
Chapter 2
Exact propagation models on networks: top
down

Chapter 1 introduced SIS and SIR diseases and some weaknesses of compartmental
models that can be remedied by considering networks. In this chapter, we begin our
network-based investigation by setting up the problem we will study. We introduce
the full stochastic model and show how to derive exact equations to calculate the
probability of the entire network being in a given state. We refer to such models
as “top down”. The resulting system will generally have too many equations for
practical analysis, so we discuss techniques to derive exact equations at a coarser
level.

The diseases occur at the nodes, with the status of a node changing over time. At
any given time, we assume the only factors that can affect the probability of a node
changing its status are its current status and the statuses of its immediate neighbours.
For example, the rate at which a susceptible node becomes infected depends only
on how many of its neighbours are infected. Although neighbours can influence a
node’s transitions, the rate can also be independent of its neighbours. In particular,
an infected node recovers at a rate that does not depend on any neighbour’s status.

If each of the N nodes can have one of m different statuses, then the total num-
ber of distinct states of the network is mN , so for SIS there are 2N states and for
SIR there are 3N . We refer to the collection of all states as the state space, denoted
{S1,S2, . . . ,Sn}. Ideally, we would like to predict the state of the network at any
time. However, for a stochastic dynamic process, at best we might hope to know
each state’s probability. Even this may be impractical, and so we may settle for
simply knowing the probability that a given number of individuals have each status.

In this chapter, we will develop exact equations for these probabilities. The full
system of equations is generally quite large. Through careful aggregation of states
we may find it is easier to calculate the probability that the system is in one of a
collection of states. The methods we develop are not specific to SIS or SIR disease,
but apply generally to a wide range of dynamic processes spreading on networks. It
is simpler to consider a generic process rather than focusing on disease. So we will
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develop the mathematical theory for the more general problem, with an emphasis on
the aspects relevant to disease spread. To aid the construction of our mathematical
models, we make a few explicit assumptions:

1. time is considered to be continuous,
2. a node has only a finite number of possible statuses,
3. the process is stochastic,
4. the inter-event times are exponentially distributed,
5. the parameter of this exponential distribution may depend on the status of the

node and on the number of neighbouring nodes of each status,
6. transitions at different nodes are independent.

Ideally, we would like to know the probability the system has a given state at a
given time, but this is likely to be impractical. Thus, the aim of the investigation is
to determine

• the probability that a node has a given status at a given time,
• the expected number of nodes having a given status at a given time.

These assumptions lead to a continuous-time Markov chain with finite state
space. This is a widely used and intensively studied field of mathematics with an
extensive literature both from the theoretical and applied points of view. This book
is not aimed at introducing Markov chains in general. For this, any of the following
provides a good point of reference [124, 157, 161, 162, 171, 259]. Our topic is re-
stricted to a special class of Markov chains which originate from exact propagation
models on networks.

We note that relaxing the first requirement above leads to discrete-time models,
which are partially investigated in Chapter 6. Further discussion of discrete-time
models in the context of network epidemics can be found in [97, 102]. Relaxing
the fourth requirement leads to non-Markovian models, where the transition times
can be non-exponential. These will be studied in Chapter 9. If the fifth assumption is
relaxed, then network models will turn into hypergraph models, where the processes
evolve via hyperedges instead of edges (see, for example, [38, 111, 193]).

The methods we develop in this Chapter allow us to significantly simplify the
mathematical models we study, without using any approximations. However, we
will see that this process is not always easy, and the simplified models may still
be quite complex. Later in the book we will explore ways to develop approximate
models which are more tractable.

2.1 An introductory example

To motivate our approach and illustrate the processes we consider, we will analyse
the state space of an SIS disease propagating on a triangle. We will derive equations
governing the probabilities that the system is in each state. Then, we will derive a
reduced system that captures the important details of the model. The remainder of
the chapter develops techniques for more general cases.
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Example 2.1. The state space of the Markov chain for an SIS disease in a triangle is

{SSS,SSI,SIS, ISS,SII, ISI, IIS, III},

where, for example, SSI represents the state where nodes 1 and 2 are susceptible and
node 3 is infected. Figure 2.1 shows the possible states and the possible transitions
between those states, highlighting the SII state. At most, one transition can happen
at a time (though the time between transitions can be arbitrarily small).
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Fig. 2.1: Illustration of all eight network states and associated transitions for an SIS
disease spreading in the fully connected network with 3 nodes. Susceptible ( ) and
infected ( ) nodes are denoted by filled circles of different colours. Note that the
SSS state is an absorbing state: there is no path out. The SII state and the fluxes of
probability going out are highlighted (but not the fluxes in).

We define XABC to be the probability that the state of the network is ABC, where
A, B and C may be S or I. If the transition corresponds to recovery of a single node,
it occurs at the recovery rate γ , while if it corresponds to infection of a single node,
it occurs at the per-contact infection or transmission rate τ times the number of
infected neighbours. For example, if the system is in state SII, the rate at which
it moves to SIS is γ . In contrast, the rate at which the system moves to III is 2τ .
From this and following Fig. 2.1, we note that the flux of probability from state
ABC to another is given by the rate at which that transition happens times XABC.
Summarising the above yields

ẊSSS = γ(XSSI +XSIS +XISS),

ẊSSI = γ(XSII +XISI)− (2τ + γ)XSSI ,

ẊSIS = γ(XSII +XIIS)− (2τ + γ)XSIS,

ẊISS = γ(XISI +XIIS)− (2τ + γ)XISS,

ẊSII = γXIII + τ(XSSI +XSIS)−2(τ + γ)XSII ,
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ẊISI = γXIII + τ(XSSI +XISS)−2(τ + γ)XISI ,

ẊIIS = γXIII + τ(XSIS +XISS)−2(τ + γ)XIIS,

ẊIII =−3γXIII +2τ(XSII +XISI +XIIS).

These equations are the forward Kolmogorov equations of the system and are also
called master equations. A solution to the master equations gives the probability
that the system is in each state at each given time.

The equations become simpler if we are willing to accept knowing just the prob-
ability a given number of nodes have each status. Rather than calculating a given
state’s probability, we calculate the probability the system is in one of several states
collected or grouped based on how many nodes are infected. Define Yi to be the
probability exactly i nodes are infected; that is, Y0 = XSSS, Y1 = XISS +XSIS +XSSI ,
Y2 = XIIS +XISI +XSII and Y3 = XIII ; the equations become

Ẏ0 = γY1, (2.1a)

Ẏ1 = 2γY2 − γY1 −2τY1, (2.1b)

Ẏ2 = 2τY1 −2γY2 −2τY2 +3γY3, (2.1c)

Ẏ3 = 2τY2 −3γY3. (2.1d)

This simplification works for a triangle, but it often fails for more general networks.
Exercise 2.1. Starting from Y1 = XISS +XSIS +XSSI for SIS disease in a triangle,
find an equation in terms of the XABC variables for Ẏ1. Then, simplify this by using
Y1 and Y2 to derive equation (2.1b). Continue using this approach to complete the
derivation of system (2.1).
Exercise 2.2. Using the same variables Y0, Y1, Y2 and Y3 as for the triangle, attempt
to repeat Exercise 2.1 to derive a system like system (2.1) if the 1–3 edge does
not exist. What goes wrong? [You will have to modify the equations for XABC to
account for the fact that 1 and 3 cannot transmit to each other.]

In this chapter, we give a more rigorous basis for what we have just done. This
will give us the mathematical tools needed to derive master equations for more com-
plicated systems and to identify when it is possible to simplify these, without ap-
proximation, by collecting or lumping states together. We will see that for large net-
works lumping often will not reduce the system of equations enough. Even for small
networks lumping often leaves us with a large system of equations. The process will
generally only be practical for special networks. So later chapters show how to sys-
tematically simplify the dynamics to arrive at tractable approximate equations.

2.2 Continuous-time Markov chains

We briefly summarise the basics of continuous-time Markov chains, which we will
use to derive master equations. Let the state space of the Markov chain be the set
{S1,S2, . . . ,Sn}. For the 3-node SIS system of Fig. 2.1, n = 23 = 8.
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Definition 2.1 If the system is in state Si, the rate at which it transitions to state
S j �= Si is defined to be h(Si,S j). We define h(Si,Si) =−∑ j �=i h(Si,S j).

So −h(Si,Si) is the total rate at which the system would transition from Si to any
other state. Thus for each i

∑
j

h(Si,S j) = 0. (2.2)

As a shorthand, we often use ai j = h(Si,S j).
If δ t is the length of a short time interval, then the probability of transition from

Si to S j in the interval (t, t + δ t) is h(Si,S j)δ t +O(δ t), where O(δ t) represents
an error such that O(δ t)/δ t → 0 as δ t decreases to 0. Similarly, with probability
1−h(Si,S j)δ t +O(δ t), that event will not take place. Hence, if the system state at
time t is denoted by S(t), then

P
(
S(t +δ t) = S j|S(t) = Si

)
= h(Si,S j)δ t +O(δ t).

This relation enables us to formulate master equations for the probabilities of each
state. Let Xi(t) = P

(
S(t) = Si

)
denote the probability that the system is in state i at

time t. Then, the law of total probability leads to

Xj(t +δ t) = P
(
S(t +δ t) = S j

)
=

n

∑
i=1

P
(
S(t +δ t) = S j|S(t) = Si

)
P
(
S(t) = Si

)

=

(

∑
i �= j

h(Si,S j)δ tXi(t)

)

+(1−h(S j,S j)δ t)Xj(t)+O(δ t),

Subtracting Xj(t), replacing h(Si,S j) with ai j, dividing by δ t and taking δ t → 0
yields the master equation

Ẋ j(t) =
n

∑
i=1

ai jXi(t) .

This is a linear system of ordinary differential equations of the form

Ẋ = PX (2.3)

where the matrix P is the transpose of the matrix of transition rates, that is Pji = ai j

for j �= i and Pj j =−∑k �= j a jk. The entries in each column sum to zero, representing
the fact that if the system leaves one state, it enters another, so every increase in
one state’s probability is balanced by a decrease in the probability of another. We
note that often the transpose of P is used, and then X is a row vector, not a column.
However, we use this formulation since it is more convenient from a dynamical
system point of view. The master equations of a network process are formulated in
the next section.

2.3 Master equations for arbitrary networks

The aim of this section is to show how to formulate master equations for a process
spreading on an arbitrary network, assuming transitions of a node depend only on
the statuses of the node and its neighbours.
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2.3.1 State space and transition rates for arbitrary dynamics

The network is given by the adjacency matrix of the corresponding undirected graph
with N nodes: G = (gi j)i, j=1,2,...,N . Here, gi j = 1 if nodes i and j are connected, or
gi j = 0 otherwise. Plainly, gi j = g ji and we take gii = 0. Let {Q1,Q2, . . . ,Qm} be
the possible statuses nodes can take. Then, a state of the network can be specified
by an N-tuple (q1,q2, . . . ,qN), where qi ∈ {Q1,Q2, . . . ,Qm} is the status of node
i. The matrix in the master equation Eq. (2.3) is of size mN ×mN . This is a high-
dimensional matrix, but with many zero entries because many transitions are not
possible.

Because events happen independently and intervals are exponentially distributed,
at most one event happens at any given time. Thus, if the states Sα = (q1,q2, . . . ,qN)
and Sβ = (s1,s2, . . . ,sN) differ at more than one node, then the transition from Sα
to Sβ is not possible and h(Sα ,Sβ ) = 0. If they differ in exactly one node, i, that is
qi �= si but ql = sl for all l �= i, then the transition rate depends on the statuses of
node i, its neighbours and the process we study. For example, for the specific case
of SIS or SIR dynamics, if qi = S, si = I and node i has n infected neighbours, then
the transition rate is nτ . In other words, node i is infected at rate nτ . In the case of an
arbitrary dynamic, let qi = Q and si = T , i.e. node i changes from status Q to status
T . We take nQ1 , nQ2 , . . . , nQm to be the number of neighbours node i has of each
status. We define fQT (nQ1 ,nQ2 , . . . ,nQm) to be the rate at which node i transitions
from status Q to T if it has nQl neighbours of status Ql . Thus, summarising, the rate
of transition from state Sα to state Sβ can be given as:

h(Sα ,Sβ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 Sα and Sβ differ for at least two nodes,

fQT (nQ1 ,nQ2 , . . . ,nQm)
Sα and Sβ differ in exactly one
node i

,

−∑l �=α h(Sα ,Sl) Sα = Sβ .
(2.4)

2.3.2 State space and transition rates for binary dynamics

To be more specific, we take binary dynamics m = 2 as in SIS disease. Nodes
can have one of two statuses, say Q and T . In deriving the master equations,
we follow ideas developed independently in [288], and [312]. Considering m = 2
has many advantages. First, many fundamental processes can be described by two
statuses, including the SIS model in epidemiology [4], the QAQ (i.e. quiescent–
active–quiescent) model in neuroscience [70], the voter model in social sciences
[58, 291, 314] and the Ising model in statistical physics [77, 85, 115, 194], to name
just a few. Second, model formulation is clearer and more transparent in this case,
and understanding the binary dynamics model provides a direct and simple way to-
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wards a generalisation to more than two statuses. The following section will extend
this to SIR disease.

We group the 2N states into N +1 subsets Ck for k = 0,1, . . . ,N. Here, the super-
script k is used for indexing and not as an exponent. We take Ck to be the set of states
with k nodes of status T . There are two notable special cases: C0 is a subset with a
single element, namely the state with all nodes having status Q: C0 = {QQ · · ·Q},
and CN is also a subset with a single element, namely the state with all nodes having
status T : CN = {T T · · ·T}.

More generally, the states in Ck are denoted by Sk
1,S

k
2, . . . ,S

k
ck

, where ck =
(N

k

)

is the number of different ways in which k nodes of status T can be placed on
the network. The status of the lth node of state Sk

j will be denoted by Sk
j(l); thus,

Sk
j(l) = Q or Sk

j(l) = T . For example, when an SIS epidemic is considered on a

triangle network, then C0 = {SSS}, C1 = {SSI,SIS, ISS}, C2 = {SII, ISI, IIS} and
C3 = {III}.

The state of the system can change as follows:
Transition of a node from status Q to T : A node of status Q transitions to status

T , that is an Sk
j → Sk+1

i type transition, where j and i are chosen such that there exists

l for which Sk
j(l) = Q, Sk+1

i (l) = T and Sk
j(m) = Sk+1

i (m) for all m �= l. The rate
of this transition is given by fQT (n), where n denotes the number of neighbours of
node l of status T when the system is in state Sk

j. We note that in the general case,
as given in Subsection 2.3.1, the transition rate fQT may depend on the numbers
of all types of neighbours. For simplicity, we assume that fQT depends only on the
number of neighbours of status T and not on the number of neighbours of status Q.

Transition of a node from status T to Q: A node of status T transitions to
status Q, that is an Sk

j → Sk−1
i type transition, where j and i are chosen such that

there exists l for which Sk
j(l) = T , Sk−1

i (l) = Q and Sk
j(m) = Sk−1

i (m) for all m �= l.

This means that states Sk
j and Sk−1

i differ only at the l’th position. We assume that
the T to Q transition depends only on the number of neighbours of status Q. Thus,
the transition rate is fT Q(n), where n denotes the number of neighbours of node l of
status Q.

For illustration, we consider three different processes: SIS, QAQ with a hyper-
bolic tangent transition rate and a voter-like model with two statuses, where both
transitions depend on the status of the neighbours.

Example 2.2. Consider an SIS disease propagating on a network. A node can be
susceptible S or infected I. Using the above notation, let Q be S and T be I. There
are two transitions: infection and recovery. In order to specify the dynamics, the
transition rates fSI and fIS have to be specified. In this case, fSI(n) = τn with τ the
per-contact infection rate, fIS(n) = γ , with γ , the recovery rate. That is, the infection
rate is proportional to the number of infected neighbours, while the recovery rate is
independent of the statuses of the neighbours.

Example 2.3. A network of neurones is considered with purely excitatory connec-
tions. Within the network, neurones are considered to be either quiescent (Q) or
active (A) with the following two types of transitions. A quiescent neurone with n



34 2 Exact propagation models on networks: top down

active neighbours becomes active with rate fQA(n) = ω tanh(n), with some param-
eter ω , which is called synaptic weight, while an active neurone becomes quiescent
with rate fAQ(n) = α with some parameter α , which is called the deactivation rate.
That is, the activation rate depends in a non-linear way on the number of active
neighbours, while the deactivation rate is independent of the statuses of the neigh-
bours.

Example 2.4. Consider a voter-like model, where the nodes of the network represent
the voters, which can be of status A or B, and the neighbours of a node can change
their status as follows. A node of status A becomes B at rate fAB(n) = an with some
parameter a, where n denotes the number of B neighbours of the node. Similarly,
a node of status B becomes A at rate fBA(n) = bn with some parameter b, where n
denotes the number of A neighbours of the node. Thus, in this case both transitions
depend on the statuses of the neighbours.

We note that an alternative rate function is widely used: fAB(nA,nB) = a nB
nA+nB

,
where nA and nB denote the number of neighbours of status A and B, respectively.
The corresponding B → A transition rate is fBA(nA,nB) = b nA

nA+nB
, expressing the

fact that the rate depends on the ratio of the number of different neighbours.

2.3.3 Master equations for binary dynamics

We begin our derivation of master equations in the special case of SIS disease
spreading on a triangle. We then show how this generalises for the derivation of
an arbitrary binary process spreading on a network.

Example 2.5. In Fig. 2.1, we have N = 3 nodes. There are 23 = 8 distinct states
the system can take. We write XABC to be the probability that the system state is
S= ABC. We have already seen that the master equations are

ẊSSS = γ(XSSI +XSIS +XISS),

ẊSSI = γ(XSII +XISI)− (2τ + γ)XSSI ,

ẊSIS = γ(XSII +XIIS)− (2τ + γ)XSIS,

ẊISS = γ(XISI +XIIS)− (2τ + γ)XISS,

ẊSII = γXIII + τ(XSSI +XSIS)−2(τ + γ)XSII ,

ẊISI = γXIII + τ(XSSI +XISS)−2(τ + γ)XISI ,

ẊIIS = γXIII + τ(XSIS +XISS)−2(τ + γ)XIIS,

ẊIII =−3γXIII +2τ(XSII +XISI +XIIS).

These can be rewritten as Ẋ = PX , where X = (XSSS,XSSI ,XSIS,XISS,XSII ,XISI ,
XIIS,XIII) is a vector and
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P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 γ γ γ 0 0 0 0
0 −2τ − γ 0 0 γ γ 0 0
0 0 −2τ − γ 0 γ 0 γ 0
0 0 0 −2τ − γ 0 γ γ 0
0 τ τ 0 −2τ −2γ 0 0 γ
0 τ 0 τ 0 −2τ −2γ 0 γ
0 0 τ τ 0 0 −2τ −2γ γ
0 0 0 0 2τ 2τ 2τ −3γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As noted following equation (2.3), the columns sum to 0. The vector X can be di-
vided into four parts, X = ((XSSS),(XSSI ,XSIS,XISS),(XSII ,XISI ,XISS),(XIII)), based
on the number of nodes infected. Thus, X = (X0,X1,X2,X3), where Xk is a sub-
vector whose entries all correspond to k infections. Performing the corresponding
division of the rows and columns of P leads to the block-tridiagonal form

P =

⎛

⎜
⎜
⎝

B0 C0 0 0
A1 B1 C1 0
0 A2 B2 C2

0 0 A3 B3

⎞

⎟
⎟
⎠ ,

where

B0 =
(
0
)
, C0 =

(
γ , γ , γ

)
,

A1 =

⎛

⎝
0
0
0

⎞

⎠ , B1 =

⎛

⎝
−2τ − γ 0 0

0 −2τ − γ 0
0 0 −2τ − γ

⎞

⎠ , C1 =

⎛

⎝
γ γ 0
γ 0 γ
0 γ γ

⎞

⎠ ,

A2 =

⎛

⎝
τ τ 0
τ 0 τ
0 τ τ

⎞

⎠ , B2 =

⎛

⎝
−2τ −2γ 0 0

0 −2τ −2γ 0
0 0 −2τ −2γ

⎞

⎠ , C2 =

⎛

⎝
γ
γ
γ

⎞

⎠ ,

A3 =
(
2τ , 2τ , 2τ

)
, B3 =

(−3γ
)
.

We have
Ẋk = AkXk−1 +BkXk +CkXk+1, k = 0,1,2,3.

We return now to a general binary dynamic process and formulate the master
equations with Q replacing S and T replacing I. Let Xk

j (t) be the probability the

system is in state Sk
j at time t. Let

Xk(t) = (Xk
1 (t),X

k
2 (t), . . . ,X

k
ck
(t))

be a ck-dimensional vector for k = 0,1, . . . ,N. The above transitions determine the
master equations in the form of (2.3) for the probability functions Xk

j (t). However,
as before, the matrix P is block-tridiagonal
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P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 C0 0 0 · · · 0

A1 B1 C1 0
...

...

0 A2 B2 C2
...

...

0 0 A3 B3 . . . 0
... · · · · · · . . .

. . . CN−1

0 · · · · · · 0 AN BN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.5)

and
Ẋk = AkXk−1 +BkXk +CkXk+1, k = 0,1, . . . ,N, (2.6)

where A0 and CN are zero matrices. Thus, equation (2.6) is in the form (2.3) with X
a column vector made up of the entries of X0, followed by X1,X2, . . . ,XN .

The Ak matrices capture the transition from Q to T , while the Ck matrices de-
scribe the transition from T to Q. These matrices depend on the structure of the
network and the transition rates fQT and fT Q. We now investigate the structure of
these matrices.

Exercise 2.3. Show that if Sk−1
i ∈ Ck−1 differs from Sk

j ∈ Ck at only a single node,

l, then Sk−1
i (l) = Q and Sk

j(l) = T .

In class Ck−1, there are ck−1 elements, and in class Ck, there are ck elements;
hence, matrix Ak has ck rows and ck−1 columns. The entry in the ith row and jth
column of the matrix Ak is denoted by Ak

i, j. It gives the transition rate from Sk−1
j

to Sk
i , which is non-zero only in the case where the states differ at only a single

node l with Sk−1
j (l) = Q and Sk

i (l) = T . The rate depends on the number of status T

neighbours of node l, that is Ak
i, j = h(Sk−1

j ,Sk
i ), yielding

Ak
i, j =

{
0 Sk−1

j and Sk
i differ in more than one node,

fQT (nT (l,S
k−1
j )) Sk−1

j and Sk
i differ only for node l,

(2.7)

where nT (l,S) is the number of status T neighbours of node l in state S.
In order to better understand the role of the Ak matrix, consider its jth column,

which corresponds to the system leaving Sk−1
j . Let ΩQ(S

k−1
j ) denote the set of nodes

l which have status Q, that is, ΩQ(S
k−1
j ) = {l : Sk−1

j (l) =Q}. For each l ∈ΩQ(S
k−1
j ),

define i(l) so that Sk
i(l) is the (unique) state that would result from changing only

node l’s status to T . Then, equation (2.7) becomes

Ak
i, j =

{
0 i �= i(l) for any l ∈ ΩQ(S

k−1
j ),

fQT (nT (l,S
k−1
j )) i = i(l) for (a unique) l ∈ ΩQ(S

k−1
j ).

We conclude that the sum of the elements in the jth column of matrix Ak is



2.3 Master equations for arbitrary networks 37

ck

∑
i=1

Ak
i, j = ∑

l∈ΩQ(S
k−1
j )

fQT (nT (l,S
k−1
j )). (2.8)

In the simple case when fQT is of the form fQT (n) = τn, this reduces to

ck

∑
i=1

Ak
i, j = τNQT (S

k−1
j ), (2.9)

where NQT (S
k−1
j ) denotes the number of (Q,T ) edges in state Sk−1

j .

Similarly, the entry in the ith row and jth column of matrix Ck is denoted by
Ck

i, j and gives the transition rate from Sk+1
j to Sk

i . In the Ck+1 class, there are ck+1

elements, and in the Ck class, there are ck elements; hence, matrix Ck has ck rows
and ck+1 columns. The entry Ck

i, j is non-zero only in the case when the states Sk+1
j

and Sk
i differ at one position, say at position l. The transition rate depends on the

number of status Q neighbours of node l, that is Ck
i, j = h(Sk+1

j ,Sk
i ), yielding

Ck
i, j =

{
0 Sk+1

j and Sk
i differ in more than one node

fT Q(nQ(l,S
k+1
j )) Sk+1

j and Sk
i differ only for node l,

(2.10)

where nQ(l,S) is the number of status Q neighbours of node l in state S.
In the simple case of fT Q(n) = γ , it follows that Ck

i, j is either zero or γ . In state

Sk+1
j , k+1 nodes of the graph have status T ; hence, in the jth column of matrix Ck

there are k+1 entries that are equal to γ and the remaining entries are zero. Hence,
for all j ∈ {1,2, . . . ,ck+1} we have

ck

∑
i=1

Ck
i, j = γ(k+1). (2.11)

The matrix Bk is a diagonal matrix with ck rows and columns. This is because Bk

accounts only for the rate of Sk
i → Sk

j type transitions. The rate of a transition from

Sk
i to Sk

j is zero if Si �= S j. If Si = S j, then we get

Bk
i,i =−

ck+1

∑
j=1

Ak+1
j,i −

ck−1

∑
j=1

Ck−1
j,i , (2.12)

because the sum of the entries in any column is 0.
These rules can be implemented computationally to automatically generate and

numerically solve the full set of differential equations. The following exercises en-
courage the reader to apply these rules.

Exercise 2.4. Find the matrices Ak, Bk and Ck for the SIS dynamics on a line graph
with N = 3 nodes (see Fig. 2.2a). Write down the full system of master equations
and verify that there are 2N equations.
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Exercise 2.5. Do the same for a line graph with N = 4 nodes (see Fig. 2.2b).

Exercise 2.6. Do the same for a star graph with N = 4 nodes (see Fig. 2.2c).

Exercise 2.7. Write down the system of master equations for the QAQ dynamics
given in Example 2.3 on a line graph with N = 3 nodes (see Fig. 2.2a).

Exercise 2.8. Write down the system of master equations for the voter-like model
given in Example 2.4 on a line graph with N = 3 nodes (see Fig. 2.2a).

1

2

3

(a)

1

2

3

4

(b)

1

2

3

4

(c)

Fig. 2.2: Line with 3 (a) and 4 (b) nodes, respectively. (c) Star network with 4 nodes.

After formulating master equations for different binary dynamics and different
graphs, we can write down the master equations for arbitrary binary dynamics on an
arbitrary graph with N = 3 nodes. The state space consists of the states

{QQQ,T QQ,QT Q,QQT,T T Q,T QT,QT T,T T T}.

All potential transitions are depicted in Fig. 2.3. The rates depend on the pro-
cess, which determines fQT and fT Q, and the graph, with adjacency matrix G =
(gi j)i, j=1,2,3, which determines how many neighbours of each status a given node
has.

For example, for the transition from state QQT to QQQ node 3 moves from status
T to Q. This rate depends on how many status Q neighbours it has. As both 1 and
2 have status Q, this is 0 if neither edge exists from node 3, 1 if only one edge
exists and 2 if both edges exist. A convenient shorthand for the number of status Q
neighbours 3 has, given that the state is QQT , is g13 +g23. Thus, the transition rate
from QQT to QQQ is fT Q(g13 +g23).

Similarly, the transition rate from state QQT to QT T happens at rate fQT (g32),
because node 2 transitions from status Q to T , and this depends on whether node 2 is
connected to the single node of status T , i.e. node 3. Determining the transition rates
for all 24 possible transitions, indicated by arrows in Fig. 2.3, the master equations
can be formulated as

ẊQQQ = fT Q(g13 +g23)XQQT + fT Q(g12 +g32)XQT Q

+ fTQ(g21 +g31)XT QQ −3 fQT (0)XQQQ,

ẊQQT = fQT (0)XQQQ + fT Q(g12)XQT T + fTQ(g21)XT QT −qQQT XQQT ,

ẊQT Q = fQT (0)XQQQ + fT Q(g13)XQT T + fTQ(g31)XT T Q −qQT QXQT Q,
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ẊT QQ = fQT (0)XQQQ + fT Q(g23)XT QT + fTQ(g32)XT T Q −qT QQXT QQ,

ẊQT T = fT Q(0)XT T T + fQT (g32)XQQT + fQT (g23)XQT Q −qQT T XQT T ,

ẊT QT = fT Q(0)XT T T + fQT (g31)XQQT + fQT (g13)XT QQ −qT QT XT QT ,

ẊT T Q = fT Q(0)XT T T + fQT (g21)XQT Q + fQT (g12)XT QQ −qT T QXT T Q,

ẊT T T = fQT (g21 +g31)XQT T + fQT (g12 +g32)XT QT

+ fQT (g13 +g23)XT T Q −3 fT Q(0)XT T T ,

where

qQQT = fT Q(g13 +g23)+ fQT (g31)+ fQT (g32),

qQT Q = fT Q(g12 +g32)+ fQT (g21)+ fQT (g23),

qT QQ = fT Q(g21 +g31)+ fQT (g12)+ fQT (g13),

qQT T = fQT (g21 +g31)+ fTQ(g13)+ fTQ(g12),

qT QT = fQT (g12 +g32)+ fTQ(g23)+ fTQ(g21),

qT T Q = fQT (g13 +g23)+ fTQ(g31)+ fTQ(g32).

QQQ

QQT QTQ TQQ

QTT TQT TTQ

TTT

Fig. 2.3: The state space and all possible transitions for an arbitrary binary dynamics
on an arbitrary graph with 3 nodes.

2.3.4 Master equations for SIR dynamics

The theory developed so far extends in a natural way to non-binary dynamics. To
minimise technicalities, we consider just SIR disease propagation.
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Example 2.6. As a first example, we write down the master equation for the simple
network of two nodes connected by an edge. The state space is given by

C= {RR,RS,SR,SS,RI, IR,SI, IS, II},

where the order indicates which node has each status. We will see later that it is
useful to divide the states according to the number of I and S nodes. Let Ci, j denote
the class of states in which there are i status I nodes and j status S nodes:

C00 = {RR}, C01 = {RS,SR}, C02 = {SS},
C10 = {RI, IR}, C11 = {SI, IS}, C20 = {II}.

The master equations follow by accounting for all possible transitions and their
rates. They are

ẊRR = γ(XRI +XIR),

ẊRS = γXIS,

ẊSR = γXSI ,

ẊSS = 0,

ẊRI = γXII − γXRI ,

ẊIR = γXII − γXIR,

ẊSI =−(γ + τ)XSI ,

ẊIS =−(γ + τ)XIS,

ẊII = τ(XSI +XIS)−2γXII .

Example 2.7. For a network with N = 3 nodes, the classes of the state space are

C00 = {RRR}, C01 = {RRS,RSR,SRR}, C02 = {RSS,SRS,SSR},
C03 = {SSS}, C10 = {RRI,RIR, IRR},

C11 = {RSI,RIS,SRI,SIR, IRS, ISR}, C12 = {SSI,SIS, ISS},
C20 = {RII, IRI, IIR}, C21 = {SII, ISI, IIS}, C30 = {III}.

In particular, for a line network with 3 nodes, the master equations are

ẊRRR = γ(XIRR +XRRI +XRIR),

ẊRRS = γ(XIRS +XRIS),

ẊRSR = γ(XISR +XRSI),

ẊSRR = γ(XSIR +XSRI),

ẊRSS = γXISS,

ẊSRS = γXSIS,

ẊSSR = γXSSI ,

ẊSSS = 0,

for the C00, C01, C02 and C03 states;

ẊRRI = γ(XIRI +XRII)− γXRRI ,

ẊRIR = γ(XIIR +XRII)− γXRIR,

ẊIRR = γ(XIIR +XIRI)− γXIRR

ẊRSI = γXISI − (γ + τ)XRSI ,

ẊRIS = γXIIS − (γ + τ)XRIS,

ẊSRI = γXSII − γXSRI ,

ẊSIR = γXSII − (γ + τ)XSIR,

ẊIRS = γXIIS − γXIRS,

ẊISR = γXISI − (γ + τ)XISR,

ẊSSI =−(γ + τ)XSSI ,

ẊSIS =−(γ +2τ)XSIS,

ẊISS =−(γ + τ)XISS,

for the C10, C11 and C12 states; and finally
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ẊRII = τ(XRSI +XRIS)+ γXIII −2γXRII ,

ẊIRI = γXIII −2γXIRI ,

ẊIIR = τ(XSIR +XISR)+ γXIII −2γXIIR,

ẊSII = τ(XSSI +XSIS)− (2γ + τ)XSII ,

ẊISI =−(2γ +2τ)XISI ,

ẊIIS = τ(XSIS +XISS)− (2γ + τ)XIIS,

ẊIII = τXIIS +2τXISI + τXSII −3γXIII ,

for the C20, C21 and C30 states. In general, the system can move from a Ci j state to a
Ci+1, j−1 state by infection or to a Ci−1, j state by recovery.

We emphasise that Ci j is not a state but a collection (or class) of states of the
system. In Fig. 2.4, we give the possible paths that an arbitrary network with 4 nodes
can take between the different classes. Although we group these states together into
classes by how many individuals of each status there are, the transition rates into
or out of different states in the same class may vary. Hence, the transition rates in
the figure cannot be explicitly given without breaking the classes down into their
individual states, as they depend on the choice of the state in a given class.

Fig. 2.4: Potential transitions for an SIR model for an arbitrary 4-node network.
Straight lines correspond to transmissions and sinuous lines correspond to recover-
ies.

Exercise 2.9. Write down the full system of master equations for SIR dynamics on
a triangle, i.e. on a complete graph with N = 3 nodes.

Finally, we investigate the structure of the matrix yielding the system of master
equations. We introduce a coarser classification of the state space. Let Ci denote the
class made up of states where there are i nodes of status I. Then, obviously

Ci = ∪N−i
j=0C

i j
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and the system can move from a state in class Ci to a state in class Ci+1 by infection
or to a state in class Ci−1 by recovery. The number of states in class Ci j is

(N
i

)(N−i
j

)
;

hence, a simple summation shows that the number of states in class Ci is 2N−i
(N

i

)
.

For example, in the case of a network with N = 3 nodes in the class C0, there are 8
states, in the class C1 there are 12 states, in the class C2 there are 6 states and in the
class C3 there is a single state, as can be explicitly checked by using the list of states
above.

To formulate the system of master equations, let Xi(t) be a 2N−i
(N

i

)
dimensional

vector, the coordinates of which yield the probability of the system being in the
states of class Ci, for i = 0,1, . . . ,N. Since the possible transitions from class Ci are
to classes Ci+1 and Ci−1, the system takes the form

Ẋ i = AiXi−1 +BiXi +CiXi+1, i = 0,1, . . . ,N, (2.13)

where A0 and CN are zero matrices. Thus, Eq. (2.13) is in the form (2.3), with a
matrix P that can be written in block tridiagonal form as

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 C0 0 0 · · · 0

A1 B1 C1 0
...

...

0 A2 B2 C2
...

...

0 0 A3 B3 . . . 0
... · · · · · · . . .

. . . CN−1

0 · · · · · · 0 AN BN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

2.4 Lumping

We return to the case of general binary dynamics. The system of master equations
given by (2.6) consists of 2N linear differential equations, so the number of equations
grows exponentially with N. This quickly becomes impractical or impossible to
solve at large N. However, it is not always necessary to determine all probabilities.
Particularly, when the number of nodes is large, the expected number or proportion
of nodes of status Q and status T may be more useful. We denote these expected
values at time t by [Q](t) and [T ](t). They are expressed as

[Q](t) =
N

∑
k=0

(

(N − k)
ck

∑
j=1

Xk
j (t)

)

, [T ](t) =
N

∑
k=0

(

k
ck

∑
j=1

Xk
j (t)

)

.

There are different approaches to determine or approximate these expected
values. Conceptually, the simplest way is through individual-based stochastic simu-
lation, using methods such as the Gillespie algorithm [112, 113] (or other methods
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we present for SIS and SIR disease in Appendix A.1). However, this offers lim-
ited scope for a deeper understanding of the interactions between network topol-
ogy and node dynamics, and results based on simulation are difficult to gener-
alise. An alternative is the derivation of mean-field-like equations using pair or
triple approximations [166, 256], heterogenous mean-field approximations [244],
edge-based compartmental models [215, 222, 316] and effective degree-type mod-
els [115, 197, 300]. Chapters 4 to 7 give an extensive treatment of these modelling
frameworks and show how different models are related. However, most of these
models are approximate, and if we want an exact reduction, these mean-field-like
approaches are insufficient. For networks with sufficient symmetry, the technique of
lumping [100, 171, 268] can be used to reduce the exponential number of equations
to a tractable number that are exact at a coarser scale. Ideally, the lumped system
should have enough variables so that its solution provides relevant and significant
information about the system. For example, the reduced system should be able to
provide the expected number of nodes of each status.

Lumping, in general, is a method for coarse-graining Markov chains by partition-
ing, or lumping, the state space. The problem is to partition the state space in such
a way that the Markov property is not lost in the aggregated process. Lumping of
Markov chains is studied in [171, 268]; the particular case of random walks on net-
works is examined in [100]. Spectral properties of the transition matrix are related
to the lumpability of the system [25, 155]. However, due to the exponentially large
state space, in the case of network processes, these spectral methods have limited
efficiency. This leads us to use another way to find partitions, namely exploiting the
symmetries of the underlying network, as presented below.

The remainder of this section is structured as follows. First, we introduce a few
definitions which help our analysis. Then, the idea of lumping is illustrated by moti-
vating examples. Next, the lumping of linear systems of ODEs is dealt with in gen-
eral. This is followed by the presentation of lumping system (2.6) and showing how
this is related to the automorphisms (symmetries) of the graph. Finally, the lumping
procedure is carried out for small networks and for arbitrarily large networks with
special structure.

2.4.1 Partition of the state space

Consider a system with n states S1, S2, . . . , Sn. For the class of problems we
study, we can represent the probability of state Si by Xi(t), with the vector
X = (X1,X2, . . . ,Xn) denoting all of the probabilities. We can think of transitions
from Sr to S j in terms of probability flowing between the states. The amount of this
flux is given by PjrXr.

Sometimes, we do not need to know Xi for every state i, or calculating the full
solution may simply be too difficult. In such cases, we would like to use a coarser
scale. This means partitioning (or lumping) some states together, creating m classes
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{C1,C2, . . . ,Cm} of states. To make our terminology clear, we introduce some defi-
nitions.

Definition 2.2 Given a set of objects Σ = {S1,S2, . . . ,Sn}, a partition of Σ is a set
C∗ = {C1,C2, . . . ,Cm} of classes having two properties:

• Each class C j is a nonempty subset of Σ .
• Every Si ∈ Σ belongs to exactly one C j.

Typically, we have some collection of indices for our objects, usually integers,
although in Example 2.8 below the states are indexed by a list giving the status of
every node. There is a clear relation between a partition of the states and a partition
of the indices. It will often be useful to have a shorthand for the set of indices
associated with a class in the partition.

Definition 2.3 Given a set of objects indexed by some indices Σ = {Si1 ,Si2 , . . . ,Sin},
let C∗ = {C1,C2, . . . ,Cm} be a partition of Σ . The induced partition on the index set
{i1, i2, . . . , in} is L = {L1,L2, . . . ,Lm}, where each Lk is the set of indices appearing
in Ck. That is, Lk = {i j : Si j ∈ Ck}. We refer to Lk as the induced class of indices
associated with Ck.

We write Yj = ∑i∈L j
Xi to be the combined probability of all states in C j. In

many cases, the correct choice of partition leads to a significant simplification of the
equations. In such cases, we arrive at a linear system for Yj having fewer equations.

2.4.2 A motivating example

Looking back at Example 2.1 of Section 2.1, we see that lumping several states
together into larger classes can significantly reduce the number of equations. How-
ever, Exercise 2.2 shows that this does not always work. We will see that the success
of a lumping depends strongly on the symmetries of the network. We now consider
a more complex network structure to demonstrate more clearly how symmetries
simplify the equations.

Example 2.8. We investigate an SIS disease spreading in a star network with four
nodes. The states and flows between them are represented by the flow diagram in
Fig. 2.5. For this specific case, we use the notation SABCD to represent the state in
which the central node has status A, the leftmost node status B, the top node status
C and the rightmost node status D, where these are each either S or I.

The probability of state SABCD is denoted XABCD. An arrow from state Si to state
S j means that the system can move directly from Si to S j, either through recovery
of a node or a transmission. An arrow from Xi to Xj has an associated flux, and this
flux appears in the equations as an additive term for Ẋ j and a subtracted term for Ẋi.
Many arrows in Fig. 2.5 are bidirected, but some are not.

When we group those states that are symmetric together, we arrive at a partition
made up of classes Cik, where the superscript i is 0 if the central node is susceptible
and 1 if infected, and the superscript k gives the number of peripheral nodes that are
infected.
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Fig. 2.5: Lumping for the spread of an SIS disease in a star with four nodes. Suscep-
tible ( ) and infected ( ) nodes are denoted by filled circles of different colours.
(a) The possible transitions in the original state space. (b) A partition formed by
grouping symmetric states together. (c) The fluxes from each state S in C11 to the
adjacent classes are proportional to the probability of S, with the same coefficients
for all S ∈ C11. (d) The final lumped system. In (c) and (d), recoveries are denoted
by sinusoidal paths. Note the relation between the highlighted fluxes out of C11 in
(d) and fluxes out of states within C11 in (c).

C00 = {SSSSS}
C01 = {SSISS,SSSIS,SSSSI}
C10 = {SISSS}

C02 = {SSIIS,SSISI ,SSSII}
C11 = {SIISS,SISIS,SISSI}
C03 = {SSIII}

C12 = {SISII ,SIISI ,SIIIS}
C13 = {SIIII}

For notational convenience, we will use Lik to denote the subscripts associated with
the states in Cik. Then, the probability Y ik of the class Cik is given by

Y ik = ∑
j∈Lik

Xj
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Consider the class C11 consisting of all states in which the central node and a
single peripheral node are infected. The central node can transmit to either of the two
remaining peripheral nodes, each with an associated rate τ . Looking in particular at
SIISS, the transitions are to SIIIS and SIISI . The flux from XIISS to XIIIS is τXIISS and
the flux to XIISI is also τXIISS. Thus, the total flux from XIISS into C12 is 2τXIISS.
Similarly, the fluxes from XISIS and XISSI into C12 are also proportional to XISIS and
XISSI , respectively, with the same proportionality constant. Thus, the total flux from
C11 to C12 is simply 2τY 11.

With the chosen partition, all classes Ci j have the property that, given another
class Ckl , the flow from any Sr ∈ Ci j into the states in Ckl is proportional to Xr, and
that same proportionality constant holds for every Sr ∈ Ci j. Thus, the total flux from
Ci j to Ckl is proportional to Y i j with the same constant of proportionality.

Because this holds for every pair of classes, we can reduce our system to just
considering the classes, rather than the individual states. Our final equations are

Ẏ 00=γ(Y 10+Y 01),

Ẏ 01=2γY 02+γY 11−(γ+τ)Y 01,

Ẏ 10=γY 11−(γ+3τ)Y 10,

Ẏ 02=3γY 03+γY 12−(2γ+2τ)Y 02,

Ẏ 11=3τY 10+τY 01+2γY 12−(2γ+2τ)Y 11,

Ẏ 03=γY 13−(3γ+3τ)Y 03,

Ẏ 12=3γY 13+2τ(Y 02+Y 11)−(3γ+τ)Y 12,

Ẏ 13=3τY 03+τY 12−4γY 13.

The system for the X variables would have 16 equations. Here, we have reduced this
to 8, at the cost that we can no longer resolve individual states.

Exercise 2.10. Consider a different partition of the states in Fig. 2.5, where Ck is
made up of all states with k infected nodes. Let Yk be the probability that k nodes are
infected. Show that we cannot write down a system of linear differential equations
just in terms of Yk. [Hint: Assume that initially XISSS = 1 and calculate the initial
rate of change of Y2. Repeat with XSISS = 1.]

2.4.3 Lumping of linear systems

In Example 2.8, the lumping worked because it provided a partition such that for any
two classes Cl and C j we could express the total flow of probability from Cl to C j

as some constant times the amount of probability in Cl . In fact, a stronger condition
holds: each state Sr ∈ Cl has the property that the combined flow from it to the states
in C j gave the same value, regardless of Sr. This motivates the following definition.

Definition 2.4 A Markov process is called lumpable if there is a partition of the
states {S1,S2, . . . ,Sn} into a set of classes C = {C1,C2, . . . ,Cm} such that for any
two classes C j and Cl the sum

A jl = ∑
Si∈C j

h(Sr,Si)
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takes the same value for any Sr ∈ Cl . Then, the partition {C1,C2, . . . ,Cm} is called
a lumping of the state space.

The sum represents the combined transition rate from Sr to any state in C j.
We now explore the mathematical concept of lumping for a general system,

which can be expressed in the form

Ẋ =AX ,

where A is an arbitrary n×n matrix. If we think of the components of X as measur-
ing the probability (or some other quantity) of the states of a system, then our goal
is to partition the states in such a way that if we take Y to be a vector whose entries
give the sum of Xi for each class, we can arrive at a new linear system for Y . The key
detail that guaranteed this previously is that given two classes, Cl and C j, and any
state Sr ∈ Cl , the combined flux from Sr into all of the states in C j is proportional to
Xr, with the same proportionality constant holding for all Sr ∈ Cl .

We now express this condition in terms of the matrix A. The following definition
goes back to the so-called Dynkin criterion [100].

Definition 2.5 The linear system Ẋ = AX is called lumpable if there is a partition
L= {L1,L2, . . . ,Lm} of the set {1,2, . . . ,n} satisfying the following property: for any
classes L j and Ll, there exists a number A jl such that

A jl = ∑
i∈L j

Air, for r ∈ Ll ,

that is, the sum does not depend on r whenever r ∈ Ll. The m×m matrix A is called
a lumping of matrix A, and the partition L is called a lumping of {1,2, . . . ,n}.

If the linear system corresponds to a Markov process, then either both the system
and the process are lumpable or both are not. This follows by taking L to be the
induced partition of the classes.

We will define Yj =∑i∈L j
Xi and set Y to be the vector whose entries are Yj. Then,

taking A we will show that
Ẏ =AY . (2.14)

We derive equation (2.14) in several steps. First, consider a lumping {L1,L2, . . . ,Lm}
of {1,2, . . . ,n}. We define the vectors Uj for j = 1, . . . ,m such that the ith entry of Uj

is 1 if i ∈ L j and 0 otherwise. Then, the dot product of Uj with X gives Yj = ∑i∈L j
Xi.

Taking the matrix U whose jth row is U j, we have

Y =UX .

where Y is the vector whose entries are Yj.
The following simple result about UA holds.

Proposition 2.1 If matrix A is a lumping of matrix A and U is as defined above,
then UA=AU.
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Proof. The element in the jth row and rth column of UA is

(UA) jr =
n

∑
i=1

UjiAir = ∑
i∈L j

Air =A jl ,

where l is the index for which r ∈ Ll . The element in the jth row and rth column of
AU is

(AU) jr =
m

∑
k=1

A jkUkr =A jl ,

where l is the index such that r ∈ Ll , since every column of U has a single unit entry,
the rest being zero. Thus, the two expressions are equal. ��

We are now able to prove that Ẏ =AY .

Proposition 2.2 Let A be a lumping of matrix A and let U be the matrix for which
UA = AU holds. Based on this, we introduce the new, m-dimensional (lumped)
variable Y = UX. This lumped variable satisfies the lumped linear ODE system
Ẏ =AY .

Proof. We already have Y = UX and U is a constant matrix. Thus, Ẏ = UẊ , but
Ẋ = AX . So we have Ẏ = UAX . As UA = AU , our system becomes Ẏ = AUX .
Substituting for UX , we finally have

Ẏ =AY .

��
The crucial step in lumping is finding the partition of the state space. This can

either be derived intuitively through the symmetries of the network or by attempting
to identify partitions that satisfy the properties stated in Definition 2.4 or 2.5. Once
the partition is known, both A and U follow. The lumpability condition on A is a
non-trivial requirement, and not all systems will be lumpable.

It should be noted that the results we have proven are more general than what
we need. For the systems we consider, we are always considering vectors X that
represent probabilities. The proofs did not rely on this, and so the same procedure
will work for more general systems, but we do not investigate this further.

2.4.4 The use of graph symmetries to lump a binary dynamic
network model

We found the partition for the star network SIS system of Example 2.8 by identifying
states that were symmetric and lumping them into a single class. In this section,
we see that this approach works in general. It should be noted that this is not the
only option for lumping a system to get simpler equations. As a trivial example
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for any disease, there is always the option to create a partition with just a single
class C∗ containing all states, then we would arrive at the equation Ẏ ∗ = 0. This
is mathematically simple, but it has no informational value beyond stating that the
quantity we are measuring (probability in this case) is preserved. There is a balance
between simplicity and information content.

Our goal after lumping the states is to recover information about the number
of nodes of each status. So all states that are lumped together must have the same
number of nodes of each status. In this section, we show a procedure for finding
lumpings that respect this property if there are symmetries. We focus our attention
on binary processes to keep the indexing simple, but the approach is more general.

Consider now an arbitrary binary dynamic process spreading in a network, such
as SIS disease. We will arbitrarily set the node statuses to be Q and T . For a network
of N nodes, there are 2N possible states. We recall the important partition

{C0,C1, . . . ,CN},

where Ck denotes the class made up of all states with k nodes of status T . There are
ck =

(N
k

)
states in Ck, denoted Sk

1, Sk
2, . . . , Sk

ck
. We set Xk

i to be the probability of
state Sk

i and use Xk to be a vector whose entries are the probabilities of each state of
Ck. That is, Xk = (Xk

1 ,X
k
2 , . . . ,X

k
ck
), and we use X to be the vector formed by taking

the entries of X0, then of X1 and so forth until XN .
We have already seen that we cannot necessarily write down a consistent system

of equations if we choose C0,C1, . . . ,CN to be our partition (Exercises 2.2 and 2.10).
We will have to refine this partition. However, equation (2.6) shows that for this
partition, the equations for a given Xk can be expressed entirely in terms of Xk−1,
Xk and Xk+1

Ẋk = AkXk−1 +BkXk +CkXk+1, k = 0,1, . . . ,N

for some matrices Ak, Bk and Ck, with Bk being a diagonal matrix. Then, Ẋ = PX ,
where

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 C0 0 · · · 0

A1 B1 C1 . . .
...

0 A2 B2 . . .
...

...
. . .

. . .
. . . CN−1

0 · · · · · · AN BN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The specific form of these submatrices depends on the network structure and the
spreading binary process.

Definition 2.6 Given a set and a partition of that set J = {J1,J2, . . . ,JmJ}, a second
partition L = {L1,L2, . . . ,LmL} is a refinement of J if for every Ll there is a Jj such
that Ll ⊆ Jj.
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If L is a refinement of J, and we denote all of the Ll that are a subset of Jj by L j
1, L j

2,
. . . , L j

l j
, then these form a partition of Jj.

For simplicity, we will assume that the states are indexed from 1 to 2N , so that if
i < j, then the number of nodes in state Si having status T is less than or equal to
the number of nodes in S j having status T . If the number of nodes with status T is
the same, the ordering is arbitrary, but it is unchanging.

We now turn specifically to partitions of our state space. There are 2N possible
states S1,S2, . . . ,S2N .

Definition 2.7 Given the partition of {S1,S2, . . . ,S2N} into {C0,C1, . . . ,CN}, we say
that a lumping respects {C0,C1, . . . ,CN} if the partition for the lumping is a refine-
ment of {C0,C1, . . . ,CN}.

In Example 2.8, the lumping respected the partition {C0,C1,C2,C3,C4}, with C1, C2

and C3 each divided into two smaller classes. Our goal is to find a lumping P of P
that respects the partition {C0,C1,C2, . . . ,CN}.

Consider a refinement of {C0,C1,C2, . . . ,CN}. For every k, let {Ck
1,C

k
2, . . . ,C

k
lk
}

denote those classes in the refined partition that are a subset of Ck. To test whether
this partition provides a lumping, we check that Definition 2.4 is satisfied. Let Ch

j

and Ck
l be any two classes in the partition of the state space. If the number of nodes of

status T differ by two or more, then the flow between these states is zero. Alternately,
if the number of nodes of each status is the same and the classes are not the same,
then again the flow between these classes is zero. So the properties of the definition
are immediately satisfied for these cases. Thus, we only need to consider Ch

j and Ck
l

if the number of nodes in status T differ by exactly 1 or if Ch
j = Ck

l .

Lemma 2.8 The binary Markov process described by equation (2.6) has a
lumping that respects {C0,C1, . . . ,CN} if each class Ck may be partitioned into
{Ck

1,C
k
2, . . . ,C

k
lk
} and the following properties hold for any k:

• For any classes Ck−1
l and Ck

j, there exists a number A
k
jl such that

A
k
jl = ∑

Si∈Ck
j

h(Sr,Si) (2.15)

for any Sr ∈ Ck−1
l .

• For any classes Ck+1
l and Ck

j, there exists a number C
k
jl such that

C
k
jl = ∑

Si∈Ck
j

h(Sr,Si) (2.16)

for any Sr ∈ Ck+1
l .



2.4 Lumping 51

Proof. To prove this, we show that Definition 2.4 holds for any Cm
j and Ck

l , that is,

we just show that for any two classes Cm
j and Ck

l , the sum ∑Si∈Cm
j

h(Sr,Si) is the

same for all Sr ∈ Ck
l . We break this into four parts:

• If |m−k| ≥ 2, then at least two nodes are required to change status of the system
to move from any Sr to Si. Thus, the sum is trivially 0.

• If m = k−1, then satisfying the first condition is the same as satisfying Defini-
tion 2.4.

• If m = k + 1, then satisfying the second condition is the same as satisfying
Definition 2.4.

• If m = k and Ck
j �= Ck

l , then the system cannot move between states in these
classes because any change of state will change the number of nodes with status
T . Thus, the only case remaining to check is if Ck

j = Ck
l . In this case, if Si �= Sr,

the result is still zero, so the sum collapses to just a single term:

∑
Si∈Cm

j

h(Si,Sr) = h(Sr,Sr) .

From equation (2.4) we have

h(Sr,Sr) =− ∑
Si∈Ck+1

h(Sr,Si)− ∑
Si∈Ck−1

h(Sr,Si).

Alternately, we can show this by referring to the diagonal element of Bk. If the
conditions of the lemma hold, then this sum will be the same for all Sr ∈ Ck

l .
��
Equation 2.15 states that for any state Sr in the class Ck−1

l , the total flux into Ck
j

is proportional to the probability of state Sr with the same proportionality constant

A
k
jl . Equation (2.16) is equivalent, but for Ck+1

l to Ck
j. Thus, for these cases the flux

of probability from one class to another is simply a constant times the combined
probability in the first class.

We are almost ready to prove the main result of this section, that if we place
“symmetric” states into the same partition, then we arrive at a valid lumping. We first
need to give a mathematical definition of what “symmetric” means in this context.

Definition 2.9 Let G = G(V,E) be a graph with vertices and edges given by sets
V (G) and E(G), respectively. A bijection Φ : V (G)→V (G) such that (x,y) ∈ E(G)
if and only if (Φ(x),Φ(y)) ∈ E(G) is an automorphism of graph G. The set of all
automorphisms of G, under the composition of maps, forms the automorphism group
denoted by Aut(G) ([82, 330]).

In less mathematical language, we can think of the graph drawn on paper. Apply-
ing the function Φ to the node labels corresponds to relabelling the nodes, so that
node x is now labelled with the label Φ(x) (see Fig. 2.6). If the result of replacing
each node name x by Φ(x) is a graph that is identical to what would be seen after
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1 2 3 4 5
A1 = id 1 2 3 4 5
A2 = rot 5 1 2 3 4
A3 = rot 4 5 1 2 3
A4 = rot 3 4 5 1 2
A5 = rot 2 3 4 5 1
A6 = ref 1 5 4 3 2
A7 = ref 3 2 1 5 4
A8 = ref 5 4 3 2 1
A9 = ref 2 1 5 4 3
A10 = ref 4 3 2 1 5

1

2
3

4
5

4

5
1

2
3

A
3

1

5
4

3
2

A6

4

3
1

5
2

Not an automorphism

Fig. 2.6: (Left) The automorphism group of the cycle network with 5 nodes, com-
posed from rotations and reflections. (Right) Examples of A3, A6 and a permutation
that is not an automorphism.

moving each node Φ(x) to the current location of x (with any associated edges fol-
lowing), then Φ is an automorphism. It is important to note that if we perform one
automorphism to G and then perform another to the result, the combined outcome
is also an automorphism of the original graph.

If the nodes of a graph have some status associated with them, then we say that
Φ takes the state Si to state S j if Si(l) = S j(Φ(l)) for all l. In this case, we write
S j = Φ(Si).

Definition 2.10 Given the automorphisms of a graph, the orbit of a state S j is the
class of states of the form Φ(S j) for all automorphisms Φ .

If there is some Φ such that Si = Φ(S j), then the orbits of the two are identical.
We introduce an equivalence relation for C, saying states are equivalent if they

are in the same orbit. We call this the automorphism equivalence relation. The set of
orbits form a partition of the states. If we list an orbit in some order S j1 ,S j2 , . . . ,S jm
and then perform the same automorphism to each state, we get back the same class
of states, but in a new order. So the automorphism only permutes the elements of an
orbit.

Exercise 2.11.
a. Show that all equivalent states have the same number of nodes of status T .
b. Show that if we create a partition such that each class is made up of a set of

equivalent states, then we have a refinement of {C0,C1, . . . ,CN}.

We can now formulate our main result connecting the automorphism group of
the graph to the lumping of the Markov chain.
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Theorem 2.11 If we partition the states by creating classes made up of states that
are equivalent under automorphisms, then the resulting partition yields a lumping
that respects {C0,C1, . . . ,CN}.

To prove this theorem, we will rely on the observation that if the flow from state
Sl1 to S j1 is cXl1 for some constant rate c, and if Φ takes Sl1 to Sl2 and S j1 to S j2 ,
then the flow from Sl2 to S j2 is cXI2 .

Proof. Let the partition be given as {Ck
j ⊂ Ck : j = 1,2, . . . ,nk, k = 0,1, . . . ,N}. The

assumption of the theorem can be formulated as follows: for any k ∈ {0,1, . . . ,N},
j ∈ {1,2, . . . ,nk} and Sr,Sq ∈ Ck

j, there is an automorphism Φ , for which Φ(Sr) =
Sq. Lemma 2.8 will be applied to prove the statement. We will check that condi-
tion (2.15) holds. Equation (2.16) can be checked similarly. Let Ck−1

l and Ck
j be

arbitrary classes in the partition and Sr ∈ Ck−1
l be an arbitrary state. We show that

the sum in (2.15) is independent of the choice of the state Sr.
We first prove that the relation

h(Φ(Sr),Φ(Si)) = h(Sr,Si) (2.17)

holds for any automorphism Φ . If h(Sr,Si) �= 0, then there is a single node x whose
status is Q in Sr and T in Si, and all other nodes have the same status in both. The
value of h(Sr,Si) is given by some function fQT (nQ,nT ), where nQ is the number
of neighbours of x having status Q and nT is the number of nodes with status T in
state Sr. Consider an automorphism Φ . Then, y = Φ(x) has status Q in Φ(Sr) and
T in Φ(Si). All other nodes have the same status in both. The number of neighbours
of y with each status is again nQ and nT , so h(Φ(Sr),Φ(Si)) = fQT (nQ,nT ), which
proves (2.17).

Now let Sq ∈ Ck−1
l be an arbitrary but fixed state in its class. Let Φ be an auto-

morphism taking Sr to Sq, i.e. Φ(Sr) = Sq. Using (2.17), we get

∑
Si∈Ck

j

h(Sr,Si) = ∑
Si∈Ck

j

h(Φ(Sr),Φ(Si)) = ∑
Si∈Ck

j

h(Sq,Φ(Si)).

This shows that the sum is independent of which r is chosen, completing
the proof. ��

2.5 Applications of lumping

We can now take the results of the previous section and use it to develop a recipe
for lumping. We begin with the assumption that the network under consideration
has symmetries, and that we are able to find them. In practice, there may not be any
symmetries, or it may be difficult to identify them (see, e.g., Chapter 3 in [330]). Our
approach is restricted to networks for which it is possible to find the symmetries.
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Fig. 2.7: A method to generate the lumped equations.

We now apply these steps to several examples. Throughout, Ck denotes the set
of states with k infected nodes for SIS disease (or with k “status T ” nodes for other
binary processes). For the final lumping partition, we use Ck

1, Ck
2, . . . , Ck

lk
to denote

the subclasses of Ck. If there is no subclass, we use Ck
1 = Ck.

2.5.1 Lumping for some small networks

We now show some applications of the recipe in Fig. 2.7 to small networks.

Example 2.9. Consider SIS dynamics on a line graph with N = 3 nodes, as in
Fig. 2.2a. Then, the state space is {SSS,SSI,SIS, ISS,SII, ISI, IIS, III}, where, for
example, SSI represents the state of the network in which the statuses of nodes 1
and 2 are S and the status of node 3 is I. The states SSI and ISS are equivalent via a
reflection around the central node; hence, they are in the same lumping class. How-
ever, the state SIS is not equivalent to these as it cannot be mapped into either via
a graph automorphism, since in this state the I node has two S neighbours, while in
the two other states the I node has only a single S neighbour.

Thus, the class C1 = {SSI, SIS, ISS} consists of two lumping classes, namely
{SSI, ISS} and {SIS}. Similar reasoning leads to the observation that the class C2 =
{SII, ISI, IIS} consists of two lumping classes, namely {SII, IIS} and {ISI}. Thus,
the lumping classes are C0

1 = {SSS}, C1
1 = {SSI, ISS}, C1

2 = {SIS}, C2
1 = {SII,

IIS}, C2
2 = {ISI} and C3

1 = {III}.
As an example, we consider C2

1 and arbitrarily choose SII. The states reach-
able from SII are III, SSI and SIS. We have h(SII,III) = τ , h(SII,SSI) = γ and
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h(SII,SIS) = γ . Thus, the flow from C2
1 to C3

1 is τY 2
1 , the flow to C1

1 is γY 2
1 and the

flow to C1
2 is γY 2

1 . The terms corresponding to other starting states can be calculated
similarly (see Exercise 2.13).

Once the process is complete, we have a single equation for each class. Thus, the
full system of 23 = 8 differential equations can be lumped to 6 equations. This is
not a large gain, but for similar larger systems the reduction becomes significant.

Exercise 2.12. Using the full system of master equations in Exercise 2.4, for the 3-
node line graph, write each Y as a linear combination of the probabilities of states
in a given class. Then, differentiating this equation and using careful substitution,
derive the lumped system for the above example.

Exercise 2.13. By using the recipe in Fig. 2.7, derive the lumped system for the
3-node line graph.

Choosing another process with binary dynamics, while keeping the same graph,
gives the same lumping classes; only the coefficients in the lumped system change.
This can be checked by solving the following exercise.

Exercise 2.14. Using the recipe in Fig. 2.7, write down the full system of master
equations and the lumped system for QAQ dynamics on a line graph with N = 3
nodes.

In order to better understand how to find the lumping classes, it is useful to ex-
amine the lumping for some graphs with N = 4 nodes. The lumping recipe does not
depend on the dynamics; hence, in the examples below the dynamic will not be spec-
ified: a general binary dynamics with two statuses Q and T will be used. For each
graph, the reader is asked to formulate the lumped system for a given dynamics.

Example 2.10. Consider a general binary dynamics with two statuses Q and T on a
complete graph with N = 4 nodes (see Fig. 2.8b). We again take Ck to denote the
class of states with k nodes of status T . All four states in class C1 are equivalent via
suitable graph automorphisms, since any permutation of the nodes is an automor-
phism. For example, state QT QQ can be taken to state QQQT by an automorphism
Φ , for which Φ(2) = 4, Φ(4) = 2, Φ(1) = 1 and Φ(3) = 3. Thus, C1 is a single
lumping class. Similarly, all six states in class C2 are equivalent via suitably chosen
graph automorphisms. For example, state QT QT is equivalent to state QQT T via
the automorphism Φ , for which Φ(2) = 3, Φ(3) = 2, Φ(1) = 1 and Φ(4) = 4; this
Φ is not unique. Thus, C2 is a single lumping class. The same is true for C3; hence,
the lumping classes are C0

1 = C0, C1
1 = C1, C2

1 = C2, C3
1 = C3 and C4

1 = C4. Thus,
the full system of 24 = 16 differential equations can be lumped to 5 equations on a
complete graph.

Exercise 2.15. By using the recipe in Fig. 2.7, write down the lumped system for
SIS dynamics on a complete graph with N = 4 nodes.
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1 2

4 3

(a)

1 2

4 3

(b)

Fig. 2.8: Cycle (a) and fully connected (b) networks with 4 nodes.

Example 2.11. Consider a general binary dynamics with two statuses Q and T on
a star graph with N = 4 nodes, as in Fig. 2.2c. The central node is numbered 1
and the leaves are numbered 2, 3 and 4. The states QT QQ, QQT Q and QQQT
of the class C1 are all equivalent via suitable graph automorphisms, since for these
states, any permutation of the nodes that keeps the central node fixed is an auto-
morphism. For example, state QT QQ is equivalent to state QQT Q via an automor-
phism, Φ , for which Φ(2) = 3, Φ(3) = 2, Φ(1) = 1 and Φ(4) = 4. However,
state T QQQ is not equivalent to any of the above since no such automorphism ex-
ists. This is because, in the latter state, the node with status T has three neighbours
of status Q, while in the other states it has a single neighbour of status Q. Thus,
C1 consists of two lumping classes: {QT QQ,QQT Q,QQQT} and {T QQQ}. Sim-
ilarly, states in class C2 for which the central node is of status T are equivalent
via appropriately chosen automorphisms. For example, state T QT Q is equivalent to
state T QQT via the automorphism Φ , for which Φ(3) = 4, Φ(4) = 3, Φ(1) = 1
and Φ(2) = 2. Thus, C2 consists of two lumping classes: {T T QQ,T QT Q,T QQT}
and {QT T Q,QQT T,QT QT}. The class C3 can also be divided into two lumping
classes; hence, the lumping classes are

C0
1 = C0, C1

1 = {QT QQ,QQT Q,QQQT}, C1
2 = {T QQQ},

C2
1 = {QT T Q,QQT T,QT QT}, C2

2 = {T T QQ,T QT Q,T QQT},
C3

1 = {QT T T}, C3
2 = {T T T Q,T T QT,T QT T}, C4

1 = C4.

These are the partitions seen in Fig. 2.5. The full system of 24 = 16 differential
equations can be lumped to 8 equations on the star graph, as we saw in Example 2.8.

Exercise 2.16. By using the recipe in Fig. 2.7, write down the lumped system for
the voter model (Example 2.4) on a star graph with N = 4 nodes.

Example 2.12. Consider a general binary dynamics with two statuses Q and T on a
cycle graph with N = 4 nodes, as in Fig. 2.8a. All four states in class C1 are equiv-
alent via a suitable rotation. For example, state QT QQ can be taken to state QQT Q
via the automorphism Φ , for which Φ(2) = 3, Φ(3) = 4, Φ(4) = 1 and Φ(1) = 2.
Thus, C1 forms a single lumping class. Similarly, there are four states in class C2 (i.e.
{T T QQ,QT T Q,QQT T,T QQT}) that are equivalent via automorphisms, namely
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via rotations. For example, state QT T Q is equivalent to state QQT T by the rotation
Φ , given by Φ(2) = 3, Φ(3) = 4, Φ(4) = 1 and Φ(1) = 2. Thus, C2 consists of
two lumping classes: {T T QQ,QT T Q,QQT T,T QQT} and {QT QT,T QT Q}. The
class C3 forms a single lumping class, because its elements are all equivalent via
rotations. Hence, the lumping classes are

C0
1 = C0, C1

1 = C1, C2
1 = {T T QQ,QT T Q,QQT T,T QQT},

C2
2 = {QT QT,T QT Q}, C3

1 = C3, C4
1 = C4 .

Thus, the full system of 24 = 16 differential equations can be lumped to 6 equations
on a cycle graph with 4 nodes. We note that reflections are not needed in building
up the lumping classes.

Exercise 2.17. By using the recipe in Fig. 2.7, write down the lumped system for
SIS dynamics on a cycle graph with N = 4 nodes.

Example 2.13. Consider a general binary dynamics with two statuses Q and T on
a line graph with N = 4 nodes, as in Fig. 2.2b. States T QQQ and QQQT of class
C1 are equivalent via a reflection. States QT QQ and QQT Q of class C1 are also
equivalent via a reflection. However, states QQQT and QT QQ are not equivalent.
This is because in state QQQT , the node with status T has one neighbour of status
Q, while in state QT QQ, it has two. There is no automorphism between the states.
Thus, C1 consists of two lumping classes: {T QQQ,QQQT} and {QT QQ,QQT Q}.
Similarly, state T QQT in class C2 is not equivalent to any other state of this class. In
this state, both nodes of status T have a single neighbour, which is of status Q. How-
ever, state T T QQ is equivalent to QQT T via a reflection. Since the only nontrivial
automorphism of the graph is the reflection, class C2 is divided into four lumping
classes: {T QQT}, {QT T Q}, {T T QQ,QQT T} and {T QT Q,QT QT}. Class C3 can
be divided into two lumping classes; hence, the lumping classes are

C0
1 = C0, C1

1 = {T QQQ,QQQT}, C1
2 = {QT QQ,QQT Q}, C2

1 = {T QQT}
C2

2 = {QT T Q}, C2
3 = {T T QQ,QQT T}, C2

4 = {T QT Q,QT QT},
C3

1 = {T T T Q,QT T T}, C3
2 = {T T QT,T QT T}, C4

1 = C4 .

Thus, the full system of 24 = 16 differential equations can be lumped to 10 equations
on a line graph with 4 nodes.

Exercise 2.18. By using the recipe in Fig. 2.7, write down the lumped system for
SIS dynamics on a line graph with N = 4 nodes.

Exercise 2.19. Determine the lumping classes for a general binary dynamics on a
lollipop network (see Fig. 2.9a).

Exercise 2.20. Determine the lumping classes for a general binary dynamics on a
toast network (see Fig. 2.9b).
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Fig. 2.9: (a) Lollipop and (b) toast networks with 4 nodes.

Exercise 2.21. Consider an SIR disease spreading on a single edge as in Exam-
ple 2.6. Derive the lumped system.

Exercise 2.22. Consider SIR spread on a fully connected 3-node graph. The states
are given in Example 2.7. Derive the lumped system.

Exercise 2.23. Consider SIR spread on the line network with three nodes. The
states and master equations are given in Example 2.7. Derive the lumped system.

2.5.2 Lumping for some classes of networks of arbitrary size

In this section, we show applications of the general lumping theorem and demon-
strate lumping for some arbitrarily large graphs with special symmetry structure.

Lumping for the complete network

First, we show that for a complete graph the 2N-dimensional system given by (2.6)
can be lumped to an (N+1)-dimensional system. The lumped system is well known
in the literature, but so far as we are aware, it was first derived from the full 2N-
dimensional system in [288].

The automorphism group of the complete graph is the permutation group SN, that
is, any relabelling is an automorphism. Hence, the orbit of any element from Ck is
equal to Ck itself. All states with k infected nodes can be lumped together. There are
N +1 lumping classes: Ck for all k ∈ {0,1, . . . ,N}. We have

Y k =
ck

∑
j=1

Xk
j , k = 1, . . . ,N.

Proposition 2.3 If G is a complete graph, then the Y k functions satisfy the following
differential equations:

Ẏ 0 = fT Q(N −1)Y 1 −N fQT (0)Y
0,
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Ẏ k = (k+1) fTQ(N − k−1)Y k+1 +(N − k+1) fQT (k−1)Y k−1

− ((N − k) fQT (k)+ k fTQ(N − k))Y k, for k = 1,2, . . . ,N −1,

Ẏ N = fQT (N −1)Y N−1 −N fT Q(0)Y
N .

Proof. Using the steps of Fig. 2.7, we need only consider a single Sk chosen from
each Ck. For simplicity, we choose the state T · · ·T Q · · ·Q, where nodes 1 through k
have status T and the remaining (N − k) nodes have status Q.

For state Sk, each of the (N − k) nodes of status Q has k neighbours of status T .
So the rate of moving from Sk to any state in Ck+1 is (N−k) fQT (k). Similarly, each
of the k neighbours of status T has (N − k) neighbours of status k. Thus, the rate of
moving from Sk to Sk−1 is k fT Q(N − k). Thus

Ak+1,k = (N − k) fQT (k),

Ak−1,k = k fT Q(N − k)

and
Ak,k =−(N − k) fQT (k)− k fTQ(N − k).

So the equations are

Ẏ k = (k+1) fTQ(N − k−1)Y k+1 +(N − k+1) fQT (k−1)Y k−1

− ((N − k) fQT (k)+ k fTQ(N − k))Y k.

For variables Y N and Y 0, some terms on the right-hand side become zero, and we
arrive at the equations claimed. ��

Lumping for the star network

Consider a star-like network with N > 2 nodes. In this network, a single central
node is connected to all other nodes with no further connections, as in Fig. 2.10a.
Let the first node be the centre of the star. Thus, for example T QQ · · ·Q denotes the
state when the central node is of status T and the other nodes are of status Q. We
will show that in the case of a star network, the 2N-dimensional system as defined
by equation (2.6) can be lumped to a 2N-dimensional system for an arbitrary bi-
nary dynamics. The automorphism group of the star graph is the permutation group
SN−1: an automorphism must leave the central node unchanged but can permute the
remaining N −1 nodes in an arbitrary way. Therefore, two states are equivalent via
an automorphism if and only if the centre is of the same status and the number of
non-central nodes of status T is the same. Hence, for l = 1,2, . . . ,N − 1, class Cl

of states of the graph, such that there are l nodes of status T , can be lumped into
two classes: in the first class, the central node is T and there are l −1 non-central T
nodes; in the second class, the central node is Q and there are l non-central T nodes.
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Fig. 2.10: (a) General star and (b) general cycle networks with N nodes. (c) House-
hold network with 12 nodes (6 households).

In the case l = 0 and l = N, there is obviously only one class. This means that alto-
gether there are 2+ 2(N − 1) = 2N lumping classes: C0 = {S0}, CN = {SN}, and
for k ∈ {1,2, . . . ,N−1}, we have Ck

1 = {Sk
j : Sk

j(1) = T}, Ck
2 = {Sk

j : Sk
j(1) = Q}.

So for 1 ≤ k ≤ N − 1, a subscript of 1 denotes that the central node has status T
and a subscript of 2 denotes status Q. We use Lk

1 and Lk
2 to denote the induced parti-

tions of {1, . . . ,ck} corresponding to Ck
1 and Ck

2. Thus, the lumped variables can be
introduced as

Y 0 = X0, Y N = XN , Y k
1 = ∑

i∈Lk
1

Xk
i , Y k

2 = ∑
i∈Lk

2

Xk
i ,

for k = 1, . . . ,N −1. Similarly to Proposition 2.3, we can prove:

Proposition 2.4 Let G be a star graph of N nodes, with the central node labelled 1.
Then

Ẏ 0 = fT Q(N −1)Y 1
1 + fT Q(1)Y

1
2 −N fQT (0)Y

0,

Ẏ N = fQT (1)Y
N−1
1 + fQT (N −1)Y N−1

2 −N fT Q(0)Y
N

and, for k = 1,2, . . . ,N −1,

Ẏ k
1 = (N − k+1) fQT (1)Y

k−1
1 + fQT (k−1)Y k−1

2 + k fT Q(0)Y
k+1
1

− ((N − k) fQT (1)+(k−1) fTQ(0)+ fTQ(N − k))Y k
1 ,

Ẏ k
2 = (N − k) fQT (0)Y

k−1
2 + fT Q(N − k−1)Y k+1

1 + fTQ(1)(k+1)Y k+1
2

− ( fQT (k)+(N − k−1) fQT (0)+ k fTQ(1))Y
k
2 .

Proof. We first address Y k
1 for 1 ≤ k ≤ N −1. Taking Sl ∈ Ck

1, the central node has
status T , and (N − k) of the peripheral nodes have status Q. The remaining k − 1
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peripheral nodes have status T . The rate at which the central node changes status is
fT Q(N − k), yielding a state in Ck−1

2 . The rate at which each of the N − k status Q
peripheral node changes status is fQT (1), yielding a state in Ck+1

1 . The rate at which
the remaining k− 1 status T peripheral nodes change status is fT Q(0), yielding a
state in Ck−1

1 . So the total rate of flow of probability from Ck
1 to Ck−1

2 is fT Q(N−k)Y k
1 ,

to Ck+1
1 is (N − k) fQT (1)Y k

1 and to Ck−1
1 is (k−1) fTQ(0).

We now consider Sk
2, where the central node has status Q and there are k status

T peripheral nodes and (N−k−1) status Q peripheral nodes. Similar analysis gives
that the total rate of flow of probability to Ck+1

1 is fQT (1), to Ck+1
2 is (N − k −

1) fQT (0) and to Ck−1
2 is k fT Q(1). Similar analysis applies to C0 and CN . Combining

these results together yields the claimed equations. ��

Lumping for the household network

Consider the simplest network with a so-called household structure of Fig. 2.10c.
It consists of two types of nodes, inner and outer nodes. Outer nodes have only
within- household connections, while inner nodes have both within-household con-
nections, and connections to other households. We consider the simplest case where
each household has two nodes, an inner and an outer node. The inner nodes of all
households form a complete graph with N/2 nodes (N is an even number), and ev-
ery outer node is connected to an inner node. Thus, the degree of all inner nodes is
N
2 and the degree of all outer nodes is 1, as in Fig. 2.10c. It is possible to prove that
for this household-type network, the 2N-dimensional system given by (2.6) can be
lumped to an

(N/2+3
3

)
-dimensional system.

The automorphism group of this graph is the permutation group SN/2: an auto-
morphism can permutate the inner nodes in an arbitrary way, and once the auto-
morphism is given on the inner nodes, its effect on the outer nodes is determined
uniquely. In order to determine the lumping classes, note first that there may be four
different types of households in this graph: QT households, in which the inner node
is Q and the outer node is T , T Q households, QQ households, and T T households.
Therefore, two states of the whole graph are equivalent through an automorphism
if and only if the number of QT -, T Q-, QQ- and T T -type households is the same
in the two states. Hence, to obtain all different states we have to choose (with rep-
etition) N/2 households out of the four different types. Thus, using the formula
for the number of combinations with repetitions, the number of different states is(4+N/2−1

N/2

)
=

(N/2+3
3

)
. Hence, states with the same number of QQ-, QT -, T Q- and

T T -type households can be lumped into one newly defined lumped variable.

Lumping for the cycle network: non-trivial lumping

For completely connected and star networks, lumping can be carried out intuitively.
However, intuition alone is prone to error, and thus, it is desirable to use the auto-
morphism group to work out lumping classes rigorously. Even for a relatively simple
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network such as the cycle graph (CN), where N nodes are connected in a close chain
such that each node connects to the two nearest neighbours only, as in Fig. 2.10b,
we can encounter surprises. For illustration, consider the N = 5 case.

The automorphisms of the cycle network is known as the dihedral group DN ,
and can be given in terms of all possible rotations and reflections of the network
(see, for example, the case N = 5 in the table in Fig. 2.6). There are N rotations
and N reflections, so |DN | = 2N. Here, D5 is made up of five rotations (including
the identity) and five reflections. We now look for the lumping classes Ck

i for i ∈
{1,2, . . . ,ck}, with ck yet to be determined.

Each Ck
i is a subset of Ck, so in particular for k = 0, the first lumping class is

trivial C0
1 = {(QQQQQ)}. Now consider

C1 = {(QQQQT ),(QQQT Q),(QQT QQ),(QT QQQ),(T QQQQ)} .

We can see that the orbit of the first element (QQQQT ) is

D5((QQQQT )) = {Φ((QQQQT )) : Φ ∈ D5}= C1.

Hence, C1
1 = C1. The situation changes when C2 is considered

C2 = {(QQQT T ),(QQT QT ),(QT QQT ),(T QQQT ),(QQT T Q),

(QT QT Q),(T QQT Q),(QT T QQ),(T QT QQ),(T T QQQ)}.

The orbit of the first element (QQQT T ) ∈ S2 is

D5((QQQT T )) = {Φ((QQQT T )) : Φ ∈ D5}=
{(QQQT T ),(T QQQT ),(QQT T Q),(QT T QQ),(T T QQQ)}= C2

1.

The orbit of (QQQT T ) only captures 5 out of the 10 possible states in C2. The ro-
tations and reflections map (QQQT T ) onto identical configurations. This increases
the number of lumping classes, so the dimensionality reduction of the system is less
significant. The remaining five elements form another lumping class

C2
2 = {(QQT QT ),(QT QQT ),(QT QT Q),(T QQT Q),(T QT QQ)}.

Continuing, four more lumping classes can be identified. This means that the origi-
nal system with 25 = 32 equations can be reduced to a system with only 8 equations.
Using similar arguments, for N = 6 and N = 7, the exact systems can be lumped
from 64 and 128 to 18 and 30 equations, respectively. Given that for the cycle graph
2N > |Aut(G)|= 2N, the argument presented in Section 2.4.4 can be used to show
that the number of lumping classes for the cycle graph is bounded from below by
2N

2N = 2N−1

N . This indicates that the number of equations in the lumped system is
much larger than polynomial in N. It is interesting to note that in the case when the
number of nodes is a prime number, N = p, then it can be shown that the number of
lumping classes is (2p−1 − 1)/p+ 2(p−1)/2 + 1. A similar formula is not known in
the general case of an arbitrary value of N.
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2.6 Conclusions and outlook

In this chapter, we have investigated network processes for which the status of a
node can change in response to the status of its neighbours. These processes are rel-
evant to understanding a number of important phenomena such as epidemic propa-
gation, firing in neuronal networks, the voter model in social sciences or the Ising
model in statistical physics. Such processes are controlled by the structure of the
graph. We have provided a unified framework for arbitrary networks and arbitrary
dynamics. The system of master equations serves as a theoretical basis for deriving
and developing further exact and approximate models, e.g. the pair approximation
model. Moreover, approximating models can be validated by comparing them to
these exact models. The exact model also enables us to test simulation results. In
Fig. 2.11, we show that for the fully connected and star networks and SIS dynamics,
the lumped system is identical to results based on stochastic simulation. The lumped
systems are obtained from Propositions 2.3 and 2.4 with node statuses Q = S and
T = I, and by substituting the actual transition rates as follows: fSI = τn, where n
denotes the number of infected neighbours and fIS = γ . This not only confirms that
lumping is correct, but provides strong evidence that the simulations are correctly
implemented.
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Fig. 2.11: Illustration of the perfect agreement between the lumped systems (solid
lines) and stochastic simulations (◦) for the (a) full and (b) star networks with N =
1000 and γ = 1, and with (a) τ = 0.005 and (b) τ = 4.0.

The master equations allow us to determine the time dependence of the proba-
bility of an arbitrary state, e.g. QT Q in a network with three nodes, meaning that
nodes 1 and 3 are in status Q and node 2 is in status T . As a consequence, marginal
probabilities (e.g. the probability of a node having a given status or the expected
number of nodes with a given status) can be obtained, for example, the probability
node 1 has status Q is XQQQ +XQQT +XQT Q +XQT T .
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Spectral investigation of the transition matrix gives information about the long-
term behaviour of the system [230, 312]. The transition matrix P, given in (2.3), has
a zero eigenvalue, because the sum of the entries in each column is zero. The entries
in the diagonal are negative and other entries are non-negative; hence, Gershgorin’s
theorem [109, 119] yields that all eigenvalues have real parts at most zero. The
spectrum of the transition matrix has been studied in more detail in the case of SIS
dynamics. For a complete graph, the system can be lumped to a tractable size. The
spectrum of the resulting (N +1)× (N +1) matrix was studied in [230] in order to
understand the quasi-steady state behaviour. Picard [252] proved that the matrix has
a single zero eigenvalue (with eigenvector corresponding to the disease-free fully
susceptible state) and all other eigenvalues are real and negative. We note that this
is true for a more general class of tridiagonal matrices (see Theorem 8.2.6 in [99]).

Numerical investigation shows that one negative eigenvalue (denoted λ1 and
called the small eigenvalue) is very close to zero and the remaining negative eigen-
values (called large eigenvalues) are far from zero. As N or the infection rate in-
creases, the small eigenvalue λ1 converges rapidly to zero and the large eigenvalues
decrease further; the spectral gap increases. This explains the appearance of a quasi-
steady state, since the small eigenvalue dominates according to exp(λ1t). Thus, the
time to extinction is of order −1/λ1. Lumping enables us to determine λ1 as a func-
tion of the infection rate τ even for relatively large graphs with a few hundred nodes.
(In [312], graphs with at most N = 13 nodes are investigated.) In Fig. 2.12, −1/λ1

is plotted for a range of τ values for a graph with N = 500 nodes and for recovery
rate γ = 1.

It is well known that the threshold for the existence of the endemic equilibrium
in the mean-field approximation for a complete graph is given by Nτ = γ; hence,
for these parameter values the mean-field yields τc = 1/Nγ = 0.002 as a thresh-
old value. In Fig. 2.12, one can see the well-known fact that the continuous-time
Markov chain does not give a threshold value; on the other hand, −1/λ1 depends
on τ in a strongly nonlinear way when τ > τc. The inset with a logarithmic scale
shows that in this range the time to extinction increases faster than exponentially,
and becomes soon of order 106. Practically, this means that the quasi-steady state is
almost equivalent to a steady state in the classical sense. In Fig. 2.12, one can see
that around τ = 0.0027 there is a threshold-like abrupt change in the value of the
time to extinction. We emphasise again that these plots are based on using the exact
master equations and exploit the possibility of lumping.

The lumped system also enables us to derive an explicit formula for the approx-
imation of the quasi-steady state. Namely, the quasi-steady state can be obtained
starting from the tridiagonal transition matrix by omitting its first row and column
and changing the upper-left entry in such a way that the sum of the first column
becomes zero. Then, the remaining N ×N matrix does not have an absorbing state
and its stationary state is the quasi-steady state of the original system. This station-
ary state is given by the eigenvector corresponding to the zero eigenvalue. For a
tridiagonal matrix, this can be given explicitly. Carrying out this calculation, the
quasi-steady state is
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Fig. 2.12: Dependence of the time to extinction (that is of order −1/λ1) on the per-
edge infection rate τ for SIS dynamics on a complete graph with N = 500 and γ = 1
with a lin-log plot in the inset.

[I]e =
N−1

∑
k=0

(k+1)Ak

/
N−1

∑
k=0

Ak , (2.18)

where A0 = 1 and

Ak =
τk(N −1)(N −2) · · ·(N − k)

γk(k+1)
, k = 1,2, . . . ,N −1.

This formula will be used later in Chapter 4 to test the accuracy of mean-field ap-
proximations.

Unfortunately, the number of equations required for an exact description of the
probabilities of each state grows exponentially with the size of the network. Auto-
morphisms of the graph can be exploited to reduce the number of equations through
lumping. We have identified the precise link between the lumpability of the equa-
tions resulting from network processes and the symmetries of the network as speci-
fied by the automorphism group of the network. In Table 2.1, we display a number
of networks for which lumping can be carried out with success (i.e. the full system
can be reduced to a more tractable system, which is still exact, and can be evaluated
numerically.)

It is worth noting that lumping in general relies on the identification of the auto-
morphism group of a network, which in itself is a formidable task. However, as seen
from our example, it is not necessary to have the complete group in order to obtain
a significant reduction. It is also feasible to consider the possibility of a procedure
that would not be exact, but rather an approximate lumping.

In general, this top-down technique and lumping work best and are ideal for net-
works of small size or networks with many symmetries. In many instances, the long-
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term behaviour is of interest. Using this approach, dynamics with a single absorbing
state (like the SIS) are difficult to analyse. For dynamics with more absorbing states
(like the voter model or SIR), the final ratio of probabilities of the different absorb-
ing states can be studied.

It is relatively straightforward to generalise this approach to transition rates
which may depend on the density of different statuses in the immediate neighbour-
hood or beyond. This could include dependence on global properties, e.g. the total
number of infected nodes, or modelling population-wide effects. This method ap-
plies similarly to hypergraphs [38, 111, 193] when classic edges are replaced by
hyperedges. For this or for the former case, transition rates may depend non-linearly
on the number of nodes of different statuses in the immediate neighbourhood or in
the hyperedge.

Network Full system Lumped system

SIS

2 line 4 3
3 line 8 6
4 line 16 10
4 cycle 16 6
Lollipop 16 12
Toast 16 9
Fully connected N 2N N +1
Star N 2N 2N

SIR
2 line 9 6
3 line 27 18
Fully connected 3 27 10
Fully connected N 3N (N +1)(N +2)/2
Star N 3N 3N(N +1)/2

Table 2.1: The reduction in number of equations from the full to the lumped system
for SIS and SIR epidemics and for a number of networks.
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