from specifications given as LTL formulas. This can be, for example,
combined with the partition-based abstraction method from [162] to implement a
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computational tool for LTL synthesis for a quite large class of dynamical systems.
Second, we focus on particular types of dynamical systems (i.e., discrete-time
piecewise affine systems) and exploit their geometry to efficiently construct
abstractions. Third, we explore the connection between optimality and correctness
in control.
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