Chapter 2
Temporal Logics and Automata

Throughout this book, we consider analysis and control specifications given as for-
mulas of a particular type of temporal logic, called Linear Temporal Logic (LTL).
Such formulas are expressive enough to capture a rich spectrum of properties, includ-
ing safety (nothing bad will ever happen), liveness (something good will eventually
happen), and more complex combinations of Boolean and temporal statements. For
example, for the robot from Example 1.4, an LTL formula can express a rich mission
specification such as: “Keep on collecting messages from data gather region G and
bring them back to the base B. Collect a message and recharge at one of the R regions
between any two visits to the base. Always avoid the dangerous region D”. In this
chapter, we introduce the syntax and semantics of LTL and of one of its fragments,
called syntactically co-safe LTL (scLTL), and we illustrate them through several
examples. We also define the automata that will be later used for system analysis and
control from such specifications.

2.1 Linear Temporal Logic

Linear Temporal Logic (LTL) formulas are constructed from a set of observations,
Boolean operators, and temporal operators. We use the standard notation for the
Boolean operators (i.e., T (true), — (negation), A (conjunction)) and the graphical
notation for the temporal operators (e.g., O (“next”), U (“until”)). The O operator is
a unary prefix operator and is followed by a single LTL formula, while U is a binary
infix operator. Formally, we define the syntax of LTL formulas as follows:

Definition 2.1 (LTL Syntax) A (propositional) Linear Temporal Logic (LTL) for-
mula ¢ over a given set of observations O is recursively defined as

p=TlolpAp|=p| O¢|d1Us, 2.1

where 0 € O is an observation and ¢, ¢; and ¢, are LTL formulas.

© Springer International Publishing AG 2017 27
C. Belta et al., Formal Methods for Discrete-Time Dynamical Systems,
Studies in Systems, Decision and Control 89, DOI 10.1007/978-3-319-50763-7_2

28 2 Temporal Logics and Automata

Unary operators have a higher precedence than binary ones and — and O bind
equally strong. The temporal operator U takes precedence over — and A and is
right-associative (e.g., ¢1U ¢, U ¢ stands for ¢ U (U 3)).

To obtain the full expressivity of propositional logic, additional operators are
defined as

@1V Py = (=P A=)
Q1 —> ¢ =PV o
@1 < P2 = (¢1 = $2) A (2 —> ¢1)

In addition, the temporal operators <> (“eventually”) and [J (“always”) are defined
as follows:

O i=TU@
¢ := ==

By combining the various temporal operators, more complicated expressions can be
obtained. For example, we will frequently use the combinations <>LJ (“eventually
always”) and U< (“always eventually™).

LTL formulas are interpreted over infinite words made of observations from O,
i.e., over O®. Formally, the LTL semantics are defined as follows:

Definition 2.2 (LTL Semantics) The satisfaction of formula ¢ over a set of obser-
vations O at position k € N by word wp = wo(Dwo2)wo(3) ... € O, denoted
by wo (k) E ¢, is defined recursively as follows:

wo (k) E T,

wo (k) F o forsome o € O if wp (k) = o,

wo (k) F =g if wo (k) ¥ ¢,

wo (k) E ¢1 A ¢ if wo(k) F @1 and wo (k) F ¢,

wo(k) E O¢ ifwo(k + 1) F ¢,

wo (k) E ¢1U ¢, if there exist j > k such that wp (j) F ¢, and, forall k <i < j,
we have wo (i) F ¢.

A word wo satisfies an LTL formula ¢, written as wo F ¢, if wo (1) F ¢. We denote
the language of infinite words that satisfy formula ¢ by .Z.

In the following, we give an informal interpretation of the satisfaction of some
frequently used LTL formulas.

e (D¢ is satisfied at the current step if ¢ is satisfied at the next step.
o ¢ U, is satisfied if ¢, is satisfied “until” ¢, becomes satisfied,
e [o is satisfied if ¢ is satisfied at each step (i.e., ¢ is “always” satisfied).

2.1 Linear Temporal Logic 29

e [1—¢ is satisfied if —¢ is satisfied at each step (i.e., ¢ is “never” satisfied).

o ¢ issatisfied if ¢ is satisfied at some future step (i.e., ¢ is “eventually” satisfied).

o OL¢ is satisfied if ¢ becomes satisfied at some future step and remains satisfied
for all following steps (i.e., ¢ is satisfied “eventually forever”).

e Formula [J<¢ is satisfied if ¢ always becomes satisfied at some future step (i.e.,
¢ is satisfied “infinitely often”).

Example 2.1 Consider the transition system 7' defined in Example 1.2 and
shown in Fig. 1.2. A possible run of the system wx = x;xyx4x3(x;)” defines
the output word wp = 01010203(01)® which satisfies LTL formulas ¢; = o4,
¢, = Olo; and ¢3 = 01Uos. A different run wy = (x1x2x4x3)* defines
the output word w), = (01010203)” which satisfies formulas ¢, ¢3 and ¢4 =
O<o03. However, word wo does not satisfy formula ¢4 and w/, does not satisfy

&2.

Example 2.2 Consider the robot transition system described in Example 1.4.
Assume that the robot is required to keep collecting messages from data gather
region G and to bring them back to the base B. While doing this, it needs to
recharge at one of the recharge regions R. The robot must always avoid the
dangerous region D. This task can be represented as an LTL formula

¢ = OGG AKOB AOOR AO—-D.

An additional requirement might be that the robot needs to collect a message
and recharge between any two visits to the base. The overall task can be
expressed as the following LTL formula

Y =00B AO-D AOB = Q(=BUG)) AO(B = O(=BUR)).

Control strategies for the transition system from Example 1.4 from these spec-
ifications will be derived in Example 5.8.

An LTL formula belongs to the class of syntactically co-safe LTL formulas if it
contains only the temporal operators (), U and <>, and it is written in positive normal
form (the negation operator — occurs only in front of an observation). Formally, we
define the syntax of scLTL formulas as follows:

30 2 Temporal Logics and Automata

Definition 2.3 (scLTL Syntax) A (propositional) syntactically co-safe linear tem-
poral logic (scLTL) formula ¢ over a set of observations O is recursively defined
as

p=Tlo|molp1 APl Vea| O¢|p1Us (2.2)
where o € O is an observation and ¢, ¢ and ¢, are scLTL formulas.

Temporal operator <> is defined in scLTL as before, i.e., G¢ := TU¢. However,
temporal operator [J can not be expressed in scLTL since only observations can be
negated, i.e., =<>—¢ does not belong to the scLTL fragment.

Even though scLTL formulas are interpreted over infinite words, i.e., over O®, as
explained in Definition 2.2, their satisfaction is guaranteed in finite time. Any infinite
word wo = wo()wo (2)wo (3) . .. that satisfies formula ¢ contains a finite “good”
prefix wo (1)wo (2) ... wo (n) such that all infinite words that contain the prefix, i.e.,
wo(Dwo(2) ...wo(n)w),, w, € 0%, also satisty ¢. We denote the language of
finite good prefixes of an scLTL formula ¢ by 216

Example 2.3 Consider again transition system 7 from Example 1.2 and
Fig. 1.2. The run wx = xpx4(x3)® defines the output word wp = 010,(03)®.
The word wo satisfies sScLTL formulas ¢y = <o and ¢ = oz A (01U 07)
since w¢ contains a good prefix of each of the formulas, i.e., o; for ¢; and
01003 for ¢,. In particular, all output words defined by system runs originating
from X, = {x;, x} contain the finite prefix o;, and therefore satisfy ¢;.

]

Fig. 2.1 The partitioned

. X1 Xo| X 3| Xy
planar environment for
X
Example 2:4: A cor'ltrol ol 8 X, |X7| Xz
strategy driving a simple X
vehicle modeled as a 10
discrete-time double -2 ;|
integrator such that its
motion satisfies specificati Xu
pecification _—
(2.3) will be derived in = X1
Example 11.5 X
-6
8
-10
-10 -8 -6 -4 -2 0 2

2.1 Linear Temporal Logic 31

Example 2.4 Consider an agent moving in the planar environment from
Fig.2.1. The specification is to visit regions X, or Xg and then the target
region X7, while avoiding X;; and Xy, and staying inside X = [—10, 217
until the target region is reached. This specification translates to the following
scLTL formula:

¢ =(=X11 A =Xj2 A =0ut) UX)) A(=X7U (Xp VvV Xg)), (2.3)

where Out = R\ X.

2.2 Automata

We will use automata that accept languages satisfying LTL and scLTL formulas over
the set of observations O. There is, therefore, no coincidence that the input alphabets
of the automata defined below is O.

Definition 2.4 (Finite state automaton) A finite state automaton (FSA) is a tuple
A= (S, s9, 0,8, F), where

S is a finite set of states,

so € S is the initial state,

O is the input alphabet,

§: S x O — S is a transition function, and
F C S is the set of accepting (final) states.

The semantics of a finite state automaton are defined over finite input words in
O*. A run of A over a word wop = wo()wp(2),...,wo(n) € O* is a sequence
ws = ws(Dwg(2),...,ws(n + 1) € §* where wg(1) = 59 and wg(k + 1) =
S(ws(k),wo(k)) forallk = 1,2, ..., n. The word wy is accepted by A if and only
if the corresponding run ends in a final automaton state, i.e., wg(n + 1) € F. The
language accepted by A is the set of all words accepted by A, and is denoted by .Z4.

A finite state automaton with a non-deterministic transition function, i.e., §: S X
O — 2%, and a set of initial states Sy < S instead of the singleton s is called a
non-deterministic finite state automaton (NFA). Every NFA can be translated to an
equivalent FSA. For this reason, we only consider deterministic finite state automata
in this book.

An scLTL formula ¢ over a set O can always be translated into an FSA A, with
input alphabet O with & (22‘0") states (|¢| denotes the length of ¢, which is defined as
the total number of occurrences of observations and operators) that accepts all and
only good prefixes of ¢ (i.e., Ly, = Z)ref.4). Some notes on available tools for this
translation are given in Sect.2.3 at the end of the chapter.

32 2 Temporal Logics and Automata

04]0,|05]04
(@ ¢ = dor () ¢ = Qo3 A(01U02) (©) ¢35 = (m03U (01 V02)) A o3

Fig. 2.2 Graphical representation of the finite state automata for some scLTL formulas over the
set of observations O = {01, 02, 03, 04}. For all automata, s is the initial state and the final state is
indicated by a double circle. For simplicity of the representation, if several transitions are present
between two states, only one transition labeled by the set of all inputs (separated by the symbol |)
labeling all transitions is shown

Example 2.5 The finite state automata that accept the good prefixes of scLTL
formulas ¢; = <oy, g = oz A (01U 03), and ¢z = (—o3U (01 V 03)) A o3
over the set of observations O = {0y, 02, 03, 04} are shown in Fig.2.2.

Definition 2.5 (Biichi automaton) A (nondeterministic) Biichi automaton is a tuple
B =(S,58, 0,54, F), where

S is a finite set of states,

So C S is the set of initial states,

O is the input alphabet,

8 : S x O — 25 is a nondeterministic transition function, and
F C S is the set of accepting (final) states.

A Biichi automaton is deterministic if S is a singleton and (s, 0) is either ¥ or a sin-
gleton forall s € S and 0 € O. The semantics of a Biichi automaton are defined over
infinite input words in O“. A run of B over a word wg = wo(1)wo(2)wp(3)... €
0“ is a sequence wg = ws(Dws(2)ws(3)... € S” where wg(l) € Sy and
ws(k + 1) € §(ws(k), wo(k)) for all k > 1.

Definition 2.6 (Biichi acceptance) Let inf(wg) denote the set of states that appear
in the run wy infinitely often. An input word w, is accepted by B if and only if there
exists at least one run wg over wo that visits F' infinitely often, i.e., inf (wg) N F # @.

We denote by £ the language accepted by B, i.¢., the set of all words accepted by
B. An LTL formula ¢ over a set O can always be translated into a Biichi automaton

2.2 Automata 33

B, with input alphabet O and O'(|¢| - 21¢1) states (|¢| denotes the length of ¢, which
is defined as the total number of occurrences of observations and operators) that
accepts all and only words satisfying ¢ (i.e., £p, = Z4). This translation can be
performed using efficient, off-the-shelf software tools, which are reviewed at the end
of the chapter in Sect. 2.3.

Note that, in general, a nondeterministic Biichi automaton is obtained by translat-
ing an LTL formula. While certain Biichi automata can be determinized, a sound and
complete procedure for determinizing general Biichi automata does not exist and,
in fact, there exist LTL formulas which cannot be converted to deterministic Biichi
automata.

Example 2.6 Examples of Biichi automata for some commonly encountered
LTL formulas are shown in Fig.2.3. Even when a nondeterministic Biichi
automaton was obtained through the translation with LTL2BA tool, the automa-
ton was simplified and determinized by hand whenever possible (e.g., for for-
mulas ¢, ¢4 and ¢s). Even so, some of the automata, such as the ones obtained
for LTL formulas ¢3, ¢¢ and ¢; cannot be determinized. In fact, it is known that
formulas of the type <>U¢ cannot be converted to a deterministic Biichi automa-
ton. For example, the Biichi automaton for LTL formula ¢ in Fig.2.3c can be
naively converted into a deterministic automaton by removing o; from the self
transition at so. However, then word 00, (01)®, which is obviously satisfying,
would not be accepted. While, in general, deterministic Biichi automata can
be obtained for a class of LTL formulas through alternative approaches other
than simply converting non-deterministic to deterministic Biichi automata, no
such automaton exists for ¢3. To understand why formulas ¢ and ¢7 result in
nondeterministic Biichi automata, we can rewrite them as

¢ = G0 A =G0, = 00 A Ol—o0, 2.4)
¢7 = OG0 = OG0y = (OG0 AOG0y) vV =G0, = (2.5)
= (0G0 A LG0y) Vv Sl—0y (2.6)

to reveal that both contain a <O sub-formula.

Definition 2.7 (Rabin automaton) A (nondeterministic) Rabin automaton is a tuple
R = (S, Sy, 0,4, F), where

e S is a finite set of states,
e Sy C S is the set of initial states,
e O is the input alphabet,

34 2 Temporal Logics and Automata

0,|o;]|0
= 0;10,/05]0,

& &
o)

0,]0,]05]0,

0,]03]0,

(@) ¢ = Qo1 (b) g2 =001 () p3=3"001 (d) ¢4 =000

0,|05]0,

(&) o5 =0(Co1 AQ02) (D) ¢ = OOG01 A-0OG0, (2) ¢7 =001 = OO0y

Fig. 2.3 Graphical representation of the Biichi automata for some commonly used LTL formulas
over the set of observations O = {oy, ..., 04}. For all automata, sg is the initial state and the
final states are indicated by double circles. As in Fig.2.2, for simplicity of the representation if
several transitions are present between two states, only one transition labeled by the set of all inputs
(separated by the symbol |) labeling all transitions is shown. For additional details, see Example 2.6

e §:S x O — 25 is a transition map, and
e F ={(Gy, By),...,(G,, By}, where G;, B, € S,i = 1,2,...,n is the accep-
tance condition.

A Rabin automaton R is deterministic if Sy is a singleton and (s, o) is either ¢
or a singleton, for all s € S and 0 € O. The semantics of a Rabin automa-
ton are defined over infinite input words in O”. A run of R over a word wo =
wo(Dwo2)wp(3) ... € O%isasequence ws = wg(D)ws(2)ws(3) ... € §“, where
ws(1) € So and wg(k + 1) € §(wg(k), wo(k)) forall k > 1.

Definition 2.8 (Rabin acceptance) Let inf (wg) denote the set of states that appear
in the run wy infinitely often. A run wy is accepted by R if inf(ws) N G; # @ A
inf(wg) N B; = #forsomei € {1, ..., n}. Aninput word wy is accepted by a Rabin
automaton R if some run over wy is accepted by R.

2.2 Automata 35

We denote by % the language accepted by R, i.e., the set of all words accepted
by R. Given an LTL formula ¢, one can build a deterministic Rabin automaton R
with input alphabet O, 2270 states, and 294D pairs in its acceptance condition,
such that £, = .Z}. The translation can be done using off-the-shelf software tools
reviewed in Sect.2.3. Note that a Biichi automaton B is a Rabin automaton R with
one pair in its acceptance condition Fr = {(G, B)} where G = Fg and B = (/.

Example 2.7 Even though LTL formulas ¢3, ¢¢ and ¢ could only be trans-
lated into nondeterministic Biichi automata in Example 2.6, we can translate
them instead into the deterministic Rabin automata shown in Fig.2.4. The
Rabin automata for formulas ¢3 and ¢ contain only a single pair in their
acceptance conditions, while the one for ¢, contains two pairs.

(@) ¢3 = OUoy (b) 96 =OG01 A=OS0s (©) ¢7 =000 = OG0z

Fig. 2.4 Graphical representation of the Rabin automata for the LTL formulas from Example 2.6
resulting in nondeterministic Biichi automata. For each automaton, sq is the initial state. For the
automata accepting formulas ¢3 and ¢ the acceptance condition F is defined by one pair of
singletons (G, B) where G = {s1}, B = {so} in (a) and G = {s2}, B = {s1} in (b) (good and
bad states are denoted by unshaded or shaded double circles, respectively). For the automaton
accepting ¢7 the acceptance condition includes two pairs where G| = {s1, 52}, B1 = {so} and
Gy = {51}, Bo = { (the single bad state is denoted by a shaded circle and the good state that is
common for both pairs of the acceptance conditions is denoted by a solid and dashed circle in (¢)).
As in Fig.2.3, for simplicity of the representation if several transitions are present between two
states, only one transition labeled by the set of all inputs (separated by the symbol |) labeling all
transitions is shown. For additional details, see Example 2.7

36 2 Temporal Logics and Automata

2.3 Notes

Temporal logics were originally developed by philosophers to reason about how truth
and knowledge change over time. They were later adapted in computer science and
used to specify the correctness of digital circuits and computer programs. Besides
several more expressive temporal logics, Linear Temporal Logic (LTL), Computation
Tree Logic (CTL) and the CTL* framework [45, 56], which is a superset of LTL
and CTL, are the most commonly encountered. For the applications we consider, the
computational expense involved in model checking (see Chap.3) CTL* outweighs
the gains in expressivity and therefore this logic is not considered. LTL and CTL are
incomparable in the sense that there exist LTL formulas that cannot be expressed in
CTL and vice versa. CTL is a branching time logic that allows for the quantification
of specifications over the executions of the system. In other words, a CTL property
can be satisfied by the system if it is satisfied over all paths (universal quantification)
or if there exists a path that satisfies it (existential quantification). However, the
additional semantics of CTL might make the formulation of specifications prone to
errors [130, 155], as one must consider all possible executions of a system at the same
time. On the other hand, expressing specifications in LTL is more natural because
executions are considered one at a time. In the worst case, model checking CTL and
LTL specifications respectively requires polynomial and exponential time in the size
of the formula. While CTL model checking is computationally cheaper, empirical
results suggest that performance is similar [172] for formulas expressible in both
logics, since formulas in CTL can be larger than their equivalent LTL representation.
Because of its resemblance to natural language, we adopt LTL as a specification
formalism.

Fragments of LTL, such as GR(1) [143] and syntactically co-safe LTL (scLTL)
[111, 156], have also been proposed as specification languages for verification and
control. With particular relevance to this book, scLTL has been primarily used to ver-
ify safety of a system [111, 156]. As we will discuss in the next chapter, analysis of a
system from an LTL formula ¢ involves constructing an automaton from the negation
of the formula, i.e., B-4. A safety property asserts that nothing bad happens to the
system, e.g., [“safe”, and negation of a safety formula is called a co-safe formula,
e.g., &= “safe”. As we presented in this chapter, an FSA is sufficient to recognize the
words that satisfy a syntactically co-safe LTL formula, which reduces the computa-
tional complexity associated with the analysis of the corresponding safety property
due to the simple acceptance condition of an FSA. In addition to analysis of safety
properties, scLTL formulas are also used to express finite horizon specifications [30].

There are also some differences between the terms used here and elsewhere. The
symbols appearing in an LTL formula are usually called atomic propositions in the
formal methods community [45]. However, we call them observations as in this book
we use LTL formulas to specify properties of words over observations O produced
by transition systems 7 = (X, X, §, O, o) (see Definition 1.1). This is consistent
with control theoretic nomenclatures, where the term output is also used [162].

2.3 Notes 37

The semantics of LTL formulas are usually given over infinite words in the power
set of the set of observations 29, as they are normally used to specify properties of
transition systems with possibly several observations (atomic propositions satisfied)
at each state (see Sect. 1.4). The available off-the-shelf tools for construction of FSA
from scLTL formulas (SCHECK2 [117], based on the algorithm from [111]), Biichi
automata from LTL formulas (LTL2BA [65, 66], based on algorithms from [173]), and
Rabin automata from LTL formulas (LTL2DSTAR [102]) produce automata with input
alphabet 29, i.e., which accept words over 2¢. This is commonly denoted by labeling
transitions of the automaton with Boolean formulas over the observations from O
(see Example 2.8). A transition is enabled by the set of subsets of O (i.e., the elements
of 29) that satisfies the corresponding Boolean formula. However, as the transition
systems that we consider in this book have exactly one observation at each state
(see Definition 1.1), we simplify the automata produced by SCHECK?2, LTL2BA, and
LTL2DSTAR to only accept satisfying words over O. For example, Boolean terms or
formulas that cannot be satisfied by any individual element of O (e.g., the conjunction
01 A 0y of any two observations o1, 0, € O) are not relevant for the applications we
consider and can therefore be simplified. Such a simplification for a Biichi automa-
ton is shown in Example 2.8 and similar simplifications apply to FSA and Rabin
automata.

Example 2.8 Consider the LTL formula ¢ = (0;U0,) A <03, defined over
observations O = {oy, 02, 03, 04}. The Biichi automaton representation of
the formula is obtained using LTL2BA and is given in Fig.2.5 (states s
and s3 are respectively the initial and final (accepting) state). A transi-
tion labeled by an observation is enabled by any subset of O that includes
the observations (e.g., the self loop at state sy is enabled by observations
(01),(01, 02),(01, 03),. . .,(01, 02, 03),. . .). Similarly, a transition labeled by a
conjunction of observations is enabled under any subset of observations
that includes both observations (e.g., the transition between states sy and
s1 labeled by the conjunction o; A 03, is enabled by observations (oy, 03),
(01, 02, 03),(01, 03, 04),. . .). Finally, a transition labeled by “true” is enabled
by any subset from 2°.

In this book, we consider only observation from the set O and not the set of
subsets 29 Therefore, a transition under any conjunction of inputs can never
be enabled (i.e., the set of observations satisfying such conjunctions is always
empty) and transitions that are never enabled can be safely ignored. In Fig. 2.5,
we ignore the transitions from state sy to state s; and from sy to s3. As a result,
state s; becomes unreachable and can be ignored as well. This simplification
reduces the number of states and transitions in the Biichi automaton, which
improves the complexity of the methods that will be discussed subsequently.

38 2 Temporal Logics and Automata

¢ =(0,U0,)*{ 0, (= (0,U0,)"O 05

simplify

0,]|0,]05]0,

Fig. 2.5 Biichi automata used for our applications can be simplified as described in Example 2.8

Most temporal logics, including LTL, have probabilistic versions. In particular,
the probabilistic version of LTL, called Probabilistic LTL (PLTL), is simply defined
by adding a probability operator that quantifies the satisfaction probability in front
of the formula. Its semantics is defined over a Markov decision process (MDP),
the probabilistic version of the transition system defined in Chap. 1 (see Sect. 1.4).
Probabilistic temporal logics go beyond the scope of this book, and the interested
reader is referred to [4, 14, 15].

There also exist logics, such as Bounded Linear Temporal Logic (BLTL) [188],
Signal Temporal Logic (STL) [126], and Metric Temporal Logic (MTL) [108], in
which the temporal operators have specific time intervals. In such logics, one can
specify eventuality with deadlines (e.g., <2 4j01— 01 will happen in between times
2 and 47), persistence with time bounds (e.g., [j3,7j0.— "0, will be true for all times
between 3 and 7”), etc. In particular, MTL and STL also have quantitative semantics,
which allow to quantify how far a system execution is from satisfying a given formula.
Recent works [3, 12, 19-21, 54, 59, 91, 94, 95, 107, 151, 176] showed that logics
with quantitative semantics can be used to formulate machine learning and control
problems as optimization problems with costs induced by quantitative semantics.

2 Springer
http://www.springer.com/978-3-319-50762-0

Formal Methods for Discrete-Time Dynamical Systems
Belta, C.; Yordanov, B.; GOL, E.

2017, XV, 284 p, 93 illus,, 39 illus, in color.,, Hardcover
ISBMN: @78-3-319-50762-0

	2 Temporal Logics and Automata
	2.1 Linear Temporal Logic
	2.2 Automata
	2.3 Notes

