
Preface

Over the past decade, the use of networks has led to a new modelling paradigm
combining several branches of science, including physics, mathematics, biology and
social sciences. The spread of infectious diseases between nodes in a network has
been a central topic of this growing field. The fundamental questions are easily
stated, but answering them draws on observations and techniques of many fields.

There is a long successful history of mathematical modelling informing policies
to mitigate the impact of infectious disease. Typically, models divide the popula-
tion into compartments based on infection status and use simple assumptions about
mixing and movements between these compartments. Over time, these models have
grown more sophisticated to more accurately incorporate the contact structure of
the population and to take advantage of increased computational resources. For ex-
ample, sexually transmitted diseases have been investigated using high-dimensional
compartmental models separating individuals by contact rates, socio-economic sta-
tus and many other factors. However, when we make the additional observation that
partnerships may be long-lasting, a new paradigm is needed, leading naturally to a
network representation of the population structure.

Progress in model development has been extremely fast and has attracted inter-
est from a diverse set of researchers. The fundamental objective is to combine the
underlying population contact structure and the properties of the infectious agent
to yield an understanding of the resulting spectrum of epidemic behaviours. To do
this, researchers translate observed population and disease properties into a well-
defined model. In many cases, the model sits at the interface of graph/network the-
ory, stochastic processes and probability theory, dynamical systems, and statistical
physics. The diversity of researcher backgrounds and the variety of applications
considered have led to the development of many different modelling approaches.
As the field matures, there is a need to increase understanding of how these differ-
ent models fit together, how they relate to the underlying assumptions and how to
develop an appropriate mathematical framework to unify different approaches.
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This book sets out to make a contribution to modelling epidemics on networks
by synthesising a large pool of models, ranging from exact and stochastic to approx-
imate differential equation models, so that we may:

1. recognise underlying model assumptions and the resulting model complexity;
2. provide a mathematical framework with which we can describe observed phe-

nomena and predict future scenarios;
3. permit direct comparison of the main models and provide their hierarchy; and
4. identify research gaps and opportunities for further rigorous mathematical

exploration.

Chapter 1 introduces the reader to the fundamentals of disease transmission mod-
els and the underlying networks. Chapter 2 takes a rigorous probabilistic view and
frames disease transmission on a network as a continuous-time Markov chain. In
contrast, Chapter 3 builds a hierarchy of models starting at the node level which
depend on the node–neighbour pairs, which in turn depend on triples formed by
considering the next-nearest neighbours. Chapter 4 focuses on mean-field and pair-
wise models and their analysis on homogeneous networks. Chapter 5 extends ap-
proaches of Chapter 4 to heterogeneous networks and introduces effective degree
models. In Chapter 6, the focus is primarily on SIR epidemics, and percolation
theory methods are used to derive the low-dimensional edge-based compartmen-
tal model. Chapter 7 brings the different SIR models together, showing that under
reasonable assumptions, the high-dimensional models of earlier chapters reduce to
the low-dimensional model of Chapter 6. Chapter 8 extends the earlier models to
account for the simultaneous spread of the disease and change in the network, con-
sidering several scenarios for how networks vary in time. Chapter 9 generalises the
pairwise and edge-based compartmental models to non-Markovian epidemics, lead-
ing to integro-differential and delay differential equations. Chapter 10 starts from
a Markov chain to derive the Fokker–Planck equation for the distribution of the
number of infected individuals as a function of time and uses the resulting partial
differential equation (PDE) to investigate epidemic processes. Finally, Chapter 11
shows that our models can perform surprisingly well even in networks, including
empirically observed networks, for which the assumptions they are based on do
not appear to be satisfied. The Appendix gives efficient simulation algorithms and
discusses issues encountered in simulating epidemics on networks.

With more space, we would have liked to make a stronger emphasis on prob-
abilistic models. Moreover, we would have examined epidemic control measures
such as vaccination and contact tracing, as well as household models. Many other
topics, for example, multilayer networks (networks with multiple types of connec-
tions), are left out, although many of the techniques we discuss apply to them. An
additional topic, deserving of a book on its own, would be the use of real-world data
to parametrise network models.

This book contains a number of rigorous mathematical arguments and proofs.
However, a guiding principle throughout is to appeal to and be useful for audi-
ences in fields outside of mathematics. Some quantitative sophistication will be
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necessary; in particular, previous exposure to linear algebra, calculus, differential
equations, dynamical systems and basics of probability and stochastic processes
would be useful. We do not assume knowledge of graph theory.

Advanced undergraduate and graduate students can use the book as a foundation
for learning the main modelling and analysis techniques. There are many exercises
designed to develop a deeper understanding of the topic. Models and results of im-
mediate applicability are signposted through the use of grey boxes.

We use this format to highlight readily implementable models or to summarise
model outcomes, such as steady states, final epidemic size, basic reproductive
ratio R0, probability of an epidemic, etc.

Doctoral students, researchers and experts in this area can use the book not only
as a reference guide or synthesis of the major modelling frameworks and model
analysis tools but also to (i) confirm the validity and optimal range of applicabil-
ity of models, (ii) understand how mathematical tools have been and are used in
network modelling and (iii) identify further synergies between mainstream mathe-
matical methods and problems arising in network modelling.

To enhance the flow of the presentation, citations to previous research are con-
centrated either at the beginning or end of chapters. This allows us to (a) build up
models from the ground up by unifying different approaches leading to synthesised
models and (b) cite further new developments that we could not cover.

Pseudocode for efficient epidemic simulation algorithms is given in the
Appendix, and ready-to-run source code is available at the following website:

https://springer-math.github.io/Mathematics-of-Epidemics-on-Networks/

These include stochastic simulation of SIS and SIR on networks and numerical
solutions of many differential equation models we present in the book. An exten-
sive Python package using NetworkX [130] is provided, and many of these are also
available in Matlab. We hope to add additional languages. These will help readers
to complete many of the simulation-based exercises proposed in the book and may
assist other researchers with their own projects. Other resources are available; for
example, a useful package in C++ is EpiFire [143]. Solutions to exercises will be
made available for instructors who use the book. Inevitably, small errors creep into
any book. Please contact us directly for solutions or to report errors.
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Final thoughts: We would like to end with a memorable summary of our book
about epidemics on networks. We hope this epidemic sonnet works:

When partnerships endure so long that to
Disease they are like frozen ties that bind,

Mass action fails us till new paradigms
Emerge; and networks then are useful tools.

Equation counts are exponential till
Reduced — through automorphic symmetries

Or caref’ly cutting out some vertices.
But yet complexity is too high still.

And so our mod’ler must approximate
And close equations — but not too simply.
For she must doubly count a high degree.

Or, she may watch diseases percolate.

With these techniques our mod’ler has new keys
To learn how partnerships affect disease.
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