
Chapter 2
Value Iteration ADP for Discrete-Time
Nonlinear Systems

2.1 Introduction

The nonlinear optimal control has been the focus of control fields for many decades
[7, 10, 23, 39]. It often needs to solve the nonlinear Bellman equation. The Bellman
equation is more difficult to work with than the Riccati equation because it involves
solving nonlinear partial difference equations. Although dynamic programming has
been a useful technique in handling optimal control problems for nonlinear systems,
it is often computationally untenable to perform it to obtain the optimal solutions
because of the well-known “curse of dimensionality” [9, 14]. Fortunately, relying
on the strong abilities of self-learning and adaptivity of artificial neural networks
(ANNs), the ADP method was proposed by Werbos [46, 47] to deal with optimal
control problems forward-in-time. In recent years, ADP and related research have
gained much attention from scholars (see the recent books [22, 40, 50] and the
references cited therein).

It is important to note that the iterative methods are often used in ADP to obtain the
solution of Bellman equation indirectly and have received more and more attention. In
[24], iterative ADP algorithms were classified into two main schemes, namely policy
iteration (PI) and value iteration (VI) [38, 40], respectively. PI algorithms contain
policy evaluation and policy improvement [18, 38, 40]. An initial stabilizing control
law is required, which is often difficult to obtain. Comparing to VI algorithms, in
most applications, PI would require fewer iterations as a Newton’s method, but every
iteration is more computationally demanding. VI algorithms solve the optimal control
problem without requirement of an initial stabilizing control law, which is easy to
implement. However, the stabilizing control law cannot be obtained until the value
function converges. This means that only the converged optimal control (function
of the system state xk) u∗(xk) can be used to control the nonlinear system, where
the iterative controls vi(xk), i = 0, 1, . . ., may be invalid. Hence, the computational
efficiency of the VI ADP method is low. Besides, most of the VI algorithms are
implemented off-line which limits their applications very much. In this chapter, the

© Springer International Publishing AG 2017
D. Liu et al., Adaptive Dynamic Programming with Applications
in Optimal Control, Advances in Industrial Control,
DOI 10.1007/978-3-319-50815-3_2

37

38 2 Value Iteration ADP for Discrete …

VI ADP approach is employed to solve the optimal control problems of discrete-time
nonlinear systems, where several value iteration schemes are developed to overcome
the above difficulties.

In the beginning, an ADP scheme based on general value iteration (GVI) is devel-
oped to obtain optimal control for discrete-time affine nonlinear systems [25]. The
selection of initial value function is different from the traditional VI algorithm, and
a new method is introduced to demonstrate the convergence property and the con-
vergence speed of value functions. The control law obtained at each iteration can
stabilize the system under some conditions. To facilitate the implementation of the
iterative scheme, three NNs with Levenberg–Marquardt (LM) training algorithm
are used to approximate the unknown system, the value function, and the control
law, respectively. Then, the GVI-based ADP method is generalized to solve infinite-
horizon optimal tracking control problem for a class of discrete-time nonlinear sys-
tems [45]. The GVI-based ADP algorithm permits an arbitrary positive-semidefinite
function to initialize it, and it is more advantageous than traditional VI algorithms
which starts from a zero function. Next, the ADP approach is used for designing
the optimal controller of discrete-time nonlinear systems with unknown dynamics
and constrained inputs [28]. The iterative ADP algorithm is developed to solve the
constrained optimal control problem based on VI algorithm, which can be regarded
as a special case of GVI. Three NNs are employed for approximating the unknown
nonlinear system dynamics, the value function and its derivatives, and the control
law, respectively, under the framework of globalized dual heuristic programming
(GDHP) technique. Finally, an iterative θ -ADP technique is developed to solve opti-
mal control problems for infinite-horizon discrete-time nonlinear systems [44]. The
condition of initial admissible control in PI algorithm is avoided. It is proved that
all the iterative controls obtained in the iterative θ -ADP algorithm can stabilize the
nonlinear system, which means that the iterative θ -ADP algorithm is feasible for
implementations both online and off-line. Convergence analysis of the value func-
tion is presented to guarantee that the iterative value function can converge to the
optimum monotonically.

2.2 Optimal Control of Nonlinear Systems Using General
Value Iteration

Consider the discrete-time nonlinear systems described by

xk+1 = F(xk, uk), k = 0, 1, 2, . . . , (2.2.1)

where xk ∈ R
n is the state vector at time k, uk = u(xk) ∈ R

m is the state feedback
control vector, and F(·, ·) is the nonlinear system function. Let x0 be the initial state.
Let the following assumptions hold throughout this chapter.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 39

Assumption 2.2.1 F(0, 0) = 0, and the state feedback control law u(·) satisfies
u(0) = 0, i.e., xk = 0 is an equilibrium state of system (2.2.1) under the control
uk = 0.

Assumption 2.2.2 F(xk, uk) is Lipschitz continuous on a compact set Ω ⊂ R
n

containing the origin.

Assumption 2.2.3 System (2.2.1) is controllable in the sense that there exists a
continuous control law on Ω that asymptotically stabilizes the system.

First, in Sects. 2.2.1 and 2.2.2, we develop a GVI-based optimal control scheme
for discrete-time nonlinear systems with affine form [25]. Consider the following
affine nonlinear systems

xk+1 = f (xk) + g(xk)uk, k = 0, 1, 2, . . . , (2.2.2)

where f (·) ∈ R
n and g(·) ∈ R

n×m are differentiable and f (0) = 0. Our goal is to
find a state feedback control law u(·) such that uk = u(xk) can stabilize the system
(2.2.2) and simultaneously minimize the infinite-horizon cost function given by

J(x0, u) = Ju(x0) =
∞∑

k=0

U(xk, uk), (2.2.3)

where U(xk, uk) is a positive-definite utility function, i.e., U(0, 0) = 0 and for all
(xk, uk) �= (0, 0),U(xk, uk) > 0. Note that the control law u(·) must not only stabilize
the system on Ω but also guarantee (2.2.3) to be finite, i.e., the control law must be
admissible.

Definition 2.2.1 (cf. [5, 51]) A control law u(·) is said to be admissible with respect
to (2.2.2) (or (2.2.1)) on Ω if u(·) is continuous on Ω , u(0) = 0, uk = u(xk) stabilizes
(2.2.2) (or (2.2.1)) on Ω , and J(x0, u) is finite, ∀x0 ∈ Ω .

Let A (Ω) be the set of admissible control laws associated with the controllable
set Ω of states. For optimal control problems we study in this book, the set A (Ω)

is assumed to be nonempty, i.e., A (Ω) �= ∅.
Define the optimal cost function as

J∗(xk) = inf
u

{J(xk, u) : u ∈ A (Ω)} .

According to [9, 11, 14, 23], the optimal cost function J∗(xk) satisfies the Bellman
equation

J∗(xk) = min
uk

{
U(xk, uk) + J∗(xk+1)

}
. (2.2.4)

Equation (2.2.4) is the Bellman’s principle of optimality for discrete-time systems.
Its importance lies in the fact that it allows one to optimize over only one control

40 2 Value Iteration ADP for Discrete …

vector at a time by working backward in time. The optimal control law u∗(·) should
satisfy

u∗
k = u∗(xk) = arg min

uk

{
U(xk, uk) + J∗(xk+1)

}
. (2.2.5)

In general, the utility function can be chosen as the quadratic form given by

U(xk, uk) = xTk Qxk + uTk Ruk, (2.2.6)

where Q ∈ R
n×n and R ∈ R

m×m are positive-definite matrices. The optimal control
u∗
k satisfies the first-order necessary condition, from which we obtain

u∗
k = −1

2
R−1

(
∂xk+1

∂uk

)T
∂J∗(xk+1)

∂xk+1
= −1

2
R−1gT(xk)

∂J∗(xk+1)

∂xk+1
.

Equation (2.2.4) reduces to Riccati equation in the case of linear quadratic regulator
problem. However, in the nonlinear case, the cost function of the optimal control
problem cannot be obtained directly. Therefore, we will solve the Bellman equation
by the GVI algorithm.

2.2.1 Convergence Analysis

Since direct solution of the Bellman equation is computationally intensive, we present
an iterative ADP algorithm in a general framework based on Bellman’s principle of
optimality. Define the value function for system (2.2.2) as

V(xk) = Ju(xk).

As we have explained in Chap. 1, V(xk) is a short notation of V(xk, u) or Vu(xk) for
convenience of presentation.

First, the initial value function is chosen as a quadratic form given by

V0(xk) = xTk P0 xk, (2.2.7)

where P0 is a positive-definite matrix. Then, for i = 0, 1, 2, . . . , the GVI-based ADP
algorithm iterates between a sequence of control laws vi(xk),

vi(xk) = arg min
uk

{
xTk Qxk + uTk Ruk + Vi(xk+1)

}

= arg min
uk

{
xTk Qxk + uTk Ruk + Vi(f (xk) + g(xk)uk)

}
, (2.2.8)

and a sequence of value functions Vi+1(xk),

http://dx.doi.org/10.1007/978-3-319-50815-3_1

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 41

Vi+1(xk) = min
uk

{
xTk Qxk + uTk Ruk + Vi(xk+1)

}

= xTk Qxk + vTi (xk)Rvi(xk) + Vi(f (xk) + g(xk)vi(xk)). (2.2.9)

From the i th iteration of the algorithm in (2.2.8)–(2.2.9), we obtain vi(xk) and
Vi+1(xk).

In the above VI algorithm, (2.2.8) is called policy improvement (or policy update)
and (2.2.9) is called value function update [38, 40]. In (2.2.8), an improved policy
that is better or at least not worse than the previous policy is obtained using the current
value function. In (2.2.9), an updated value function, to be used in the next iteration,
is calculated using the current policy. It is a one-step procedure for approximating
the value function corresponding to the current policy, and thus, (2.2.9) is also called
one-step policy evaluation [38].

If we want the outcomes of the i th iteration to be Vi(xk) and vi(xk), the iterative
algorithm (2.2.8)–(2.2.9) can be rewritten as follows.

From the initial value function given in (2.2.7), we obtain the control law
v0(xk) by

v0(xk) = arg min
uk

{
xTk Qxk + uTk Ruk + V0(xk+1)

}

= arg min
uk

{
xTk Qxk + uTk Ruk + V0(f (xk) + g(xk)uk)

}
, (2.2.10)

where V0(xk+1) = xTk+1P0xk+1 according to (2.2.7). For i = 1, 2, . . . , the GVI-based
ADP algorithm iterates between value function update

Vi(xk) = min
uk

{
xTk Qxk + uTk Ruk + Vi−1(xk+1)

}

= xTk Qxk + vTi−1(xk)Rvi−1(xk) + Vi−1(f (xk) + g(xk)vi−1(xk)), (2.2.11)

and policy improvement

vi(xk) = arg min
uk

{
xTk Qxk + uTk Ruk + Vi(xk+1)

}

= arg min
uk

{
xTk Qxk + uTk Ruk + Vi(f (xk) + g(xk)uk)

}
. (2.2.12)

Now, from the i th iteration of the algorithm in (2.2.10)–(2.2.12), we obtain Vi(xk)
and vi(xk). Note that it is a simple calculation in (2.2.11) to update the value function
using the previous policy and previous value function, while in (2.2.12), it performs
the minimization so that an improved policy that is better or at least not worse than
the previous policy is obtained using the newly updated value function.

Since our goal in optimal control design is to obtain an optimal controller, it is
desirable to have the outcome of an algorithm as vi(xk) at the end of the i th iteration,
whereas Vi(xk) becomes an internal variable.

The VI algorithm in (2.2.8)–(2.2.9) was originally given in [5] with V0(·) = 0.
The iterative process is shown in Table 2.1, where each column of blocks represents

42 2 Value Iteration ADP for Discrete …

Table 2.1 The iterative process of the VI algorithm in (2.2.8)–(2.2.9)

V0 → v0 (2.2.8)
minimization

V1 → v1 (2.2.8)
minimization

V2 → v2 (2.2.8)
minimization

· · ·

v0 → V1 (2.2.9)
calculation

v1 → V2 (2.2.9)
calculation

v2 → V3 (2.2.9)
calculation

· · ·

i = 0 i = 1 i = 2 · · ·

Fig. 2.1 The iteration flowchart of algorithm in Table 2.1

Table 2.2 The iterative process of the VI algorithm in (2.2.10)–(2.2.12)

(empty) v0 → V1 (2.2.11)
calculation

v1 → V2 (2.2.11)
calculation

· · ·

V0 → v0 (2.2.10)
minimization

V1 → v1 (2.2.12)
minimization

V2 → v2 (2.2.12)
minimization

· · ·

i = 0 i = 1 i = 2 · · ·

an iteration. The iteration goes from top to bottom within each column and from the
bottom block to the top block in the next column, as shown in Fig. 2.1.

Similarly, the ADP algorithm in (2.2.10)–(2.2.12) can be described by Table 2.2.
Comparing between the two tables, one can see that they contain exactly the same
contents of iterations, except the fact that Table 2.2 did not start in the very first block.

Note that i is the iteration index and k is the time index. As a VI algorithm,
this iterative ADP algorithm does not require an initial stabilizing controller. The
value function and control law are updated until they converge to the optimal ones.
Furthermore, it should satisfy that Vi(0) = 0, vi(0) = 0, ∀i ≥ 0.

It should be mentioned that the initial value function here is chosen as V0(xk) =
xTk P0xk instead of V0(·) = 0 as in most traditional VI algorithms [3–5, 51, 52]. In
what follows, we will prove the convergence of the iterations between (2.2.11) and
(2.2.12), i.e., Vi → J∗ and vi → u∗ as i → ∞.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 43

Lemma 2.2.1 Let μi be an arbitrary control law and let Λi be obtained by

Λi+1(xk) = xTk Qxk + μT
i (xk)Rμi(xk) + Λi(f (xk) + g(xk)μi(xk)),

for i = 0, 1, 2, Let Vi and vi be defined in (2.2.10)–(2.2.12). If Λ0(xk) =
V0(xk) = xTk P0xk, then

Vi(xk) ≤ Λi(xk), ∀i.

The lemma can easily be proved by noting that Vi is the result of minimizing the
right-hand side of (2.2.11) with respect to the control input uk , while Λi is the result
of an arbitrary control input.

Theorem 2.2.1 Define the value function sequence {Vi(xk)} and the control law
sequence {vi(xk)} as in (2.2.10)–(2.2.12) with V0(xk) = xTk P0xk in (2.2.7).
If V0(xk) ≥ V1(xk) holds for all xk, the value function sequence {Vi} is a monotoni-
cally nonincreasing sequence, i.e., Vi+1(xk) ≤ Vi(xk),∀xk,∀i ≥ 0. If V0(xk) ≤ V1(xk)
holds for all xk, the value function sequence {Vi(xk)} is a monotonically nondecreas-
ing sequence, i.e., Vi(xk) ≤ Vi+1(xk), ∀xk, ∀i ≥ 0.

Proof First, suppose that V0(xk) ≥ V1(xk) holds for any xk . Define a new sequence
{Φi}, which is updated according to

{
Φ1(xk) = xTk Qxk + vT0 (xk)Rv0(xk) + Φ0(f (xk) + g(xk)v0(xk)),

Φi+1(xk) = xTk Qxk + vTi−1(xk)Rvi−1(xk) + Φi(f (xk) + g(xk)vi−1(xk)), i ≥ 1,

where Φ0(xk) = V0(xk) = xTk P0xk and {vi} are obtained by (2.2.10) and (2.2.12).
Now, we use the mathematical induction to demonstrate

Φi+1(xk) ≤ Vi(xk), ∀i ≥ 0.

Noticing Φ1(xk) = V1(xk), it is clear that Φ1(xk) ≤ V0(xk). Then, we assume that it
holds for i − 1, i.e., Φi(xk) ≤ Vi−1(xk), ∀i ≥ 1, ∀xk . According to

Vi(xk) = xTk Qxk + vTi−1(xk)Rvi−1(xk) + Vi−1(xk+1), i ≥ 1,

and
Φi+1(xk) = xTk Qxk + vTi−1(xk)Rvi−1(xk) + Φi(xk+1), i ≥ 1,

we have
Vi(xk) − Φi+1(xk) = Vi−1(xk+1) − Φi(xk+1) ≥ 0, i ≥ 1,

which implies Φi+1(xk) ≤ Vi(xk), i ≥ 1. Considering Φ1(xk) ≤ V0(xk), we have
Φi+1(xk) ≤ Vi(xk), i ≥ 0. According to Lemma 2.2.1, it is clear that Vi+1(xk) ≤
Φi+1(xk), ∀i ≥ 0. Therefore,

Vi+1(xk) ≤ Vi(xk),∀i ≥ 0,∀xk .

44 2 Value Iteration ADP for Discrete …

Thus, we complete the first part of the proof by mathematical induction.
Next, suppose that V0(xk) ≤ V1(xk) holds for any xk . Define a new sequence {Γi},

which is updated according to

Γi+1(xk) = xTk Qxk + vTi+1(xk)Rvi+1(xk) + Γi(xk+1), i ≥ 0,

with Γ0(xk) = V0(xk) = xTk P0xk .
Similarly, we use the mathematical induction to demonstrate

Γi(xk) ≤ Vi+1(xk), ∀i ≥ 0.

First, it is easy to see Γ0(xk) = V0(xk) ≤ V1(xk). Then, we assume that it holds for
i − 1, i.e., Γi−1(xk) ≤ Vi(xk), ∀i ≥ 1, ∀xk .

According to

Γi(xk) = xTk Qxk + vTi (xk)Rvi(xk) + Γi−1(xk+1), i ≥ 1,

and
Vi+1(xk) = xTk Qxk + vTi (xk)Rvi(xk) + Vi(xk+1), i ≥ 1,

we have
Vi+1(xk) − Γi(xk) = Vi(xk+1) − Γi−1(xk+1) ≥ 0, i ≥ 1,

which implies Γi(xk) ≤ Vi+1(xk), i ≥ 1. Considering Γ0(xk) ≤ V1(xk), we have
Γi(xk) ≤ Vi+1(xk), i ≥ 0. According to Lemma 2.2.1, it is easy to find Vi(xk) ≤
Γi(xk), ∀i ≥ 0. Therefore,

Vi(xk) ≤ Vi+1(xk), ∀i ≥ 0,∀xk .

Thus, we complete the second part of the proof by mathematical induction.

Remark 2.2.1 From Theorem 2.2.1, we can see that the monotonicity property of
the value function Vi is determined by the relationship between V0 and V1, i.e.,
V0(xk) ≥ V1(xk) or V0(xk) ≤ V1(xk), ∀xk . In the traditional VI algorithm, the initial
value function is selected as V0(·) = 0. We can easily find that this is just a special
case of our general scheme, i.e., V0(xk) ≤ V1(xk), which leads to a nondecreasing
value function sequence. Furthermore, the monotonicity property is still valid starting
from p if we can find that Vp(xk) ≥ Vp+1(xk) or Vp(xk) ≤ Vp+1(xk) for all xk and
some p. For example,

Vp(xk) ≥ Vp+1(xk) for all xk and some p ≥ 0 ⇒ Vi(xk) ≥ Vi+1(xk),∀xk,∀i ≥ p.

Next, we will demonstrate the uniform convergence of value function using the
technique of [27, 35], and we will show that the control sequence converges to the

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 45

optimal control law by a corollary. The following theorem is due to Rantzer and his
coworkers [27, 35].

Theorem 2.2.2 Suppose the condition

0 ≤ J∗(f (xk) + g(xk)uk) ≤ γU(xk, uk)

holds uniformly for some 0 < γ < ∞ and that 0 ≤ αJ∗ ≤ V0 ≤ βJ∗, 0 ≤ α ≤ 1,
and 1 ≤ β < ∞. The value function sequence {Vi} and the control law sequence {vi}
are iteratively updated by (2.2.10)–(2.2.12). Then, the value function Vi approaches
J∗ according to the following inequalities:

[
1 + α − 1

(1 + γ −1)i

]
J∗(xk) ≤ Vi(xk) ≤

[
1 + β − 1

(1 + γ −1)i

]
J∗(xk). (2.2.13)

Moreover, the value function Vi(xk) converges to J∗(xk) uniformly on Ω .

Proof First, we demonstrate that the system defined in this section satisfies the con-
ditions of Theorem 2.2.2. According to Assumption 2.2.2, the system state cannot
jump to infinity by any one step of finite control input, i.e., f (xk) + g(xk)uk is finite.
Because U(xk, uk) is a positive-definite function, there exists some 0 < γ < ∞ such
that 0 ≤ J∗(f (xk) + g(xk)uk) ≤ γU(xk, uk) holds uniformly. For any finite positive-
definite initial value function V0, there exist α and β such that 0 ≤ αJ∗ ≤ V0 ≤ βJ∗
is satisfied, where 0 ≤ α ≤ 1 and 1 ≤ β < ∞. Next, we will demonstrate the lower
bound of the inequality (2.2.13) by mathematical induction, i.e.,

[
1 + α − 1

(1 + γ −1)i

]
J∗(xk) ≤ Vi(xk). (2.2.14)

When i = 1, since

α − 1

1 + γ

(
γU(xk, uk) − J∗(xk+1)

) ≤ 0, 0 ≤ α ≤ 1,

and αJ∗ ≤ V0, ∀xk , we have

V1(xk) = min
uk

{
U(xk, uk) + V0(xk+1)

}

≥ min
uk

{
U(xk, uk) + αJ∗(xk+1)

}

≥ min
uk

{(
1 + γ

α − 1

1 + γ

)
U(xk, uk) +

(
α − α − 1

1 + γ

)
J∗(xk+1)

}

=
[

1 + α − 1

(1 + γ −1)

]
min
uk

{
U(xk, uk) + J∗(xk+1)

}

=
[

1 + α − 1

(1 + γ −1)

]
J∗(xk).

46 2 Value Iteration ADP for Discrete …

≥ min
uk

{
U(xk, uk) +

[
1 + α − 1

(1 + γ −1)i−1

]
J∗(xk+1)

}

Now, assume that the inequality (2.2.14) holds for i − 1. Then, we have

Vi(xk) = min
uk

{
U(xk, uk) + Vi−1(xk+1)

}

≥ min
uk

{
U(xk, uk) +

[
1 + α − 1

(1 + γ −1)i−1

]
J∗(xk+1)

}

≥ min
uk

{[
1 + (α − 1)γ i

(γ + 1)i

]
U(xk, uk)

+
[

1 + α − 1

(1 + γ −1)i−1
− (α − 1)γ i−1

(γ + 1)i

]
J∗(xk+1)

}

=
[

1 + (α − 1)γ i

(γ + 1)i

]
min
uk

{
U(xk, uk) + J∗(xk+1)

}

=
[

1 + (α − 1)

(1 + γ −1)i

]
J∗(xk).

Thus, the lower bound of (2.2.13) is proved. The upper bound of (2.2.13) can be
shown by the same procedure.

Lastly, we demonstrate the uniform convergence of value function as the iteration
index i goes to ∞. When i → ∞, for 0 < γ < ∞, we have

lim
i→∞

[
1 + α − 1

(1 + γ −1)i

]
J∗(xk) = J∗(xk),

and

lim
i→∞

[
1 + β − 1

(1 + γ −1)i

]
J∗(xk) = J∗(xk).

Define V∞(xk) = lim
i→∞Vi(xk). Then, we can get V∞(xk) = J∗(xk). Hence, Vi(xk)

converges pointwise to J∗(xk). Because Ω is compact, we can get the uniform con-
vergence of value function immediately from Dini’s theorem [6]. The proof is com-
plete.

From Theorem 2.2.2, we can determine the upper and lower bounds for every
iterative value function. As the iteration index i increases, the upper bound will
exponentially approach the lower bound. When the iteration index i goes to ∞, the
upper bound will be equal to the lower bound, which is just the optimal cost. Addi-
tionally, we can also analyze the convergence speed of the value function, which is
not available using the approaches in [3–5, 24, 51, 52]. According to the inequal-
ity (2.2.13), smaller γ will lead to faster convergence speed of the value function.
Moreover, it should be mentioned that conditions of Theorem 2.2.2 can be satisfied
according to Assumptions 2.2.1–2.2.3, which are mild for general control problems.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 47

Specially, when 0 ≤ V0(xk) ≤ V1(xk), ∀xk , according to Theorems 2.2.1 and
2.2.2, we can deduce that V0(xk) ≤ J∗(xk). Thus, the constants α and β satisfy
0 < α ≤ 1 and β = 1. Then, the corresponding inequality becomes

[
1 + α − 1

(1 + γ −1)i

]
J∗(xk) ≤ Vi(xk) ≤ J∗(xk).

Note that larger α will lead to faster convergence speed of the value function.
When V0(xk) ≥ V1(xk), ∀xk , according to Theorems 2.2.1 and 2.2.2, we can

deduce that V0(xk) ≥ J∗(xk). So, the constants α and β satisfy α = 1 and β ≥ 1.
Then, the corresponding inequality becomes

J∗(xk) ≤ Vi(xk) ≤
[

1 + β − 1

(1 + γ −1)i

]
J∗(xk).

Note that smaller β will lead to faster convergence speed of the value function.
According to the results of Theorem 2.2.2, we can derive the following corollary.

Corollary 2.2.1 Define the value function sequence {Vi} and the control law
sequence {vi} as in (2.2.10)–(2.2.12) with V0(xk) = xTk P0xk. If the system state
xk is controllable, then the control sequence {vi} converges to the optimal control
law u∗ as i → ∞, i.e., limi→∞ vi(xk) = u∗(xk).

Proof According to Theorem 2.2.2, we have proved that limi→∞ Vi(xk) = V∞(xk) =
J∗(xk). Thus,

V∞(xk) = min
uk

{
xTk Qxk + uTk Ruk + V∞(xk+1)

}
.

That is to say that the value function sequence {Vi} converges to the optimal value
function of the Bellman equation. Comparing (2.2.5)–(2.2.12), the corresponding
control law {vi} converges to the optimal control law u∗ as i → ∞. This completes
the proof of the corollary.

Next, we will complete the stability analysis for nonlinear systems under the
condition of control Lyapunov function.

Theorem 2.2.3 The value function sequence {Vi} and the control law sequence {vi}
are iteratively updated by (2.2.10)–(2.2.12). If V0(xk) = xTk P0xk ≥ V1(xk) holds for
any controllable xk, then the value function Vi(xk) is a Lyapunov function and the
system using the control law vi(xk) is asymptotically stable.

Proof First, according to V0(xk) ≥ V1(xk) and Theorem 2.2.1, we have

Vi(xk) ≥ Vi+1(xk) ≥ U(xk, vi(xk)), ∀i.

Because U(xk, vi(xk)) is a positive-definite function and Vi(0) = 0, Vi(xk) is also a
positive-definite function.

48 2 Value Iteration ADP for Discrete …

Second, we have

Vi(xk+1) − Vi(xk) ≤ Vi(xk+1) − Vi+1(xk) = −U(xk, vi(xk)) ≤ 0.

By the Lyapunov stability criteria (Lyapunov’s extension theorem [26] or the
Lagrange stability result [30]), Vi(xk) is a Lyapunov function, and the system using
the control law vi(xk) is asymptotically stable. This completes the proof of the theo-
rem.

Note that v0(xk) satisfies the first-order necessary condition, which is given by the
gradient of the right-hand side of (2.2.10) with respect to uk as

∂
(
xTk Qxk + uTk Ruk

)

∂uk
+

(
∂xk+1

∂uk

)T
∂V0(xk+1)

∂xk+1
= 0.

That is,
2Ruk + 2gT(xk)P0(f (xk) + g(xk)uk) = 0.

Then, we can solve for v0(xk) as

v0(xk) = −(
gT(xk)P0g(xk) + R

)−1
gT(xk)P0f (xk).

The control law v0(xk) exists since P0 and R are both positive-definite matrices.

Remark 2.2.2 If the condition V0(xk) ≥ V1(xk) holds, V0(xk) = xTk P0xk is called
control Lyapunov function if the associated feedback control law v0(xk) can guaran-
tee the closed-loop system to be stable. Compared to PI algorithms, this condition
V0(xk) ≥ V1(xk) is easier to satisfy than an initial stabilizing control law. In partic-
ular, we can just choose P0 = κ In and κ ≥ 0, where In is the n × n identity matrix.
By choosing a large κ , V0(xk) ≥ V1(xk) is satisfied. Besides, similar to [12, 49], it
should be mentioned that the condition V0(xk) ≥ V1(xk) in Theorem 2.2.3 cannot be
replaced by V0(xk) ≥ J∗(xk), because the nonincreasing property of value function is
guaranteed byV0(xk) ≥ V1(xk). However, if the condition V0(xk) ≤ V1(xk) holds, we
cannot derive that vi(xk) is a stable and admissible control for nonlinear systems. For
linear discrete-time-invariant systems, Primbs and Nevistic [33] demonstrated that
there exists a finite iteration index i∗ and that the closed-loop system is asymptotically
stable for all i ≥ i∗.

2.2.2 Neural Network Implementation

We have demonstrated the convergence of value function in the above under the
assumption that control laws and value functions can exactly be solved at each
iteration. However, it is difficult to solve these equations for nonlinear systems.

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 49

Critic
Network

Model
Network

kx

ˆ ()i kv x
1ˆkx 1

ˆ ˆ()i kV x ˆ(, ())k i kU x v x

1
ˆ ()i kV x

-

+

Signal Line

Back-propagating Path

Weight Transmission

Critic
Network

Action
Network

Fig. 2.2 The structural diagram of HDP algorithm

Fortunately, we can use NN to approximate vi and Vi at each iteration. In this section,
we will use heuristic dynamic programming (HDP, see definition in Chap. 1) to
implement the GVI algorithm.

The structural diagram of HDP algorithm is given in Fig. 2.2. In the HDP
algorithm, there are three NNs, which are model network, critic network, and action
network, respectively. The model network is used to approximate the unknown non-
linear system by using available input–output data. The critic network approximates
the relationship between state vector xk and value function V̂i(xk), and the action
network approximates the relationship between state vector xk and control vector
v̂i(xk).

We choose the popular backpropagation (BP) NN as our function approximation
scheme, although any other function approximation structures would also suffice.
The Levenberg–Marquardt (LM) algorithm is used to tune weights of NN, even
though any standard NN training methods would suffice, including the gradient
descent method. We find that LM algorithm can enormously improve the conver-
gence speed and decrease the approximation error, which will lead ADP to better
performance. LM algorithm, which combines steepest descent gradient and Gauss–
Newton method, mainly includes three processes: calculating the Jacobian matrix,
evaluating whether the parameters are getting closer to optimal ones or not, and
updating the damping parameter. The details of LM algorithm used here can be
found in [16].

The first step is to train the model network. The output of model network is
denoted as

x̂k+1 = WT
mσ(χ̄k) = WT

mσ
(
YT
mχk

)
,

http://dx.doi.org/10.1007/978-3-319-50815-3_1

50 2 Value Iteration ADP for Discrete …

where χk = [xTk , v̂Ti (xk)]T is the input vector of model network and χ̄k = YT
mχk .

The input-to-hidden-layer weights Ym are an (n + m) × l matrix and the hidden-to-
output-layer weightsWm are an l×nmatrix, where l is the number of hidden neurons,
n is the dimension of state vector, and m is the dimension of control input vector.
The activation function is chosen as σ(z) = tanh(z), and its derivative is denoted as

σ̇ (z) = dσ(z)

dz
∈ R

l×l for z ∈ R
l.

The stopping criterion is that the performance function is within a prespecified
threshold, or the training step reaches the maximum value. When the weights of
model network converge, they are kept unchanged. Then, the estimated value of the
control coefficient matrix ĝ(xk) is given by

ĝ(xk) = ∂(WT
m(k)σ (χ k))

∂ v̂i
= WT

m(k)σ̇ (χ k)Y
T
m(k)

∂χk

∂ v̂i
,

where
∂χk

∂ v̂i
=

[
0n×m

Im

]
and Im is the m × m identity matrix.

Similarly, we use LM algorithm to train critic network and action network. The
output of the critic network is denoted as

V̂i(xk) = W (i)T
c σ

(
Y (i)T
c xk

)
.

Note that V̂i(xk) is the estimated value function of the iterative algorithm (2.2.10)–
(2.2.12) from the i th iteration, whereas W (i)

c and Y (i)
c are the critic NN weights to be

obtained from NN training during the i th iteration. The target function for critic NN
training is given by

Vi(xk) = xTk Qxk + v̂Ti−1(xk)Rv̂i−1(xk) + V̂i−1(x̂k+1), (2.2.15)

where V̂i−1(x̂k+1) = W (i−1)T
c σ

(
Y (i−1)T
c x̂k+1

)
. Then, the error function for training

critic network is defined by ec(i)(xk) = Vi(xk)−V̂i(xk), and the performance function
to be minimized is defined by

Ec(i)(xk) = 1

2
e2
c(i)(xk).

The weight tuning algorithm of critic network is the same as model network.
In the action network, the state xk is used as input to obtain the optimal control.

The output can be formulated as v̂i(xk) = WiT
a σ

(
YiT
a xk

)
, whereas Wi

a and Yi
a are the

action NN weights to be obtained from NN training during the i th iteration of the
ADP algorithm (2.2.10)–(2.2.12). The target of action NN training is given by

vi(xk) = −1

2
R−1ĝT(xk)

∂V̂i(x̂k+1)

∂ x̂k+1
, (2.2.16)

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 51

where x̂k+1 = WT
mσ(YT

m[xTk , v̂Ti]T). The convergence of action network weights is
shown in [13]. The error function of the action network can be defined as ea(i)(xk) =
vi(xk) − v̂i(xk). The weights of the action network are updated to minimize the
following performance function:

Ea(i)(xk) = 1

2
eTa(i)(xk)ea(i)(xk).

The LM algorithm ensures thatEa(i)(xk) will decrease every time when the parameters
of action network update.

At last, a summary of the present general value iteration adaptive dynamic pro-
gramming algorithm for optimal control is given in Algorithm 2.2.1.

Algorithm 2.2.1 General value iteration adaptive dynamic programming algorithm
Step 1. Initialize the weights of critic and action neural networks and the parameters

jmmax, j
a
max, j

c
max, εm, εa, εc imax, ξ,Q,R.

Step 2. Construct the model network x̂k+1 = WT
mσ(YT

mχk). Obtain the training data, and train the
model network until the given accuracy εm or the maximum number of iterations jmmax is reached.

Step 3. Set the iteration index i = 0 and P0 = κIn.
Step 4. Choose randomly an array of p state vector {x1

k , x
2
k , . . . , x

p
k }. Compute the output of

the action network {v̂i(x1
k), v̂i(x

2
k), . . . , v̂i(x

p
k)}. Compute the output of the model network

{x̂1
k+1, x̂

2
k+1, . . . , x̂

p
k+1} and the output of the critic network {V̂i(x̂1

k+1), V̂i(x̂2
k+1), . . . , V̂i(x̂

p
k+1)}.

Step 5. Set the iteration index i = i + 1. Then, compute the target of the critic network training

{Vi(x
1
k),Vi(x

2
k), . . . ,Vi(x

p
k)}

by (2.2.15). Train the critic network until the given accuracy εc or the maximum number of
iterations jcmax is reached.

Step 6. If i > 1, then go to Step 7. Elseif V0 > V1 is true for all xk , go to Step 7; otherwise, increase
κ and go to Step 3.

Step 7. Compute the target of action network training

{vi(x1
k), vi(x

2
k), . . . , vi(x

p
k)}

by (2.2.16), and train the action network until the given accuracy εa or the maximum number of
iterations jamax is reached.

Step 8. If i > imax or
|Vi(x

s
k) − Vi−1(x

s
k)| ≤ ξ, s = 1, 2, . . . , p,

go to Step 9; otherwise, go to Step 4.
Step 9. Compute the output of the action network {v̂i(x1

k), v̂i(x
2
k), . . . , v̂i(x

p
k)}. Obtain the final near

optimal control law
u∗(·) = v̂i(·),

and stop the algorithm.

52 2 Value Iteration ADP for Discrete …

2.2.3 Generalization to Optimal Tracking Control

The above GVI-based ADP approach can be employed to solve the optimal tracking
control problem [45]. Consider the nonaffine nonlinear system (2.2.1), for infinite-
time optimal tracking problem, the objective is to design an optimal control u∗(xk),
such that the state xk tracks the specified desired trajectory ξk ∈ R

n, k = 0, 1, In
this section, we assume that there exists a feedback control ue,k , which satisfies the
following equation:

ξk+1 = F(ξk, ue,k), (2.2.17)

where ue,k is called the desired control.

Remark 2.2.3 It should be pointed out that for a large class of nonlinear systems,
there exists a feedback control ue,k that satisfies (2.2.17). For example, for all the
affine nonlinear systems (2.2.2) with invertible g(xk), the desired control ue,k can be
expressed as

ue,k = g−1(ξk)(ξk+1 − f (ξk)),

where g(ξk)g−1(ξk) = Im and Im is the m × m identity matrix.

Define the tracking error as zk = ξk − xk . The utility function is quadratic and is
given by

U(zk, μk) = zTk Qzk + μT
k Rμk,

where μk = uk − ue,k and ue,k is the desired control that satisfies (2.2.17). The
quadratic cost function is

J(z0, μ0
) =

∞∑

k=0

U(zk, μk) =
∞∑

k=0

{
zTk Qzk + (uk − ue,k)

TR(uk − ue,k)
}
, (2.2.18)

where μ
0

= (μ0, μ1, . . .).
For system (2.2.1), our goal is to find an optimal tracking control scheme which

tracks the desired trajectory ξk and simultaneously minimizes the cost function
(2.2.18). The optimal cost function is defined as

J∗(zk) = inf
μ
k

{
J(zk, μk

)
}
,

where μ
k

= (μk, μk+1, . . .). According to Bellman’s principle of optimality, J∗(zk)
satisfies the Bellman equation

J∗(zk) = min
μk

{
U(zk, μk) + J∗(zk+1)

}

= min
μk

{
U(zk, μk) + J∗(F(zk, μk))

}
. (2.2.19)

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 53

Then, the optimal control law is expressed as

μ∗(zk) = arg min
μk

{
U(zk, μk) + J∗(F(zk, μk))

}
.

Hence, the Bellman equation (2.2.19) can be written as

J∗(zk) = U(zk, μ
∗(zk)) + J∗(F(zk, μ

∗(zk))). (2.2.20)

Generally speaking, J∗(zk) is a high nonlinear and nonanalytic function, which
cannot be obtained by directly solving the Bellman equation (2.2.20). Similar to
Sect. 2.2.1, a GVI-based ADP method can be developed to obtain J∗(zk) iteratively.
Then, the optimal tracking control can be obtained.

Let Ψ (zk) be an arbitrary positive-semidefinite function for zk ∈ R
n. Then, let the

initial value function be

V0(zk) = Ψ (zk). (2.2.21)

The control law v0(zk) can be computed as follows:

v0(zk) = arg min
μk

{U(zk, μk) + V0(zk+1)}
= arg min

μk

{U(zk, μk) + V0(F(zk, μk))} , (2.2.22)

where V0(zk+1) = Ψ (zk+1). For i = 1, 2, . . ., the iterative ADP algorithm will iterate
between value function update

Vi(zk) = min
μk

{U(zk, μk) + Vi−1(zk+1)}
= U(zk, vi−1(zk)) + Vi−1(F(zk, vi−1(zk))), (2.2.23)

and policy improvement

vi(zk) = arg min
μk

{U(zk, μk) + Vi(zk+1)} = arg min
μk

{U(zk, μk) + Vi(F(zk, μk))} .

(2.2.24)

Note that the ADP algorithm described above in (2.2.22)–(2.2.24) (for nonaffine
nonlinear systems) is essentially the same as that in (2.2.10)–(2.2.12) (for affine
nonlinear systems). The only difference between the two is the choice of initial value
function (see (2.2.7) and (2.2.21)).

Additional properties of the GVI-based ADP algorithm are given as follows.

Theorem 2.2.4 For i = 0, 1, . . ., let Vi(zk) and vi(zk) be obtained by (2.2.21)–
(2.2.24). Let ρ, γ , α, and β be constants such that

54 2 Value Iteration ADP for Discrete …

0 < ρ ≤ γ < ∞, (2.2.25)

and 0 ≤ α ≤ β < 1, respectively. If ∀zk, the following conditions

ρU(zk, vk) ≤ J∗(F(zk, vk)) ≤ γU(zk, vk) (2.2.26)

and

αJ∗(zk) ≤ V0(zk) ≤ βJ∗(zk) (2.2.27)

are satisfied uniformly, then the iterative value function Vi(zk) satisfies

(
1 + α − 1

(1 + γ −1)
i

)
J∗(zk) ≤ Vi(zk) ≤

(
1 + β − 1

(1 + ρ−1)
i

)
J∗(zk). (2.2.28)

Proof The theorem can be proved in two steps.

(1) Prove the lower bound of (2.2.28).

Mathematical induction is employed to prove the conclusion. Let i = 1. From
(2.2.26) and (2.2.27), we have

V1(zk) = min
vk

{U(zk, vk) + V0(zk+1)}
≥ min

vk

{
U(zk, vk) + αJ∗(zk+1)

}

≥ min
vk

{(
1 + γ

α − 1

1 + γ

)
U(zk, vk) +

(
α − α − 1

1 + γ

)
J∗(zk+1)

}

=
(

1 + α − 1

1 + γ −1

)
min
vk

{
U(zk, vk) + J∗(zk+1)

}

=
(

1 + α − 1

1 + γ −1

)
J∗(zk).

Assume the conclusion holds for i = l − 1, l = 1, 2, Then, for i = l, we have

Vl(zk) = min
vk

{U(zk, vk) + Vl−1(zk+1)}

≥ min
vk

{
U(zk, vk) +

(
1 + α − 1

(1 + γ −1)
l−1

)
J∗(zk+1)

}

≥ min
vk

{(
1 + α − 1

(1 + γ −1)l

)
U(zk, vk)

+
(

1 + α − 1

(1 + γ −1)
l−1

− γ −1 α − 1

(1 + γ −1)
l

)
J∗(zk+1)

}

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 55

=
(

1 + α − 1

(1 + γ −1)l

)
min
vk

{
U(zk, vk) + J∗(zk+1)

}

=
(

1 + α − 1

(1 + γ −1)l

)
J∗(zk).

(2) Prove the upper bound of (2.2.28).

We also use mathematical induction to prove the conclusion. Let i = 1. We have

V1(zk) = min
vk

{U(zk, vk) + V0(zk+1)}
≤ min

vk

{
U(zk, vk) + βJ∗(zk+1)

}

≤ min
vk

{
U(zk, vk) + βJ∗(zk+1) + β − 1

(1 + ρ)

(
J∗(zk+1) − ρU(zk, vk)

)}

=
(

1 + β − 1

1 + ρ −1

)
min
vk

{
U(zk, vk) + J∗(zk+1)

}

=
(

1 + β − 1

1 + ρ −1

)
J∗(zk).

Assume that the conclusion holds for i = l − 1, l = 1, 2, Then, for i = l,
we have

Vl(zk) = min
vk

{U(zk, vk) + Vl−1(zk+1)}

≤ min
vk

{
U(zk, vk) +

(
1 + β − 1

(1 + ρ−1)
l−1

)
J∗(zk+1)

}

≤
(

1 + β − 1

(1 + ρ−1)l

)
min
vk

{
U(zk, vk) + J∗(zk+1)

}

=
(

1 + β − 1

(1 + ρ−1)l

)
J∗(zk).

The proof is complete.

The following two results can readily be proved by following the same procedure.

Theorem 2.2.5 For i = 0, 1, . . ., let vi(zk) and Vi(zk) be obtained by (2.2.21)–
(2.2.24). Let ρ, γ , α, and β be constants that satisfy (2.2.25) and

1 ≤ α ≤ β < ∞,

respectively. If ∀zk, the inequalities (2.2.26) and (2.2.27) hold uniformly, then the
iterative value function Vi(zk) satisfies (2.2.28).

Corollary 2.2.2 For i = 0, 1, . . ., let vi(zk) and Vi(zk) be obtained by (2.2.21)–
(2.2.24). Let ρ, γ , α, and β be constants that satisfy (2.2.25) and

56 2 Value Iteration ADP for Discrete …

0 ≤ α ≤ β < ∞, (2.2.29)

respectively. If ∀zk, the inequalities (2.2.26) and (2.2.27) hold uniformly, then the
iterative value function Vi(zk) converges to the optimal cost function J∗(zk), i.e.,

lim
i→∞Vi(zk) = J∗(zk).

Remark 2.2.4 When 0 ≤ α ≤ 1 ≤ β < ∞, we can also obtain result similar to
Theorem 2.2.2. Corollary 2.2.2 is obtained directly from Theorems 2.2.2, 2.2.4, and
2.2.5.

Remark 2.2.5 Note that techniques employed in this section are extensions of that
in [27, 35]. From Theorem 2.2.2, we can see that the iterative value function will
converge to the optimum as i → ∞, which is independent from the initial value func-
tion Ψ (zk). Furthermore, for arbitrary constants ρ, γ , α, and β that satisfy (2.2.25)
and (2.2.29), respectively, the iterative value function Vi(zk) can be guaranteed to
converge to the optimum as i → ∞. Hence, the estimations of ρ, γ , α, and β are
not necessary.

2.2.4 Optimal Control of Systems with Constrained Inputs

The VI-based optimal control [5, 41], constrained optimal control [28, 51], and opti-
mal tracking control [19, 52] methods are special cases of the results in Sect. 2.2.3, by
noting that the initial value function is chosen as zero. Among them, input constraints
are often confronted in practical problems, which results in a considerable difficulty
in designing the optimal controller [17, 28, 51]. Therefore, in this section, we develop
a VI-based constrained optimal control scheme via GDHP technique [28].

Consider the discrete-time nonaffine nonlinear systems (2.2.1), we define Ω̄u =
{uk : uk = [u1k, u2k, . . . , umk]T ∈ R

m, |ulk| ≤ ūl, l = 1, 2, . . . ,m}, where ūl is the
saturation bound for the lth actuator. Let Ū = diag{ū1, ū2, . . . , ūm} be a constant
diagonal matrix.

In many literatures of optimal control [5, 13, 41, 42], the utility function is chosen
as the quadratic form of (2.2.6). However, when dealing with constrained optimal
control problems, it is not the case any more. Inspired by the work of [1, 29, 51], we
can employ a generalized nonquadratic functional

Y (uk) = 2
∫ uk

0
Φ−T (

Ū−1s
)
ŪR ds (2.2.30)

to substitute the quadratic term of uk in (2.2.6). Note that in (2.2.30),

Φ−1(uk) = [
φ−1(u1k), φ

−1(u2k), . . . , φ
−1(umk)

]T
,

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 57

R is positive-definite and assumed to be diagonal for simplicity of analysis,
s ∈ R

m, Φ ∈ R
m, Φ−T denotes (Φ−1)T, and φ(·) is a strictly monotonic odd function

satisfying |φ(·)| < 1 and belonging to C p (p ≥ 1) and L2(Ω). The well-known
hyperbolic tangent function φ(·) = tanh(·) is one example of such functions. Besides,
it is important to note that Y (uk) is positive-definite since φ−1(·) is a monotonic odd
function and R is positive-definite.

In this sense, the utility function becomes U(xk, uk) = xTk Qxk + Y (uk). Accord-
ingly, (2.2.4) and (2.2.5) become

J∗(xk) = min
uk

{
xTk Qxk + 2

∫ uk

0
Φ−T(Ū−1s)ŪRds + J∗(xk+1)

}

and

u∗(xk) = arg min
uk

{
xTk Qxk + 2

∫ uk

0
Φ−T(Ū−1s)ŪRds + J∗(xk+1)

}
,

respectively.
The traditional VI-based iterative ADP algorithm is performed as follows. First,

we start with the initial value function V0(·) = 0 and solve Vi(xk) and vi(xk) using
the iterative algorithm described by (2.2.22)–(2.2.24).

In this section, the GDHP technique is employed to implement the iterative ADP
algorithm. In the iterative GDHP algorithm, there are three NNs, which are model
network, critic network, and action network. Here, all the NNs are chosen as three-
layer feedforward ones. It is important to note that the critic network of GDHP
outputs both the value function V(xk) and its derivative ∂V(xk)/∂xk [34], which is
schematically depicted in Fig. 2.3. It is a combination of HDP and dual heuristic
dynamic programming (DHP).

The training of model network is complete after the system identification process,
and its weights will be kept unchanged. As a result, we avoid the requirement of
knowingF(xk, uk) during the implementation of the iterative GDHP algorithm. Next,
the learned NN model will be used in the training process of critic network and action
network.

We denote λi(xk) = ∂Vi(xk)/∂xk in our discussion. Hence, the critic network
is used to approximate both Vi(xk) and λi(xk). The output of critic network is
expressed as [

V̂i(xk)
λ̂i(xk)

]
=

[
WiT

c1
WiT

c2

]
σ
(
YiT
c xk

) = WiT
c σ

(
YiT
c xk

)
,

Fig. 2.3 The critic network
of GDHP technique

Critic
Network

58 2 Value Iteration ADP for Discrete …

where Wi
c = [

Wi
c1,W

i
c2

]
and Yi

c are critic NN weights to be obtained during the ith

iteration of the ADP algorithm (2.2.22)–(2.2.24). Accordingly, we have V̂i(xk) =
WiT

c1 σ
(
YiT
c xk

)
and λ̂i(xk) = WiT

c2 σ
(
YiT
c xk

)
. The target functions for critic NN training

can be written as
Vi(xk) = U(xk, v̂i−1(xk)) + V̂i−1(x̂k+1)

and

λi(xk) = ∂U(xk, v̂i−1(xk))

∂xk
+ ∂V̂i−1(x̂k+1)

∂xk

= 2Qxk + 2

(
∂ v̂i−1(xk)

∂xk

)T

ŪRΦ−1
(
Ū−1v̂i−1(xk)

)

+
(

∂ x̂k+1

∂xk
+ ∂ x̂k+1

∂ v̂i−1(xk)

∂ v̂i−1(xk)

∂xk

)T

λ̂i−1(x̂k+1).

Then, we define the error function of critic network training as evcik = Vi(xk)− V̂i(xk)
and eλ

cik = λi(xk) − λ̂i(xk). The objective function to be minimized in the critic
network is

Ecik = (1 − τ)Ev
cik + τEλ

cik,

where 0 ≤ τ ≤ 1 is a parameter that adjusts how HDP and DHP are combined in
GDHP,

Ev
cik = 1

2

(
evcik

)2

and

Eλ
cik = 1

2
eλT
cike

λ
cik .

The weight update rule for training critic network is the gradient-based adaptation
which is given by

Wi
c(p + 1) = Wi

c(p) − αc

[
(1 − τ)

∂Ev
cik

∂Wi
c(p)

+ τ
∂Eλ

cik

∂Wi
c(p)

]
,

Yi
c(p + 1) = Yi

c(p) − αc

[
(1 − τ)

∂Ev
cik

∂Yi
c(p)

+ τ
∂Eλ

cik

∂Yi
c(p)

]
,

where αc > 0 is the learning rate of critic network and p is the inner-loop iteration
step for updating NN weight parameters. The detailed discussion on superiority of
GDHP-based iterative ADP algorithm can be found in [42].

Remark 2.2.6 The GDHP (globalized dual heuristic programming) is implemented
using

Ecik = (1 − τ)Ev
cik + τEλ

cik .

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 59

When τ = 0, the algorithm reduces to HDP (heuristic dynamic programming) where
critic NN training is based on value function V . When τ = 1, the algorithm becomes
DHP (dual heuristic programming) where critic NN training is based on the derivative
λ of the value function. In order to determine the minimum value of a function, we
can either estimate the function itself or estimate its derivatives. However, when
0 < τ < 1, the algorithm will use the estimates of both the value function and its
derivatives, which will usually lead to better results in optimization.

In the action network, the state xk is used as input to obtain the approximate
optimal control as output of the network, which is formulated as

v̂i(xk) = WiT
a σ

(
YiT
a xk

)
.

The target function of control action is given by

vi(xk) = arg min
uk

{
U(xk, uk) + V̂i(x̂k+1)

}
.

The error function of action network can be defined as

ea(i)k = vi(xk) − v̂i(xk).

The weights of action network are updated to minimize

Ea(i)k = 1

2
eTa(i)kea(i)k .

Similarly, the weight update algorithm is

Wi
a(p + 1) = Wi

a(p) − αa

[
∂Ea(i)k

∂Wi
a(p)

]
,

Yi
a(p + 1) = Yi

a(p) − αa

[
∂Ea(i)k

∂Yi
a(p)

]
,

where αa > 0 is the learning rate of action network and p is the inner-loop iteration
step for updating weight parameters.

2.2.5 Simulation Studies

In this section, several examples are provided to demonstrate the effectiveness of the
present control methods.

60 2 Value Iteration ADP for Discrete …

Example 2.2.1 Consider the linear system

xk+1 =
[

0 0.4
0.3 1

]
xk +

[
0
1

]
uk, (2.2.31)

where xk = [x1k, x2k]T. The weight matrices are chosen as

Q =
[

0.2 0
0 0.2

]

and R = 1. Note that the open-loop poles are −0.1083 and 1.1083, which indicates
that the system is unstable.

Algorithm 2.2.1 will be used here. To reduce the influence of the NN approxi-
mation errors, we choose three-layer BP NNs as model network, critic network and
action network with the structures of 3–9–2, 2–8–1, and 2–8–1, respectively. The
initial weights of NNs are chosen randomly in [−0.1, 0.1].

Before implementing the GVI algorithm, we need to train the model network first.
The operation region of system (2.2.31) is selected as −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1.
Thousand samples are randomly chosen from this operation region as the training set,
and the model network is trained until the given accuracy εm = 10−8 is reached with
jmmax = 10000. The inner-loop iteration number of critic network and action network
is jcmax = jamax = 1000, and the given accuracy is εc = εa = 10−6. The maximum
outer-loop iteration is selected as imax = 10, and the prespecified accuracy is selected
as ξ = 10−6. The number of samples at each iteration is p = 2000.

Set P0 = I2. We find that V0 ≥ V1 holds for all states, which can be seen from
Fig. 2.4. After implementing the outer-loop iteration for 10 times, the convergence
of value function is observed. The 3-D plot of approximate value function at i = 0
and i = 10 is given in Fig. 2.5, and the 3-D plot of error between the optimal cost
function J∗ and the approximate optimal value function V10 is given in Fig. 2.6. We
can see that the error between the optimal cost function and the approximate optimal
value function is nearly within 10−3 in the operational region from Fig. 2.6.

For the initial state x0 = [1,−1]T, the convergence process of value function is
given in Fig. 2.7. We apply the control law v10 to the system for 20 time steps. The
corresponding state trajectories are given in Fig. 2.8, and the control input is shown
in Fig. 2.9.

These simulation results indicate that our algorithm is effective in obtaining the
optimal control law via learning in a timely manner.

Example 2.2.2 Consider the nonlinear system

xk+1 =
[

0.2x1k exp(x2
2k)

0.3x3
2k

]
+

[
0.2 0
0 0.2

]
uk, (2.2.32)

where xk = [x1k, x2k]T and uk = [u1k, u2k]T. The desired trajectory is set to

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 61

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

x1
x2

V
0−

V
1

Fig. 2.4 3-D plot of V0−V1 in the operation region

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.5

1

1.5

2

x1
x2

V
al

ue
 fu

nc
tio

n

i=0

i=10

Fig. 2.5 3-D plot of approximate value function at i = 0, 10

62 2 Value Iteration ADP for Discrete …

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
−5

0

5

10

15

x 10−4

x1
x2

J* −
V

10

Fig. 2.6 Error between the optimal cost function J∗ and the approximate optimal value function
V10

0 2 4 6 8 10
0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
al

ue
 fu

nc
tio

n

The iteration index: i

Fig. 2.7 Convergence process of the value function at x = [1,−1]T

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 63

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Th
e

st
at

e
tra

je
ct

or
ie

s

Time steps

x1
x2

Fig. 2.8 The state trajectories

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Th
e

co
nt

ro
l i

np
ut

Time steps

Fig. 2.9 The control input

64 2 Value Iteration ADP for Discrete …

ξk =
[

sin
(
k + π

2

)
, 0.5 cos(k)

]T
. (2.2.33)

According to (2.2.32) and (2.2.33), we can easily obtain the desired control

ue,k = −
[

5 0
0 5

] (
ξk+1 −

[
0.2ξ1k exp(ξ 2

2k)

0.3ξ 3
2k

])
.

The value function is defined as in (2.2.18), where Q = R = I ∈ R
2×2 and I denotes

the identity matrix.
We use NNs to implement the GVI ADP algorithm. The structures of the critic

and the action networks are chosen as 2–8–1 and 2–8–2, respectively. We choose
a random array of state variable in [−1, 1] to train the NNs. For each iterative
step, the critic network and the action network are trained for 2000 steps under
the learning rate 0.005 so that the approximation error limit 10−6 is reached. The
GVI algorithm runs for 30 iterations to guarantee the convergence of the iterative
value function. To illustrate the effectiveness of the algorithm, four different initial
value functions are considered. Let the initial value functions be the quadratic form
which are expressed by Ψ j(zk) = zTk Pjzk , j = 1, 2, 3, 4. Let P1 = 0. Let P2, P3,
and P4 be positive-definite matrices given by P2 = [9.07, −0.26; −0.26, 11.62],
P3 = [10.48, 2.16; 2.16, 13.24], and P4 = [11.59, 0.61; 0.61, 13.40], respec-
tively.

According to Theorem 2.2.2, for an arbitrary positive-semidefinite function, the
iterative value function will converge to the optimum. The curve of the iterative
value functions under the four different initial value functions Ψ j(zk), j = 1, 2, 3, 4,
is displayed in Fig. 2.10, which justifies the convergence property of our algorithm.
The tracking error trajectories are shown in Fig. 2.11. These results show good con-
vergence results as well as good tracking control performance.

Example 2.2.3 The following nonlinear system is a modification of the example
in [21]:

xk+1 =
[
x1k + sin(4uk − 2x2k)

x2k − 2uk

]
, (2.2.34)

where xk = [x1k, x2k]T ∈ R
2, uk ∈ R, k = 1, 2, We can see that xk = [0, 0]T is

an equilibrium state of system (2.2.34). However, the system (2.2.34) is marginally
stable at this equilibrium, since the eigenvalues of

∂xk+1

∂xk

∣∣∣∣
(0,0)

=
[

1 −2
0 1

]

are all 1. It is desired to control the system with control constraint of |u| ≤ 0.5. The
cost function is chosen as

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 65

0 10 20 30
0

1

2

3

4

5

6

Iteration steps

(a)

V
al

ue
 fu

nc
tio

n

0 10 20 30
5

5.1

5.2

5.3

5.4

5.5

Iteration steps

(b)
V

al
ue

 fu
nc

tio
n

0 10 20 30
5

6

7

8

9

Iteration steps

(c)

V
al

ue
 fu

nc
tio

n

0 10 20 30
5

5.5

6

6.5

7

Iteration steps

(d)

V
al

ue
 fu

nc
tio

n

Fig. 2.10 The trajectories of the iterative value functions with initial value function given by Ψ j(zk),
j = 1, 2, 3, 4. a Ψ 1(zk). b Ψ 2(zk). c Ψ 3(zk). d Ψ 4(zk)

J(x0) =
∞∑

k=0

{
xTk Qxk + 2

∫ uk

0
tanh−T(Ū−1s)ŪRds

}
,

where Q and R are identity matrices with suitable dimensions and Ū = 0.5.
In this example, the three NNs are chosen with structures of 3–8–2, 2–8–3, and

2–8–1, respectively. Here, the initial weights of the critic network and action network
are all set to be random in [−0.1, 0.1]. Then, letting the parameter τ = 0.5 and the
learning rate αc = αa = 0.05, we train the critic network and action network for
26 iterations. When k = 0, the convergence process of the value function and its
derivatives is depicted in Fig. 2.12.

66 2 Value Iteration ADP for Discrete …

0 5 10 15 20 25 30
−1

−0.5

0

0.5

Time steps

Tr
ac

ki
ng

 e
rr

or
s

z1
z2

Fig. 2.11 The tracking error

0 10 20 30
0

1

2

3

4

Iterations

Th
e

va
lu

e
fu

nc
tio

n

(a)

0 10 20 30
−3

−2

−1

0

1

2

Iterations

Th
e

de
riv

at
iv

es
 o

f t
he

va
lu

e
fu

nc
tio

n

(b)

λ1

λ2

Fig. 2.12 a The convergence process of the value function. b The convergence process of the
derivatives of the value function

2.2 Optimal Control of Nonlinear Systems Using General Value Iteration 67

0 5 10 15 20
−1

−0.5

0

0.5

1

Time

Th
e

st
at

e
tra

je
ct

or
ie

s
(a)

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time

Th
e

co
nt

ro
l i

np
ut

(b)

0 5 10 15 20
−1

−0.5

0

0.5

1

Time

Th
e

st
at

e
tra

je
ct

or
ie

s

(c)

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Time

Th
e

co
nt

ro
l i

np
ut

(d)

x1
x2

x1
x2

−0.3774

−0.5

Fig. 2.13 Simulation results of Example 2.2.3. a The state trajectory x. b The control input u.
c The state trajectory x without considering the control constraint. d The control input u without
considering the control constraint

Next, for given initial state x0 = [0.5,−1]T, we apply the optimal control laws
designed by the iterative GDHP algorithm, with and without considering the control
constraints, to system (2.2.34) for 20 time steps, respectively. The simulation results
are shown in Fig. 2.13, which also exhibits excellent control results of the iterative
GDHP algorithm.

2.3 Iterative θ-Adaptive Dynamic Programming Algorithm
for Nonlinear Systems

In this section, we present an iterative θ -ADP algorithm for optimal control of
discrete-time nonlinear systems [44]. Consider the deterministic discrete-time
systems

68 2 Value Iteration ADP for Discrete …

xk+1 = F(xk, uk), k = 0, 1, 2, . . . , (2.3.1)

where xk ∈ R
n is the n-dimensional state vector and uk ∈ R

m is the m-dimensional
control vector. Let x0 be the initial state and F(xk, uk) be the system function.

Let uk = (uk, uk+1, . . .) be an arbitrary sequence of controls from k to ∞. The
cost function for state x0 under the control sequence u0 = (u0, u1, . . .) is defined as

J(x0, u0) =
∞∑

k=0

U(xk, uk),

where U(xk, uk) > 0, ∀xk, uk �= 0, is the utility function.
For convenience of analysis, results of this section are based on Assumptions

2.2.1–2.2.3 and the following assumption.

Assumption 2.3.1 The utility function U(xk, uk) is a continuous positive-definite
function of xk and uk .

As system (2.3.1) is controllable, there exists a stable control sequence uk =
(uk, uk+1, . . .) that moves xk to zero. Let Ak denote the set which contains all the
stable control sequences, and let Ak be the set of the stable control laws. Then, the
optimal cost function can be defined as

J∗(xk) = inf
uk

{
J(xk, uk) : uk ∈ Ak

}
. (2.3.2)

According to the Bellman’s principle of optimality, J∗(xk) satisfies the Bellman
equation

J∗(xk) = min
uk

{
U(xk, uk) + J∗(F(xk, uk))

}
. (2.3.3)

The corresponding optimal control law is given by

u∗(xk) = arg min
uk

{
U(xk, uk) + J∗(F(xk, uk))

}
.

Hence, the Bellman equation (2.3.3) can be written as

J∗(xk) = U(xk, u
∗(xk)) + J∗(F(xk, u

∗(xk))). (2.3.4)

We can see that if we want to obtain the optimal control law u∗(xk), we must obtain the
optimal value function J∗(xk). Generally speaking, J∗(xk) is unknown before all the
controls uk ∈ R

m are considered. If we adopt the traditional dynamic programming
method to obtain the optimal value function one step at a time, then we have to face
the “curse of dimensionality.” In [5, 43], iterative algorithms of ADP were used to
obtain the solution of Bellman equation indirectly. However, we pointed out that the
stability of the system cannot be guaranteed in [5] and an admissible control sequence

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 69

is necessary to initialize the algorithm in [43]. To overcome these difficulties, a new
iterative ADP algorithm will be developed in this section.

2.3.1 Convergence Analysis

In the present iterative θ -ADP algorithm, the value function and control law are
updated with the iteration index i increasing from 0 to ∞. The following definition
is necessary to begin the algorithm.

Definition 2.3.1 For xk ∈ R
n, let

Ψ̄xk = {
Ψ (xk) : Ψ (xk) > 0, and ∃ ν̄(xk) ∈ Ak, s.t. Ψ (F(xk, ν̄(xk))) < Ψ (xk)

}

(2.3.5)

be the set of initial positive-definite functions.

Let Ψ (xk) be an arbitrary function such that Ψ (xk) ∈ Ψ̄xk , ∀xk ∈ R
n. The existence

and properties of Ψ̄xk will be discussed later. Let the initial value function

V0(xk) = θΨ (xk) (2.3.6)

∀xk ∈ R
n, where θ > 0 is a finite positive constant. The iterative control law v0(xk)

can be computed as follows:

v0(xk) = arg min
uk

{U(xk, uk) + V0(xk+1)}
= arg min

uk
{U(xk, uk) + V0(F(xk, uk))} , (2.3.7)

where V0(xk+1) = θΨ (xk+1). For i = 1, 2, . . ., the iterative θ -ADP algorithm will
iterate between

Vi(xk) = min
uk

{U(xk, uk) + Vi−1(xk+1)}
= U(xk, vi−1(xk)) + Vi−1(F(xk, vi−1(xk))) (2.3.8)

and

vi(xk) = arg min
uk

{U(xk, uk) + Vi(xk+1)}
= arg min

uk
{U(xk, uk) + Vi(F(xk, uk))} . (2.3.9)

We note that the ADP algorithm (2.3.7)–(2.3.9) described above is essentially the
same as those in (2.2.10)–(2.2.12) and (2.2.22)–(2.2.24). The only difference is the

70 2 Value Iteration ADP for Discrete …

choice of initial value function and the choice of utility function. Here, the utility
function may be nonquadratic.

Remark 2.3.1 Equations (2.3.7)–(2.3.9) in the iterative θ -ADP algorithm are similar
to the Bellman equation (2.3.4), but they are not the same. There are at least three
obvious differences.

(1) The Bellman equation (2.3.4) possesses a unique optimal cost function, i.e.,
J∗(xk), ∀xk , while in the iterative ADP equations (2.3.7)–(2.3.9), the value func-
tions are different for different iteration index i, i.e., Vi(xk) �= Vj(xk), ∀i �= j.

(2) The control law obtained by Bellman equation (2.3.4) is the optimal control law,
i.e., u∗(xk), ∀xk , while the control laws from the iterative ADP equations (2.3.7)–
(2.3.9) are different for each iteration index i, i.e., vi(xk) �= vj(xk), ∀i �= j, which
are not optimal in general.

(3) For any finite i, the iterative value function Vi(xk) is a sum of finite sequence
with a terminal constraint term and the property of Vi(xk) can be seen in the
following lemma (Lemma 2.3.1). But the optimal cost function J∗(xk) in (2.3.4)
is a sum of an infinite sequence. So, in general, Vi(xk) �= J∗(xk).

Lemma 2.3.1 Let xk be an arbitrary state vector. If the iterative value function
Vi(xk) and the control law vi(xk) are obtained by (2.3.7)–(2.3.9), then Vi(xk) can be
expressed as

Vi(xk) =
i∑

j=0

U
(
xk+j, vi−j(xk+j)

) + θΨ (xk+i+1).

Proof According to (2.3.8), we have

Vi(xk) = min
uk

{
U(xk, uk) + min

uk+1

{
U(xk+1, uk+1)

+ · · · + min
uk+i−1

{U(xk+i−1, uk+i−1) +V1(xk+i)} · · ·
}}

, (2.3.10)

where
V1(xk+i) = min

uk+i

{U(xk+i, uk+i) + θΨ (xk+i+1)}.

Define
uNk = (uk, uk+1, . . . , uN)

as a finite sequence of controls from k to N , where N ≥ k is an arbitrary positive
integer. Then, (2.3.10) can be written as

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 71

Vi(xk) = min
uk+i
k

{U(xk, uk) + U(xk+1, uk+1) + · · ·

+ U(xk+i, uk+i) + θΨ (xk+i+1)}

=
i∑

j=0

U
(
xk+j, vi−j(xk+j)

) + θΨ (xk+i+1).

The proof is complete.

In the above, we can see that the optimal value function J∗(xk) is replaced by
a sequence of iterative value functions Vi(xk) and the optimal control law u∗(xk) is
replaced by a sequence of iterative control laws vi(xk), where i ≥ 0 is the iteration
index. As (2.3.8) is not a Bellman equation, generally speaking, the iterative value
function Vi(xk) is not optimal. However, we can prove that J∗(xk) is the limit of
Vi(xk) as i → ∞. Next, the convergence properties will be analyzed.

Lemma 2.3.2 Let μ(xk) ∈ Ak be an arbitrary control law, and let Vi(xk) and vi(xk)
be expressed as in (2.3.7)–(2.3.9), respectively. Define a new value function Pi(xk) as

Pi+1(xk) = U(xk, μ(xk)) + Pi(xk+1), (2.3.11)

with P0(xk) = V0(xk) = θΨ (xk), ∀xk, then Vi(xk) ≤ Pi(xk).

From the definition given in (2.3.11), if we let μ(xk) = u∗(xk), then

lim
i→∞Pi(xk) = J∗(xk).

In general, we have
Pi(xk) ≥ J∗(xk), ∀i, xk .

Theorem 2.3.1 Let xk be an arbitrary state vector. The iterative control law vi(xk)
and the iterative value function Vi(xk) are obtained by (2.3.7)–(2.3.9). If Assumptions
2.2.1–2.2.3 and 2.3.1 hold, then for any finite i = 0, 1, . . ., there exists a finite
θ > 0 such that the iterative value function Vi(xk) is a monotonically nonincreasing
sequence for i = 0, 1, . . ., i.e.,

Vi+1(xk) ≤ Vi(xk), ∀i. (2.3.12)

Proof To obtain the conclusion, we will show that for an arbitrary finite i < ∞,
there exists a finite θi > 0 such that (2.3.12) holds. We prove this by mathematical
induction.

First, we let i = 0. Let μ(xk) ∈ Ak be an arbitrary stable control law. Define the
value function Pi(xk) as in (2.3.11). For i = 0, we have

72 2 Value Iteration ADP for Discrete …

P1(xk) = U(xk, μ(xk)) + P0(xk+1)

= U(xk, μ(xk)) + θΨ (F(xk, μ(xk))).

According to Definition 2.3.1, there exists a stable control law ν̄k = ν̄(xk) such that

Ψ (xk) − Ψ (F(xk, ν̄(xk))) > 0.

As ν̄(xk) is a stable control law, the utility function U(xk, ν̄(xk)) is finite. Then,
there exists a finite θ0 > 0 such that

θ0[Ψ (xk) − Ψ (F(xk, ν̄(xk)))] ≥ U(xk, ν̄(xk)).

As μ(xk) ∈ Ak is arbitrary, we can let μ(xk) = ν̄(xk). Let θ = θ0 and

P0(xk) = V0(xk) = θ0Ψ (xk). (2.3.13)

We can get

θ0Ψ (xk) ≥ U(xk, ν̄(xk)) + θ0Ψ (F(xk, ν̄(xk))) = P1(xk).

According to Lemma 2.3.2, we have

V1(xk) = min
uk

{U(xk, uk) + V0(xk+1)}
= min

uk
{U(xk, uk) + θ0Ψ (xk+1)}

≤ U(xk, ν̄(xk)) + θ0Ψ (F(xk, ν̄(xk)))

= P1(xk). (2.3.14)

According to (2.3.13) and (2.3.14), we can obtain

V0(xk) = θ0Ψ (xk) ≥ P1(xk) ≥ V1(xk),

which proves V0(xk) ≥ V1(xk).
Hence, the conclusion holds for i = 0. Assume that for i = l − 1, l = 1, 2, . . .,

there exists a finite θl−1 such that (2.3.12) holds. Now, we consider the situation for
i = l. According to Lemma 2.3.1, for all θ̃l > 0, the iterative value function Vl(xk)
can be expressed as

Vl(xk) =
l−1∑

j=0

U
(
xk+j, vl−j−1(xk+j)

) + θ̃lΨ (xk+l), (2.3.15)

where vl(xk) is the iterative control law satisfying (2.3.9), and

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 73

V0(xk) = P0(xk) = θ̃lΨ (xk).

Let
uk = vl−1(xk), uk+1 = vl−2(xk+1), . . . , uk+l−1 = v0(xk+l−1).

Then, the iterative value function Pl+1(xk) can be derived as

Pl+1(xk) = U(xk, vl−1(xk)) + U(xk+1, vl−2(xk+1))

+ · · · + U(xk+l−1, v0(xk+l−1))

+ U(xk+l, μ(xk+l))) + P0(xk+l+1)

=
l−1∑

j=0

U
(
xk+j, vl−j−1(xk+j)

) + U(xk+l, μ(xk+l)) + θ̃lΨ (xk+l+1), (2.3.16)

where μ(xk+l) ∈ Ak+l. According to Definition 2.3.1, there exists a stable control
law ν̄(xk+l) ∈ Ak+l such that

Ψ (xk+l) − Ψ (F(xk+l, ν̄(xk+l))) > 0.

Thus, there exists a finite θl satisfying

θl[Ψ (xk+l) − Ψ (F(xk+l, ν̄(xk+l)))] ≥ U(xk+l, ν̄(xk+l)). (2.3.17)

Let μ(xk+l) = ν̄(xk+l), and θ̃l = θl. Then, according to (2.3.15)–(2.3.17), we can
get

Vl(xk) =
l−1∑

j=0

U
(
xk+j, vl−j−1(xk+j)

) + θlΨ (xk+l)

≥
l−1∑

j=0

U
(
xk+j, vl−j−1(xk+j)

) + U(xk+l, ν̄(xk+l)) + θlΨ (xk+l+1)

= Pl+1(xk).

According to Lemma 2.3.2, we have Vl+1(xk) ≤ Pl+1(xk). Therefore, we obtain

Vl+1(xk) ≤ Vl(xk).

The mathematical induction is complete. On the other hand, as i is finite, if we let
θ̃ = max{θ0, θ1, . . . , θi}, then we can choose an arbitrary finite θ that satisfies θ ≥ θ̃

such that (2.3.12) holds. The proof is complete.

Remark 2.3.2 In (2.3.17), for all i = 1, 2, . . ., if we choose a θi such that

74 2 Value Iteration ADP for Discrete …

θi[Ψ (xk+i) − Ψ (F(xk+i, ν̄(xk+i)))] > U(xk+i, ν̄k+i)

holds, then we can obtain (2.3.12). In this situation, the iterative value functionVi(xk)
is a monotonically decreasing sequence for i = 0, 1,

Theorem 2.3.2 Let xk be an arbitrary state vector. If Assumptions 2.2.1–2.2.3 and
2.3.1 hold and there exists a control law ν̄(xk) ∈ Ak which satisfies (2.3.5) such that
the following limit

lim
xk→0

U(xk, ν̄(xk))

Ψ (xk) − Ψ (F(xk, ν̄(xk)))
(2.3.18)

exists, then there exists a finite θ > 0 such that (2.3.12) is true.

Proof According to (2.3.17) in Theorem 2.3.1, we can see that for any finite i < ∞,
the parameter θi should satisfy

θi ≥ U(xk+i, ν̄(xk+i))

Ψ (xk+i) − Ψ (F(xk+i, ν̄(xk+i)))

in order for (2.3.12) to be true. Let i → ∞. We have

lim
i→∞ θi ≥ lim

i→∞
U(xk+i, ν̄(xk+i))

Ψ (xk+i) − Ψ (F(xk+i, ν̄(xk+i)))
. (2.3.19)

We can see that if the limit of the right-hand side of (2.3.19) exists, then θ∞ = lim
i→∞ θi

can be defined. Therefore, if we define

θ̄ = sup{θ0, θ1, . . . , θ∞}, (2.3.20)

then θ̄ can be well defined. Hence, we can choose an arbitrary finite θ which satisfies

θ ≥ θ̄ , (2.3.21)

such that (2.3.12) is true.
On the other hand, ν̄(xk) ∈ Ak is a stable control law. We have xk → 0 as

k → ∞ under the stable control sequence (ν̄k, ν̄k+1, . . .), where ν̄k = ν̄(xk) for all
k = 0, 1, If (2.3.18) is finite, then according to (2.3.19) and (2.3.20), there exists
a finite θ such that

θ ≥ lim
xk→0

U(xk, ν̄(xk))

Ψ (xk) − Ψ (F(xk, ν̄(xk)))
.

The proof is complete.

Remark 2.3.3 In this section, we expect that the iterative value function Vi(xk) →
J∗(xk) and the iterative control law vi(xk) → u∗(xk). It is obvious that u∗(xk) ∈ Ak .

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 75

If we put u∗(xk) into (2.3.11), then for i → ∞, lim
i→∞Pi(xk) = J∗(xk) holds for any

finite θ .

From Theorems 2.3.1 and 2.3.2, we can see that if there exists a finite θ such that
(2.3.12) holds, then Vi(xk) ≥ 0 and it is a nonincreasing sequence with lower bound
for iteration index i = 0, 1, We can derive the following theorem.

Theorem 2.3.3 Let xk be an arbitrary state vector. Define the value function V∞(xk)
as the limit of the iterative value function Vi(xk), i.e.,

V∞(xk) = lim
i→∞Vi(xk).

Then,
V∞(xk) = min

uk
{U(xk, uk) + V∞(xk+1)}. (2.3.22)

Proof Let μ(xk) be an arbitrary stable control law. According to Theorem 2.3.1,
∀i = 0, 1, . . ., we have

V∞(xk) ≤ Vi+1(xk) ≤ U(xk, μ(xk)) + Vi(xk+1).

Let i → ∞. We then have

V∞(xk) ≤ U(xk, μ(xk)) + V∞(xk+1).

So,

V∞(xk) ≤ min
uk

{U(xk, u(xk)) + V∞(xk+1)}. (2.3.23)

Let ε > 0 be an arbitrary positive number. Since Vi(xk) is nonincreasing for all i and
limi→∞ Vi(xk) = V∞(xk), there exists a positive integer p such that

Vp(xk) − ε ≤ V∞(xk) ≤ Vp(xk).

Then, we let

Vp(xk) = min
uk

{U(xk, uk) + Vp−1(xk+1)} = U(xk, vp−1(xk)) + Vp−1(xk+1).

Hence,

V∞(xk) ≥ Vp(xk) − ε

≥ U(xk, vp−1(xk)) + Vp−1(xk+1) − ε

≥ U(xk, vp−1(xk)) + V∞(xk+1) − ε

≥ min
uk

{U(xk, uk) + V∞(xk+1)} − ε.

76 2 Value Iteration ADP for Discrete …

Since ε is arbitrary, we have

V∞(xk) ≥ min
uk

{U(xk, uk) + V∞(xk+1)}. (2.3.24)

Combining (2.3.23) and (2.3.24), we have (2.3.22) which proves the conclusion of
this theorem.

Remark 2.3.4 Two important properties we must point out. First, from the iterative
θ -ADP algorithm (2.3.7)–(2.3.9), we see that the initial function Ψ (xk) is arbitrarily
chosen in the set Ψ̄ (xk). The parameter θ is also arbitrarily chosen if it satisfies
(2.3.21). Actually, it is not necessary to find all θi to construct the set in (2.3.20).
What we should do is to choose a θ large enough to run the iterative θ -ADP algorithm
(2.3.7)–(2.3.9) and guarantee the iterative value function to be convergent. This
allows for very convenient implementation of the present algorithm. Second, for
different initial value θ and different initial functionΨ (xk), the iterative value function
of the iterative θ -ADP algorithm will converge to the same value function. We will
show this property after two necessary lemmas.

Lemma 2.3.3 Let ν̄(xk) ∈ Ak be an arbitrary stable control law, and let the value
function Pi(xk) be defined in (2.3.11) with u = ν̄. Define a new value function
P′
i(xk) as

P′
i+1(xk) = U(xk, ν̄(xk)) + P′

i(xk+1),

with P′
0(xk) = θ ′Ψ (xk), ∀xk. Let θ and θ ′ be two different finite constants which

satisfy (2.3.21), i.e., let θ ≥ θ̄ and θ ′ ≥ θ̄ such that (2.3.12) is true. Then, P∞(xk) =
P′∞(xk) = Γ∞(xk), where Γ∞(xk) is defined as

Γ∞(xk) = lim
i→∞

{ i∑

j=0

U(xk+j, ν̄(xk+j))

}
.

Proof According to the definitions of Pi(xk) and P′
i(xk), we have

Pi(xk) =
i∑

j=0

U
(
xk+j, ν̄(xk+j)

) + θΨ
(
xk+i+1

)
,

P′
i(xk) =

i∑

j=0

U
(
xk+j, ν̄(xk+j)

) + θ ′Ψ
(
xk+i+1

)
,

where θ and θ ′ both satisfy (2.3.21), and θ �= θ ′. As ν̄(xk) is a stable control law, we
have xk+i → 0 as i → ∞. Then, lim

k→∞
θΨ (xk) = lim

k→∞
θ ′Ψ (xk) = 0 since xk → 0.

So, we can get

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 77

P∞(xk) = P′
∞(xk) = lim

i→∞

{ i∑

j=0

U(xk+j, ν̄(xk+j))

}
= Γ∞(xk).

The proof is complete.

Next, we will prove that the iterative value functionVi(xk) converges to the optimal
value function J∗(xk) as i → ∞. Before we give the optimality theorem, the following
lemma is necessary.

2.3.2 Optimality Analysis

The following lemma is needed for the optimality analysis.

Lemma 2.3.4 Let Vi(xk) be defined in (2.3.7)–(2.3.9) and Pi(xk) be defined in
(2.3.11), for i = 0, 1, Let θ satisfy (2.3.21). Then, there exists a finite positive
integer q such that

Pq(xk) ≤ J∗(xk) + ε, ∀ε.

Proof According to Lemma 2.3.1, we have

V∞(xk) = lim
i→∞

{ i∑

j=0

U(xk+j, vi−j(xk+j))

}
.

According to the definition of J∗(xk), we have V∞(xk) ≥ J∗(xk). Let q be an arbitrary
finite positive integer. According to Theorems 2.3.1 and 2.3.3, we have Vq(xk) ≥
V∞(xk). According to Lemma 2.3.2, we have

Pq(xk) ≥ Vq(xk) ≥ V∞(xk) ≥ J∗(xk).

Next, let
μk+q−1
k

= u∗(k+q−1)

k .

We can obtain

Pq(xk) − J∗(xk) = θΨ (xk+q) −
∞∑

j=q

U(xk+j, u
∗
k+j) ≥ 0.

From (2.3.11), as μ(xk) is a stable control law, the control sequence μ
k

= (μk, μk+1,

. . .) under the stable control law μ(xk) is a stable control sequence. Hence, we can
get θΨ (xk+q) → 0 as q → ∞. Then, from the fact that

78 2 Value Iteration ADP for Discrete …

lim
q→∞

∞∑

j=q

U(xk+j, u
∗
k+j) = 0,

we can obtain

lim
q→∞

{
θΨ (xk+q) −

∞∑

j=q

U(xk+j, u
∗
k+j)

}
= 0.

Therefore, ∀ε > 0, there exists a finite q such that Pq(xk) − J∗(xk) ≤ ε holds. This
completes the proof of the lemma.

Theorem 2.3.4 Let Vi(xk) be defined by (2.3.8) where θ satisfies (2.3.21). If the
system state xk is controllable, then Vi(xk) converges to the optimal cost function
J∗(xk) as i → ∞, i.e.,

Vi(xk) → J∗(xk), as i → ∞, ∀xk .

Proof According to the definition of J∗(xk) in (2.3.2), we have

J∗(xk) ≤ Vi(xk).

Then, let i → ∞. We have

J∗(xk) ≤ V∞(xk). (2.3.25)

Let ε > 0 be an arbitrary positive number. According to Lemma 2.3.4, there exists
a finite positive integer q such that

Vq(xk) ≤ Pq(xk) ≤ J∗(xk) + ε. (2.3.26)

On the other hand, according to Theorem 2.3.1, we have

V∞(xk) ≤ Vq(xk). (2.3.27)

Combining (2.3.26) and (2.3.27), we have V∞(xk) ≤ J∗(xk) + ε. As ε is an arbitrary
positive number, we have

V∞(xk) ≤ J∗(xk). (2.3.28)

According to (2.3.25) and (2.3.28), we have

V∞(xk) = J∗(xk).

The proof is complete.

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 79

We can now derive the following corollary.

Corollary 2.3.1 Let the value function Vi(xk) be defined by (2.3.8). If the system
state xk is controllable and Theorem 2.3.4 holds, then the iterative control law vi(xk)
converges to the optimal control law u∗(xk).

As is known, the stability property of control systems is a most basic and necessary
property for any control systems. So, we will give the stability analysis for system
(2.3.1) under the iterative θ -ADP algorithm (2.3.7)–(2.3.9).

Theorem 2.3.5 Let xk be anarbitrary controllable state. For i = 0, 1, . . ., if Assump-
tions 2.2.1–2.2.3 and 2.3.1 hold and the iterative value function Vi(xk) and iterative
control law vi(xk) are defined by (2.3.7)–(2.3.9) where θ satisfies (2.3.21), then vi(xk)
is an asymptotically stable control law for system (2.3.1), ∀i = 0, 1,

Proof The theorem will be proved in two steps.

(1) Show that the iterative value function Vi(xk) is a positive-definite function,
∀i = 0, 1,

For the iterative θ -ADP algorithm, we have V0(xk) = θΨ (xk).
According to Assumption 2.3.1, Vi(xk) is a positive-definite function for i = 0.
Assume that for i = l, Vl(xk) is a positive-definite function. Then, for i = l + 1,

(2.3.9) holds. Let xk = 0, and we can get

Vl+1(0) = U(0, vl(0)) + Vl(F(0, vl(0))).

According to Assumptions 2.2.1–2.2.3 and 2.3.1, we have vl(0) = 0, F(0,

vl(0)) = 0, U(0, vl(0)) = 0. As Vl(xk) is a positive-definite function, we have
Vl(0) = 0. Then, we have Vl+1(0) = 0. If xk �= 0, according to Assumption 2.3.1,
we have Vl+1(xk) > 0. On the other hand, let ‖xk‖ → ∞. As U(xk, uk) is a positive-
definite function, Vl+1(xk) → ∞. So, Vl+1(xk) is a positive-definite function. The
mathematical induction is complete.

(2) Show that vi(xk) is an asymptotically stable control law for system (2.3.1).
As the iterative value function Vi(xk) is a positive-definite function, ∀i = 0, 1, . . .,

according to (2.3.8), we have

Vi(F(xk, vi(xk))) − Vi+1(xk) = −U(xk, vi(xk)) ≤ 0.

According to Theorem 2.3.1, we have Vi+1(xk) ≤ Vi(xk), ∀i ≥ 0. Then, for all
xk �= 0, we can obtain

Vi(F(xk, vi(xk))) − Vi(xk) ≤ Vi(F(xk, vi(xk))) − Vi+1(xk)

= −U(xk, vi(xk)) < 0.

80 2 Value Iteration ADP for Discrete …

For i = 0, 1, . . ., the iterative value function Vi(xk) is a Lyapunov function [20, 26,
30]. Therefore, the conclusion is proved.

Next, we will prove that the optimal control law u∗(xk) is an admissible control
law for system (2.3.1).

Theorem 2.3.6 Let xk be anarbitrary controllable state. For i = 0, 1, . . ., if Assump-
tions 2.2.1–2.2.3 and 2.3.1 hold and the iterative value function Vi(xk) and iterative
control law vi(xk) are defined by (2.3.7)–(2.3.9) where θ satisfies (2.3.21), then the
optimal control law u∗(xk) is an admissible control law for system (2.3.1).

The proof of this theorem can be done by considering the fact that J∗(xk) is finite.
Therefore, we omit the details here.

Remark 2.3.5 From the above analysis, we can see that the present iterative θ -ADP
algorithm is different from VI algorithms in [5, 52]. The main differences can be
summarized as follows.

(1) The initial conditions are different. In [5, 52], VI algorithms are initialized by
zero, i.e., V0(xk) ≡ 0,∀xk . In this section, the iterative θ -ADP algorithm is
initialized by θΨ (xk) �= 0.

(2) The convergence properties are different. For VI algorithms in [5, 52], the iter-
ative value function Vi(xk) is monotonically nondecreasing and converges to
the optimum. In this section, the iterative value function Vi(xk) in the θ -ADP
algorithm is monotonically nonincreasing and converges to the optimal one.

(3) We emphasize that the properties of the iterative control laws are different. For
the VI algorithms in [5, 52], the stability of iterative control laws cannot be
guaranteed, which means the VI algorithm can only be implemented off-line. In
this section, it is proved that for all i = 0, 1, . . ., the iterative control law vi(xk)
is a stable control law. This means that the present iterative θ -ADP algorithm
is feasible for implementations both online and off-line. This is an obvious
merit of the present iterative θ -ADP algorithm. In the simulation study, we will
provide simulation comparisons between the VI algorithms in [5, 52] and the
present iterative θ -ADP algorithm. This conclusion echoes the observation in
Remark 2.2.2.

2.3.3 Summary of Iterative θ-ADP Algorithm

In the previous development, we can see that an initial positive-definite function
Ψ (xk) ∈ Ψ̄xk is needed to start the iterative θ -ADP algorithm. So, the existence of
the set Ψ̄xk is important for the algorithm. Next, we will show the Ψ̄xk �= ∅, where ∅
is the empty set.

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 81

Theorem 2.3.7 Let xk be an arbitrary controllable state, and let J∗(xk) be the opti-
mal cost function expressed by (2.3.2). If Assumptions 2.2.1–2.2.3 and 2.3.1 hold,
then

J∗(xk) ∈ Ψ̄xk .

Proof By Assumption 2.3.1 and the definition of J∗(xk) in (2.3.2) and (2.3.4), we
can see that

J∗(xk) = lim
N→∞

{ N∑

k=0

U(xk+j, u
∗(xk+j))

}

is a positive-definite function of xk . From (2.3.4), we can also obtain

J∗(F(xk, u
∗(xk)) ≤ J∗(F(xk)), ∀xk .

This completes the proof of the theorem.

According to Theorem 2.3.7, Ψ̄xk is not an empty set. While generally, the optimal
value is difficult to obtain before the algorithm is complete. So, some other methods
are established to obtain Ψ (xk).

Corollary 2.3.2 Let xk be an arbitrary state vector. If Ψ (xk) is a Lyapunov function
of system (2.3.1), then Ψ (xk) ∈ Ψ̄xk .

Remark 2.3.6 According to the definition of admissible control law, we can see that
Ψxk ∈ Ψ̄xk is equivalent to that Ψxk is a Lyapunov function. There are two properties
we should point out. First, the general purpose of choosing a Lyapunov function
Ψ (xk) is to find a control ν̄(xk) to stabilize the system. In this section, however, the
purpose of choosing the initial function θΨ (xk) is to obtain the optimal control of
the system (not only to stabilize the system but also to minimize the value function).
Second, if we adopt V0(xk) = Ψ (xk) to initialize the system, then the initial iterative
control law v′

0(xk) can be obtained by

v′
0(xk) = arg min

uk
{U(xk, uk) + Ψ (xk+1)} .

We should point out that v′
0(xk) may not be a stable control law for the system,

although the algorithm is initialized by a Lyapunov function. Using the present
iterative θ -ADP algorithm (2.3.7)–(2.3.9) in this section, we can prove that all the
iterative controls vi(xk) for i = 0, 1, . . ., are stable and simultaneously guarantee the
iterative value function to converge to the optimum. Hence, our present algorithm is
effective to obtain the optimal control law both online and off-line.

82 2 Value Iteration ADP for Discrete …

From Corollary 2.3.2, we can see that if we get a Lyapunov function of system
(2.3.1), then Ψ (xk) can be obtained. As Lyapunov function is also difficult to obtain,
we will give some simple methods to choose the function Ψ (xk).

First, it is recommended to use the utility function U(xk, 0) to start the iterative
θ -ADP algorithm, where we set V0(xk) = θU(xk, 0) with a large θ . If we get a V1(xk)
such that V1(xk) < V0(xk), then U(xk, 0) ∈ Ψ̄xk .

Second, we can use NN structures of ADP to generate an initial function Ψ (xk).
We first randomly initialize the weights of the action NN. Give an arbitrary positive-
definite function G(xk) > 0 and train the critic NN to satisfy the equation

Ψ̂ (xk) = G(xk) + Ψ̂ (F(xk, v̂(xk))),

where Ψ̂ (xk) and v̂(xk) are outputs of critic and action networks, respectively. The NN
structure and the training rule can be seen in the next section. If the critic network
training is convergent, then let Ψ (xk) = Ψ̂ (xk) and the initial value function is
determined.

Remark 2.3.7 For many nonlinear systems and utility functions, such as [2, 52], we
can obtainU(xk, 0) ∈ Ψ̄xk . In this situation, we only need to set a large θ for the initial
condition and run the iterative θ -ADP algorithm (2.3.7)–(2.3.9). This can reduce the
amount of computation very much. If there does not exist a stable control law such
that (2.3.18) is finite, then there may not exist a finite θ such that (2.3.12) is true.
In this case, we can find an initial admissible control law η(xk) such that xk+N = 0,
where N ≥ 1 is an arbitrary positive integer. Let

V0(xk) =
N∑

τ=0

U(xk+τ , η(xk+τ)).

Then, using the algorithm (2.3.7)–(2.3.9), we can also obtain Vi(xk) ≤ Vi+1(xk). The
details of proof are available in [43].

Remark 2.3.8 The iterative θ -ADP algorithm is different from the policy itera-
tion algorithm in [1, 31]. For the policy iteration algorithm, an admissible control
sequence is necessary to initialize the algorithm, while for the iterative θ -ADP algo-
rithm developed in this section, the initial admissible control sequence is avoided.
Instead, we only need an arbitrary function Ψ (xk) ∈ Ψ̄xk to start the algorithm.
Generally speaking, for nonlinear systems, admissible control sequences are diffi-
cult to obtain, while the function Ψ (xk) can easily be obtained (for many cases,
U(xk, 0) ∈ Ψ̄xk). Second, for PI algorithms in [1, 31], during every iteration step,
we need to solve a generalized Bellman equation to update the iterative control law,
while in the present iterative θ -ADP algorithm, the generalized Bellman equation is
unnecessary. Therefore, the iterative θ -ADP algorithm has more advantages than the
PI algorithm.

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 83

Now, we summarize the iterative θ -ADP algorithm as follows.

Algorithm 2.3.1 Iterative θ -adaptive dynamic programming algorithm
Step 1. Choose randomly an array of initial states xk and choose a computation precision ε. Choose

an arbitrary positive definite function Ψ (xk) ∈ Ψ̄xk . Choose a constant θ > 0.
Step 2. Let i = 0. Let the initial value function V0(xk) = θΨ (xk).
Step 3. Compute v0(xk) by (2.3.7) and obtain V1(xk) by (2.3.8).
Step 4. If V1(xk) ≤ V0(xk), then go to next step. Otherwise, θ is not large enough, and choose a

larger θ ′ > θ . Let θ = θ ′ and go to Step 2.
Step 5. Let i = i + 1. Compute Vi(xk) by (2.3.8) and vi(xk) by (2.3.9).
Step 6. If Vi(xk) ≤ Vi−1(xk), go to Step 7; else, choose a larger θ ′ > θ . Let θ = θ ′ and go to

Step 2.
Step 7. If |Vi(xk) − Vi−1(xk)| ≤ ε, then go to next step; else go to Step 5.
Step 8. Stop.

Remark 2.3.9 Generally speaking, NNs are used to implement the present iterative
θ -ADP algorithm. In order to approximate the functions Vi(xk) and vi(xk), a large
number of xk in the state space is required to train NNs. In this situation, as we have
declared in Step 1, we should choose randomly an array of initial states xk in the
state space to initialize the algorithm. For all i = 0, 1, . . ., according to the array of
states xk , we can obtain the iterative value function Vi(xk) and the iterative control
law vi(xk) by training NNs, respectively. To the best of our knowledge, all the NN
implementations for ADP require a large number of xk in state space to approximate
the iterative control laws and the iterative value functions, such as [36, 48]. The
detailed NN implementation for the present iterative θ -ADP algorithm can be found
in [44].

2.3.4 Simulation Studies

To evaluate the performance of our iterative θ -ADP algorithm, we choose two exam-
ples with quadratic utility functions for numerical experiments.

Example 2.3.1 This example is chosen from [43, 52] with modifications. Consider

xk+1 =
[

0.8x1k exp(x2
2k)

0.9x3
2k

]
+

[−0.2 0
0 −0.2

]
uk,

where xk = [x1k, x2k]T and uk = [u1k, u2k]T are the state and control variables,
respectively. The initial state is x0 = [1,−1]T. The cost function is the quadratic
form expressed as

J
(
x0, u

∞
0

) =
∞∑

k=0

(
xTk Qxk + uTk Ruk

)

where the matrices Q and R given as identity matrix with suitable dimensions.

84 2 Value Iteration ADP for Discrete …

Two NNs are used to implement the iterative θ -ADP algorithm. The critic and
action networks are both chosen as three-layer BP NNs with the structures of 2–8–1
and 2–8–2, respectively. For each iteration step, the critic and action networks are
trained for 200 steps using the learning rate of 0.02 so that the NN training errors
become less than 10−6. To show the effectiveness of the iterative θ -ADP algorithm,
we choose four θ ’s (including θ = 3.5, 5, 7, 10) to initialize the algorithm. Let the
algorithm run for 35 iteration steps for different θ ’s to obtain the optimal value
function. The convergence curves of the value functions are shown in Fig. 2.14.

From Fig. 2.14, we can see that all the convergence curves of value functions are
monotonically nonincreasing. For convenience of analysis, we let

0 10 20 30 35

5.4

5.6

5.8

6

6.2

Iteration steps
(a)

V
al

ue
 fu

nc
tio

n

θ =3.5

0 10 20 30 35
5

5.5

6

6.5

7

7.5

8

Iteration steps
(b)

V
al

ue
 fu

nc
tio

n

θ =5

0 10 20 30 35
5

6

7

8

9

10

11

12

Iteration steps
(c)

V
al

ue
 fu

nc
tio

n

θ =7

0 10 20 30 35
5

7

9

11

13

15

17

Iteration steps
(d)

V
al

ue
 fu

nc
tio

n

θ =10

Fig. 2.14 The convergence of value functions for Example 2.3.1. a θ = 3.5. b θ = 5. c θ = 7.
d θ = 10

2.3 Iterative θ -Adaptive Dynamic Programming Algorithm for Nonlinear Systems 85

θ0 = lim
xk→0

U(xk, v0(xk))

U(xk, 0) − U(F(xk, v0(xk)), 0)

where v0(xk) is obtained in (2.3.7). Then, for θ = 3.5, we have θ0 = 1.9015. For
θ = 5, we have θ0 = 1.90984. For θ = 7, we have θ0 = 2.04469. For θ = 10, we
have θ0 = 2.16256. We can also see that if the iterative value function is convergent,
then the iterative value function can converge to the optimum and the optimal value
function is independent from the parameter θ . We apply the optimal control law to
the system for Tf = 20 time steps and obtain the following results. The optimal state
and control trajectories are shown in Fig. 2.15a and b, respectively.

From the above simulation results, we can see that if we choose θ large enough
to initialize the iterative θ -ADP algorithm, the iterative value function Vi(xk) will be
monotonically nonincreasing and converge to the optimum, which verifies the effec-
tiveness of the present algorithm. Next, we enhance the complexity of the system.
We will consider the situation where the autonomous system is unstable, and we will
show that the present iterative θ -ADP is still effective.

Example 2.3.2 This example is chosen from [32, 37]. Consider

xk+1 =
[

(x2
1k + x2

2k + uk) cos(x2k)

(x2
1k + x2

2k + uk) sin(x2k)

]
, (2.3.29)

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

Time steps

(a)

S
ta

te
s

0 2 4 6 8 10 12 14 16 18 20
−0.1

−0.05

0

0.05

0.1

Time steps

(b)

C
on

tro
ls

x1
x2

u1
u2

Fig. 2.15 The optimal trajectories. a Optimal state trajectories. b Optimal control trajectories

86 2 Value Iteration ADP for Discrete …

0 5 10 15
2

3

4

5

6

Iteration steps

(a)

V
al

ue
 fu

nc
tio

n
θ = 3

0 5 10 15
2

4

6

8

10

Iteration steps

(b)

V
al

ue
 fu

nc
tio

n

θ = 5

0 5 10 15
2

4

6

8

10

12

Iteration steps

(c)

V
al

ue
 fu

nc
tio

n

θ = 7

0 5 10 15
2

6

10

14

16

Iteration steps

(d)

V
al

ue
 fu

nc
tio

n
θ = 10

Fig. 2.16 The convergence of value functions for Example 2.3.2. a θ = 3. b θ = 5. c θ = 7.
d θ = 10

where xk = [x1k, x2k]T denotes the system state vector and uk denotes the control.
The value function is the same as the one in Example 2.3.1.

The initial state is x0 = [1,−1]T. From system (2.3.29), we can see that xk = 0
is an equilibrium state and the autonomous system F(xk, 0) is unstable. We also
use NNs to implement the iterative ADP algorithm where four θ ’s (including θ =
3, 5, 7, 10) are chosen to initialize the algorithm and the convergence curves of the
value functions are shown in Fig. 2.16.

Applying the optimal control law to the system for Tf = 15 time steps, the optimal
state and control trajectories are shown in Fig. 2.17a and b, respectively.

2.4 Conclusions 87

0 5 10 15
−1

−0.5

0

0.5

1

Time steps

(a)

S
ta

te
s

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

Time steps

(b)

C
on

tro
l

x1
x2

Fig. 2.17 The optimal trajectories. a Optimal state trajectories. b Optimal control trajectory

2.4 Conclusions

In this chapter, we developed several VI-based ADP methods for optimal control
problems of discrete-time nonlinear systems. First, a GVI-based ADP scheme is
established to obtain optimal control for discrete-time affine nonlinear systems. Then,
the GVI ADP algorithm is used to solve the optimal tracking control problem for
discrete-time nonlinear systems as a generalization. Furthermore, as a case study, the
VI-based ADP approach is developed to derive optimal control for discrete-time non-
linear systems with unknown dynamics and input constraints. It is emphasized that
using the ADP approach, affine and nonaffine nonlinear systems can be treated uni-
formly. Next, an iterative θ -ADP technique is presented to solve the optimal control
problem of discrete-time nonlinear systems. Convergence analysis and optimality
analysis results are established for the iterative θ -ADP algorithm. Simulation results
are provided to show the effectiveness of the present algorithm.

References

1. Abu-Khalaf M, Lewis FL (2005) Nearly optimal control laws for nonlinear systems with
saturating actuators using a neural network HJB approach. Automatica 41(5):779–791

88 2 Value Iteration ADP for Discrete …

2. Abu-Khalaf M, Lewis FL, Huang J (2008) Neurodynamic programming and zero-sum games
for constrained control systems. IEEE Trans Neural Netw 19(7):1243–1252

3. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Adaptive critic designs for discrete-time zero-
sum games with application to H∞ control. IEEE Trans Syst Man Cybern.-Part B: Cybern
37(1):240–247

4. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2007) Model-free Q-learning designs for linear
discrete-time zero-sum games with application to H-infinity control. Automatica 43(3):473–
481

5. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time nonlinear HJB solution using
approximate dynamic programming: convergence proof. IEEE Trans Syst Man Cybern-Part B:
Cybern 38(4):943–949

6. Apostol TM (1974) Mathematical analysis: A modern approach to advanced calculus. Addison-
Wesley, Boston, MA

7. Athans M, Falb PL (1966) Optimal control: an introduction to the theory and its applications.
McGraw-Hill, New York

8. Beard R, Saridis G, Wen J (1997) Galerkin approximations of the generalized Hamilton–
Jacobi–Bellman equation. Automatica 33(12):2158–2177

9. Bellman RE (1957) Dynamic programming. Princeton University Press, Princeton, NJ
10. Berkovitz LD, Medhin NG (2013) Nonlinear optimal control theory. CRC Press, Boca Raton,

FL
11. Bertsekas DP (2005) Dynamic programming and optimal control. Athena Scientific, Belmont,

MA
12. Bitmead RR, Gever M, Petersen IR (1985) Monotonicity and stabilizability properties of solu-

tions of the Riccati difference equation: Propositions, lemmas, theorems, fallacious conjectures
and counterexamples. Syst Control Lett 5:309–315

13. Dierks T, Thumati BT, Jagannathan S (2009) Optimal control of unknown affine nonlinear
discrete-time systems using offline-trained neural networks with proof of convergence. Neural
Netw 22(5):851–860

14. Dreyfus SE, Law AM (1977) The art and theory of dynamic programming. Academic Press,
New York

15. Fu J, He H, Zhou X (2011) Adaptive learning and control for MIMO system based on adaptive
dynamic programming. IEEE Trans Neural Netw 22(7):1133–1148

16. Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm.
IEEE Trans Neural Netw 5(6):989–993

17. Heydari A, Balakrishnan SN (2013) Finite-horizon control-constrained nonlinear optimal con-
trol using single network adaptive critics. IEEE Trans Neural Netw Learn Syst 24(1):145–157

18. Howard RA (1960) Dynamic programming and Markov processes. MIT Press, Cambridge,
MA

19. Huang Y, Liu D (2014) Neural-network-based optimal tracking control scheme for a class
of unknown discrete-time nonlinear systems using iterative ADP algorithm. Neurocomputing
125:46–56

20. Koppel LB (1968) Introduction to control theory with applications to process control. Prentice-
Hall, Englewood Cliffs, NJ

21. Levin AU, Narendra KS (1993) Control of nonlinear dynamical systems using neural networks:
controllability and stabilization. IEEE Trans Neural Netw 4(2):192–206

22. Lewis FL, Liu D (2012) Reinforcement learning and approximate dynamic programming for
feedback control. Wiley, Hoboken, NJ

23. Lewis FL, Syrmos VL (1995) Optimal control. Wiley, New York
24. Lewis FL, Vrabie D (2009) Reinforcement learning and adaptive dynamic programming for

feedback control. IEEE Circuits Syst Mag 9(3):32–50
25. Li H, Liu D (2012) Optimal control for discrete-time affine non-linear systems using general

value iteration. IET Control Theory Appl 6(18):2725–2736
26. Liao X, Wang L, Yu P (2007) Stability of dynamical systems. Elsevier, Amsterdam, Netherlands

References 89

27. Lincoln B, Rantzer A (2006) Relaxing dynamic programming. IEEE Trans Autom Control
51(8):1249–1260

28. Liu D, Wang D, Yang X (2013) An iterative adaptive dynamic programming algorithm for
optimal control of unknown discrete-time nonlinear systems with constrained inputs. Inf Sci
220:331–342

29. Lyshevski SE (1998) Optimal control of nonlinear continuous-time systems: design of bounded
controllers via generalized nonquadratic functionals. In: Proceedings of the American control
conference. pp 205–209

30. Michel AN, Hou L, Liu D (2015) Stability of dynamical systems: On the role of monotonic
and non-monotonic Lyapunov functions. Birkhäuser, Boston, MA

31. Murray JJ, Cox CJ, Lendaris GG, Saeks R (2002) Adaptive dynamic programming. IEEE Trans
Syst Man Cybern-Part C: Appl Rev 32(2):140–153

32. Navarro-Lopez EM (2007) Local feedback passivation of nonlinear discrete-time systems
through the speed-gradient algorithm. Automatica 43(7):1302–1306

33. Primbs JA, Nevistic V (2000) Feasibility and stability of constrained finite receding horizon
control. Automatica 36(7):965–971

34. Prokhorov DV, Wunsch DC (1997) Adaptive critic designs. IEEE Trans Neural Netw 8(5):997–
1007

35. Rantzer A (2006) Relaxed dynamic programming in switching systems. IEE Proc-Control
Theory Appl 153(5):567–574

36. Si J, Wang YT (2001) On-line learning control by association and reinforcement. IEEE Trans
Neural Netw 12(2):264–276

37. Sira-Ramirez H (1991) Non-linear discrete variable structure systems in quasi-sliding mode.
Int J Control 54(5):1171–1187

38. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge,
MA

39. Vincent TL, Grantham WJ (1997) Nonlinear and optimal control systems. Wiley, New York
40. Vrabie D, Vamvoudakis KG, Lewis FL (2013) Optimal adaptive control and differential games

by reinforcement learning principles. IET, London
41. Wang D, Liu D (2013) Neuro-optimal control for a class of unknown nonlinear dynamic systems

using SN-DHP technique. Neurocomputing 121:218–225
42. Wang D, Liu D, Wei Q, Zhao D, Jin N (2012) Optimal control of unknown nonaffine nonlinear

discrete-time systems based on adaptive dynamic programming. Automatica 48(8):1825–1832
43. Wang FY, Jin N, Liu D, Wei Q (2011) Adaptive dynamic programming for finite-horizon

optimal control of discrete-time nonlinear systems with ε-error bound. IEEE Trans Neural
Netw 22(1):24–36

44. Wei Q, Liu D (2014) A novel iterative θ-adaptive dynamic programming for discrete-time
nonlinear systems. IEEE Trans Autom Sci Eng 11(4):1176–1190

45. Wei Q, Liu D, Xu Y (2014) Neuro-optimal tracking control for a class of discrete-time non-
linear systems via generalized value iteration adaptive dynamic programming. Soft Comput
20(2):697–706

46. Werbos PJ (1977) Advanced forecasting methods for global crisis warning and models of
intelligence. Gen Syst Yearbook 22:25–38

47. Werbos PJ (1992) Approximate dynamic programming for real-time control and neural model-
ing. In: White DA, Sofge DA (eds) Handbook of intelligent control: neural, fuzzy, and adaptive
approaches (Chapter 13). Van Nostrand Reinhold, New York

48. Yang Q, Jagannathan S (2012) Reinforcement learning controller design for affine nonlin-
ear discrete-time systems using online approximators. IEEE Trans Syst Man Cybern-Part B:
Cybern 42(2):377–390

49. Zhang H, Huang J, Lewis FL (2009) An improved method in receding horizon control with
updating of terminal cost function. In: Valavanis KP (ed) Applications of intelligent control to
engineering systems. Springer, New York, pp 365–393

50. Zhang H, Liu D, Luo Y, Wang D (2013) Adaptive dynamic programming for control: algorithms
and stability. Springer, London

90 2 Value Iteration ADP for Discrete …

51. Zhang H, Luo Y, Liu D (2009) Neural-network-based near-optimal control for a class of
discrete-time affine nonlinear systems with control constraints. IEEE Trans Neural Netw
20(9):1490–1503

52. Zhang H, Wei Q, Luo Y (2008) A novel infinite-time optimal tracking control scheme for a
class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE Trans
Syst Man Cybern-Part B: Cybern 38(4):937–942

http://www.springer.com/978-3-319-50813-9

	2 Value Iteration ADP for Discrete-Time Nonlinear Systems
	2.1 Introduction
	2.2 Optimal Control of Nonlinear Systems Using General Value Iteration
	2.2.1 Convergence Analysis
	2.2.2 Neural Network Implementation
	2.2.3 Generalization to Optimal Tracking Control
	2.2.4 Optimal Control of Systems with Constrained Inputs
	2.2.5 Simulation Studies

	2.3 Iterative θ-Adaptive Dynamic Programming Algorithm for Nonlinear Systems
	2.3.1 Convergence Analysis
	2.3.2 Optimality Analysis
	2.3.3 Summary of Iterative θ-ADP Algorithm
	2.3.4 Simulation Studies

	2.4 Conclusions
	References

