Chapter 2
Value Iteration ADP for Discrete-Time
Nonlinear Systems

2.1 Introduction

The nonlinear optimal control has been the focus of control fields for many decades
[7, 10, 23, 39]. It often needs to solve the nonlinear Bellman equation. The Bellman
equation is more difficult to work with than the Riccati equation because it involves
solving nonlinear partial difference equations. Although dynamic programming has
been a useful technique in handling optimal control problems for nonlinear systems,
it is often computationally untenable to perform it to obtain the optimal solutions
because of the well-known “curse of dimensionality” [9, 14]. Fortunately, relying
on the strong abilities of self-learning and adaptivity of artificial neural networks
(ANNs), the ADP method was proposed by Werbos [46, 47] to deal with optimal
control problems forward-in-time. In recent years, ADP and related research have
gained much attention from scholars (see the recent books [22, 40, 50] and the
references cited therein).

Itis important to note that the iterative methods are often used in ADP to obtain the
solution of Bellman equation indirectly and have received more and more attention. In
[24], iterative ADP algorithms were classified into two main schemes, namely policy
iteration (PI) and value iteration (VI) [38, 40], respectively. PI algorithms contain
policy evaluation and policy improvement [18, 38, 40]. An initial stabilizing control
law is required, which is often difficult to obtain. Comparing to VI algorithms, in
most applications, PI would require fewer iterations as a Newton’s method, but every
iteration is more computationally demanding. VI algorithms solve the optimal control
problem without requirement of an initial stabilizing control law, which is easy to
implement. However, the stabilizing control law cannot be obtained until the value
function converges. This means that only the converged optimal control (function
of the system state x;) u*(x;) can be used to control the nonlinear system, where
the iterative controls v;(x;), i = 0, 1, ..., may be invalid. Hence, the computational
efficiency of the VI ADP method is low. Besides, most of the VI algorithms are
implemented off-line which limits their applications very much. In this chapter, the

© Springer International Publishing AG 2017 37
D. Liu et al., Adaptive Dynamic Programming with Applications

in Optimal Control, Advances in Industrial Control,

DOI 10.1007/978-3-319-50815-3_2

38 2 Value Iteration ADP for Discrete ...

VI ADP approach is employed to solve the optimal control problems of discrete-time
nonlinear systems, where several value iteration schemes are developed to overcome
the above difficulties.

In the beginning, an ADP scheme based on general value iteration (GVI) is devel-
oped to obtain optimal control for discrete-time affine nonlinear systems [25]. The
selection of initial value function is different from the traditional VI algorithm, and
a new method is introduced to demonstrate the convergence property and the con-
vergence speed of value functions. The control law obtained at each iteration can
stabilize the system under some conditions. To facilitate the implementation of the
iterative scheme, three NNs with Levenberg—Marquardt (LM) training algorithm
are used to approximate the unknown system, the value function, and the control
law, respectively. Then, the GVI-based ADP method is generalized to solve infinite-
horizon optimal tracking control problem for a class of discrete-time nonlinear sys-
tems [45]. The GVI-based ADP algorithm permits an arbitrary positive-semidefinite
function to initialize it, and it is more advantageous than traditional VI algorithms
which starts from a zero function. Next, the ADP approach is used for designing
the optimal controller of discrete-time nonlinear systems with unknown dynamics
and constrained inputs [28]. The iterative ADP algorithm is developed to solve the
constrained optimal control problem based on VI algorithm, which can be regarded
as a special case of GVI. Three NNs are employed for approximating the unknown
nonlinear system dynamics, the value function and its derivatives, and the control
law, respectively, under the framework of globalized dual heuristic programming
(GDHP) technique. Finally, an iterative -ADP technique is developed to solve opti-
mal control problems for infinite-horizon discrete-time nonlinear systems [44]. The
condition of initial admissible control in PI algorithm is avoided. It is proved that
all the iterative controls obtained in the iterative -ADP algorithm can stabilize the
nonlinear system, which means that the iterative -ADP algorithm is feasible for
implementations both online and off-line. Convergence analysis of the value func-
tion is presented to guarantee that the iterative value function can converge to the
optimum monotonically.

2.2 Optimal Control of Nonlinear Systems Using General
Value Iteration

Consider the discrete-time nonlinear systems described by
X1 = FOg,), k=0,1,2,..., (2.2.1)
where x; € R” is the state vector at time k, u; = u(x;) € R™ is the state feedback

control vector, and F (-, -) is the nonlinear system function. Let xj be the initial state.
Let the following assumptions hold throughout this chapter.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 39

Assumption 2.2.1 F(0,0) = 0, and the state feedback control law u(-) satisfies
u(0) = 0, i.e., xx = 0 is an equilibrium state of system (2.2.1) under the control
Uy = 0.

Assumption 2.2.2 F'(xy, u) is Lipschitz continuous on a compact set £2 C R”
containing the origin.

Assumption 2.2.3 System (2.2.1) is controllable in the sense that there exists a
continuous control law on §2 that asymptotically stabilizes the system.

First, in Sects.2.2.1 and 2.2.2, we develop a GVI-based optimal control scheme
for discrete-time nonlinear systems with affine form [25]. Consider the following
affine nonlinear systems

X1 =f () + g, k=0,1,2,..., (2.2.2)

where f(-) € R"” and g(-) € R are differentiable and f(0) = 0. Our goal is to
find a state feedback control law u(-) such that u; = u(x;) can stabilize the system
(2.2.2) and simultaneously minimize the infinite-horizon cost function given by

J (o,) = J"(v0) = D U xi,), (2.23)
k=0

where U (xg, ug) is a positive-definite utility function, i.e., U(0, 0) = 0 and for all
(xg, ux) # (0, 0), U(xg, ur) > 0. Note that the control law «(-) must not only stabilize
the system on £2 but also guarantee (2.2.3) to be finite, i.e., the control law must be
admissible.

Definition 2.2.1 (cf. [5, 51]) A control law u(-) is said to be admissible with respect
to (2.2.2) (or (2.2.1)) on £2 if u(-) is continuous on £2, u(0) = 0, u; = u(x;) stabilizes
(2.2.2) (or (2.2.1)) on £2, and J (xo, u) is finite, Vxy € 2.

Let &7 (£2) be the set of admissible control laws associated with the controllable
set £2 of states. For optimal control problems we study in this book, the set <7 (£2)
is assumed to be nonempty, i.e., &7 (§2) # @.

Define the optimal cost function as

J () = ir;f (G, u): u € (£2)}.

According to [9, 11, 14, 23], the optimal cost function J*(x;) satisfies the Bellman
equation
J* () = Hbltiﬂ {U G w) + J* (o) } - (224

Equation (2.2.4) is the Bellman’s principle of optimality for discrete-time systems.
Its importance lies in the fact that it allows one to optimize over only one control

40 2 Value Iteration ADP for Discrete ...
vector at a time by working backward in time. The optimal control law u*(-) should

satisfy
uy = u*(x) = arg Hzﬁn {U(xk, uy) + J*(xk+1)} . (2.2.5)

In general, the utility function can be chosen as the quadratic form given by
U,) = X7 Oxi + uf Ruy, (2.2.6)

where Q € R"" and R € R™™ are positive-definite matrices. The optimal control
u;; satisfies the first-order necessary condition, from which we obtain

I/l* — _lR—l 8Xk+1 TaJ*(-xk+l) — —lRilgT(x)BJ*(.Xk+])
k 2 ouy, 0Xp11 2 k 0Xk 11 :

Equation (2.2.4) reduces to Riccati equation in the case of linear quadratic regulator
problem. However, in the nonlinear case, the cost function of the optimal control
problem cannot be obtained directly. Therefore, we will solve the Bellman equation
by the GVI algorithm.

2.2.1 Convergence Analysis

Since direct solution of the Bellman equation is computationally intensive, we present
an iterative ADP algorithm in a general framework based on Bellman’s principle of
optimality. Define the value function for system (2.2.2) as

V() = J" ().
As we have explained in Chap. 1, V(x;) is a short notation of V (x;, u) or V*(x;) for
convenience of presentation.
First, the initial value function is chosen as a quadratic form given by

Vo(x) = x Pox, (2.2.7)

where Py is a positive-definite matrix. Then, fori = 0, 1, 2, ..., the GVI-based ADP
algorithm iterates between a sequence of control laws v;(xy),

vi(xy) = arg min {x,;erk + u] Ruy + Vi))
Ui

= argmin {x{ Qxe + w Rug + Vi(f () + g } (2.2.8)

and a sequence of value functions Vi (xz),

http://dx.doi.org/10.1007/978-3-319-50815-3_1

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 41

Vie1 () = H}in {XZ Ox; + uj Ruy, + Vi) }
= x; O + v (o) Rvi (o) + Vil(f () + gGa)vi(xi). (2.2.9)

From the ith iteration of the algorithm in (2.2.8)—(2.2.9), we obtain v;(x;) and
Vie1 ().

In the above VI algorithm, (2.2.8) is called policy improvement (or policy update)
and (2.2.9) is called value function update [38, 40]. In (2.2.8), an improved policy
that is better or at least not worse than the previous policy is obtained using the current
value function. In (2.2.9), an updated value function, to be used in the next iteration,
is calculated using the current policy. It is a one-step procedure for approximating
the value function corresponding to the current policy, and thus, (2.2.9) is also called
one-step policy evaluation [38].

If we want the outcomes of the i th iteration to be V;(x;) and v;(x;), the iterative
algorithm (2.2.8)—(2.2.9) can be rewritten as follows.

From the initial value function given in (2.2.7), we obtain the control law
vo(xx) by

vo(xg) = arg nlin {x,Ika + uIRuk + Vo(xk+1)}
'k

= argmin {x{ Ox¢ -+ uj Rug + Vo (f () + gCeoup) }, (2.2.10)
Uy

where Vy(xg11) = x,LlPoka according to (2.2.7). Fori = 1,2, ..., the GVI-based
ADP algorithm iterates between value function update

Vi) = min {x Qxe + ug Ru + Vi1 (1)}

= X0 0% + v ()Rvi—1 (x) + Vie (F(xe) + gGa)vioi (), (2.2.11)
and policy improvement

vi(xg) = arg H}in {x{ Ox + uf Ruy + Vi(xes1) }

= arg min {x; Ox; + u} Ruy + Vi(f (xe) + gCa)ue) }. (2.2.12)
Uy

Now, from the i th iteration of the algorithm in (2.2.10)—(2.2.12), we obtain V;(xy)
and v;(x). Note that it is a simple calculation in (2.2.11) to update the value function
using the previous policy and previous value function, while in (2.2.12), it performs
the minimization so that an improved policy that is better or at least not worse than
the previous policy is obtained using the newly updated value function.

Since our goal in optimal control design is to obtain an optimal controller, it is
desirable to have the outcome of an algorithm as v;(x;) at the end of the i th iteration,
whereas V;(x;) becomes an internal variable.

The VI algorithm in (2.2.8)—(2.2.9) was originally given in [5] with V() = 0.
The iterative process is shown in Table 2.1, where each column of blocks represents

42

2 Value Iteration ADP for Discrete ...

Table 2.1 The iterative process of the VI algorithm in (2.2.8)—(2.2.9)

Vo — vo (2.2.8) Vi —v1 (2.2.8) Vo = vy (2.2.8)
minimization minimization minimization
vo — V1 (2.2.9) v = V1 (2.2.9) vy — V3(2.2.9)
calculation calculation calculation
i=0 i=1 i=2

Fig. 2.1 The iteration flowchart of algorithm in Table 2.1

Table 2.2 The iterative process of the VI algorithm in (2.2.10)—(2.2.12)

(empty) vo — Vi (2.2.11) vy — Vo (2.2.11)
calculation calculation

Vo — vo (2.2.10) Vi — v (2.2.12) Vo — v (2.2.12)

minimization minimization minimization

i=0 i=1 i=2

an iteration. The iteration goes from top to bottom within each column and from the
bottom block to the top block in the next column, as shown in Fig.2.1.

Similarly, the ADP algorithm in (2.2.10)—(2.2.12) can be described by Table 2.2.
Comparing between the two tables, one can see that they contain exactly the same
contents of iterations, except the fact that Table 2.2 did not start in the very first block.

Note that i is the iteration index and k is the time index. As a VI algorithm,
this iterative ADP algorithm does not require an initial stabilizing controller. The
value function and control law are updated until they converge to the optimal ones.
Furthermore, it should satisfy that V;(0) = 0, v;(0) = 0, Vi > 0.

It should be mentioned that the initial value function here is chosen as Vy(x;) =
x,IPoxk instead of Vy(-) = 0 as in most traditional VI algorithms [3-5, 51, 52]. In
what follows, we will prove the convergence of the iterations between (2.2.11) and
(2.2.12),1i.e.,V; > J* and v; — u* asi — oo.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 43
Lemma 2.2.1 Let u; be an arbitrary control law and let A; be obtained by
A1 () = x{ Ox + 1] (GORw; () + Ai(f () + 8 () i (1),

fori = 0,1,2,.... Let V; and v; be defined in (2.2.10)—(2.2.12). If Ag(xy) =
Vo(xe) = x] Poxy, then
Vilxe) < Ai(xp), Vi

The lemma can easily be proved by noting that V; is the result of minimizing the

right-hand side of (2.2.11) with respect to the control input u;, while A; is the result
of an arbitrary control input.
Theorem 2.2.1 Define the value function sequence {V;(xy)} and the control law
sequence {vi(xx)} as in (2.2.10)—~(2.2.12) with Vy(xx) = kaPoxk in (2.2.7).
If Vo(xx) = Vi(xx) holds for all xi, the value function sequence {V;} is a monotoni-
cally nonincreasing sequence, i.e., Vir1 (x;) < Vi(xx), Yxi, Vi > 0. If Vo (xr) < Vi(xe)
holds for all xy, the value function sequence {V;(xy)} is a monotonically nondecreas-
ing sequence, i.e., Vi(xy) < Viy1(x), Vi, Vi > 0.

Proof First, suppose that Vy(xx) > V;(x¢) holds for any x;. Define a new sequence
{®;}, which is updated according to

[@1 (x) = x] Oxi + v{ () Rvo () + Po(f (xi) + &) vo (i),
D1 () = x7 Ox + v)RV (0) + Di(f () + g viet (%)), i > 1,

where @ (x,) = Vo(xp) = x,;rPoxk and {v;} are obtained by (2.2.10) and (2.2.12).
Now, we use the mathematical induction to demonstrate

D1 () < Vi), Vi = 0.

Noticing @ (xx) = Vi (xz), it is clear that @ (x;) < Vio(xx). Then, we assume that it
holds for i — 1, i.e., @;(xx) < Vi_1(x), Vi > 1, V. According to

Vi) = x] Oxe 4+ v)Rvi_1 () + Viei (asr), > 1,

and
Bi1 () = X0 O + v ()Rvi_1 () + Pi(xesr), i > 1,

we have
Vi) — @ip10a) = Vie1 Oeg1) — @iieg) >0, i > 1,

which implies @;;1(xx) < Vi(xx), i > 1. Considering @ (x;) < Vj(xx), we have
Dii1(xx) < Vi(xg), i = 0. According to Lemma 2.2.1, it is clear that Vi (x) <

D1 (xx), Vi > 0. Therefore,

Vi1 () < Vi), Vi > 0, V.

44 2 Value Iteration ADP for Discrete ...

Thus, we complete the first part of the proof by mathematical induction.
Next, suppose that Vi (xz) < Vi (x¢) holds for any x;. Define a new sequence {/;},
which is updated according to

Tie1 () = x7 Ox + v (ORVi1 () + (), >0,

with I(x) = Vo(xe) = x] Poxs.
Similarly, we use the mathematical induction to demonstrate

Ii(a) < Vi (), Vi= 0.

First, it is easy to see Io(xx) = Vo(xx) < Vi(x;). Then, we assume that it holds for
i— 1’ i'e'7 Fi—l(xk) = Vi(xk)7 Vi = 17 V.Xk.
According to

Ti() = x7 Oxx +v]) Rvi(o) + Ty (1), 0> 1,

and
Vie1 () = x{ Ox + v ()Rvi () + Vi), > 1,

we have
Vi1 Ga) — Ii0q) = Vilggr) — HimiGag) =0, 1> 1,

which implies I(xz) < Vit1(xx), i = 1. Considering Ip(xx) < Vi(xx), we have

Ii(x) < Vig1(xx), i = 0. According to Lemma 2.2.1, it is easy to find V;(x;) <
I;(x), Vi > 0. Therefore,

Vi) < Vigr (), Vi > 0, Vxg.

Thus, we complete the second part of the proof by mathematical induction.

Remark 2.2.1 From Theorem 2.2.1, we can see that the monotonicity property of
the value function V; is determined by the relationship between Vj and Vi, i.e.,
Vo(xx) = Vi(x) or Vo(xx) < Vi(xx), Vxy. In the traditional VI algorithm, the initial
value function is selected as V((-) = 0. We can easily find that this is just a special
case of our general scheme, i.e., Vo(xz) < Vi(xx), which leads to a nondecreasing
value function sequence. Furthermore, the monotonicity property is still valid starting
from p if we can find that V,(xy) > Vp41 () or V,(xx) < V1 (xx) for all x; and
some p. For example,

Vy(xk) = Vpp1(xi) forall xp and some p > 0 = Vi(x) > Vig1 (), Y, Vi > p.

Next, we will demonstrate the uniform convergence of value function using the
technique of [27, 35], and we will show that the control sequence converges to the

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 45

optimal control law by a corollary. The following theorem is due to Rantzer and his
coworkers [27, 35].

Theorem 2.2.2 Suppose the condition

0 < J*(f(xp) + gxug) < y U (xx, uge)

holds uniformly for some 0 <y < ocoandthat) < aJ* <Vy < BJ*,0<a <1,
and 1 < B < o0. The value function sequence {V;} and the control law sequence {v;}
are iteratively updated by (2.2.10)—(2.2.12). Then, the value function V; approaches
J* according to the following inequalities:

13_

a—1 "

i|J*(xk). (2.2.13)

Moreover, the value function V;(xy) converges to J* (xi) uniformly on §2.

Proof First, we demonstrate that the system defined in this section satisfies the con-
ditions of Theorem 2.2.2. According to Assumption 2.2.2, the system state cannot
jump to infinity by any one step of finite control input, i.e., f (xz) + g(xx)uy is finite.
Because U (xx, uy) is a positive-definite function, there exists some 0 < y < oo such
that 0 < J*(f (xx) + g(xx)ux) < y U(xx, uy) holds uniformly. For any finite positive-
definite initial value function Vj, there exist « and S such that 0 < aJ* <V < gJ*
is satisfied, where 0 < o < 1 and 1 < 8 < oo. Next, we will demonstrate the lower
bound of the inequality (2.2.13) by mathematical induction, i.e.,

oa—1 "
|:1 + (l—}-—yl)’]J (xx) < Vilxp). (2.2.14)

When i = 1, since

o —

1
U (xx, - J* <0, 0<a<l,
Ty (YU, me) (x41)) < <a<

and aJ* < V), Vxi, we have
Vi) = min {U (i, we) + Vo(xis1)}
Ui

> min {U (x,) + o * (x4 }
Uy

> mi [(1+ “_1)11()+(“_I)J*()}
min — Xp, U o — — X
= m yl—i—y ks Uk ey k+1

—[1+a—_1}min{U()+ (1) }
= REREY Xiey Uk Xk+1

_|:1+Ot——1:|J*()
LT ase

46 2 Value Iteration ADP for Discrete ...

—1
> Ir;in ’U(Xk, uy) + |:1 + (1—1(—1)/——1)"—‘i|ﬁ(xk+1)]

Now, assume that the inequality (2.2.14) holds for i — 1. Then, we have
Vi) = min {U (. ug) + Viei (1) }
uy

-1
> n}l:n [U(xk, ur) + [1 + (1_:_17/—1)[1]]*@;{“)]

. (@ — Dy’
> ntltin H |:1 + W}U(xk’ uy)

N R U R
(+yHT o+ [T

— 1yt
= [1 + ((();/Ti;} Hllin {U G, we) 4+ J* o) }

_ (a—1) .
=l a e

Thus, the lower bound of (2.2.13) is proved. The upper bound of (2.2.13) can be
shown by the same procedure.

Lastly, we demonstrate the uniform convergence of value function as the iteration
index i goes to co. When i — oo, for 0 < y < oo, we have

. a—1 N "
lim |:1 + (1+—J/_])li|-] () = J" (x),

1—> 00

and
B —

lim |14+ ——
[(14+y-bHi

i— 00

]J*(xk) = J" ().

Define Vo (x¢) = lim V;(x;). Then, we can get Voo (xx) = J*(xx). Hence, V;(xy)
11— 00

converges pointwise to J*(x;). Because £2 is compact, we can get the uniform con-
vergence of value function immediately from Dini’s theorem [6]. The proof is com-
plete.

From Theorem 2.2.2, we can determine the upper and lower bounds for every
iterative value function. As the iteration index i increases, the upper bound will
exponentially approach the lower bound. When the iteration index i goes to oo, the
upper bound will be equal to the lower bound, which is just the optimal cost. Addi-
tionally, we can also analyze the convergence speed of the value function, which is
not available using the approaches in [3-5, 24, 51, 52]. According to the inequal-
ity (2.2.13), smaller y will lead to faster convergence speed of the value function.
Moreover, it should be mentioned that conditions of Theorem 2.2.2 can be satisfied
according to Assumptions 2.2.1-2.2.3, which are mild for general control problems.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 47

Specially, when 0 < Vp(xx) < Vi(xx), Vxi, according to Theorems 2.2.1 and
2.2.2, we can deduce that Vy(xx) < J*(x). Thus, the constants « and 8 satisfy
0 < a <1 and B = 1. Then, the corresponding inequality becomes

[1+ ol }J*() < Vi) < J* ()

—_— X i(x Xk)-

Aty 1)) = Vilx) = k

Note that larger o will lead to faster convergence speed of the value function.
When Vy(xx) > Vi(x), Vai, according to Theorems 2.2.1 and 2.2.2, we can

deduce that Vy(xx) > J*(x). So, the constants « and § satisfy « = 1 and 8 > 1.

Then, the corresponding inequality becomes

B —1

T = Vi) < [1 Ty

i|J*(xk)-

Note that smaller 8 will lead to faster convergence speed of the value function.
According to the results of Theorem 2.2.2, we can derive the following corollary.

Corollary 2.2.1 Define the value function sequence {V;} and the control law
sequence {v;} as in (2.2.10)~(2.2.12) with Vy(x;) = x,;rPoxk. If the system state
Xx is controllable, then the control sequence {v;} converges to the optimal control
law u* asi — oo, i.e., lim;_, o v; () = u*(xz).

Proof According to Theorem 2.2.2, we have proved that lim;_, o Vi(x¢) = Voo (X)) =
J*(x). Thus,
Voo () = min {x{ Qi + 4 Ruty + Voo (i) }.
uy

That is to say that the value function sequence {V;} converges to the optimal value
function of the Bellman equation. Comparing (2.2.5)—(2.2.12), the corresponding
control law {v;} converges to the optimal control law u* as i — oo. This completes
the proof of the corollary.

Next, we will complete the stability analysis for nonlinear systems under the
condition of control Lyapunov function.

Theorem 2.2.3 The value function sequence {V;} and the control law sequence {v;}
are iteratively updated by (2.2.10)—(2.2.12). If Vo(x;) = x,IPoxk > Vi(xx) holds for
any controllable x, then the value function V;(xy) is a Lyapunov function and the
system using the control law v;(xy) is asymptotically stable.

Proof First, according to Vp(xx) > V) (x;) and Theorem 2.2.1, we have
Vi) = Vig (a) = U, vila)), Vi

Because U (xx, vi(xy)) is a positive-definite function and V;(0) = 0, V;(xy) is also a
positive-definite function.

48 2 Value Iteration ADP for Discrete ...
Second, we have
Vily1) — Vi) < Vilagr) — Vipr () = —U G, vilg)) < 0.

By the Lyapunov stability criteria (Lyapunov’s extension theorem [26] or the
Lagrange stability result [30]), V;(xx) is a Lyapunov function, and the system using
the control law v;(x;) is asymptotically stable. This completes the proof of the theo-
rem.

Note that vy (xy) satisfies the first-order necessary condition, which is given by the
gradient of the right-hand side of (2.2.10) with respect to u; as

0.

a(x,Ika + M;Ruk) + (Bka)T 8V0(xk+1) _

Suk 3Mk 8xk+1

That is,
2Ruy + 28" () Po(f (xi) + g(xe)ux) = 0.

Then, we can solve for vo(x;) as

-1
vo(r) = — (g (w)Pog(v) +R) ™ g" (x)Pof (xa).-
The control law vy (x;) exists since Py and R are both positive-definite matrices.

Remark 2.2.2 If the condition Vy(x;) > V;(x;) holds, Vy(x;) = x,IPoxk is called
control Lyapunov function if the associated feedback control law vy(x;) can guaran-
tee the closed-loop system to be stable. Compared to PI algorithms, this condition
Vo(xx) = Vi(xg) is easier to satisfy than an initial stabilizing control law. In partic-
ular, we can just choose Py = k I, and « > 0, where I, is the n x n identity matrix.
By choosing a large «, Vo(xx) > Vi(xp) is satisfied. Besides, similar to [12, 49], it
should be mentioned that the condition V(x;) > V;(x;) in Theorem 2.2.3 cannot be
replaced by Vi (xx) > J*(xx), because the nonincreasing property of value function is
guaranteed by Vi (x¢) > V| (x;). However, if the condition Vi (x;) < V| (x;) holds, we
cannot derive that v;(xy) is a stable and admissible control for nonlinear systems. For
linear discrete-time-invariant systems, Primbs and Nevistic [33] demonstrated that
there exists a finite iteration index i* and that the closed-loop system is asymptotically
stable for all i > i*.

2.2.2 Neural Network Implementation

We have demonstrated the convergence of value function in the above under the
assumption that control laws and value functions can exactly be solved at each
iteration. However, it is difficult to solve these equations for nonlinear systems.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 49

|
Critic
| Network
‘ ‘
X
X | Action | Model £ | Critic U(x,,%,(x))
| Network vi(x,) Network " Network

—— > Signal Line

% Back-propagating Path
C—————> Weight Transmission

Fig. 2.2 The structural diagram of HDP algorithm

Fortunately, we can use NN to approximate v; and V; at each iteration. In this section,
we will use heuristic dynamic programming (HDP, see definition in Chap.1) to
implement the GVI algorithm.

The structural diagram of HDP algorithm is given in Fig.2.2. In the HDP
algorithm, there are three NNs, which are model network, critic network, and action
network, respectively. The model network is used to approximate the unknown non-
linear system by using available input—output data. The critic network approximates
the relationship between state vector x; and value function Vi (x), and the action
network approximates the relationship between state vector x; and control vector
Vi(xe).

We choose the popular backpropagation (BP) NN as our function approximation
scheme, although any other function approximation structures would also suffice.
The Levenberg—Marquardt (LM) algorithm is used to tune weights of NN, even
though any standard NN training methods would suffice, including the gradient
descent method. We find that LM algorithm can enormously improve the conver-
gence speed and decrease the approximation error, which will lead ADP to better
performance. LM algorithm, which combines steepest descent gradient and Gauss—
Newton method, mainly includes three processes: calculating the Jacobian matrix,
evaluating whether the parameters are getting closer to optimal ones or not, and
updating the damping parameter. The details of LM algorithm used here can be
found in [16].

The first step is to train the model network. The output of model network is
denoted as

Reyr = Woo () = Wo (Yo x),

http://dx.doi.org/10.1007/978-3-319-50815-3_1

50 2 Value Iteration ADP for Discrete ...

where x;, = [x,;r, ﬁzr(xk)]T is the input vector of model network and x; = Y;,'; Xk-
The input-to-hidden-layer weights Y,, are an (n + m) x [matrix and the hidden-to-
output-layer weights W,, are an [x n matrix, where / is the number of hidden neurons,
n is the dimension of state vector, and m is the dimension of control input vector.
The activation function is chosen as o (z) = tanh(z), and its derivative is denoted as

d
Z—(Z) e R™ forz e R.

The stopping criterion is that the performance function is within a prespecified
threshold, or the training step reaches the maximum value. When the weights of

model network converge, they are kept unchanged. Then, the estimated value of the
control coefficient matrix g(x;) is given by

6(2) =

. (W, (K)o (X)) . Ix
§ln) = — A — W6 () Y ()
8\/,‘ 8\/,‘
0
where)Ek = O and I, is the m x m identity matrix.
Bvi Im

Similarly, we use LM algorithm to train critic network and action network. The
output of the critic network is denoted as

\A/i(xk) = WL@TU (Yc(i)Txk).

Note that \A/,-(xk) is the estimated value function of the iterative algorithm (2.2.10)-
(2.2.12) from the i th iteration, whereas W? and Y” are the critic NN weights to be
obtained from NN training during the i th iteration. The target function for critic NN
training is given by

Vi) = x] Oxi + 01 i) RYi-1 () + Viet G, (2.2.15)

where Vi_i(Riy1) = WS DT (Y=DT%,). Then, the error function for training
critic network is defined by e, (xy) = V;(xx) — \% (xx), and the performance function
to be minimized is defined by

1
E.y(x) = =

5 eg(i) (x).

The weight tuning algorithm of critic network is the same as model network.

In the action network, the state x; is used as input to obtain the optimal control.
The output can be formulated as 9;(x;) = WiTo (YiTx;), whereas W/ and Y/ are the
action NN weights to be obtained from NN training during the i th iteration of the
ADP algorithm (2.2.10)—(2.2.12). The target of action NN training is given by

ViGrgr)

—t (2.2.16)
0Xk 11

1.
Vi) = —ER*‘gT(xk)

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 51

where X1 = W,Io(lﬂl[x;{, f)iT]T). The convergence of action network weights is
shown in [13]. The error function of the action network can be defined as e, (xx) =
vi(xx) — Vi(xx). The weights of the action network are updated to minimize the
following performance function:

1
Eqi) () = 561@ () eqiy (xx) -

The LM algorithm ensures that E,; (x;) will decrease every time when the parameters
of action network update.

At last, a summary of the present general value iteration adaptive dynamic pro-
gramming algorithm for optimal control is given in Algorithm 2.2.1.

Algorithm 2.2.1 General value iteration adaptive dynamic programming algorithm

Step 1. Initialize the weights of critic and action neural networks and the parameters
jgax’jglax’jgmx’ Sm’ Sa, SC imaxs Sv Qa R~
T
m

Step 2. Construct the model network Xy4; = WYIO‘(Y Xk)- Obtain the training data, and train the

model network until the given accuracy &, or the maximum number of iterations jj., . is reached.
Step 3. Set the iteration index i = 0 and Py = «1,.
Step 4. Choose randomly an array of p state vector {xli, x,%, . ,x‘Z}. Compute the output of
the action network {V; (x]l), Vi (x]%), Y (xf)}. Compute the output of the model network
{)Ac]lﬂ,fcfﬂ, . X‘;:H} and the output of the critic network {V,-(fc,lﬂ), Vi)s oo V,-(,%iﬂ)}.

Step 5. Set the iteration index i = i 4+ 1. Then, compute the target of the critic network training
Vi), Vi), ..., Vi)

by (2.2.15). Train the critic network until the given accuracy &, or the maximum number of
iterations j,, is reached.

Step 6. If i > 1, then go to Step 7. Elseif Vy > V| is true for all x, go to Step 7; otherwise, increase
k and go to Step 3.

Step 7. Compute the target of action network training

i), i), . v}

by (2.2.16), and train the action network until the given accuracy &, or the maximum number of
iterations j§,, is reached.
Step 8. If i > imax OF
Vi) = Vit Gl < & s=1.2.....p,

go to Step 9; otherwise, go to Step 4.
Step 9. Compute the output of the action network {V; (x,i), Vi (x]%), coy Vi (xf)}. Obtain the final near
optimal control law
u () = i),
and stop the algorithm.

52 2 Value Iteration ADP for Discrete ...

2.2.3 Generalization to Optimal Tracking Control

The above GVI-based ADP approach can be employed to solve the optimal tracking
control problem [45]. Consider the nonaffine nonlinear system (2.2.1), for infinite-
time optimal tracking problem, the objective is to design an optimal control u* (xy),
such that the state x; tracks the specified desired trajectory & € R", k=0, 1,....In
this section, we assume that there exists a feedback control u, ;, which satisfies the
following equation:

1 = F &k, ue k), (2.2.17)

where u, ; is called the desired control.

Remark 2.2.3 1t should be pointed out that for a large class of nonlinear systems,
there exists a feedback control u, ; that satisfies (2.2.17). For example, for all the
affine nonlinear systems (2.2.2) with invertible g(x), the desired control u, ; can be
expressed as

ek =g ' () G — f (&),

where g(&;) g’l (&) = I, and I,,, is the m x m identity matrix.

Define the tracking error as z; = &, — x. The utility function is quadratic and is
given by

Uz, 1) = 7 Qzk + 144 Ritg,

where wy = uy — u. and u,; is the desired control that satisfies (2.2.17). The
quadratic cost function is

T(zo,) = D Uz i) = D {5 Ok + (ue — e) "R —)}, (2.2.18)
k=0 k=0

where My = (os U1y ---)-

For system (2.2.1), our goal is to find an optimal tracking control scheme which
tracks the desired trajectory & and simultaneously minimizes the cost function
(2.2.18). The optimal cost function is defined as

T (@) = iﬁkf (TR

where p .= (Mks Mg+1s - - -). According to Bellman’s principle of optimality, J*(zx)
satisfies the Bellman equation

I (z) = II;IAH {U G) + T (z41) }

= nlllikn{U(Zk»l/«k) + 5 (F (2, 140))} - (2.2.19)

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 53
Then, the optimal control law is expressed as
w*(zi) = arg I?len {U G, i) + IT*(F 2k, i) } -
Hence, the Bellman equation (2.2.19) can be written as
J* (@) = Ulzes w*(z1) + T (F (2, 1 (20)))- (2.2.20)

Generally speaking, J*(z;) is a high nonlinear and nonanalytic function, which
cannot be obtained by directly solving the Bellman equation (2.2.20). Similar to
Sect.2.2.1, a GVI-based ADP method can be developed to obtain J*(z;) iteratively.
Then, the optimal tracking control can be obtained.

Let ¥ (z;) be an arbitrary positive-semidefinite function for z; € R”. Then, let the
initial value function be

Vo(z) = ¥ (z0). (2.2.21)
The control law vy(z;) can be computed as follows:
vo(zx) =arg nlllikn {U (@,) + Vo(zir)}
=arg ngikn {U (2,) + Vo(F (2, i)} (2.2.22)

where Vo (zx+1) = ¥ (zx+1). Fori = 1, 2, .. ., the iterative ADP algorithm will iterate
between value function update

Vi(zp) = I?len {Uz, i) + Vie1(zig 1)}

= U(zk, vie1 @) + Vit (F (zk, vie1(z1))),s (2.2.23)

and policy improvement

vi(zx) = arg Hllilkﬂ {U (z, i) + Vi(zpq1)} = arg Hllllkn {U (z, o) + VilF (zk, i)} -
(2.2.24)

Note that the ADP algorithm described above in (2.2.22)—(2.2.24) (for nonaffine
nonlinear systems) is essentially the same as that in (2.2.10)—(2.2.12) (for affine
nonlinear systems). The only difference between the two is the choice of initial value
function (see (2.2.7) and (2.2.21)).

Additional properties of the GVI-based ADP algorithm are given as follows.

Theorem 2.2.4 Fori = 0,1, ..., let Vi(zx) and v;(zx) be obtained by (2.2.21)-
(2.2.24). Let p, y, o, and B be constants such that

54 2 Value Iteration ADP for Discrete ...
O<p<y<oo, (2.2.25)
and 0 < a < B < 1, respectively. If Vzi, the following conditions
Uz, vi) < J*(F(zx, vi)) < y Uz, vi) (2.2.26)
and
ot (zk) < Vo(z) < BI"(z) (2.2.27)

are satisfied uniformly, then the iterative value function V;(z;) satisfies

a—1 . B—1 .

l+ ———) @) = Vi) = |1+ ———) 7 (@). (2.2.28)
(I+yhH (I+p7h

Proof The theorem can be proved in two steps.

(1) Prove the lower bound of (2.2.28).

Mathematical induction is employed to prove the conclusion. Let i = 1. From
(2.2.26) and (2.2.27), we have

Viz) = ngn {U (zk, vi) + Vo(zk41)}

> min {U (z, vi) + o *(zx41) }
Vk

> mi [(1+ O’_1)U()+(“_1)1*()]
= min S u— ik, V o0 — — Z
" V1+y k> Vk 1+ k+1

f— S ks \%

“ (1= re
- 1+y-! -

Assume the conclusion holds fori =[— 1,1 =1, 2, Then, for i = [, we have

Vi(z) = Hlin {U Gk, vi) + Vici (zrg)}

1
zmin[U(zk,vk)—l- 1—i-0[—171 J*(Zk+1)l
Ve (I+yhH

. a—1
> min [(1 + (1+—)/_])1)U(Zk,vk)

s oa—1 4 a—1 75)]
Bt St B Y
Aty 7 agyy)

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 55

a—1 . *
= (1 + (1+—y—l)l) r?/in{U(Zk, Vi) + I @) }

_(4 a—1 7
-(+a) e

(2) Prove the upper bound of (2.2.28).
We also use mathematical induction to prove the conclusion. Let i = 1. We have

Vilz) = H:in {U(zk, vi) + Vo(zis1)}

< Hiin {UGvi) + BT (i)}

-1
< rrgn [U(Zk, i) + BI* (zer1) + ﬁ—p)(f*(zw) — pU (z, Vk))]

1+
p—1 .
= (1 + —) rryn{U(Zk, Vi) +J* (k1))

1+p!
B—1
=(1 J* .
(+ T4p (zk)
Assume that the conclusion holds fori = [— 1,/ = 1,2,.... Then, fori = [,
we have

Vilzp) = H&n{U(Zk, Vi) + Vic1 (@et1)}
. B—1 .
< min [U(Zkv) + (1 + —,1)1 (Zk+1)]
v (1+p7hH

B—1 1\ .
<(1+ T n&tn{U(Zk’ vi) + I (@)}

(i) e

The proof is complete.

The following two results can readily be proved by following the same procedure.
Theorem 2.2.5 Fori = 0,1, ..., let v{(zx) and V;(zx) be obtained by (2.2.21)-
(2.2.24). Let p, vy, o, and B be constants that satisfy (2.2.25) and

l<a<pB <oo,
respectively. If Yz, the inequalities (2.2.26) and (2.2.27) hold uniformly, then the
iterative value function V;(z;) satisfies (2.2.28).

Corollary 2.2.2 Fori = 0,1,..., let vi(zx) and V;(zx) be obtained by (2.2.21)—
(2.2.24). Let p, y, o, and B be constants that satisfy (2.2.25) and

56 2 Value Iteration ADP for Discrete ...
0<a<pB <oo, (2.2.29)

respectively. If Vzx, the inequalities (2.2.26) and (2.2.27) hold uniformly, then the
iterative value function V;(z;) converges to the optimal cost function J*(z;), i.e.,

lim Vi(zx) = J* (zx)-
11— 00

Remark 2.2.4 When 0 < o < 1 < B < oo, we can also obtain result similar to
Theorem 2.2.2. Corollary 2.2.2 is obtained directly from Theorems 2.2.2, 2.2.4, and
2.2.5.

Remark 2.2.5 Note that techniques employed in this section are extensions of that
in [27, 35]. From Theorem 2.2.2, we can see that the iterative value function will
converge to the optimum as i — oo, which is independent from the initial value func-
tion V¥ (zx). Furthermore, for arbitrary constants p, y, «, and 8 that satisfy (2.2.25)
and (2.2.29), respectively, the iterative value function V;(zz) can be guaranteed to
converge to the optimum as i — oo. Hence, the estimations of p, y, «, and 8 are
not necessary.

2.2.4 Optimal Control of Systems with Constrained Inputs

The VI-based optimal control [5, 41], constrained optimal control [28, 51], and opti-
mal tracking control [19, 52] methods are special cases of the results in Sect. 2.2.3, by
noting that the initial value function is chosen as zero. Among them, input constraints
are often confronted in practical problems, which results in a considerable difficulty
in designing the optimal controller [17, 28, 51]. Therefore, in this section, we develop
a VI-based constrained optimal control scheme via GDHP technique [28].

Consider the discrete-time nonaffine nonlinear systems (2.2.1), we define £2, =
{w s ug = [ugg, upg, « . s une]” € R™, lu| < w1 = 1,2,...,m}, where u; is the
saturation bound for the /th actuator. Let U = diag{u;, up, ..., u,} be a constant
diagonal matrix.

In many literatures of optimal control [5, 13, 41, 42], the utility function is chosen
as the quadratic form of (2.2.6). However, when dealing with constrained optimal
control problems, it is not the case any more. Inspired by the work of [1, 29, 51], we
can employ a generalized nonquadratic functional

Uy _ _
Y () =2 / @ T (U 's) URds (2.2.30)
0
to substitute the quadratic term of u; in (2.2.6). Note that in (2.2.30),

& () = [¢7), ¢ W), s ¢)]

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 57

R is positive-definite and assumed to be diagonal for simplicity of analysis,
seR" @ e R", & T denotes (¢)T, and ¢ (+) is a strictly monotonic odd function
satisfying |¢(-)] < 1 and belonging to 7 (p > 1) and % (£2). The well-known
hyperbolic tangent function ¢ (-) = tanh(-) is one example of such functions. Besides,
it is important to note that % (i) is positive-definite since ¢! () is a monotonic odd
function and R is positive-definite.

In this sense, the utility function becomes U (x, ux) = x,Ika + % (u;). Accord-
ingly, (2.2.4) and (2.2.5) become

77 _ _
J*(x;) = min {kaka + 2/ @~ T(U's)URds + J*(ka)}
Uy, 0
and
Uy, _ _
u*(x;) = arg min [x,Tka + 2/ @& T (U's)URds +J*(xk+1)],
Uy 0

respectively.

The traditional VI-based iterative ADP algorithm is performed as follows. First,
we start with the initial value function Vj,(-) = 0 and solve V;(x;) and v;(x;) using
the iterative algorithm described by (2.2.22)—(2.2.24).

In this section, the GDHP technique is employed to implement the iterative ADP
algorithm. In the iterative GDHP algorithm, there are three NNs, which are model
network, critic network, and action network. Here, all the NNs are chosen as three-
layer feedforward ones. It is important to note that the critic network of GDHP
outputs both the value function V (x;) and its derivative aV (xz)/dx; [34], which is
schematically depicted in Fig.2.3. It is a combination of HDP and dual heuristic
dynamic programming (DHP).

The training of model network is complete after the system identification process,
and its weights will be kept unchanged. As a result, we avoid the requirement of
knowing F (xy, uy) during the implementation of the iterative GDHP algorithm. Next,
the learned NN model will be used in the training process of critic network and action
network.

We denote A;(xx) = 9V;(xx)/0x; in our discussion. Hence, the critic network
is used to approximate both V;(x;) and A;(xz). The output of critic network is
expressed as

Vil wi i i i
5] [30m0 -

Fig. 2.3 The critic network
of GDHP technique Xi Criti —» V()
ritic
Network AV (xx)
—
8xk

58 2 Value Iteration ADP for Discrete ...

where W. = [W!,, Wi,] and ¥/ are critic NN weights to be obtained during the ith
iteration of the ADP algorithm (2.2.22)—(2.2.24). Accordingly, we have Vi (xx) =
Wilo (Y x) and A;(x) = W o (YTx;). The target functions for critic NN training
can be written as

Vita) = U@, i1 0)) + Viet Gerr)

and

AU (o, Dicr () Vi g Girsr)
l’
Bxk Bxk

Aix) =

v T _
—=20x + 2(‘)8;()”‘)) TR (T"9:_1(x0))
Xk

X1 ey G\ s .
- Aic1 (Xgt1)-
Oxg Vi1 () Oxg

Then, we define the error function of critic network training as e, = V;(x;) — Vi (x)
and eﬁik = Ai(xp) —):i(xk). The objective function to be minimized in the critic
network is

Eax = (1 — DE} + tEl,

where 0 < 7 < 1 is a parameter that adjusts how HDP and DHP are combined in

GDHP,

Ey = (eZ,-k)z

N =

and |
A L AT
EGy = Eecikecik'

The weight update rule for training critic network is the gradient-based adaptation
which is given by

8EZik aE?ik
B + T] ’
oWip) OWip)
oE". dE™

4Clk +T .czk ,
aYi(p) Yip)

Wip+1) =Wip) — oec[(l)

Yip+1) =Yip) - ac[(l - 1)

where o, > 0 is the learning rate of critic network and p is the inner-loop iteration
step for updating NN weight parameters. The detailed discussion on superiority of
GDHP-based iterative ADP algorithm can be found in [42].

Remark 2.2.6 The GDHP (globalized dual heuristic programming) is implemented
using
Ej = (1 — 1)E;,

cik

+ TEX,.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 59

When t = 0, the algorithm reduces to HDP (heuristic dynamic programming) where
critic NN training is based on value function V. When t = 1, the algorithm becomes
DHP (dual heuristic programming) where critic NN training is based on the derivative
A of the value function. In order to determine the minimum value of a function, we
can either estimate the function itself or estimate its derivatives. However, when
0 < 7 < 1, the algorithm will use the estimates of both the value function and its
derivatives, which will usually lead to better results in optimization.

In the action network, the state x; is used as input to obtain the approximate
optimal control as output of the network, which is formulated as

Vilxy) = W;TO’ (Y;Txk).
The target function of control action is given by
vi(x) = argmin { U) + ViGean) |
The error function of action network can be defined as
eatipk = Vi(xx) — Vi(xp).

The weights of action network are updated to minimize

E . _l T .
a(ik = 2€u(i)kea(z)k-

Similarly, the weight update algorithm is

Wi+ 1) = W) —a| S|
‘ ‘ “‘Lawim I
i _vie | 9EaGk
Ya<p+1)_Ya(p) aa[ayal(p)]a

where o, > 0 is the learning rate of action network and p is the inner-loop iteration
step for updating weight parameters.

2.2.5 Simulation Studies

In this section, several examples are provided to demonstrate the effectiveness of the
present control methods.

60 2 Value Iteration ADP for Discrete ...

Example 2.2.1 Consider the linear system

0 04 0
xk+l = [0.3 1]xk + [1} Uy, (2.2.31)
where x; = [x1x, X2x]". The weight matrices are chosen as
02 0
Q= [0 0.2}

and R = 1. Note that the open-loop poles are —0.1083 and 1.1083, which indicates
that the system is unstable.

Algorithm 2.2.1 will be used here. To reduce the influence of the NN approxi-
mation errors, we choose three-layer BP NNs as model network, critic network and
action network with the structures of 3-9-2, 2-8-1, and 2-8-1, respectively. The
initial weights of NNs are chosen randomly in [—0.1, 0.1].

Before implementing the GVI algorithm, we need to train the model network first.
The operation region of system (2.2.31) is selectedas —1 <x; < land—1 <x, < 1.
Thousand samples are randomly chosen from this operation region as the training set,
and the model network is trained until the given accuracy &,, = 1073 is reached with
Jmax = 10000. The inner-loop iteration number of critic network and action network
is j¢,. = j%. = 1000, and the given accuracy is &, = &, = 107%. The maximum
outer-loop iteration is selected as iy,,x = 10, and the prespecified accuracy is selected
as & = 107°. The number of samples at each iteration is p = 2000.

Set Py = I,. We find that Vo > V; holds for all states, which can be seen from
Fig.2.4. After implementing the outer-loop iteration for 10 times, the convergence
of value function is observed. The 3-D plot of approximate value function at i = 0
and i = 10 is given in Fig.2.5, and the 3-D plot of error between the optimal cost
function J* and the approximate optimal value function V| is given in Fig.2.6. We
can see that the error between the optimal cost function and the approximate optimal
value function is nearly within 1073 in the operational region from Fig.2.6.

For the initial state xo = [1, —1]7, the convergence process of value function is
given in Fig.2.7. We apply the control law v to the system for 20 time steps. The
corresponding state trajectories are given in Fig.2.8, and the control input is shown
in Fig.2.9.

These simulation results indicate that our algorithm is effective in obtaining the
optimal control law via learning in a timely manner.

Example 2.2.2 Consider the nonlinear system

_ 0.2x1kexp(x%k) 02 0
x"“_[0.3x3, Tl o0 02| (22.32)

where x; = [x1x, X 1" and ug = [u, uzx]'. The desired trajectory is set to

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 61

1.5

Fig. 2.4 3-D plot of Vy—V in the operation region

Value function

Fig. 2.5 3-D plot of approximate value function at i = 0, 10

62 2 Value Iteration ADP for Discrete ...

x107

Fig. 2.6 Error between the optimal cost function J* and the approximate optimal value function
Vio

pafl S S SR]

Value function

0.6

The iteration index: i

Fig. 2.7 Convergence process of the value function at x = [1, —1]7

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration

X
“““ —
0 04k e
2
S
"6 ‘‘
@
g
L
S ool . /e
(2]
o
S o4k Mo
= : :
! :
S0.6 [g
1 :
0.8 B
-1 i i i
5 10 15 20
Time steps
Fig. 2.8 The state trajectories
0.35 T T T
0.3 k
0.25 J
5
g
= 0.2 4
e
5
o 0.15 E
o
e
'_
0.1 1
0.05 J
0 1 T
0 5 10 15 20

Time steps

Fig. 2.9 The control input

63

64 2 Value Iteration ADP for Discrete ...

& = [sin (k+ %) 0.5 cos(k)]T. (2.2.33)

According to (2.2.32) and (2.2.33), we can easily obtain the desired control

2
Upp = — |:3 (5)] (§k+1 - [0'253‘;2;@2")}))

The value function is defined as in (2.2.18), where Q = R = I € R**? and I denotes
the identity matrix.

We use NN to implement the GVI ADP algorithm. The structures of the critic
and the action networks are chosen as 2-8—1 and 2-8-2, respectively. We choose
a random array of state variable in [—1, 1] to train the NNs. For each iterative
step, the critic network and the action network are trained for 2000 steps under
the learning rate 0.005 so that the approximation error limit 1076 is reached. The
GVI algorithm runs for 30 iterations to guarantee the convergence of the iterative
value function. To illustrate the effectiveness of the algorithm, four different initial
value functions are considered. Let the initial value functions be the quadratic form
which are expressed by Ul(z) = zZszk,j =1,2,3,4. Let P, = 0. Let P, P35,
and P4 be positive-definite matrices given by P, = [9.07, —0.26; —0.26, 11.62],
P; = [10.48, 2.16; 2.16, 13.24], and P, = [11.59, 0.61; 0.61, 13.40], respec-
tively.

According to Theorem 2.2.2, for an arbitrary positive-semidefinite function, the
iterative value function will converge to the optimum. The curve of the iterative
value functions under the four different initial value functions ¥/(z;),j = 1,2, 3, 4,
is displayed in Fig.2.10, which justifies the convergence property of our algorithm.
The tracking error trajectories are shown in Fig.2.11. These results show good con-
vergence results as well as good tracking control performance.

Example 2.2.3 The following nonlinear system is a modification of the example
in [21]:

e+ sin(4uy, — 2xp;)
Xk+1 = |: Yo — 2uk s (2234)
where x; = [x1x, xx]" € R2, up € R, k = 1,2, We can see that x; = [0, 0]" is

an equilibrium state of system (2.2.34). However, the system (2.2.34) is marginally
stable at this equilibrium, since the eigenvalues of

_ [1 —2}
©0.0) 0 1

are all 1. It is desired to control the system with control constraint of |u| < 0.5. The
cost function is chosen as

0Xp 41

Bxk

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 65

6 5.5
s 5.4
5 4 5
3 g 53
C c
2 3 2
S S 52
®
S 2 =
1 5.1
0 5
0 10 20 30 0 10 20 30
Iteration steps Iteration steps
(a) (b)
9 7
8 6.5
c c
] kel
© ©
C c
2 7 S 6
(] (0]
=) =
®©
= s
6 5.5
5 . * 5
0 10 20 30 0 10 20 30
Iteration steps Iteration steps
(c) (d)

Fig.2.10 The trajectories of the iterative value functions with initial value function given by ¥/ (z),
i=1,2,3,4a0(z).b¥2(z). c ¥3(z). d ¥t ()

oo

J(xo) = Z [x,Ika +2 / ! tanh—T(fJ—'s)URds],
0

k=0

where Q and R are identity matrices with suitable dimensions and U = 0.5.

In this example, the three NNs are chosen with structures of 3—8-2, 2-8-3, and
2-8-1, respectively. Here, the initial weights of the critic network and action network
are all set to be random in [—0.1, 0.1]. Then, letting the parameter T = 0.5 and the
learning rate o, = o, = 0.05, we train the critic network and action network for
26 iterations. When k = 0, the convergence process of the value function and its
derivatives is depicted in Fig.2.12.

66

Tracking errors

0.5

Value Iteration ADP for Discrete ...

Fig. 2.11 The tracking error

(a)

4

The value function
N

Time steps

(b)

2
©
e
£
= e 1
o]
=
83
25 0
Nﬂ—
=0
= 3
o= -1
©
° 3
2
£ -2
-3

10

Iterations

20

30

20 25 30

—A
- — =\

10 20 30
Iterations

Fig. 2.12 a The convergence process of the value function. b The convergence process of the
derivatives of the value function

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 67

(a) (b)

0.1

-0.1

-0.2
-0.3774

-0.3 /

| -0.4

-1 -0.5
0 5 10 15 20 0 5 10 15 20

Time Time

The control input

The state trajectories

(c) (d)

0.1

-0.1
-0.2
-0.3 -0.5

1 -0.4 /

-1¢ -05
0 5 10 15 20 0 5 10 15 20

Time Time

The state trajectories
The control input

Fig. 2.13 Simulation results of Example 2.2.3. a The state trajectory x. b The control input u.
¢ The state trajectory x without considering the control constraint. d The control input u without
considering the control constraint

Next, for given initial state xo = [0.5, —1]", we apply the optimal control laws
designed by the iterative GDHP algorithm, with and without considering the control
constraints, to system (2.2.34) for 20 time steps, respectively. The simulation results
are shown in Fig.2.13, which also exhibits excellent control results of the iterative
GDHP algorithm.

2.3 Iterative #-Adaptive Dynamic Programming Algorithm
for Nonlinear Systems

In this section, we present an iterative 6-ADP algorithm for optimal control of
discrete-time nonlinear systems [44]. Consider the deterministic discrete-time
systems

68 2 Value Iteration ADP for Discrete ...
Xep1 = Fxg, w), k=0,1,2,..., 2.3.1)

where x; € R" is the n-dimensional state vector and u;, € R™ is the m-dimensional
control vector. Let x(be the initial state and F (xy, u;) be the system function.

Let u, = (ux, ug+1, . ..) be an arbitrary sequence of controls from & to co. The
cost function for state xo under the control sequence u, = (i, Uy, . ..) is defined as

J(xo0, uy) = Z U (xx, ug),

k=0

where U (xg, ugy) > 0, Vxg, up # 0, is the utility function.
For convenience of analysis, results of this section are based on Assumptions
2.2.1-2.2.3 and the following assumption.

Assumption 2.3.1 The utility function U (x, 1) is a continuous positive-definite
function of x; and uy.

As system (2.3.1) is controllable, there exists a stable control sequence u;, =
(tk, U1, - . .) that moves x; to zero. Let 2, denote the set which contains all the
stable control sequences, and let 2; be the set of the stable control laws. Then, the
optimal cost function can be defined as

J*(xx) = inf {J(xk, w): Uy € gk} . (2.3.2)

According to the Bellman’s principle of optimality, J*(x;) satisfies the Bellman
equation
J*(x) = min{U(xk,uk) +J*(F(xk,uk))}. (2.3.3)
Uy

The corresponding optimal control law is given by
u* () = argmin {U (e, we) + J*(F (o, w) } -
Uy,

Hence, the Bellman equation (2.3.3) can be written as
J*00) = U, u* () + T (F Qo 1™ (1)) (2.3.4)

We can see that if we want to obtain the optimal control law u* (x;), we must obtain the
optimal value function J*(x;). Generally speaking, J*(x;) is unknown before all the
controls u; € R™ are considered. If we adopt the traditional dynamic programming
method to obtain the optimal value function one step at a time, then we have to face
the “curse of dimensionality.” In [5, 43], iterative algorithms of ADP were used to
obtain the solution of Bellman equation indirectly. However, we pointed out that the
stability of the system cannot be guaranteed in [5] and an admissible control sequence

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 69

is necessary to initialize the algorithm in [43]. To overcome these difficulties, a new
iterative ADP algorithm will be developed in this section.

2.3.1 Convergence Analysis

In the present iterative 6-ADP algorithm, the value function and control law are
updated with the iteration index i increasing from O to co. The following definition
is necessary to begin the algorithm.

Definition 2.3.1 For x; € R”, let

@, = {¥): ¥() >0, and ID(x) € U, s.t. ¥ (F g, D(x0)) < ¥ () }
(2.3.5)

be the set of initial positive-definite functions.

Let ¥ (x;) be an arbitrary function such that ¥ (x;) € lI_/xk , Vx; € R". The existence
and properties of ¥,, will be discussed later. Let the initial value function

Vo(xx) = 0¥ (xi) (2.3.6)

Vx, € R", where 6 > 0 is a finite positive constant. The iterative control law v (x;)
can be computed as follows:

Vvo(xx) = arg Hbltin {U (ks) 4 Vo))

= arg l’r,llin {U e, wy) + Vo(F(xg, ug)}, 2.3.7)

where Vo (xp+1) = 0¥ (xgy1). Fori = 1,2, ..., the iterative 6-ADP algorithm will
iterate between

Vilo) = II;iH {U Gk, wie) + Viei 1)}
= UQxg, vie1) + Vit (F (g, vie1 (1)) (2.3.8)
and
vi(xx) = arg HLEH {U Gk, ug) + ViQigr)}

= arg H;in {U Ok, ug) + Vi(F (e, ug))} (2.3.9)

We note that the ADP algorithm (2.3.7)—(2.3.9) described above is essentially the
same as those in (2.2.10)—~(2.2.12) and (2.2.22)—(2.2.24). The only difference is the

70 2 Value Iteration ADP for Discrete ...

choice of initial value function and the choice of utility function. Here, the utility
function may be nonquadratic.

Remark 2.3.1 Equations (2.3.7)—(2.3.9) in the iterative 6-ADP algorithm are similar
to the Bellman equation (2.3.4), but they are not the same. There are at least three
obvious differences.

(1) The Bellman equation (2.3.4) possesses a unique optimal cost function, i.e.,
J*(xx), Vxi, while in the iterative ADP equations (2.3.7)—(2.3.9), the value func-
tions are different for different iteration index i, i.e., V;(xx) # V;(xt), Vi # j.

(2) The control law obtained by Bellman equation (2.3.4) is the optimal control law,
i.e., u*(x), Vxi, while the control laws from the iterative ADP equations (2.3.7)-
(2.3.9) are different for each iteration index i, i.e., v;(xx) # v;(xx), Vi # j, which
are not optimal in general.

(3) For any finite i, the iterative value function V;(x) is a sum of finite sequence
with a terminal constraint term and the property of V;(x;) can be seen in the
following lemma (Lemma 2.3.1). But the optimal cost function J*(x;) in (2.3.4)
is a sum of an infinite sequence. So, in general, V;(x;) 7# J*(x¢).

Lemma 2.3.1 Let x; be an arbitrary state vector. If the iterative value function
Vi(xx) and the control law v;(xy) are obtained by (2.3.7)—(2.3.9), then V;(x;) can be
expressed as

Vita) = D U (g viej) + 0% egir)-
j=0

Proof According to (2.3.8), we have

Vi(xr) =HL11H [U(xk, u) + rgklin {U(xk+1, Ujy1)
1, +1

R Jfli»fll{U(x"*"’l’ i) Vet }] , (2.3.10)
where
Vi(Xpyi) = HZiU{U(xk-H, Upri) + O (Xksiv1)}-
Uk+i
Define

N
upy = (Ug, Uggts -+ -, UN)

as a finite sequence of controls from k to N, where N > k is an arbitrary positive
integer. Then, (2.3.10) can be written as

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 71
Vibo) =min {U (., ue) + U1, Uesr) + - -
U

+ Uris pyi) + OW (pin 1)}

=" Ut vijGies)) + 0% (oiyig)-
j=0

The proof is complete.

In the above, we can see that the optimal value function J*(x;) is replaced by
a sequence of iterative value functions V;(x;) and the optimal control law u* (x;) is
replaced by a sequence of iterative control laws v;(x;), where i > 0 is the iteration
index. As (2.3.8) is not a Bellman equation, generally speaking, the iterative value
function V;(x;) is not optimal. However, we can prove that J*(xy) is the limit of
Vi(xy) as i — oo. Next, the convergence properties will be analyzed.

Lemma 2.3.2 Let u(xy) € Ay be an arbitrary control law, and let V;(xi) and v;(x;)
be expressed as in (2.3.7)—(2.3.9), respectively. Define a new value function P;(x;) as

Pip1 () = Uk, i(xk)) + Pi(oxes1), (2.3.11)
with Py(xy) = Vo(xr) = 0¥ (xp), Yxi, then Vi(xy) < Pi(xy).

From the definition given in (2.3.11), if we let w(xx) = u*(x;), then
lim P;(xx) = J* ().

In general, we have
Pi(x) = J (), Vi, xg.

Theorem 2.3.1 Let x; be an arbitrary state vector. The iterative control law v;(x;)
and the iterative value function V;(x;) are obtained by (2.3.7)—(2.3.9). If Assumptions
2.2.1-2.2.3 and 2.3.1 hold, then for any finite i = 0, 1, ..., there exists a finite
0 > 0 such that the iterative value function V;(x;) is a monotonically nonincreasing
sequence fori =0, 1, ..., ie,

Vi1 (i) < Vila), Vi. (2.3.12)

Proof To obtain the conclusion, we will show that for an arbitrary finite i < oo,
there exists a finite 6; > 0 such that (2.3.12) holds. We prove this by mathematical
induction.

First, we let i = 0. Let pu(x;) € 2 be an arbitrary stable control law. Define the
value function P;(xy) as in (2.3.11). For i = 0, we have

72 2 Value Iteration ADP for Discrete ...

P1(xx) = Uxk, p(xz)) + Po(xps1)
= U(xg, n(xx)) + 0 (F(xx, m(x))).

According to Definition 2.3.1, there exists a stable control law v, = v(x;) such that
W (xg) — W (F (xk, v(x))) > 0.

As v(x;) is a stable control law, the utility function U (xy, v(xy)) is finite. Then,
there exists a finite 6y > 0 such that

Ool¥ (xi) — W (F (e, V()] = U(xg, v(xi).
As u(xi) € 2y is arbitrary, we can let u(x) = v(x;). Let 0 = 6y and
Po(xr) = Vo(xk) = 0¥ (xi). (2.3.13)
We can get
OoW (xx) = U (xx, V(xi)) + OoW (F (xg, V(xx))) = P1(xp).
According to Lemma 2.3.2, we have
Vi) = H}in{U(xk,) + Vo(xe1)}

= n;in{U(xk, ux) + 0¥ (xi41)}

< Uxg, () + 6o W (F (xx, v(xx)))
= Pi(x). (2.3.14)

According to (2.3.13) and (2.3.14), we can obtain
Vo(xx) = 6o¥ (xi) = Pr(x) = Vi(x),

which proves Vy(x;) > Vi(xz).

Hence, the conclusion holds for i = 0. Assume thatfori =/—-1,/=1,2,...,
there exists a finite 6;,_; such that (2.3.12) holds. Now, we consider the situation for
i = [. According to Lemma 2.3.1, for all 5; > 0, the iterative value function V;(x;)
can be expressed as

-1

Vit = D U (kg vijo1 (i) + O (). (23.15)
j=0

where v;(x;) is the iterative control law satisfying (2.3.9), and

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 73
Vo (k) = Po(xk) = 0, (xx).

Let
up = Vi1 (), U1 = Vieo(Xkg1), - -+ Upg—1 = Vo(Xgkg1—1)-

Then, the iterative value function P,y (x;) can be derived as

P (a) = U, vie1 () + U1, viea (1))
+ o+ Ugi—1, vo(Xkti-1))
+ U &1, 1 kg1))) + PoXgpiv1)
-1
U (ks Viejo1 Oka)) + U @ity £ Ok0)) + O (egi51), (2.3.16)

~

~.
Il
=}

where ©(xg+;) € UApys. According to Definition 2.3.1, there exists a stable control
law v(xgy;) € Ay, such that

Y (xkt1) — Y (F X, V%10))) > 0.
Thus, there exists a finite 6; satisfying
O Xr1) — W (F Ot V)] = U Qs Vk41))- (2.3.17)

Let w(x¢+1) = v(xr41), and 51 = 6;. Then, according to (2.3.15)—(2.3.17), we can
get

-1
Vita) = U (g vicjo1 Gesg)) + 0% (i)
j=0
-1
> D" U (kg vinjo1 () + U Gierss D0iesn) + 0% (Kegr41)
j=0

= Py ().
According to Lemma 2.3.2, we have Vi (x) < P41 (x). Therefore, we obtain
Vi1 Oa) < Vilxg).

The mathematical induction is complete. On the other hand, as i is finite, if we le~t
0 = max{6y, 01, . .., 6;}, then we can choose an arbitrary finite 6 that satisfies 6 > 0
such that (2.3.12) holds. The proof is complete.

Remark 2.3.2 In (2.3.17),foralli = 1, 2, .. ., if we choose a 6; such that

74 2 Value Iteration ADP for Discrete ...

Oi[¥ (ki) — W (F Kei, V1)) > U Xgeis Vi)

holds, then we can obtain (2.3.12). In this situation, the iterative value function V;(x;)
is a monotonically decreasing sequence fori =0, 1,

Theorem 2.3.2 Let x; be an arbitrary state vector. If Assumptions 2.2.1-2.2.3 and
2.3.1 hold and there exists a control law v(x) € A which satisfies (2.3.5) such that
the following limit

U (e, v(xx))

lim s (2.3.18)
w0 W (xp) — W (F (x, v()))

exists, then there exists a finite 0 > 0 such that (2.3.12) is true.

Proof According to (2.3.17) in Theorem 2.3.1, we can see that for any finite i < oo,
the parameter 6; should satisfy

6. > U (Xgeyis V(X))
DT W) — W F (ks D(0010))

in order for (2.3.12) to be true. Let i — 0o0. We have

. . Uiy V(X))
lim 6; > lim = .
=00 =00 W (Xpyi) — W (F (gis VX))

(2.3.19)

We can see that if the limit of the right-hand side of (2.3.19) exists, then 6o, = lim 6;

can be defined. Therefore, if we define
6 = sup{6y, 01, ..., Os0}, (2.3.20)
then @ can be well defined. Hence, we can choose an arbitrary finite 6 which satisfies
6>0, (2.3.21)

such that (2.3.12) is true.

On the other hand, v(x;) € 2 is a stable control law. We have x, — 0 as
k — oo under the stable control sequence (Vg, Vg+1, - . .), Where vy = v(xy) for all
k=0,1,....If(2.3.18) is finite, then according to (2.3.19) and (2.3.20), there exists
a finite 6 such that

6> lim U (x, 1_)(Xk))_ .
x—0 W (xg) — W (F (g, V(xx)))

The proof is complete.

Remark 2.3.3 1In this section, we expect that the iterative value function V;(x;) —
J*(x;) and the iterative control law v;(x;) — u*(x;). It is obvious that u*(x;) € y.

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 75

If we put u*(x;) into (2.3.11), then for i — oo, lim P;(xx) = J*(x¢) holds for any
11— 00
finite 6.

From Theorems 2.3.1 and 2.3.2, we can see that if there exists a finite 6 such that
(2.3.12) holds, then V;(x;) > 0 and it is a nonincreasing sequence with lower bound
for iteration index i = 0, 1, We can derive the following theorem.

Theorem 2.3.3 Let x; be an arbitrary state vector. Define the value function V., (xy)
as the limit of the iterative value function V;(xy), i.e.,

Voo (xx) = lim V;(x).
11— 00

Then,
Voo (i) = Htlin{U(Xk, ur) + Voo (1)} (2.3.22)

Proof Let pu(x;) be an arbitrary stable control law. According to Theorem 2.3.1,
Vi=0,1,..., wehave

Voo () = Vig1 (i) = Uk, () + Vil).
Leti — co. We then have
Voo () = Uxk, (i) + Voo (k1)
So,

Voo (i) < muin{U(Xky u(x)) + Voo (k1) } (2.3.23)

Let ¢ > 0 be an arbitrary positive number. Since V;(x;) is nonincreasing for all i and
lim; o Vi(xx) = Voo (x1), there exists a positive integer p such that

Vp (i) — & < Vo) < V().
Then, we let
Vo) = Hllin{U(Xk, u) + Vo1 (1)} = U, vp—1()) + Vo1 (1)
Hence,

Voo (Xx) = V() — €
> Uxp, Vo1 (0) + Vo1 (ty1) — €
> Uxg, Vo1 () + Voo (1) — €
> H.lin{U(xk’ u) + Vo (k1)) — €.

76 2 Value Iteration ADP for Discrete ...
Since ¢ is arbitrary, we have

Voo () = min{U (i, k) + Voo (e 1)} (2.3.24)

Combining (2.3.23) and (2.3.24), we have (2.3.22) which proves the conclusion of
this theorem.

Remark 2.3.4 Two important properties we must point out. First, from the iterative
0-ADP algorithm (2.3.7)—(2.3.9), we see that the initial function ¥ (x;) is arbitrarily
chosen in the set ¥ (x;). The parameter 0 is also arbitrarily chosen if it satisfies
(2.3.21). Actually, it is not necessary to find all 6; to construct the set in (2.3.20).
What we should do is to choose a 6 large enough to run the iterative -ADP algorithm
(2.3.7)—(2.3.9) and guarantee the iterative value function to be convergent. This
allows for very convenient implementation of the present algorithm. Second, for
differentinitial value 6 and different initial function ¥ (x;), the iterative value function
of the iterative 6-ADP algorithm will converge to the same value function. We will
show this property after two necessary lemmas.

Lemma 2.3.3 Let v(x;) € Ay be an arbitrary stable control law, and let the value
function P;(x;) be defined in (2.3.11) with u = v. Define a new value function
Pi(x) as

P () = U, V(i) + Pi(xet1)s

with Py(x) = 0" (xp), Vxi. Let 0 and €' be two different finite constants which
satisfy (2.3.21), i.e., let 0 > 0 and 6’ > 0 such that (2.3.12) is true. Then, Py (xy) =
P (xx) = I'o(xx), where I'o(xy) is defined as

T () = lim [Z U (e i(xk+,-))].
=00]:0
Proof According to the definitions of P;(x;) and P;(x;), we have

Pi(xy) = Z U (Xt V() 4 O (Xyig1)
=0

Pi(i) = D U (xegjs 9r)) + 0'W (xisi)
j=0

where 6 and 6’ both satisfy (2.3.21), and 6 # 6. As v(x;) is a stable control law, we
have x;; — 0 asi — oo. Then, klim O (xy) = klim 0'W (x;) = 0 since x; — 0.
—00 — 00

So, we can get

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 71
i
Poo(x¢) = Pl (%) = lim {Z U (X, a(xk+j)>] = Foo ().
1—00
J=0
The proof is complete.

Next, we will prove that the iterative value function V;(x;) converges to the optimal
value function J*(x;) asi — oo. Before we give the optimality theorem, the following
lemma is necessary.

2.3.2 Optimality Analysis

The following lemma is needed for the optimality analysis.

Lemma 2.3.4 Let Vi(x;) be defined in (2.3.7)—(2.3.9) and P;(xy) be defined in
(2.3.11), fori = 0,1, Let 0 satisfy (2.3.21). Then, there exists a finite positive
integer q such that

Py(x) < J*(x) + e, Ve.
Proof According to Lemma 2.3.1, we have
Voo() = lim [Z U @i v,-,»<xk+,->)].
j=0

According to the definition of J*(x;), we have Voo (x) > J*(x;). Let g be an arbitrary
finite positive integer. According to Theorems 2.3.1 and 2.3.3, we have V,(x;) >
Voo (x1). According to Lemma 2.3.2, we have

Py(x) = V(o) = Voo (r) = J* ().

Next, let X
k+gq—1 #(k+q—1)
Ky = :

‘We can obtain
o0
Py(x) = J* () = 0% (k) — D Uxiyj) = 0.
J=q

From (2.3.11), as i (x) is a stable control law, the control sequence = (Mks Mit1s
...) under the stable control law 1 (x;) is a stable control sequence. Hence, we can
get OW (xx14) — 0 as g — oo. Then, from the fact that

78 2 Value Iteration ADP for Discrete ...

[eS]
. % _
qll)ngo E U(xk-‘r_/v le+j) - 05
J=q

we can obtain
o0
Jim [ewxw) - > Ul u72+,->] =0.
Jj=q

Therefore, Ve > 0, there exists a finite g such that P, (x;) — J*(xz) < ¢ holds. This
completes the proof of the lemma.

Theorem 2.3.4 Let V;(xy) be defined by (2.3.8) where 0 satisfies (2.3.21). If the
system state x; is controllable, then V;(x;) converges to the optimal cost function
J*(xp) as i — o0, ie.,
Vilxi) = J*(x), asi— oo, Vxg.
Proof According to the definition of J*(x;) in (2.3.2), we have
J* () < Vilxg).
Then, let i — oco. We have

J*(x1) < Voo (xp). (2.3.25)

Let £ > 0 be an arbitrary positive number. According to Lemma 2.3.4, there exists
a finite positive integer ¢ such that

V() < Pyla) < J () + €. (2.3.26)
On the other hand, according to Theorem 2.3.1, we have
Voo () < Vy(xx). (2.3.27)

Combining (2.3.26) and (2.3.27), we have Vo (x;) < J*(x¢) + €. As ¢ is an arbitrary
positive number, we have

Voo () < J*(xk). (2.3.28)
According to (2.3.25) and (2.3.28), we have
Voo (i) = J* ().

The proof is complete.

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 79

We can now derive the following corollary.

Corollary 2.3.1 Let the value function V;(x;) be defined by (2.3.8). If the system
state xy, is controllable and Theorem 2.3.4 holds, then the iterative control law v;(x;)
converges to the optimal control law u* (x).

As is known, the stability property of control systems is a most basic and necessary
property for any control systems. So, we will give the stability analysis for system
(2.3.1) under the iterative -ADP algorithm (2.3.7)—(2.3.9).

Theorem 2.3.5 Letx; be an arbitrary controllable state. Fori = 0, 1, .. ., if Assump-
tions 2.2.1-2.2.3 and 2.3.1 hold and the iterative value function V;(x;) and iterative
control law v;(xy) are defined by (2.3.7)—(2.3.9) where 0 satisfies (2.3.21), then v;(x)
is an asymptotically stable control law for system (2.3.1), Vi =0, 1,

Proof The theorem will be proved in two steps.

(1) Show that the iterative value function V;(x;) is a positive-definite function,
Vi=0,1,....

For the iterative -ADP algorithm, we have Vjy(x;) = 0V (xy).

According to Assumption 2.3.1, V;(x;) is a positive-definite function for i = 0.

Assume that for i = [, V;(x;) is a positive-definite function. Then, fori =1+ 1,
(2.3.9) holds. Let x; = 0, and we can get

Vi1 (0) = U(0, vi(0)) + Vi(F (0, v(0))).

According to Assumptions 2.2.1-2.2.3 and 2.3.1, we have v;(0) = 0, F(O,
vi(0)) = 0, U, v;(0)) = 0. As V;(xx) is a positive-definite function, we have
Vi(0) = 0. Then, we have V;;1(0) = 0. If x; # 0, according to Assumption 2.3.1,
we have Vi1 (x) > 0. On the other hand, let ||x;|| — oco. As U (xk, uy) is a positive-
definite function, V;;(x;) — 00. So, Vi1 (x¢) is a positive-definite function. The
mathematical induction is complete.

(2) Show that v;(xy) is an asymptotically stable control law for system (2.3.1).

As the iterative value function V;(xy) is a positive-definite function, Vi =0, 1, .. .,
according to (2.3.8), we have

Vi(F O, vi(xi))) — Vi1 () = —U (g, vilx)) < 0.

According to Theorem 2.3.1, we have Vi (x) < Vi(x), Vi > 0. Then, for all
x; # 0, we can obtain

VilF O, vi(xr))) — Vila) < Vil (e, vi(x))) — Vier ()
= —UQq, vitx)) < 0.

80 2 Value Iteration ADP for Discrete ...

Fori =0, 1, ..., the iterative value function V;(x;) is a Lyapunov function [20, 26,
30]. Therefore, the conclusion is proved.

Next, we will prove that the optimal control law u*(x;) is an admissible control
law for system (2.3.1).

Theorem 2.3.6 Letx; be anarbitrary controllable state. Fori = 0, 1, .. ., if Assump-
tions 2.2.1-2.2.3 and 2.3.1 hold and the iterative value function V;(x;) and iterative
control law v;(xy) are defined by (2.3.7)—(2.3.9) where 0 satisfies (2.3.21), then the
optimal control law u*(xy) is an admissible control law for system (2.3.1).

The proof of this theorem can be done by considering the fact that J* (x;) is finite.
Therefore, we omit the details here.

Remark 2.3.5 From the above analysis, we can see that the present iterative 6-ADP
algorithm is different from VI algorithms in [5, 52]. The main differences can be
summarized as follows.

(1) The initial conditions are different. In [5, 52], VI algorithms are initialized by
zero, i.e., Vo(xx) = 0, Vxi. In this section, the iterative 6-ADP algorithm is
initialized by 0W (x;) # 0.

(2) The convergence properties are different. For VI algorithms in [5, 52], the iter-
ative value function V;(x;) is monotonically nondecreasing and converges to
the optimum. In this section, the iterative value function V;(x;) in the 6-ADP
algorithm is monotonically nonincreasing and converges to the optimal one.

(3) We emphasize that the properties of the iterative control laws are different. For
the VI algorithms in [5, 52], the stability of iterative control laws cannot be
guaranteed, which means the VI algorithm can only be implemented off-line. In
this section, it is proved that for all i = 0, 1, .. ., the iterative control law v;(xy)
is a stable control law. This means that the present iterative 6-ADP algorithm
is feasible for implementations both online and off-line. This is an obvious
merit of the present iterative -ADP algorithm. In the simulation study, we will
provide simulation comparisons between the VI algorithms in [5, 52] and the
present iterative 6-ADP algorithm. This conclusion echoes the observation in
Remark 2.2.2.

2.3.3 Summary of Iterative 0-ADP Algorithm

In the previous development, we can see that an initial positive-definite function
v(x;) € ll_/xk is needed to start the iterative -ADP algorithm. So, the existence of
the set ll_/xA is important for the algorithm. Next, we will show the El_/xk # (, where ¢}
is the empty set.

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 81

Theorem 2.3.7 Let x; be an arbitrary controllable state, and let J* (x;) be the opti-
mal cost function expressed by (2.3.2). If Assumptions 2.2.1-2.2.3 and 2.3.1 hold,
then

J () € ¥y,

Proof By Assumption 2.3.1 and the definition of J*(x;) in (2.3.2) and (2.3.4), we
can see that

N
J () = ngréo [Z U (e, “*(xkﬂ‘))]
k=0

is a positive-definite function of x;. From (2.3.4), we can also obtain
JE(F (o, ™ () < J5(F (), V.

This completes the proof of the theorem.

According to Theorem 2.3.7, ¥,, is not an empty set. While generally, the optimal
value is difficult to obtain before the algorithm is complete. So, some other methods
are established to obtain ¥ (x;).

Corollary 2.3.2 Let x; be an arbitrary state vector. If W (xi) is a Lyapunov function
of system (2.3.1), then ¥ (x;) € ¥,.

Remark 2.3.6 According to the definition of admissible control law, we can see that
¥, € W, is equivalent to that ¥, is a Lyapunov function. There are two properties
we should point out. First, the general purpose of choosing a Lyapunov function
¥ (xy) is to find a control v(x;) to stabilize the system. In this section, however, the
purpose of choosing the initial function 0¥ (x;) is to obtain the optimal control of
the system (not only to stabilize the system but also to minimize the value function).
Second, if we adopt V(x;) = ¥ (x;) to initialize the system, then the initial iterative
control law v;(xx) can be obtained by

voCu) = argmin {U (xe, 1) + ¥ ()}

We should point out that v;(x;) may not be a stable control law for the system,
although the algorithm is initialized by a Lyapunov function. Using the present
iterative 6-ADP algorithm (2.3.7)—(2.3.9) in this section, we can prove that all the
iterative controls v;(x;) fori = 0, 1, .. ., are stable and simultaneously guarantee the
iterative value function to converge to the optimum. Hence, our present algorithm is
effective to obtain the optimal control law both online and off-line.

82 2 Value Iteration ADP for Discrete ...

From Corollary 2.3.2, we can see that if we get a Lyapunov function of system
(2.3.1), then ¥ (x;) can be obtained. As Lyapunov function is also difficult to obtain,
we will give some simple methods to choose the function ¥ (x;).

First, it is recommended to use the utility function U (x;, 0) to start the iterative
6-ADP algorithm, where we set Vo (xz) = 08U (x¢, 0) with alarge 6. If we geta V (xi)
such that Vi (x;) < Vo(xi), then U(x;, 0) € ¥, .

Second, we can use NN structures of ADP to generate an initial function ¥ (xy).
We first randomly initialize the weights of the action NN. Give an arbitrary positive-
definite function G(x;) > 0 and train the critic NN to satisfy the equation

() = Gu) 4+ ¥ (F(x, (),

where ¥ (xx) and v(x;) are outputs of critic and action networks, respectively. The NN
structure and the training rule can be seen in the next section. If the critic network
training is convergent, then let ¥ (x;) = lIA/(xk) and the initial value function is
determined.

Remark 2.3.7 For many nonlinear systems and utility functions, such as [2, 52], we
can obtain U (x;, 0) € lI_/Xk. In this situation, we only need to set a large 6 for the initial
condition and run the iterative -ADP algorithm (2.3.7)—(2.3.9). This can reduce the
amount of computation very much. If there does not exist a stable control law such
that (2.3.18) is finite, then there may not exist a finite 6 such that (2.3.12) is true.
In this case, we can find an initial admissible control law 7 (x;) such that x;.y = 0,
where N > 1 is an arbitrary positive integer. Let

N
Vo) = D U kg, 1(6kcy0)-
=0

Then, using the algorithm (2.3.7)—(2.3.9), we can also obtain V;(x;) < Vi (xx). The
details of proof are available in [43].

Remark 2.3.8 The iterative 6-ADP algorithm is different from the policy itera-
tion algorithm in [1, 31]. For the policy iteration algorithm, an admissible control
sequence is necessary to initialize the algorithm, while for the iterative 6-ADP algo-
rithm developed in this section, the initial admissible control sequence is avoided.
Instead, we only need an arbitrary function ¥ (x;) € W, to start the algorithm.
Generally speaking, for nonlinear systems, admissible control sequences are diffi-
cult to obtain, while the function ¥ (x;) can easily be obtained (for many cases,
U(x,0) € lf/xk). Second, for PI algorithms in [1, 31], during every iteration step,
we need to solve a generalized Bellman equation to update the iterative control law,
while in the present iterative 8-ADP algorithm, the generalized Bellman equation is
unnecessary. Therefore, the iterative 6-ADP algorithm has more advantages than the
PI algorithm.

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 83

Now, we summarize the iterative -ADP algorithm as follows.

Algorithm 2.3.1 Iterative §-adaptive dynamic programming algorithm

Step 1. Choose randomly an array of initial states x; and choose a computation precision ¢. Choose
an arbitrary positive definite function ¥ (x;) € lpxk. Choose a constant 6 > 0.

Step 2. Let i = 0. Let the initial value function Vi (x;) = 0¥ (xi).

Step 3. Compute vy (xg) by (2.3.7) and obtain Vi (x;) by (2.3.8).

Step 4. If Vi (xx) < Vo(xx), then go to next step. Otherwise, 6 is not large enough, and choose a
larger 8’ > 6. Let & = 6" and go to Step 2.

Step 5. Leti =i 4 1. Compute V;(xx) by (2.3.8) and v;(x;) by (2.3.9).

Step 6. If V;(xx) < Vi_1(xx), go to Step 7; else, choose a larger / > 0. Let & = 6’ and go to
Step 2.

Step 7. If |Vi(xx) — Vi—1(xx)| < &, then go to next step; else go to Step 5.

Step 8. Stop.

Remark 2.3.9 Generally speaking, NNs are used to implement the present iterative
0-ADP algorithm. In order to approximate the functions V;(x;) and v;(x;), a large
number of x; in the state space is required to train NNs. In this situation, as we have
declared in Step 1, we should choose randomly an array of initial states x; in the
state space to initialize the algorithm. For all i = 0, 1, . . ., according to the array of
states x;, we can obtain the iterative value function V;(x;) and the iterative control
law v;(x) by training NNs, respectively. To the best of our knowledge, all the NN
implementations for ADP require a large number of x; in state space to approximate
the iterative control laws and the iterative value functions, such as [36, 48]. The
detailed NN implementation for the present iterative 6-ADP algorithm can be found
in [44].

2.3.4 Simulation Studies
To evaluate the performance of our iterative -ADP algorithm, we choose two exam-
ples with quadratic utility functions for numerical experiments.

Example 2.3.1 This example is chosen from [43, 52] with modifications. Consider

_ O.lekexp(xgk) -02 0
x"“_[09¢, |7 o —o2]™

where x; = [x1x, xox]" and wr = [uyx, use]’ are the state and control variables,
respectively. The initial state is xp = [1, —1]7. The cost function is the quadratic
form expressed as

J(xo, ggo) = Z (x;(erk + MZRMk)
k=0

where the matrices Q and R given as identity matrix with suitable dimensions.

84 2 Value Iteration ADP for Discrete ...

Two NN are used to implement the iterative 8-ADP algorithm. The critic and
action networks are both chosen as three-layer BP NN with the structures of 2—-8-1
and 2-8-2, respectively. For each iteration step, the critic and action networks are
trained for 200 steps using the learning rate of 0.02 so that the NN training errors
become less than 10~°. To show the effectiveness of the iterative -ADP algorithm,
we choose four 6’s (including 6 = 3.5, 5, 7, 10) to initialize the algorithm. Let the
algorithm run for 35 iteration steps for different 6’s to obtain the optimal value
function. The convergence curves of the value functions are shown in Fig.2.14.

From Fig.2.14, we can see that all the convergence curves of value functions are
monotonically nonincreasing. For convenience of analysis, we let

6=3.5 6=5
8
6.2
7.5
s ° S 7
k3] k3]
c c
2 538 2 65
[o
= =
< 56 gL s
54 55
5
0 10 20 30 35 0 10 20 30 35
Iteration steps Iteration steps
(a) (b)
0=7 0=10
12 17
11 15
10
S s 13
g 9 e
2 2 "
ER E
© T 9
> 7 >
6 7
5 5
0 10 20 30 35 0 10 20 30 35
Iteration steps Iteration steps
(c) (d)

Fig. 2.14 The convergence of value functions for Example 2.3.1.a60 =3.5.b6 =5.¢0 = 7.
do =10

2.3 Iterative 6-Adaptive Dynamic Programming Algorithm for Nonlinear Systems 85

o 1 U (xx, vo(xx))
0 = I1m
=0 U(xg, 0) — U(F (xx, vo(xx)), 0)

where vy(x;) is obtained in (2.3.7). Then, for 6 = 3.5, we have 6, = 1.9015. For
6 = 5, we have 6, = 1.90984. For 6 = 7, we have 6y = 2.04469. For 6 = 10, we
have 6y = 2.16256. We can also see that if the iterative value function is convergent,
then the iterative value function can converge to the optimum and the optimal value
function is independent from the parameter 8. We apply the optimal control law to
the system for 7y = 20 time steps and obtain the following results. The optimal state
and control trajectories are shown in Fig.2.15a and b, respectively.

From the above simulation results, we can see that if we choose 6 large enough
to initialize the iterative 6-ADP algorithm, the iterative value function V;(x;) will be
monotonically nonincreasing and converge to the optimum, which verifies the effec-
tiveness of the present algorithm. Next, we enhance the complexity of the system.
‘We will consider the situation where the autonomous system is unstable, and we will
show that the present iterative 8-ADP is still effective.

Example 2.3.2 This example is chosen from [32, 37]. Consider

= (x%k + xgk + uy) cos(xax)
Xk+1 = [(xfk + x%k +) sin(xae) |7 (2.3.29)

States

10 12 14 16 18 20
Time steps

(a)

Controls
o
o
o ()]
I
|
(
b
1
1
1
4
4
*
+
|
* |«
tle e
:

-0.05F :
A
_01 ! ! ! ! ! ! ! ! !
0 2 4 6 8 10 12 14 16 18 20
Time steps
(b)

Fig. 2.15 The optimal trajectories. a Optimal state trajectories. b Optimal control trajectories

86 2 Value Iteration ADP for Discrete ...

6=3 06=5
6 10
c 5 c 8
] o
© ©
C c
S 4 2 6
(] ()
= =
® ©
> 3 > 4
2 2
0 5 10 15 0 5 10 15
Iteration steps Iteration steps
(a) (b)
0=7 6=10
12 16
14
10
c c
kel kel
e 8 2 10
2 2
ER E
p S 6
4
2 2
0 5 10 15 0 5 10 15
Iteration steps Iteration steps
(c) (d)

Fig. 2.16 The convergence of value functions for Example 2.3.2. a0 =3. b0 =5.¢c 0 = 7.
do=10

where x; = [x1x, xo]" denotes the system state vector and u; denotes the control.
The value function is the same as the one in Example 2.3.1.

The initial state is xo = [1, —1]7. From system (2.3.29), we can see that x; = 0
is an equilibrium state and the autonomous system F'(x;, 0) is unstable. We also
use NNs to implement the iterative ADP algorithm where four 6’s (including 6 =
3,5, 7, 10) are chosen to initialize the algorithm and the convergence curves of the
value functions are shown in Fig.2.16.

Applying the optimal control law to the system for 7y = 15 time steps, the optimal
state and control trajectories are shown in Fig.2.17a and b, respectively.

2.4 Conclusions 87

X

05} - % =X
[%2]
2
s Or ;
n g

-05f R
/
/
_1 1 1
0 5 10 15
Time steps
(a)
0.5 T T
o
£ -o5¢} §
c
8 -1t ;
-1.5 g
_2 1 I
0 5 10 15
Time steps
(b)

Fig. 2.17 The optimal trajectories. a Optimal state trajectories. b Optimal control trajectory

2.4 Conclusions

In this chapter, we developed several VI-based ADP methods for optimal control
problems of discrete-time nonlinear systems. First, a GVI-based ADP scheme is
established to obtain optimal control for discrete-time affine nonlinear systems. Then,
the GVI ADP algorithm is used to solve the optimal tracking control problem for
discrete-time nonlinear systems as a generalization. Furthermore, as a case study, the
VI-based ADP approach is developed to derive optimal control for discrete-time non-
linear systems with unknown dynamics and input constraints. It is emphasized that
using the ADP approach, affine and nonaffine nonlinear systems can be treated uni-
formly. Next, an iterative -ADP technique is presented to solve the optimal control
problem of discrete-time nonlinear systems. Convergence analysis and optimality
analysis results are established for the iterative 6-ADP algorithm. Simulation results
are provided to show the effectiveness of the present algorithm.

References

1. Abu-Khalaf M, Lewis FL (2005) Nearly optimal control laws for nonlinear systems with
saturating actuators using a neural network HJB approach. Automatica 41(5):779-791

88

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

2 Value Iteration ADP for Discrete ...

Abu-Khalaf M, Lewis FL, Huang J (2008) Neurodynamic programming and zero-sum games
for constrained control systems. IEEE Trans Neural Netw 19(7):1243-1252

. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Adaptive critic designs for discrete-time zero-

sum games with application to Hs, control. IEEE Trans Syst Man Cybern.-Part B: Cybern
37(1):240-247

. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Model-free Q-learning designs for linear

discrete-time zero-sum games with application to H-infinity control. Automatica 43(3):473—
481

. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time nonlinear HIB solution using

approximate dynamic programming: convergence proof. IEEE Trans Syst Man Cybern-Part B:
Cybern 38(4):943-949

. Apostol TM (1974) Mathematical analysis: A modern approach to advanced calculus. Addison-

Wesley, Boston, MA

. Athans M, Falb PL (1966) Optimal control: an introduction to the theory and its applications.

McGraw-Hill, New York

. Beard R, Saridis G, Wen J (1997) Galerkin approximations of the generalized Hamilton—

Jacobi-Bellman equation. Automatica 33(12):2158-2177

. Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton, NJ
. Berkovitz LD, Medhin NG (2013) Nonlinear optimal control theory. CRC Press, Boca Raton,

FL

. Bertsekas DP (2005) Dynamic programming and optimal control. Athena Scientific, Belmont,

MA

. Bitmead RR, Gever M, Petersen IR (1985) Monotonicity and stabilizability properties of solu-

tions of the Riccati difference equation: Propositions, lemmas, theorems, fallacious conjectures
and counterexamples. Syst Control Lett 5:309-315

Dierks T, Thumati BT, Jagannathan S (2009) Optimal control of unknown affine nonlinear
discrete-time systems using offline-trained neural networks with proof of convergence. Neural
Netw 22(5):851-860

Dreyfus SE, Law AM (1977) The art and theory of dynamic programming. Academic Press,
New York

FuJ, He H, Zhou X (2011) Adaptive learning and control for MIMO system based on adaptive
dynamic programming. IEEE Trans Neural Netw 22(7):1133-1148

Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm.
IEEE Trans Neural Netw 5(6):989-993

Heydari A, Balakrishnan SN (2013) Finite-horizon control-constrained nonlinear optimal con-
trol using single network adaptive critics. IEEE Trans Neural Netw Learn Syst 24(1):145-157
Howard RA (1960) Dynamic programming and Markov processes. MIT Press, Cambridge,
MA

Huang Y, Liu D (2014) Neural-network-based optimal tracking control scheme for a class
of unknown discrete-time nonlinear systems using iterative ADP algorithm. Neurocomputing
125:46-56

Koppel LB (1968) Introduction to control theory with applications to process control. Prentice-
Hall, Englewood Cliffs, NJ

Levin AU, Narendra KS (1993) Control of nonlinear dynamical systems using neural networks:
controllability and stabilization. IEEE Trans Neural Netw 4(2):192-206

Lewis FL, Liu D (2012) Reinforcement learning and approximate dynamic programming for
feedback control. Wiley, Hoboken, NJ

Lewis FL, Syrmos VL (1995) Optimal control. Wiley, New York

Lewis FL, Vrabie D (2009) Reinforcement learning and adaptive dynamic programming for
feedback control. IEEE Circuits Syst Mag 9(3):32-50

Li H, Liu D (2012) Optimal control for discrete-time affine non-linear systems using general
value iteration. IET Control Theory Appl 6(18):2725-2736

Liao X, Wang L, Yu P (2007) Stability of dynamical systems. Elsevier, Amsterdam, Netherlands

References 89

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

30.
40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Lincoln B, Rantzer A (2006) Relaxing dynamic programming. IEEE Trans Autom Control
51(8):1249-1260

Liu D, Wang D, Yang X (2013) An iterative adaptive dynamic programming algorithm for
optimal control of unknown discrete-time nonlinear systems with constrained inputs. Inf Sci
220:331-342

Lyshevski SE (1998) Optimal control of nonlinear continuous-time systems: design of bounded
controllers via generalized nonquadratic functionals. In: Proceedings of the American control
conference. pp 205-209

Michel AN, Hou L, Liu D (2015) Stability of dynamical systems: On the role of monotonic
and non-monotonic Lyapunov functions. Birkhéuser, Boston, MA

Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive dynamic programming. IEEE Trans
Syst Man Cybern-Part C: Appl Rev 32(2):140-153

Navarro-Lopez EM (2007) Local feedback passivation of nonlinear discrete-time systems
through the speed-gradient algorithm. Automatica 43(7):1302-1306

Primbs JA, Nevistic V (2000) Feasibility and stability of constrained finite receding horizon
control. Automatica 36(7):965-971

Prokhorov DV, Wunsch DC (1997) Adaptive critic designs. IEEE Trans Neural Netw 8(5):997—
1007

Rantzer A (2006) Relaxed dynamic programming in switching systems. IEE Proc-Control
Theory Appl 153(5):567-574

SiJ, Wang YT (2001) On-line learning control by association and reinforcement. IEEE Trans
Neural Netw 12(2):264-276

Sira-Ramirez H (1991) Non-linear discrete variable structure systems in quasi-sliding mode.
Int J Control 54(5):1171-1187

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge,
MA

Vincent TL, Grantham WJ (1997) Nonlinear and optimal control systems. Wiley, New York
Vrabie D, Vamvoudakis KG, Lewis FL (2013) Optimal adaptive control and differential games
by reinforcement learning principles. IET, London

Wang D, Liu D (2013) Neuro-optimal control for a class of unknown nonlinear dynamic systems
using SN-DHP technique. Neurocomputing 121:218-225

Wang D, Liu D, Wei Q, Zhao D, Jin N (2012) Optimal control of unknown nonaffine nonlinear
discrete-time systems based on adaptive dynamic programming. Automatica 48(8):1825-1832
Wang FY, Jin N, Liu D, Wei Q (2011) Adaptive dynamic programming for finite-horizon
optimal control of discrete-time nonlinear systems with e-error bound. IEEE Trans Neural
Netw 22(1):24-36

Wei Q, Liu D (2014) A novel iterative #-adaptive dynamic programming for discrete-time
nonlinear systems. IEEE Trans Autom Sci Eng 11(4):1176-1190

Wei Q, Liu D, Xu Y (2014) Neuro-optimal tracking control for a class of discrete-time non-
linear systems via generalized value iteration adaptive dynamic programming. Soft Comput
20(2):697-706

Werbos PJ (1977) Advanced forecasting methods for global crisis warning and models of
intelligence. Gen Syst Yearbook 22:25-38

Werbos PJ (1992) Approximate dynamic programming for real-time control and neural model-
ing. In: White DA, Sofge DA (eds) Handbook of intelligent control: neural, fuzzy, and adaptive
approaches (Chapter 13). Van Nostrand Reinhold, New York

Yang Q, Jagannathan S (2012) Reinforcement learning controller design for affine nonlin-
ear discrete-time systems using online approximators. IEEE Trans Syst Man Cybern-Part B:
Cybern 42(2):377-390

Zhang H, Huang J, Lewis FL (2009) An improved method in receding horizon control with
updating of terminal cost function. In: Valavanis KP (ed) Applications of intelligent control to
engineering systems. Springer, New York, pp 365-393

Zhang H, Liu D, Luo Y, Wang D (2013) Adaptive dynamic programming for control: algorithms
and stability. Springer, London

90

51.

52.

2 Value Iteration ADP for Discrete ...

Zhang H, Luo Y, Liu D (2009) Neural-network-based near-optimal control for a class of
discrete-time affine nonlinear systems with control constraints. IEEE Trans Neural Netw
20(9):1490-1503

Zhang H, Wei Q, Luo Y (2008) A novel infinite-time optimal tracking control scheme for a
class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE Trans
Syst Man Cybern-Part B: Cybern 38(4):937-942

2 Springer
http://www.springer.com/978-3-319-50813-9

Adaptive Dynamic Programming with Applications in
Optimal Control

Liu, D.; Wei, Q.; Wang, D.; Yang, X.; Li, H.

2017, X, 594 p. 203 illus., 175 illus. in color.,
Hardcowver

ISBN: 978-3-319-50813-9

	2 Value Iteration ADP for Discrete-Time Nonlinear Systems
	2.1 Introduction
	2.2 Optimal Control of Nonlinear Systems Using General Value Iteration
	2.2.1 Convergence Analysis
	2.2.2 Neural Network Implementation
	2.2.3 Generalization to Optimal Tracking Control
	2.2.4 Optimal Control of Systems with Constrained Inputs
	2.2.5 Simulation Studies

	2.3 Iterative θ-Adaptive Dynamic Programming Algorithm for Nonlinear Systems
	2.3.1 Convergence Analysis
	2.3.2 Optimality Analysis
	2.3.3 Summary of Iterative θ-ADP Algorithm
	2.3.4 Simulation Studies

	2.4 Conclusions
	References

