
Chapter 2
Tensor Algebras

2.1 Free Associative Algebra of a Vector Space

Let V be a vector space over an arbitrary field 𝕜. We write V˝n
≝ V ˝ V ˝ � � � ˝ V

for the tensor product of n copies of V and call it the nth tensor power of V . We also
put V˝0

≝ 𝕜 and V˝1
≝ V . The infinite direct sum

TV ≝
n̊>0

V˝n

is called the tensor algebra of V . The multiplication in TV is provided by the tensor
multiplication of vectors V˝k�V˝m ! V˝.kCm/, .tk; tm/ 7! tk˝ tm. For every basis
E of V over 𝕜, all the tensor monomials e1˝ e2˝ � � � ˝ ed with ei 2 E form a basis
of V˝d. These monomials are multiplied just by writing them sequentially with the
sign˝ between them:

.ei1 ˝ ei2 ˝ � � � ˝ eik/ �
�
ej1 ˝ ej2 ˝ � � � ˝ ejm

�

D ei1 ˝ ei2 ˝ � � � ˝ eik ˝ ej1 ˝ ej2 ˝ � � � ˝ ejm :

Thus, TV is an associative but not commutative 𝕜-algebra. It can be thought of
as the algebra of polynomials in noncommuting variables e 2 E with coefficients
in 𝕜. From this point of view, the subspace V˝d � TV consists of all homogeneous
polynomials of degree d.

Another name for TV is the free associative 𝕜-algebra with unit spanned by
the vector space V . This name emphasizes the following universal property of the
𝕜-linear map 
 W V ,! TV embedding V into TV as the subspace V˝1 of linear
homogeneous polynomials.

Proposition 2.1 (Universal Property of Free Associative Algebras) For every
associative -algebra A with unit and -linear map f W V ! A, there exists a unique
homomorphism of -algebrasef W TV ! A such that f D ef ∘ 
. Thus, for every
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22 2 Tensor Algebras

-algebra A, the homomorphisms of -algebras TV ! A are in bijection with the
linear maps V ! A.

Exercise 2.1 Let 
0 W V ! T 0, where T 0 is an associative 𝕜-algebra with unit, be
another linear map satisfying the universal property from Proposition 2.1. Show that
there exists a unique isomorphism of 𝕜-algebras  W TV ⥲ T 0 such that  
 D 
0.
Proof (of Proposition 2.1) A homomorphism of 𝕜-algebrasef W TV ! A such that
f D ef ∘ 
 maps every decomposable tensor v1 ˝ v2 ˝ � � � ˝ vn to the product
f .v1/ � f .v2/ � � � f .vn/ in A, and thereforeef is unique, because the decomposable
tensors span TV . Since the product f .v1/ � f .v2/ � � � f .vn/ is multilinear in vi, for each
n 2 N there exists the linear map

fn W V ˝ V ˝ � � � ˝ V ! A; v1 ˝ v2 ˝ � � � ˝ vn 7! f .v1/ � f .v2/ � � � f .vn/:

We put f0 W 𝕜! A, 1 7! 1, and defineef W TV ! A to be the sum of all the fn:

ef W
M

n>0
V˝n ! A;

X

n>0
tn 7!

X

n>0
'n.tn/ 2 A:

Since every tensor polynomial t DP tn 2 TV has a finite number of nonzero homo-
geneous components tn 2 V˝n, the mapef is a well-defined algebra homomorphism.

ut

2.2 Contractions

2.2.1 Complete Contraction

For dual vector spaces V , V� and two decomposable tensors of equal degree
t D v1 ˝ v2 ˝ � � � ˝ vn 2 V˝n, # D �1 ˝ �2 ˝ � � � ˝ �n 2 V�˝n, the product

h t; # i ≝
nY

iD1
�i.vi/ D

nY

iD1
h vi; �i i 2 𝕜 (2.1)

is called the complete contraction of t with �. For a fixed

# D �1 ˝ �2 ˝ � � � ˝ �n 2 V�˝n
;

the constant h v1 ˝ v2 ˝ � � � ˝ vn; # i 2 𝕜 depends multilinearly on the vectors
v1; v2; : : : ; vn 2 V . Hence, there exists a unique linear form

c# W V˝n ! 𝕜; v1 ˝ v2 ˝ � � � ˝ vn 7! h v1 ˝ v2 ˝ � � � ˝ vn; # i :
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Since the covector c# 2 V˝n� depends multilinearly on �1; �2; : : : ; �n, there exists a
unique linear map

V�˝n ! V˝n�
; # 7! c# : (2.2)

In other words, the complete contraction assigns a well-defined pairing1 between
the vector spaces V˝n and V�˝n,

V˝n � V�˝n ! 𝕜; .t; #/ 7! h t; # i : (2.3)

Proposition 2.2 For a finite-dimensional vector space V, the pairing (2.3) is
perfect, i.e., the linear map (2.2) is an isomorphism.

Proof Choose dual bases e1; e2; : : : ; en 2 V and x1; x2; : : : ; xn 2 V�. Then the tensor
monomials ei1 ˝ ei2 ˝ � � � ˝ eir and xj1 ˝ xj2 ˝ � � � ˝ xjs form bases in V˝n�

and
V�˝n dual to each other with respect to the full contraction pairing (2.1). ut
Corollary 2.1 For every finite-dimensional vector space V, there is a canonical
isomorphism

�
V��˝n ⥲ Hom.V; : : : ;V I / (2.4)

mapping the decomposable tensor # D �1 ˝ �2 ˝ � � � ˝ �n 2 V�˝n to the n-linear
form

V � V � � � � � V ! ; .v1; v2; : : : ; vn/ 7!
nY

iD1
�i.vi/:

Proof The universal property of tensor product V˝n asserts that the dual space�
V˝n

��
, that is, the space of linear maps V˝n ! 𝕜, is isomorphic to the space

of n-linear forms V � V � � � � � V ! 𝕜. It remains to compose this isomorphism
with the isomorphism (2.2). ut

2.2.2 Partial Contractions

Given a pair of injective but not necessarily order-preserving maps

f1; 2; : : : ; pg I - f1; 2; : : : ; mg J
,! f1; 2; : : : ; qg,

1See Sect. 7.2 of Algebra I.
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we write I D .i1; i2; : : : ; im/ and J D .j1; j2; : : : ; jm/ for the sequences of their values
i� D I.�/, j� D J.�/. The partial contraction in the indices I, J is the linear map

cI
J W V�˝p ˝ V˝q ! V�˝.p�m/ ˝ V˝.q�m/ (2.5)

sending a decomposable tensor �1 ˝ �2 ˝ � � � ˝ �p ˝ v1 ˝ v2 ˝ � � � ˝ vq to the
product

mY

�D1

˝
vj� ; �i�

˛ � �
O

i…I

�i
� ˝ �O

j…J

vj
�
; (2.6)

obtained by contracting the i� th tensor factor of V�˝p with the j� th tensor factor
of V˝q for � D 1; 2; : : : ; m and leaving all the other tensor factors in their initial
order. Note that the different choices of injective maps I, J lead to different partial
contraction maps (2.5) even if the maps have equal images and differ only in the
order of sequences i1; i2; : : : ; im and j1; j2; : : : ; jm.

Exercise 2.2 Verify that the linear map (2.5) is well defined by its values (2.6) on
the decomposable tensors.

Example 2.1 (Inner Product of Vector and Multilinear Form) Consider an n-linear
form ' W V �V � � � � �V ! 𝕜 as a tensor from V�˝n by means of the isomorphism
from Corollary 2.1, and contract this tensor with a vector v 2 V at the first tensor
factor. The result of such a contraction is called the inner product of the n-linear
form ' with the vector v, and is denoted by v∟' 2 V�˝.n�1/. This tensor can be
viewed as the .n� 1/-linear form on V obtained from the form ' by setting the first
argument equal to v. In other words,

v∟'.u1; u2; : : : ; un�1/ D ' .v; u1; u2; : : : ; un�1/

for all u1; u2; : : : ; un�1 2 V . Indeed, since both sides of the equality are linear in ',
it is enough to verify it only for the n-linear forms ' coming from the decomposable
tensors

�1 ˝ �2 ˝ � � � ˝ �n 2 V�˝n
;

because the latter span V�˝n. For such ', we have

' .v; u1; u2; : : : ; un�1/ D h v ˝ u1 ˝ u2 ˝ � � � ˝ un�1; �1 ˝ �2 ˝ � � � ˝ �n i
D h v; �1 i � h u1; �2 i � h u2; �3 i � � � h un�1; �n i
D h u1 ˝ u2 ˝ � � � ˝ un�1; h v; �1 i � �2 ˝ � � � ˝ �n i
D ˝ u1 ˝ u2 ˝ � � � ˝ un�1; c11 .v ˝ �1 ˝ �2 ˝ � � � ˝ �n/

˛

D v∟' .u1; u2; : : : ; un�1/ :
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Exercise 2.3 Verify that for every pair of vector subspaces U;W � V , one has
U˝n \W˝n D .U \W/˝n in V˝n.

2.2.3 Linear Support and Rank of a Tensor

It follows from Exercise 2.3 that for every tensor t 2 V˝n, the intersection of
all vector subspaces U � V such that t 2 U˝n is the minimal subspace of
V with respect to inclusions whose nth tensor power contains t. It is called the
linear support of t and denoted by Supp.t/ � V . Its dimension is denoted by
rk t ≝ dim Supp.t/ and called the rank of the tensor t. Tensors t with rk t < dim V
are called degenerate. If we think of tensors as polynomials in noncommutative
variables, then the degeneracy of a tensor t means that t depends on fewer than
dim V variables for an appropriate choice of basis in V . For example, every tensor
t 2 V˝n of rank 1 can be written as � � e˝n D � � e˝ e˝ � � � ˝ e for some nonzero
vector e 2 Supp.t/ and � 2 𝕜. For a practical choice of such special coordinates and
the computation of rk t, we need a more effective description of Supp.t/.

Let t 2 V˝n be an arbitrary tensor. For every sequence J D j1j2 : : : jn�1 of n � 1
distinct but not necessarily increasing indices 1 6 j� 6 n, write

cJ
t W V�˝.n�1/ ! V; � 7! c1; 2; :::; .n�1/

j1;j2;:::;jn�1
.� ˝ t/ (2.7)

for the contraction map that pairs all .n � 1/ factors of V�˝.n�1/ with the .n � 1/
factors of t chosen in the order determined by J, that is, the �th factor of V�˝.n�1/ is
contracted with the j� th factor of t for each � D 1; 2; : : : ; n � 1. The result of such
a contraction is a linear combination of vectors that appear in monomials of t at the
position not represented in J. This linear combination certainly belongs to Supp.t/.

Theorem 2.1 For every t 2 V˝n, the subspace Supp.t/ � V is spanned by the
images of the nŠ contraction maps (2.7) corresponding to all possible choices of J.

Proof Let Supp.t/ D W � V . We have to show that every linear form � 2 V�
annihilating all the subspaces im

�
cI

t

� � W has to annihilate all of W as well.
Assume the contrary. Let � 2 V� be a linear form having nonzero restriction on the
subspace W and annihilating all the subspaces cJ

t

�
V�˝.n�1/�. Write �1; �2; : : : ; �d for

a basis in V� such that �1 D � and the restrictions of �1; �2; : : : ; �k to W form a basis
in W�. Let w1;w2; : : : ;wk be the dual basis of W. Expand t as a linear combination
of tensor monomials built out of the wi. Then

�
�
cJ

t .��1 ˝ ��2 ˝ � � � ˝ ��n�1 /
�

is equal to the complete contraction of t with the monomial ��1 ˝ ��2 ˝ � � � ˝ ��n

whose indices�1; �2; : : : ; �n form the permutation of the indices 1; �1; �2; : : : ; �n�1
uniquely determined by J. The result of this contraction equals the coefficient of the
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monomial w�1˝w�2˝ � � �˝w�n in the expansion of t. Varying J and �1; �2; : : : ; �n�1
allows us to obtain every monomial w�1 ˝ w�2 ˝ � � � ˝ w�n containing w1. Our
assumption on � D �1 forces the coefficients of all these monomials in t to vanish.
Therefore, w1 … Supp.t/. Contradiction. ut

2.3 Quotient Algebras of a Tensor Algebra

There are three kinds of ideals in a noncommutative ring R. A subring I � R is
called a left ideal if xa 2 I for all a 2 I, x 2 R. Symmetrically, I is called a right
ideal if ax 2 I for all a 2 I, x 2 R. If I � R is both a left and right ideal, then I is
called a two-sided ideal or simply an ideal of R. The two-sided ideals are exactly the
kernels of ring homomorphisms, because for a homomorphism of rings ' W R ! S
and a 2 R such that '.a/ D 0, the equality '.xay/ D '.x/'.a/'.y/ D 0 holds for
all x; y 2 R. Conversely, if an additive abelian subgroup I � R is a two-sided ideal,
then the quotient group2 R=I inherits the well-defined multiplication by the usual
rule Œa�Œb� ≝ Œab�.

Exercise 2.4 Check this.

Therefore, the quotient map R � R=I is a homomorphism of rings with kernel I. It
follows from the factorization theorem for a homomorphism of abelian groups3 that
an arbitrary homomorphism of rings ' W R ! S is factorized into a composition of
the surjective quotient map R � R= ker' ' im ' followed by the monomorphism
R= ker' ' im ' ,! S.

The algebra of polynomials on a vector space V introduced in Sect. 11.2.1 of
Algebra I and the algebra of Grassmannian polynomials from Sect. 9.4 of Algebra I
can be described uniformly as the quotient algebras of the free associative algebra by
appropriate two-sided ideals spanned by the commutativity and skew-commutativity
relations. The details follow in the next four sections.

2.3.1 Symmetric Algebra of a Vector Space

Let V be a vector space over an arbitrary field 𝕜. Write sym � TV for the two-sided
ideal generated by the 𝕜-linear span of all the differences

u˝ w � w˝ u 2 V ˝ V: (2.8)

The ideal sym consists of finite linear combinations of the tensors obtained from
the differences (2.8) by taking left and right products with arbitrary elements of TV .

2See Sect. 6.6.1 of Algebra I.
3See Proposition 2.1 of Algebra I.
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Therefore, the intersection sym \ V˝n is linearly spanned by the differences

. � � � ˝ v ˝ w˝ � � � /� . � � � ˝ w˝ v ˝ � � � /; (2.9)

where the right dotted fragments in both decomposable tensors are the same, as are
the left dotted fragments as well. The whole ideal sym is the direct sum of these
homogeneous components:

sym D
n̊>0

�
sym \ V˝n

�
:

The quotient algebra SV ≝ TV=sym is called the symmetric algebra of the vector
space V . The multiplication in SV is induced by the tensor multiplication in TV and
denoted by the dot sign �, which is, however, usually omitted. The relations (2.8)
force all vectors u;w 2 V to commute in SV . As a vector space, the symmetric
algebra splits into the direct sum of homogeneous components

SV D
M

n>0
SnV; where SnV ≝ V˝n=.sym \ V˝n/:

The space SnV is called the nth symmetric power of V . Note that S0V D 𝕜 and
S1V D V . The inclusion 
 W V ,! SV , which maps V to S1V , has the following
universal property.

Exercise 2.5 (Universal Property of Free Commutative Algebras) Show that for
every commutative 𝕜-algebra A and linear map f W V ! A, there exists a unique
homomorphism of 𝕜-algebrasef W SV ! A such that f D e' ∘ 
. Also show that for
every linear map 
0 W V ! S0 to a commutative algebra S0 that possesses the same
universal property, there exists a unique isomorphism of algebras  W S0 ⥲ SV such
that  
0 D 
.
For this reason, the symmetric algebra SV is also called the free commutative 𝕜-
algebra with unit spanned by V . For every basis e1; e2; : : : ; ed of V , the commutative
monomials em1

1 em2
2 � � � emd

d of total degree
P

i mi D n form a basis in SnV , as we have
seen in Proposition 11.2 of Algebra I. Thus, the choice of basis in V assigns the
isomorphism of 𝕜-algebras SV ' 𝕜Œe1; e2; : : : ; ed�.

Exercise 2.6 Calculate dim SnV for dim V D d.

2.3.2 Symmetric Multilinear Maps

An n-linear map ' WV�V� � � � �V!U is called symmetric if '.vg1 ; vg2 ; : : : ; vgn/ D
'.v1; v2; : : : ; vn/ for all permutations g 2 Sn. The symmetric multilinear maps form
a subspace of the vector space Hom.V; : : : ;VIU/ of all n-linear maps. We denote
this subspace by Symn.V;U/ � Hom.V; : : : ;VIU/.
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Given a symmetric n-linear map ' W V �V � � � � �V ! U, then for every vector
space W, the right composition of linear maps F W U ! W with ' assigns the linear
map

%' W Hom.U;W/! Symn.V;W/; F 7! F ∘ ':

A symmetric multilinear map ' is called universal if %' is an isomorphism for
all W. The universal symmetric n-linear map is also called the n-ary commutative
multiplication of vectors.

Exercise 2.7 Verify that the target spaces of any two universal symmetric n-
linear maps are isomorphic by means of the unique linear map commuting with
the commutative multiplication.

Proposition 2.3 The universal symmetric n-linear map

�n W V � V � � � � � V ! U

is provided by tensor multiplication followed by factorization through the commu-
tativity relations, i.e.,

Proof By the universal property of tensor multiplication 	 W V�V� � � � �V ! V˝n,
every n-linear map ' W V � V � � � � � V ! W is uniquely factorized as ' D eF ∘ 	
for some linear mapeF W V˝n ! W. If the multilinear map ' is symmetric, then the
linear mapeF annihilates the commutativity relations (2.8):

eF
�
. � � � ˝ v ˝ w˝ � � � / � . � � � ˝ w˝ v ˝ � � � /�

D eF. � � � ˝ v ˝ w˝ � � � /�eF. � � � ˝ w˝ v ˝ � � � /
D '. : : : ; v;w; : : : / � '. : : : ;w; v; : : : / D 0:

Hence, there exists a linear map F W SnV ! W such that

F.v1v2 : : : vn/ D '.v1; v2; : : : ; vn/

andeF D F� , where � W V˝n � SnV is the factorization by the symmetry relation.
Therefore, ' D eF ∘ 	 D F�	 D F� . Given another linear map F0 W SnV ! W such
that ' D F0� D F0�	 , the universal property of 	 forces F0� D F� . Since � is
surjective, this leads to F0 D F. ut
Corollary 2.2 For an arbitrary (not necessarily finite-dimensional) vector space
V, the nth symmetric power SnV and the space Symn.V; / of symmetric n-linear
forms V � V � � � � � V !  are canonically dual to each other.
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Proof Right composition with the commutative multiplication

�n W V � V � � � � � V ! SnV;

which takes a covector � W SnV ! 𝕜 to the symmetric n-linear form

� ∘ �n W V � V � � � � � V ! 𝕜;

establishes an isomorphism .SnV/� ⥲ Symn.V; 𝕜/ by the universal property of �n.
ut

2.3.3 The Exterior Algebra of a Vector Space

Write skew � TV for the two-sided ideal generated by the 𝕜-linear span of all
proper squares v ˝ v 2 V ˝ V , v 2 V .

Exercise 2.8 Convince yourself that the 𝕜-linear span of all proper squares
v ˝ v 2 V ˝ V contains all the sums u˝ wC w˝ u with u;w 2 V and is linearly
generated by these sums if char𝕜 ¤ 2.

As in the commutative case, the ideal skew splits into the direct sum of homoge-
neous components

skew D
M

n>0

�
skew \ V˝n

�
;

where the degree-n component skew \ V˝n is linearly generated over 𝕜 by the
decomposable tensors � � � ˝ v ˝ v ˝ � � � , containing a pair of equal sequential
factors. By Exercise 2.8, all the sums

. � � � ˝ v ˝ w˝ � � � /C . � � � ˝ w˝ v ˝ � � � /: (2.10)

also belong to skew \ V˝n. The quotient algebra ƒV ≝ TV=skew is called the
exterior or Grassmannian algebra of the vector space V . The multiplication inƒV is
induced by the tensor multiplication in TV . It is called the exterior or Grassmannian
multiplication and is denoted by the wedge sign ^. The skew-symmetry relations
imply that all the vectors from V anticommute and have zero squares in ƒV , i.e.,
u ^ w D �w ^ u and u ^ u D 0 for all u;w 2 V . A permutation of factors in any
monomial multiplies the monomial by the sign of the permutation,

vg1 ^ vg2 ^ � � � ^ vgk D sgn.g/ � v1 ^ v2 ^ � � � ^ vk 8 g 2 Sk:
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The algebras possessing this property are commonly called skew commutative in
mathematics and supercommutative in physics. We will shorten both names to
s-commutativity.

As a vector space over 𝕜, the Grassmannian algebra splits into the direct sum of
homogeneous components

ƒV D
M

n>0
ƒnV; where ƒnV D V˝n=.skew \ V˝n/:

The vector space ƒnV is called the nth exterior power of V . Note that ƒ0V D 𝕜
and ƒ1V D V . As in the symmetric case, the inclusion 
 W V ,! ƒV , mapping V to
ƒ1V , has a universal property.

Exercise 2.9 (Universal Property of Free s-Commutative Algebras) Show that
for every s-commutative 𝕜-algebra L and linear map f W V ! L, there exists a unique
homomorphism of 𝕜-algebrasef W ƒV ! L such that f Def ∘ 
. Also show that for
every linear map 
0 W V ! ƒ0 to an s-commutative algebra ƒ0 possessing the same
universal property, there exists a unique isomorphism of algebras  W ƒ0 ⥲ ƒV
such that  
0 D 
.
For this reason, the algebra ƒV is also called the free s-commutative 𝕜-algebra
spanned by V .

2.3.4 Alternating Multilinear Maps

An n-linear map ' W V � V � � � � � V ! U is called alternating if

'.vg1 ; vg2 ; : : : ; vgn/ D sgn.g/ � '.v1; v2; : : : ; vn/

for all permutations g 2 Sn. We write Altn.V;U/ � Hom.V; : : : ;VIU/ for the
subspace of alternating n-linear maps.

Associated with every alternating n-linear map ' W V � V � � � � � V ! U and
vector space W is the linear map

Hom.U;W/! Altn.V;W/; F 7! F ∘ ': (2.11)

The map ' is called the universal alternating n-linear map or the n-ary
s-commutative multiplication of vectors if the linear map (2.11) is an isomorphism
for all vector spaces W.

Exercise 2.10 Prove that the universal alternating n-linear map

˛n W V � V � � � � � V ! U
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is provided by tensor multiplication followed by factorization by the skew-commu-

tativity relations, i.e., , and verify that
the target spaces of every two universal symmetric n-linear maps are isomorphic by
means of the unique linear map commuting with the s-commutative multiplication.

Corollary 2.3 For an arbitrary (not necessarily finite-dimensional) vector space V,
the nth exterior power ƒnV and the space Altn.V; / of alternating n-linear forms
V � V � � � � � V !  are canonically dual to each other.

Proof The same as for Corollary 2.2 on p. 28. ut
Proposition 2.4 For every basis e1; e2; : : : ; ed of V, a basis inƒdV is formed by the
Grassmannian monomials

eI ≝ ei1 ^ ei2 ^ � � � ^ ein (2.12)

numbered by all I D .i1; i2; : : : ; in/ with 1 6 i1 < i2 < � � � < in 6 d. In particular,
dimƒnV D �d

n

�
and dimƒV D 2d.

Proof Write U for the vector space of dimension
�d

n

�
with the basis fuIg numbered

by the same multi-indices I as the Grassmannian monomials (2.12). We know from
Sect. 1.1.1 on p. 1 that every n-linear map ˛ W V � V � � � � � V ! U is uniquely
determined by its values on all the collections of basis vectors ˛.ej1 ; ej2 ; : : : ; ejn/,
and these values may be arbitrary. Let us put ˛.ej1 ; ej2 ; : : : ; ejn/ D 0 if some
arguments coincide, and ˛.ej1 ; ej2 ; : : : ; ejn/ D sgn.g/�uI, where I D .jg1 ; jg2 ; : : : ; jgn/

is the strictly increasing permutation of the indices j1; j2; : : : ; jn if all the indices are
distinct. The resulting n-linear map ˛ W V � V � � � � � V ! U is alternating and
universal, because for every n-linear alternating map ' W V � V � � � � � V ! W,
there exists a unique linear operator F W U ! W such that ' D F ∘ ˛, namely, the
operator acting on the basis of U as F .uI/ D '.ei1 ; ei2 ; : : : ; ein/. By Exercise 2.10,
there exists a linear isomorphism U ⥲ ƒnV sending the basis vectors uI to the
s-symmetric products ei1 ^ ei2 ^ � � � ^ ein D eI . This forces the latter to form a basis
in ƒnV . ut
Corollary 2.4 For every basis e1; e2; : : : ; ed of V, the exterior algebra ƒV is
isomorphic to the Grassmannian polynomial algebra ⧼e1; e2; : : : ; ed⧽ defined in
Sect. 9.4 of Algebra I. ut

2.4 Symmetric and Alternating Tensors

Starting from this point, we will always assume by default that char𝕜 D 0. For
every n 2 N, the symmetric group Sn acts on V˝n by permutations of factors in the
decomposable tensors:

g.v1 ˝ v2 ˝ � � � ˝ vn/ D vg1 ˝ vg2 ˝ � � � ˝ vgn 8 g 2 Sn: (2.13)
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Since vg1˝vg2˝ � � � ˝vgn is multilinear in v1; v2; : : : ; vn, there exists a well-defined
linear operator g W V˝n ! V˝n acting on decomposable tensors by formula (2.13).
The subspaces of Sn-invariant and sign-alternating tensors are denoted by

Symn V ≝ ft 2 V˝n j 8 g 2 Sn; g.t/ D tg; (2.14)

Altn V ≝ ft 2 V˝n j 8 g 2 Sn; g.t/ D sgn.g/ � tg; (2.15)

and called, respectively, the spaces of symmetric and alternating tensors of degree
n on V .

2.4.1 Symmetrization and Alternation

If char𝕜 D 0, then for all n > 2, the tensor power V˝n is projected onto
the subspaces of symmetric and alternating tensors, respectively, by means of the
symmetrization and alternation maps

symn W V˝n ! Symn V; t 7! 1

nŠ

X

g2Sn

g.t/; (2.16)

altn W V˝n ! Altn V; t 7! 1

nŠ

X

g2Sn

sgn.g/ � g.t/: (2.17)

Exercise 2.11 For all t 2 V˝n, s 2 Symn V , a 2 Altn V , and n > 2, prove that
(a) symn.s/ D s, (b) altn.a/ D a, (c) symn.a/ D altn.s/ D 0, (d) symn.t/ 2 Symn V ,
(e) altn.t/ 2 Altn V .

Therefore, the symmetrization and alternation maps satisfy the relations

sym2
n D symn; alt2n D altn; symn ∘ altn D altn ∘ symn D 0: (2.18)

Example 2.2 (Tensor Square Decomposition) For n D 2, the symmetrization and
alternation maps form a pair of complementary projectors,4 that is,

sym2 C alt2 D .IdC s12/=2C .Id � s12/=2 D Id;

where s12 2 S2 is a transposition. Therefore, there exists the direct sum decomposi-
tion

V˝2 D Sym2 V ˚ Alt2 V: (2.19)

4See Example 15.3 in Algebra I.
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If we interpret V˝2 as the space of bilinear forms on V�, then the decomposition
(2.19) turns out to be the decomposition of the space of bilinear forms into the direct
sum of subspaces of symmetric and alternating forms considered in Sect. 16.1.6 of
Algebra I.

Example 2.3 (Tensor Cube Decomposition) For n D 3, the direct sum
Sym3 V ˚ Alt3 V does not exhaust all of V˝3.
Exercise 2.12 Find codim

�
Sym3 V ˚Alt3 V

�
in V˝3.

To find the complement to Sym3 V ˚ Alt3 V in V˝3, write T D j123i 2 S3 for the
cyclic permutation and consider the difference

p D Id� sym3 � alt3 D Id � �IdC T C T2
�
=3: (2.20)

Exercise 2.13 Verify that p2 D p and p ∘ alt3 D alt3 ∘ p D p ∘ sym3 D sym3 ∘ p D 0.

Since sym3 C alt3 C p D IdV˝3 , there exists the direct sum decomposition

V˝3 D Sym3 V ˚ Alt3 V ˚ im.p/;

where im.p/ D ft 2 V˝3 j tCTtCT2 t D 0g consists of all cubic tensors annihilated
by averaging over the action of a 3-cycle. An example of such a tensor is provided
by Œu; Œv;w��, where Œa; b� ≝ a ˝ b � b ˝ a means the commutator in the tensor
algebra.

Exercise 2.14 (Jacobi Identity) Verify that Œu; Œv;w��C Œv; Œw; u��C Œw; Œu; v�� D 0
in V˝3 for all u; v;w 2 V .

If we think of V˝3 as the space of 3-linear forms on V�, then im.p/ consists of all
3-linear forms t W V� � V� � V� ! 𝕜 satisfying the Jacobi identity:

t.�; 
; �/C t.
; �; �/C t.�; �; 
/ D 0

for all �; 
; � 2 V�.
For larger n, the decomposition of V˝n by the “symmetry types” of tensors

becomes more complicated. It is the subject of the representation theory of the
symmetric group, which will be discussed in Chap. 7 below.

2.4.2 Standard Bases

Let us fix a basis e1; e2; : : : ; ed in V and break the basis monomials

ei1 ˝ ei2 ˝ � � � ˝ ein 2 V˝n
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into a disjoint union of Sn-orbits. Since the monomials of every Sn-orbit appear in
the expansion of every symmetric tensor t 2 Symn V with equal coefficients, a basis
in Symn V is formed by the monomial symmetric tensors

eŒm1;m2;:::;md � ≝

 
sum of all tensor monomials formed by

m1 factors e1, m2 factors e2, : : :, md factors ed

!

(2.21)

numbered by the sequences .m1;m2; : : : ;md/ of nonnegative integers satisfying the
condition

m1 C m2 C � � � C md D n:

It follows from the orbit length formula5 that the sum on the right-hand side of (2.21)
consists of nŠ=.m1Šm2Š � � � mdŠ/ summands, because the stabilizer of each summand
is formed by m1Šm2Š � � � mdŠ independent permutations of equal tensor factors.

Similarly, a basis in Altn V is formed by the monomial alternating tensors

eI D ehi1;i2;:::;ini ≝
X

g2Sn

sgn.g/ � eig.1/ ˝ eig.2/ ˝ � � � ˝ eig.n/ (2.22)

numbered by strictly increasing sequences of positive integers

I D .i1; i2; : : : ; in/; 1 6 i1 < i2 < � � � < in 6 d:

Remark 2.1 (Bases (2.21) and (2.22) for Infinite-Dimensional V) We do not
actually need to assume that d D dim V < 1 in both formulas (2.21), (2.22).
They make sense for an arbitrary, not necessarily finite, basis E in V under the
following agreement on notation. Let us fix some total ordering on the set E and
number once and for all the elements of every finite subset X � E in increasing order
by integer indices 1; 2; : : : ; jXj. Then a basis in SnV is formed by the monomial
tensors (2.21), where d; m1;m2; : : : ;md 2 N are any positive integers such that
m1 C m2 C � � � C md D n, and e1; e2; : : : ; ed run through the (numbered) subsets of
cardinality d in E. Similarly, a basis in Altn V is formed by the monomials (2.22),
where ei1 ; ei2 ; : : : ; ein run through the (numbered) subsets of cardinality n in E.

Proposition 2.5 If char./ D 0, then the restriction of the quotient map

V˝n � SnV

to the subspace Symn � V˝n and the restriction of the quotient map

V˝n � ƒnV

5See Proposition 12.2 of Algebra I.
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to the subspace Altn � V˝n establish the isomorphisms of vector spaces

�sym W Symn V ⥲ SnV and �sk W Altn V ⥲ ƒnV:

These isomorphisms act on the basis monomial tensors (2.21) and (2.22) by the
rules

eŒm1;m2;:::;md � 7!
nŠ

m1Š � m2Š � � � mdŠ
� em1
1 em2

2 � � � emd
d ; (2.23)

ehi1;i2;:::;idi 7! nŠ � ei1 ^ ei2 ^ � � � ^ eid : (2.24)

Proof The projection�sym maps each of the nŠ=.m1Šm2Š � � �mdŠ/ summands in (2.21)
to the commutative monomial em1

1 em2
2 : : : emd

d . Similarly, the projection �sk sends
each of the nŠ summands in (2.22) to the Grassmannian monomial ei1^ei2^ � � � ^ein .

ut
Caution 2.1 In spite of Proposition 2.5, the subspaces Symn V; Altn V � V˝n

should not be confused with the quotient spaces SnV and ƒnV of the tensor power
V˝n. If char𝕜 D p > 0, then many symmetric tensors and all the alternating
tensors of degree larger than p are annihilated by projections V˝n � SnV and
V˝n � ƒnV . Even if char𝕜 D 0, the isomorphisms from Proposition 2.5 do not
identify the monomial bases of tensor spaces directly with the standard monomials
in the polynomial rings. Both isomorphisms contain some combinatorial factors,
which should be taken into account whenever we need either to pull back the
multiplication from the polynomial (respectively exterior) algebra to the space of
symmetric (respectively alternating) tensors or push forward the contractions of
tensors into the polynomial algebras.

2.5 Polarization of Polynomials

It follows from Proposition 2.5 that for every homogeneous polynomial f 2 SnV�,
there exists a unique symmetric tensor ef 2 Symn V� mapped to f under the
factorization by the commutativity relations .V�/˝n � SnV� on p. 23 allows us
to treatef as the symmetric n-linear form

ef W V � V � : : : � V ! 𝕜; ef .v1; v2; : : : ; vn/ ≝
˝
v1 ˝ v2 ˝ � � � ˝ vn;ef

˛
:

This form is called the complete polarization of the polynomial f . For n D 2, the
polarizationef of a quadratic form f 2 S2V� coincides with that defined in Chap. 17
of Algebra I by the equality

2ef .u;w/ D f .uC w/ � f .u/� f .w/:
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For arbitrary n, the complete polarization of every monomial xm1
1 xm2

2 � � � xmd
d of degree

n D m1Cm2C� � �Cmd is given by the first formula from Proposition 2.5 and equals

m1Šm2Š � � � mdŠ

nŠ
� xŒm1;m2;:::;md �: (2.25)

The complete polarization of an arbitrary polynomial can be computed using (2.25)
and the linearity of the polarization map ��1

sym W SnV� ⥲ Symn V�, f 7! ef . By
Remark 2.1 on p. 34, this works for every (not necessarily finite) basis in V� as
well.

2.5.1 Evaluation of Polynomials on Vectors

Associated with every polynomial f 2 SnV� is the polynomial function

f W V ! 𝕜; v 7! f .v/ ≝ef .v; v; : : : ; v/: (2.26)

Note that the value of f on v is well defined even for infinite-dimensional vector
spaces and does not depend on any extra data on V , such as the choice of basis. Now
assume that dim V <1, fix dual bases e1; e2; : : : ; ed 2 V , x1; x2; : : : ; xd 2 V�, and
identify the symmetric algebra SV� with the polynomial algebra 𝕜Œx1; x2; : : : ; xd�.
Then the value of a polynomial f .x1; x2; : : : ; xn/ at a vector v D P

˛iei 2 V
coincides with the result of the substitution xi D ˛i in f :

f .v/ D f .˛1; ˛2; : : : ; ˛d/: (2.27)

Indeed, for every monomial f D xm1
1 xm2

2 � � � xmd
d , the complete contraction of v˝n

with

ef D m1Š � m2Š � � � mdŠ

nŠ
xŒm1;m2;:::;md �

is the sum of nŠ=.m1Š � m2Š � � � mdŠ/ equal products

m1Š � m2Š � � � mdŠ

nŠ
� x1.v/m1 � x2.v/m2 � � � xd.v/

md

D m1Š � m2Š � � � mdŠ

nŠ
� ˛m1

1 ˛
m2
2 � � �˛md

d :

It coincides with the result of the substitution .x1; x2; : : : ; xn/ D .˛1; ˛2; : : : ; ˛n/ in
the monomial

nŠ

m1Šm2Š � � � mdŠ
xm1
1 xm2

2 � � � xmd
d :
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We conclude that the evaluation of a polynomial f 2 𝕜Œx1; x2; : : : ; xd� at the
coordinates of a vector v 2 V depends only on f 2 SnV� and v 2 V but not on
the choice of dual bases in V , V�.

2.5.2 Combinatorial Formula for Complete Polarization

Since the value of a symmetric n-linear form does not depend on the order of
arguments, let us write

ef
�
v

m1
1 ; v

m2
2 ; : : : ; v

mk
n

�

for the value of ef at m1 vectors v1, m2 vectors v2; : : : ;mk vectors vk with
P

�

m� D n.

Exercise 2.15 Show that for every polynomial f 2 SnV� and all vectors
v1; v2; : : : ; vk 2 V , one has

f .v1 C v2 C � � � C vk/ Def ..v1 C v2 C � � � C vk/
n/

D
X

m1m2 :::mk

nŠ

m1Šm2Š � � � mkŠ
�ef �vm1

1 ; v
m2
2 ; : : : ; v

mk
k

�
;

(2.28)

where the summation is over all integers m1;m2; : : : ;mk such that

m1 Cm2 C � � � Cmk D n

and 0 6 m� 6 n for all �.

Proposition 2.6 Let V be a vector space, not necessarily finite-dimensional, over a
field  of characteristic zero. Then for every homogeneous polynomial f 2 SnV�,

nŠ � ef .v1; v2; : : : ; vn/ D
X

I¨f1;:::;ng
.�1/jIjf

�X

i…I

vi

�
; (2.29)

where the left summation is over all subsets I ¨ f1; 2; : : : ; ng including I D ¿, for
which j¿j D 0. For example, for f 2 S3V�, one has

6ef .u; v;w/ D f .uCvCw/� f .uCv/� f .uCw/� f .v Cw/C f .u/C f .v/C f .w/:

Proof Consider the expansion (2.28) from Exercise 2.15 for k D n D deg f . Its
right-hand side contains the unique term depending on all the vectors v1; v2; : : : ; vn,
namely nŠ � ef .v1; v2; : : : ; vn/. For every proper subset I ¨ f1; 2; : : : ; ng, the
summands of (2.28) that do not contain vectors vi with i 2 I appear in (2.28) with

the same coefficients as they do in the expansion of f
�P

i…I vi

�
, because the latter is
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obtained from f .v1Cv2C� � �Cvn/ by setting vi D 0 for all i 2 I. Therefore, all terms
that do not depend on some of the vi can be removed from (2.28) by the standard
combinatorial inclusion–exclusion procedure. This leads to the required formula

nŠ �ef .v1; v2; : : : ; vn/

D f
�X

�

v�
��

X

fig
f
�X

�¤i

v�
�C

X

fi;jg
f
�X

�¤i;j

v�
� �

X

fi;j;kg
f
� X

�¤i;j;k

v�
�C � � � :

ut

2.5.3 Duality

Assume that char𝕜 D 0 and dim V < 1. The complete contraction between V˝m

and V�˝m provides the spaces SmV and SmV� with the perfect pairing6 that couples
polynomials f 2 SnV and g 2 SnV� to a complete contraction of their complete
polarizationsef 2 V˝m andeg 2 V�˝m.

Exercise 2.16 Verify that for every pair of dual bases

e1; e2; : : : ; ed 2 V; x1; x2; : : : ; xd 2 V�;

all the nonzero couplings between the basis monomials are exhausted by

˝
em1
1 em2

2 � � � emd
d ; xm1

1 xm2
2 � � � xmd

d

˛ D m1Šm2Š � � � mdŠ

nŠ
: (2.30)

Note that the monomials constructed from the dual basis vectors become the dual
bases of the polynomial rings only after rescaling by the same combinatorial factors
as in Proposition 2.5.

2.5.4 Derivative of a Polynomial Along a Vector

Associated with every vector v 2 V is the linear map

iv W V�˝n ! V�˝.n�1/
; ' 7! v∟'; (2.31)

provided by the inner multiplication7 of n-linear forms on V by v, which takes an
n-linear form ' 2 V�˝n to the .n � 1/-linear form

v∟'.v1; v2; : : : ; vn�1/ D '.v; v1; v2; : : : ; vn�1/:

6See Sect. 7.1.4 of Algebra I.
7See Example 2.1 on p. 24.
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The map (2.31) preceded by the complete polarization map

SnV� ⥲ Symn V� � V�˝n

and followed by the quotient map V�˝.n�1/ � Sn�1V� gives the linear map

plv W SnV� ! Sn�1V�; f .x/ 7! plvf .x/ ≝ef .v; x; x; : : : ; x/; (2.32)

which depends linearly on v 2 V . This map fits in the commutative diagram

V n
Symn V

sym

V n

sym

SnV
pl

Sn V (2.33)

The polynomial plvf .x/ef .v; x; : : : x/ 2 Sn�1.V�/ is called the polar of v with respect
to f . For n D 2, the polar of a vector v with respect to a quadratic form f 2 S2V� is
the linear form w 7!ef .v;w/ considered8 in Sect. 17.4.3 of Algebra I.

In terms of dual bases e1; e2; : : : ; ed 2 V , x1; x2; : : : ; xd 2 V�, the contraction
of the first tensor factor in V�˝n with the basis vector ei 2 V maps the complete
symmetric tensor xŒm1;m2;:::;mn� either to the complete symmetric tensor containing
the .mi�1/ factors xi or to zero for mi D 0. By formula (2.23) from Proposition 2.5,

plei
xm1
1 xm2

2 � � � xmd
d D

mi

n
xm1
1 � � � xmi�1

i�1 xmi�1
i x

miC1

iC1 � � � xmd
d D

1

n

@

@xi
xm1
1 xm2

2 � � � xmd
d :

Since plvf is linear in both v and f , we conclude that for every v DP ˛iei, the polar
polynomial of v with respect to f is nothing but the derivative of the polynomial f
along the vector v divided by deg f , i.e.,

plvf D
1

deg.f /
@v f D 1

deg.f /

dX

iD1
˛i
@f

@xi
:

Note that this forces the right-hand side of the formula to be independent of the
choice of dual bases in V and V�. It follows from the definition of polar map that
the derivatives along vectors commute, @u@w D @w@u, and satisfy the following

8Recall that the zero set of this form in P.V/ is the hyperplane intersecting the quadric
Z.f / � P.V/ along its apparent contour viewed from v.
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remarkable relation:

mŠ
@mf

@um
.w/ D nŠef .u; u; : : : ; u

„ ƒ‚ …
m

;w;w; : : : ;w
„ ƒ‚ …

n

/ D .n � m/Š
@n�mf

@wn�m
.u/; (2.34)

which holds for all u;w 2 V , f 2 SnV�, and 0 6 m 6 n.

Exercise 2.17 Prove the Leibniz rule @v.f � g/ D @v.f / � gC f � @v.g/.
Exercise 2.18 Show that

ef .v1; v2; : : : ; vn/ D 1

nŠ
@v1@v2 � � � @vn f

for every polynomial f 2 SnV� and all vectors v1; v2; : : : ; vn 2 V .

Example 2.4 (Taylor Expansion) For k D 2, the expansion (2.28) from Exer-
cise 2.15 turns into the identity

f .uC w/ Def .uC w; uC w; : : : ; uC w/ D
nX

mD0

 
n

m

!

�ef .um;wn�m/;

where n D deg f , which holds for every polynomial f 2 SnV� and all vectors
u;w2V . The relations (2.34) allow us to rewrite this identity as the Taylor expansion
for f at u:

f .uC w/ D
deg fX

mD0

1

mŠ
@m

wf .u/: (2.35)

Note that this is an exact equality in the polynomial ring SV�, and its right-hand side
actually is completely symmetric in u, w, because of the same relations in (2.34).

2.5.5 Polars and Tangents of Projective Hypersurfaces

Let S D Z.F/ � P.V/ be a projective hypersurface defined by a homogeneous
polynomial equation F.x/ D 0 of degree n. For every line ` D .pq/ � P.V/, the
intersection ` \ S consists of all points �p C �q 2 ` such that .� W �/ satisfies
the homogeneous equation f .�; �/ D 0 obtained from the equation F.x/ D 0 via
the substitution x ↤ �pC �q. Over an algebraically closed field 𝕜, the binary form
f .�; �/ 2 𝕜Œ�; �� either is zero or is completely factorized into a product of n forms
linear in �, �:

f .�; �/ D
Y

i

.˛00
i � � ˛0

i�/
si D

Y

i

detsi

�
� ˛0

i

� ˛00
i

�

; (2.36)
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where ai D .˛0
i W ˛00

i / are distinct points on P1 D P.𝕜2/ and
P

i si D n. In the first
case, the line ` lies on S. In the second case, the intersection `\ S consists of points
ai D ˛0

i pC ˛00
i q. The exponent si of the linear form ˛00

i � � ˛0
i� in the factorization

(2.36) is called the intersection multiplicity of the hypersurface S and the line ` at
the point ai, and is denoted by .S; `/ai . If .S; `/ai D 1, then ai is called a simple (or
transversal) intersection point. Otherwise, the intersection of ` and S at ai is called
multiple. Note that the total number of intersections counted with their multiplicities
equals the degree of S.

Let p 2 S. Then a line ` D .p; q/ is called tangent to the hypersurface S D Z.F/
at p if either ` � S or .S; `/a > 2. In other words, the line ` is tangent to S at p if the
polynomial F.pC tq/ 2 𝕜Œt� either is the zero polynomial or has a multiple root at
zero. It follows from formulas (2.35), (2.34) that the Taylor expansion of F.pC tq/
at p starts with

F.pC tq/ D t

 
d

1

!

eF.pn�1; q/C t2
 

d

2

!

eF.pn�2; q2/C � � � :

Therefore, ` D .p; q/ is tangent to S at p if and only if eF.pn�1; q/ D 0. This is a
straightforward generalization of Lemma 17.4 from Algebra I.

If F.pn�1; x/ does not vanish identically as a linear form in x, then the linear
equation F.pn�1; x/ D 0 on x 2 V defines a hyperplane in P.V/ filled by the lines
.pq/ tangent to S at p. This hyperplane is called the tangent space to S at p and is
denoted by

Tp D
˚
x 2 P.V/ jeF.pn�1; x/ D 0� :

In this case, the point p is called a smooth point of S. The hypersurface S � P.V/ is
called smooth if every point p 2 S is smooth.

If F.pn�1; x/ is the zero linear form in x, the hypersurface S is called singular at
p, and the point p is called a singular point of S.

By formulas (2.34), the coefficients of the polynomial F.pn�1; x/ D @xF.p/,
considered as a linear form in x, are equal to the partial derivatives of F evaluated at
the point p. Therefore, the singularity of a point p 2 S D Z.F/ is expressed by the
equations

@F

@xi
.p/ D 0 for all i;

in which case every line ` passing through p has .S; `/p > 2, i.e., is tangent to S at p.
Thus, the tangent lines to S at p fill the whole ambient space P.V/ in this case.

If q is either a smooth point on S or a point outside S, then the polar polynomial

plqF.x/ D eF.q; xn�1/
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does not vanish identically as a homogeneous polynomial of degree n � 1 in x,
because otherwise, all partial derivatives of plqF.x/ D eF.q; xn�1/ in x would also
vanish, and in particular,

eF.qn�1; x/ D @n�2

@qn�2 plqF.x/ D 0

identically in x, meaning that q would be a singular point of S, in contradiction to
our choice of q. The zero set of the polar polynomial plqF 2 Sn�1V� is denoted by

plqS ≝ Z
�
plqF

� D ˚x 2 P.V/ j eF.q; xn�1/ D 0� (2.37)

and called the polar hypersurface of the point q with respect to S. If S is a quadric,
then plqS is exactly the polar hyperplane of q considered in Sect. 17.4.3 of Algebra I.
As in that case, for a hypersurface S of arbitrary degree, the intersection S \ plqS
coincides with the apparent contour of S viewed from the point q, that is, with the
locus of all points p 2 S such that the line .pq/ is tangent to S at p.

More generally, for an arbitrary point q 2 P.V/, the locus of points

pln�r
q S ≝

˚
x 2 P.V/ j eF.qn�r; xr/ D 0 �

is called the rth-degree polar of the point q with respect to S or the rth-degree
polar of S at q for q 2 S. If the polynomial eF.qn�r; xr/ vanishes identically in x,
we say that the rth-degree polar is degenerate. Otherwise, the rth-degree polar is a
projective hypersurface of degree r. The linear9 polar of S at a smooth point q 2 S
is simply the tangent hyperplane to S at q,

TqS D pln�1
q S:

The quadratic polar pln�2
q S is the quadric passing through q and having the same

tangent hyperplane at q as S. The cubic polar pln�3
q S is the cubic hypersurface

passing through q and having the same quadratic polar at q as S, etc. The rth-degree
polar pln�2

q S at a smooth point q 2 S passes through q and has plr�k
q pln�r

q S D pln�k
q S

for all 1 6 k 6 r � 1, because

plr�k
q pln�r

q F.x/ D Apln�r
q F

�
qr�k; xk

� D eF �qn�r; qr�k; xk
� D eF �qn�k; xk

�

D pln�k
q F.x/:

9That is, of first degree.
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2.5.6 Linear Support of a Homogeneous Polynomial

Let V be a finite-dimensional vector space and f 2 SnV� a polynomial. We write
Supp f for the minimal10 vector subspace W � V� such that f 2 SnW, and call this
subspace the linear support of f . For char𝕜 D 0, the linear support of a polynomial
f coincides with the linear support of the symmetric tensor11 ef 2 Symn V�, the
complete polarization of f . By Theorem 2.1, it is linearly generated by the images
of the .n � 1/-tuple contraction maps

cJ
t W V˝.n�1/ ! V�; t 7! c1; 2; :::; .n�1/

j1;j2;:::;jn�1
.t˝ef /;

coupling all the .n � 1/ factors of V˝.n�1/ with some n � 1 factors ofet 2 V�˝n in
the order indicated by the sequence J D .j1; j2; : : : ; jn�1/. For the symmetric tensor
ef , such a contraction does not depend on J and maps every decomposable tensor
v1 ˝ v2 ˝ � � � ˝ vn�1 to the linear form on V proportional to the .n � 1/-tuple
derivative @v1@v2 � � � @vn�1 f 2 V�.

Therefore, Supp.f / is linearly generated by all .n � 1/-tuple partial derivatives

@m1

@xm1
1

@m2

@xm2
2

� � � @
md

@xmd
d

f .x/; where
X

m� D n � 1: (2.38)

The coefficient of xi in the linear form (2.38) depends only on the coefficients of the
monomial

xm1
1 � � � xmi�1

i�1 xmiC1
i x

miC1

iC1 � � � xmd
d

in f . Writing the polynomial f in the form

f D
X

�1C���C�dDn

nŠ

�1Š�2Š � � � �dŠ
a�1�2 ::: �d x�11 x�22 � � � x�d

d (2.39)

turns the linear form (2.38) into

nŠ �
dX

iD1
am1:::mi�1.miC1/miC1:::md xi: (2.40)

Altogether, we get
�nCd�2

d�1
�

such linear forms, which are in bijection with the non-
negative integer solutions m1;m2; : : : ;md of the equation m1Cm2C � � �CmdDn�1.

10With respect to inclusions.
11See Sect. 2.2.3 on p. 25.
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Proposition 2.7 Let  be a field of characteristic zero, V a finite-dimensional vector
space over , and f 2 SnV� a polynomial written in the form (2.39) in some basis
of V�. If f D 'n is the proper nth power of some linear form ' 2 V�, then the
d � �nCd�2

d�1
�

matrix built from the coefficients of linear forms (2.40) has rank 1.
In this case, there are at most n linear forms ' 2 V� such that 'n D f , and they
differ from one another by multiplication by the nth roots of unity lying in . Over an
algebraically closed field , the converse is true as well: if all the linear forms (2.40)
are proportional, then f D 'n for some linear form ', which is also proportional to
the forms (2.40).

Proof The equality f D 'n means that Supp.f / � V� is the 1-dimensional subspace
spanned by '. In this case, all linear forms (2.40) are proportional to '. Such a form
 D �' has  n D f if and only if �n D 1 in 𝕜. Conversely, let all the linear forms
(2.40) be proportional, and let  ¤ 0 be one of them. Then Supp.f / D 𝕜 �  is
the 1-dimensional subspace spanned by  . Hence f D � n for some � 2 𝕜, and
therefore, f D 'n for12 ' D n

p
� �  . ut

Example 2.5 (Binary Forms of Rank 1) We know from Example 11.6 of Algebra I
that a homogeneous binary form of degree n,

f .x0; x1/ D
X

k

ak �
 

n

k

!

� xn�k
0 xk

1;

is the proper nth power of some linear form ˛0x0 C ˛1x1 if and only if the ratio of
sequential coefficients ai W aiC1 D ˛0 W ˛1 does not depend on i. This is equivalent
to the condition

rk

�
a0 a1 : : : an�1
a1 a2 : : : an

�

D 1;

which is expanded to a system of homogeneous quadratic equations aiajC1 D aiC1aj

in the coefficients of f . Proposition 2.7 leads to the same result, because the columns
of the above matrix are exactly the coefficients of linear forms (2.40) divided by nŠ.

Corollary 2.5 The proper nth powers of linear forms ' 2 V� form the projective
algebraic variety

n ≝ f'n j ' 2 V�g � P.SnV�/ (2.41)

in the space of all degree-n hypersurfaces13 in P.V/. This variety is described by
the system of quadratic equations representing the vanishing of all 2 � 2 minors in
the d � �nCd�2

d�1
�

matrix built from the coefficients of linear forms (2.40). ut

12Here we use that 𝕜 is algebraically closed.
13See Sect. 11.3.3 of Algebra I.
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Definition 2.1 (Veronese Variety) The projective algebraic variety (2.41) is called
the Veronese variety.

Exercise 2.19 (Veronese Embedding) Verify that the prescription ' 7! 'n gives
the well-defined injective map P.V�/ ,! P.SnV�/ whose image coincides with the
Veronese variety (2.41).

2.6 Polarization of Grassmannian Polynomials

It follows from Proposition 2.5 on p. 34 that for every Grassmannian polynomial
! 2 ƒnV� over a field of characteristic zero, there exists a unique alternating
tensor e! 2 Altn V� � V�˝n mapped to ! under the factorization by the skew-
commutativity relations �sk W V�˝n � ƒnV�. It can be viewed as the alternating
n-linear form

e! W V � V � � � � � V ! 𝕜; e!.v1; v2; : : : ; vn/ ≝ h v1 ˝ v2 ˝ � � � ˝ vn; e! i ;

called the complete polarization of the Grassmannian polynomial ! 2 ƒnV�. If
the covectors xi form a basis of V�, then by formula (2.24) on p. 35, the complete
polarization of the Grassmannian monomial xi1 ^ xi2 ^ � � � ^ xin equals

1

nŠ
xhi1;i2;:::;ini D altn .xi1 ˝ xi2 ˝ � � � ˝ xin/ : (2.42)

The polarization of an arbitrary Grassmannian polynomial can be computed using
this formula and the linearity of the polarization map

��1
sk W ƒnV� ⥲ Altn V�; ! 7! e!: (2.43)

By Remark 2.1 on p. 34, this procedure is also well defined for infinite-dimensional
vector spaces.

2.6.1 Duality

Similarly to the symmetric case, for a finite-dimensional vector space V over a field
of characteristic zero, there exists a perfect pairing between the spaces ƒnV and
ƒnV� coupling polynomials 	 2 ƒnV and ! 2 ƒnV� to the complete contraction
of their complete polarizationse	 2 V˝n and e! 2 V�˝n.

Exercise 2.20 Convince yourself that the nonzero couplings between the basis
monomials eI 2 ƒnV and xJ 2 ƒnV� are exhausted by

h eI; xI i D 1=nŠ: (2.44)
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2.6.2 Partial Derivatives in an Exterior Algebra

By analogy with Sect. 2.5.4, the derivative of a Grassmannian polynomial! 2ƒnV�
along a vector v 2 V is defined by the formula

@v! ≝ deg! � plv!;

where the polarization map plv W ƒnV� ! ƒn�1V�, ! 7! �sk .v∟e!/, is composed
of the inner multiplication (2.31) preceded by the complete polarization (2.43) and
followed by the quotient map �sk W V�˝.n�1/ � ƒn�1V�. Thus, plv fits in the
commutative diagram

V n
Altn V

sk

V n

sk

nV
pl

n V (2.45)

which is similar to the diagram from formula (2.33) on p. 39. Since plv! is linear in
v, it follows that

@v D
X

˛i @ei for v D
X

˛iei:

If ! does not depend on xi, then certainly @ei! D 0. Therefore, a nonzero
contribution to @vxI is given only by the derivations @ei with i 2 I. Formula (2.42)
implies that

@ei1
xi1 ^ xi2 ^ � � � ^ xin D xi2 ^ xi3 ^ � � � ^ xin

for every collection of indices i1; i2; : : : ; in, not necessarily increasing. Hence,

@eik
xi1 ^ xi2 ^ � � � ^ xin D @eik

.�1/k�1xik ^ xi1 ^ � � � ^ xik�1 ^ xikC1
� � � xin

D .�1/k�1@eik
xik ^ xi1 ^ � � � ^ xik�1 ^ xikC1

� � � xin

D .�1/k�1xi1 ^ � � � ^ xik�1 ^ xikC1
� � � xin :

In other words, the derivation along the basis vector that is dual to the kth variable
from the left in the monomial behaves as .�1/k�1 @

@xik
, where the Grassmannian

partial derivative @
@xi

takes xi to 1 and annihilates all xj with j ¤ i, exactly as in

the symmetric case. However, the sign .�1/k in the previous formula forces the
Grassmannian partial derivatives to satisfy the Grassmannian Leibniz rule, which
differs from the usual one by an extra sign.
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Exercise 2.21 (Grassmannian Leibniz Rule) Prove that for every homogeneous
Grassmannian polynomial !; 	 2 ƒV� and vector v 2 V , one has

@v.! ^ 	/ D @v.!/ ^ 	 C .�1/deg!! ^ @v.	/: (2.46)

Since the Grassmannian polynomials are linear in each variable, it follows that
@2v! D 0 for all v 2 V , ! 2 ƒV . The relation @2v D 0 forces the Grassmannian
derivatives to be skew commutative, i.e.,

@u@w D �@w@u 8 u;w 2 V:

2.6.3 Linear Support of a Homogeneous Grassmannian
Polynomial

Let V be a finite-dimensional vector space over a field 𝕜 of characteristic zero. For
the needs of further applications, in this section we switch between V� and V and
consider ! 2 ƒnV . The linear support Supp! is defined to be the minimal (with
respect to inclusions) vector subspace W � V such that ! 2 ƒnW. It coincides with
the linear support of the complete polarizatione! 2 Altn V , and is linearly generated
by all .n � 1/-tuple partial derivatives14

@J! ≝ @xj1
@xj2
� � � @xjn�1

! D @

@ej1

@

@ej2

� � � @

@ejn�1

!;

where J D j1j2 : : : jn�1 runs through all sequences of n�1 distinct indices from the
set f1; 2; : : : ; dg, d D dim V . Up to a sign, the order of indices in J is not essential,
and we will not assume the indices to be increasing, because this simplifies the
notation in what follows. Let us expand ! as a sum of basis monomials

! D
X

I

aIeI D
X

i1i2 ::: in

˛i1 i2 ::: in ei1 ^ ei2 ^ � � � ^ ein ; (2.47)

where I D i1i2 : : : in also runs through the n-tuples of distinct but not necessarily
increasing indices, and the coefficients ˛i1i2 ::: in 2 𝕜 are alternating in i1i2 : : : in.
Nonzero contributions to @J! are given only by the monomials aIeI with I � J.
Therefore, up to a common sign,

@J! D ˙
X

i…J

˛j1j2 ::: jn�1i ei: (2.48)

14Compare with Sect. 2.5.6 on p. 43.
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Proposition 2.8 The following conditions on a Grassmannian polynomial !2ƒnV
written in the form (2.47) are equivalent:

1. ! D u1 ^ u2 ^ � � � ^ un for some u1; u2; : : : ; un 2 V.
2. u ^ ! D 0 for all u 2 Supp.!/.
3. for any two collections i1i2 : : : imC1 and j1j2 : : : jm�1 consisting of n C 1 and

n � 1 distinct indices, the following Plücker relation holds:

mC1X

�D1
.�1/��1aj1:::jm�1 i�ai1:::bi� :::imC1

D 0; (2.49)

where the hat in a
i1:::bi� :::imC1

means that the index i� should be omitted.

Proof Condition 1 holds if and only if ! belongs to the top homogeneous
component of its linear span, ! 2 ƒdim Supp.!/ Supp.!/. Condition 2 means the
same because of the following exercise.

Exercise 2.22 Show that ! 2 ƒU is homogeneous of degree dim U if and only if
u ^ ! D 0 for u 2 U.

The Plücker relation (2.49) asserts the vanishing of the coefficient of

ei1 ^ ei2 ^ � � � ^ eimC1

in the product
�
@j1:::jm�1!

� ^ !. In other words, (2.49) is the coordinate form of
condition 2 written for the vector u D @j1:::jm�1! from the formula (2.48). Since these
vectors linearly generate the subspace Supp.!/, the whole set of Plücker relations
is equivalent to condition 2. ut
Example 2.6 (The Plücker Quadric) Let n D 2, dim V D 4, and let e1; e2; e3; e4
be a basis of V . Then the expansion (2.47) for! 2 ƒ2V looks like! DPi;j aijei^ej,
where the coefficients aij form a skew-symmetric 4� 4 matrix. The Plücker relation
corresponding to .i1; i2; i3/ D .2; 3; 4/ and j1 D 1 is

a12a34 � a13a24 C a14a23 D 0: (2.50)

All other choices of .i1; i2; i3/ and j1 … fi1; i2; i3g lead to exactly the same relation.

Exercise 2.23 Check this.

For j1 2 fi1; i2; i3g, we get the trivial equality 0 D 0. Thus for dim V D 4, the set
of decomposable Grassmannian quadratic forms ! 2 ƒ2V is described by just one
quadratic equation, (2.50).

Exercise 2.24 Convince yourself that the Eq. (2.50) in ! D P
i;j aijei ^ ej is

equivalent to the condition15 ! ^ ! D 0.

15Compare with Problem 17.20 of Algebra I.
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2.6.4 Grassmannian Varieties and the Plücker Embedding

Given a vector space V of dimension d, the set of all vector subspaces U � V
of dimension m is denoted by Gr.m;V/ and called the Grassmannian. When the
origin of V is not essential or V D 𝕜d, we write Gr.m; d/ instead of Gr.m;V/. Thus,
Gr.1;V/ D P.V/, Gr.dim V � 1;V/ D P.V�/. The Grassmannian Gr.m;V/ is
embedded into the projective space P.ƒmV/ by means of the Plücker map

pm W Gr.m;V/! P.ƒmV/; U 7! ƒmU � ƒmV; (2.51)

sending every m-dimensional subspace U � V to its highest exterior power ƒmU,
which is a 1-dimensional vector subspace in ƒmV . If U is spanned by vectors
u1; u2; : : : ; um, then pm.U/ D u1 ^ u2 ^ � � � ^ um up to proportionality.

Exercise 2.25 Check that the Plücker map is injective.

The image of the map (2.51) consists of all Grassmannian polynomials ! 2 ƒmV
completely factorizable into a product of m vectors. Such polynomials are called
decomposable. By Proposition 2.8, they form a projective algebraic variety given
by the system of quadratic Eq. (2.49) in the coefficients of the expansion (2.47).

Example 2.7 (The Plücker Quadric, Geometric Continuation of Example 2.6) For
dim V D 4, the Grassmannian Gr.2; 4/ D Gr.2;V/ can be viewed as the set of lines
` D P.U/ in P3 D P.V/. The Plücker embedding (2.51) maps a line .ab/ � P3 to
the point a^ b 2 P5 D P.ƒ2V/ and establishes a bijection between the lines in P3

and the points of the smooth quadric

P D ˚! 2 ƒ2V j ! ^ ! D 0�

in P5, called the Plücker quadric.

2.6.5 The Grassmannian as an Orbit Space

The Grassmannian Gr.m; d/ admits the following matrix description. Fix some basis
.e1; e2; : : : ; ed/ in V . Given a vector subspace U � V with a basis .u1; u2; : : : ; um/,
consider the m � d matrix Au whose ith row is formed by the coordinates of the
vector ui in the chosen basis of V . Every other basis of U,

.w1;w2; : : : ;wm/ D .u1; u2; : : : ; um/ � Cuw;

where Cwu 2 GLm.𝕜/ is an invertible transition matrix, leads to the matrix Aw

expressed through Au by the formula

Aw D Ct
uwAu:
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Exercise 2.26 Check this.

Therefore, the bases in U are in bijection with the m � d matrices of rank m
forming one orbit of the action of GLm.𝕜/ on Matm�d.𝕜/ by left multiplication,
G W A 7! GA for G 2 GLm, A 2 Matm�d. Hence the Grassmannian Gr.m; d/
can be viewed as the set of all m � d matrices of rank m considered up to left
multiplication by nondegenerate m � m matrices. Note that for m D 1, this agrees
with the description of projective space Pd�1 D Gr.1; d/ as the set of nonzero
rows .x1; x2; : : : ; xd/ 2 𝕜d D Mat1�d considered up to multiplication by nonzero
constants � 2 𝕜� D GL1.𝕜/. Thus, the matrix Au formed by the coordinate rows of
some basis vectors u1; u2; : : : ; um in U is the direct analogue of the homogeneous
coordinates in projective space.

Exercise 2.27 (Plücker Coordinates) Verify that the coefficients ˛i1 i2 ::: in in the
expansion (2.47) written for ! D u1 ^ u2 ^ � � � ^ um are equal to the m�m minors
of the matrix Au.

These minors are called the Plücker coordinates of the subspace U � V spanned by
the vectors ui.

Example 2.8 (Segre Varieties Revisited, Continuation of Example 1.2) Let
W D V1 ˚ V2 ˚ � � � ˚ Vn be a direct sum of finite-dimensional vector spaces
Vi. For k 2 N and nonnegative integers m1;m2; : : : ;mn such that

P
� m� D k and

0 6 mi 6 dim Vi;

denote by Wm1;m2;:::;mn � ƒkW the linear span of all products w1 ^ w2 ^ � � � ^ wk

formed by m1 vectors from V1, m2 vectors from V2, etc.

Exercise 2.28 Show that the well-defined isomorphism of vector spaces

ƒm1V1 ˝ƒm2V2 ˝ � � � ˝ƒmn Vn ⥲ Wm1;m2;:::;mn

is given by the prescription !1 ˝ !2 ˝ � � � ˝ !n 7! !1 ^ !2 ^ � � � ^ !n, and verify
that

ƒkW D
M

m1;m2;:::;mn

Wm1;m2;:::;mn '
M

m1;m2;:::;mn

ƒm1V1 ˝ƒm2V2 ˝ � � � ˝ƒmn Vn:

Thus, the tensor product V1 ˝ V2 ˝ � � � ˝ Vn can be identified with the component
W1;1;:::;1 � ƒnW. Under this identification, the decomposable tensors

v1 ˝ v2 ˝ � � � ˝ vn

go to the decomposable Grassmannian monomials v1 ^ v2 ^ � � � ^ vn. Therefore,
the Segre variety from Example 1.2 on p. 6 is the intersection of the Grassmannian
variety Gr.n;W/ � P.ƒnW/ with the projective subspace P .W1;1;:::;1/ � P.ƒnW/.
In particular, the Segre variety is actually an algebraic variety described by the
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system of quadratic equations from Proposition 2.8 on p. 48 restricted to the linear
subspace W1;1;:::;1 � ƒnW.

Problems for Independent Solution to Chapter 2

Problem 2.1 Let V be a finite-dimensional vector space of over a field 𝕜 of charac-
teristic zero. Show that the following vector spaces are canonically isomorphic:
(a) Symn.V�/, (b) Symn.V/�, (c) .SnV/�, (d) Sn .V�/, (e) symmetric n-
linear forms V � V � � � � � V ! 𝕜, (f) functions V ! 𝕜, v 7! f .v/, where f
is a homogeneous polynomial of degree n in the coordinates of v with respect to
some basis in V .

Problem 2.2 For the same V and 𝕜 as in the previous problem, show that the
following vector spaces are canonically isomorphic: (a) Altn.V�/, (b) Altn.V/�,
(d) .ƒnV/�, (d) ƒn.V�/, (e) alternating n-linear forms V � V � � � � � V ! 𝕜.

Problem 2.3 Which of the isomorphisms from the previous two problems hold

(a) over a field 𝕜 of any positive characteristic?
(b) for an infinite-dimensional vector space V?

Problem 2.4 (Aronhold’s Principle) Let V be a finite-dimensional vector space
over a field 𝕜 of zero characteristic. Prove that the subspace of symmetric
tensors Symn.V/ � V˝n is linearly generated by the proper nth tensor powers
v˝n D v ˝ v ˝ � � � ˝ v of vectors v 2 V . Write the symmetric tensor

u˝ w˝ wC w˝ u˝ wC w˝ w˝ u 2 Sym3.V/

as a linear combination of proper tensor cubes.

Problem 2.5 Is there a linear change of coordinates that makes the polynomial

9 x3 � 15 yx2 � 6 zx2 C 9 xy2 C 18 z2x � 2 y3 C 3 zy2 � 15 z2yC 7 z3

depend on at most two variables?

Problem 2.6 Ascertain whether the cubic Grassmannian polynomial

��1 ^ �2 ^ �3 C 2 �1 ^ �2 ^ �4 C 4 �1 ^ �3 ^ �4 C 3 �2 ^ �3 ^ �4
is decomposable. If it is, write down an explicit factorization. If not, explain why.

Problem 2.7 Let V be a vector space of dimension n. Fix some nonzero element

 2 ƒnV . Check that for all k, m with k C m D n, the perfect pairing between
ƒkV and ƒmV is well defined by the formula !1 ^ !2 D h!1; !2 i � 
. Given a
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vector v 2 V , describe the linear operator ƒm�1V ! ƒmV dual with respect to
this pairing to the left multiplication by v W ƒkV ! ƒkC1V , ! 7! v ^ !.

Problem 2.8 Verify that the Taylor expansion for the polynomial det.A/ in the space
of linear operators A W V ! V has the following form:

det.�AC �B/ D
X

pCqDn

�p�q � tr �ƒpA �ƒqB�� ;

whereƒpA W ƒpV ! ƒpV , v1^v2^ � � � ^vp 7! A.v1/^A.v2/^ : : :^A.vp/ is the
pth exterior power of A and ƒqB� W ƒpV ! ƒpV is dual to ƒqB W ƒqV ! ƒqV
with respect to the perfect pairing from Problem 2.7.

Problem 2.9 Write PN D P.S2V�/ for the space of quadrics in Pn D P.V/, and
S � PN for the locus of all singular quadrics. Show that:

(a) S is an algebraic hypersurface of degree nC 1,
(b) a point Q 2 S is a smooth point of S if and only if the corresponding quadric

Q � Pn has just one singular point,
(c) the tangent hyperplane TQS � PN to S at such a smooth point Q 2 S is formed

by all quadrics in Pn passing through the singular point of the quadric Q � Pn.

Problem 2.10 Find all singular points of the following plane projective curves16 in
P2 D P.C3/: (a) .x0 C x1 C x2/3 D 27 x0x1x2, (b) x2y C x y2 D x4 C y4,
(c) .x2 � yC 1/2 D y2.x2 C 1/.

Problem 2.11 Write an explicit rational parameterization17 for the plane projective
quartic

�
x20 C x21

�2 C 3 x20x1x2 C x31x2 D 0

using the projection of the curve from its singular point to some line.18

Problem 2.12 For a diagonalizable linear operator F W V ! V with eigenvalues
�1; �2; : : : ; �n, find the eigenvalues of F˝n for all n 2 N.

Problem 2.13 Prove that for every collection of linear operators

F1;F2; : : : ;Fm W V ! V

16Though the last two curves are given by their affine equations within the standard chart U0 � P2,
the points at infinity should also be taken into account.
17That is, a triple of rational functions x0.t/; x1.t/; x2.t/ 2 𝕜.t/ such that f .x0.t/; x1.t/; x2.t// D 0

in 𝕜.t/, where f 2 𝕜Œx0; x1; x2� is the equation of the curve.
18Compare with Example 11.7 and the proof of Proposition 17.6 in Algebra I.
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and constants �1; �2; : : : ; �m 2 𝕜, one has �1F
˝n
1 C �2F˝n

2 C � � � C �mF˝n
m D 0

for all n 2 N only if �i D 0 for all i.

Problem 2.14 Express the following quantities in terms of the coefficients of the
characteristic polynomial of F for an arbitrary linear operator F W V ! V:
(a) tr F˝2, (b) tr F˝3, (c) det F˝2, (d) det F˝3, (e) the trace and determinant of
the map AdF W End.V/ ! End.V/, G 7! FGF�1, assuming that F is invertible,
(f) the trace and determinant of the map S2F W S2V� ! S2V� that sends a
quadratic form q W V ! 𝕜 to the composition q ∘ F W V ! 𝕜.

Problem 2.15 Let F be a diagonalizable linear operator on an n-dimensional vector
space over a field 𝕜 of characteristic zero. Express the eigenvalues of the operators

SnF W v1v2 � � � vn 7! F.v1/F.v2/ � � �F.vn/;

ƒnF W v1 ^ v2 ^ � � � ^ vn 7! F.v1/ ^ F.v2/ ^ � � � ^ F.vn/;

through the eigenvalues of F, and prove the following two identities in 𝕜�t�:
(a) det.E � tF/�1 DPk>0 tr

�
SkF

� � tk, (b) det.EC tF/ DPk>0 tr
�
ƒkF

� � tk.

Problem 2.16 (Splitting Principle) Prove that the answers you got in the previous
two problems hold for nondiagonalizable linear operators F as well. Use the
following arguments, known as a splitting principle. Interpret the relation on F
you are going to prove as the identical vanishing of some polynomial with rational
coefficients in the matrix elements fij of F considered as independent variables.
Then prove the following claims:

(a) If a polynomial f 2 QŒx1; x2; : : : ; xn� evaluates to zero at all points of some
dense subset of Cn, then f is the zero polynomial. (Thus, it is enough to check
that the relation being proved holds for some set of complex matrices dense in
Matn.C/.)

(b) The diagonalizable matrices are dense in Matn.C/. Hint: every Jordan block19

can be made diagonalizable by a small perturbation of the diagonal elements of
the cell.

(c) The polynomial identity being proved is not changed under conjugation20

F 7! gFg�1 of the matrix F D �
fij
�

by any invertible matrix g 2 GLn.C/.
(Thus, it is enough to check the required identity only for the diagonal
matrices.)21

19See Sect. 15.3.1 of Algebra I.
20This is clear if the identity in question expresses some basis-independent properties of the linear
operator but not its matrix in some specific basis.
21Even for the diagonal matrices with distinct eigenvalues, because the conjugation classes of these
matrices are dense in Matn.C/ as well.
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Problem 2.17 Use the splitting principle to prove the Cayley–Hamilton identity
�F.F/ D 0 by reducing the general case to the diagonal F.

Problem 2.18 Prove that for every F 2 Matn2 .C/, one has eF˝ECE˝F D eF ˝ eF in
Matn2 .C/, where E is the identity matrix.

Problem 2.19� Prove the identity log det.E � A/ D tr log.E � A/ in the ring of
formal power series with rational coefficients in the matrix elements aij of the
n � n matrix A. Show that for all small enough complex matrices A 2 Matn.C/,
this identity becomes a true numerical identity in C.

Problem 2.20 Let V be a vector space of dimension 4 over C and g 2 S2V�
a nondegenerate quadratic form with the polarization eg 2 Sym2 V�. Write
G � P3 D P.V/ for the projective quadric defined by the equation g.x/ D 0.

(a) Prove that there exists a unique symmetric bilinear formƒ2eg on the spaceƒ2V
such that

ƒ2eg. v1 ^ v2; w1 ^ w2 / ≝ det

�
eg.v1;w1/eg.v1;w2/
eg.v2;w1/eg.v2;w2/

�

for all decomposable bivectors.
(b) Check that this form is symmetric and nondegenerate, and write its Gram

matrix in the monomial basis ei ^ ej constructed from a g-orthonormal basis
e1; e2; e3; e4 of V .

(c) Show that the Plücker embedding Gr.2;V/ ,! P3 D P.V/ from Example 2.7
on p. 49, which establishes a one-to-one correspondence between the lines in
P3 D P.V/ and the points of the Plücker quadric P D f! 2 ƒ2V j !^! D 0g
in P5 D P.ƒ2V/, maps the tangent lines to G bijectively to the intersection
P \ ƒ2G, where L2G � P5 is the quadric given by the symmetric bilinear
formƒ2eg.

Problem 2.21 (Plücker–Segre–Veronese Interaction) Let U be a vector space
of dimension 2 over C. Consider the previous problem for the vector space
V D End U and the quadratic form g D det, whose value on an endomorphism
f W U ! U is det f 2 C and the zero set is the Segre quadric22 G � P3 D P.V/
consisting of endomorphisms of rank one.

(a) Construct canonical isomorphisms

S2V ' Sym2 V ' �S2U� ˝ S2U
�˚ �ƒ2U� ˝ƒ2U

�
;

ƒ2V ' Alt2 V ' �S2U� ˝ƒ2U
�˚ �ƒ2U� ˝ S2U

�
.

(b) Show that the Plücker embedding sends two families of lines on the Segre
quadric to the pair of smooth conics P \ ƒC, P \ ƒ� cut out of the Plücker

22See Example 1.3 on p. 8 and Example 17.6 from Algebra I.
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quadric P � P
�
ƒ2 End.U/

�
by the complementary planes

ƒ� D P
�
S2U� ˝ƒ2U

�
and ƒC D P

�
ƒ2U� ˝ S2U

�
;

the collectivizations of components of the second decomposition in (a).
(c) Check that the two conics P \ ƒ� and P \ ƒC in (b) are the images of the

quadratic Veronese embeddings

P.U�/ ,! P
�
S2U�� D P

�
S2U� ˝ƒ2U

�
; � 7! �2;

P.U/ ,! P
�
S2U

� D P
�
ƒ2U� ˝ S2U

�
; v 7! v2:

In other words, there is the following commutative diagram:

where the Plücker embedding is dashed, because it takes lines to points.

Problem 2.22 (Hodge Star) Under the conditions of Problem 2.20, verify that for
every nondegenerate quadratic form g on V , the linear operator 	 W ƒ2V ! ƒ2V ,
! 7! !�, is well defined by the formula

!1 ^ !�
2 D ƒ2eg.!1; !2/ � e1 ^ e2 ^ e3 ^ e4 8!1; !2 2 ƒ2V;

where e1; e2; e3; e4 is a g-orthonormal basis of V . Check that, up to a scalar
complex factor of modulus one, the star operator does not depend on the choice
of orthonormal basis. Describe the eigenspaces of the star operator and indicate
their place in the diagram from Problem 2.21.

Problem 2.23 (Grassmannian Exponential) Let V be a vector space over a
field 𝕜 of arbitrary characteristic. The Grassmannian exponential is defined for
decomposable ! 2 ƒ2m by the assignment e! ≝ 1 C !. For an arbitrary even-
degree homogeneous Grassmannian polynomial � 2 ƒ2mV , we write � D P

!i,
where all !i are decomposable, and put ef

≝
Q

e!i . Verify that this product
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depends neither on an ordering of factors nor on the choice of expression23

� D P
!i. Prove that the exponential map ƒevenV ,! ƒevenV , � 7! e� , is

an injective homomorphism of the additive group of even-degree Grassmannian
polynomials to the multiplicative group of even-degree Grassmannian polyno-
mials with unit constant term. Show that over a field of characteristic zero,
@˛e� D e� ^ @˛� for all ˛ 2 V�, and e� DPk>0

1
kŠ �

^k.

Problem 2.24 Let V be a finite-dimensional vector space. Show that the subspaces

sym \ .V ˝ V/ � V ˝ V and skew \ .V� ˝ V�/ � V� ˝ V�;

which generate the ideals of the commutativity and skew-commutativity rela-
tions24

sym � TV , skew � TV�, are the annihilators of each other under the
perfect pairing between V˝V and V�˝V� provided by the complete contraction.

Problem 2.25 (Koszul and de Rham Complexes) Let e1; e2; : : : ; en be a basis of a
vector space V over a field 𝕜 of characteristic zero. Write xi and �i for the images
of the basis vector ei in the symmetric algebra SV and the exterior algebra ƒV
respectively. Convince yourself that there are well-defined linear operators

d ≝

X

�

�� ˝ @

@x�
W ƒkV ˝ SmV ! ƒkC1V ˝ Sm�1V;

@ ≝
X

�

@

@��
˝ x� W ƒkV ˝ SmV ! ƒk�1V ˝ SmC1V;

acting on decomposable tensors by the rules

d W ! ˝ f 7!
X

�

@!

@��
˝ x� � f ;

@ W ! ˝ f 7!
X

�

�� ^ ! ˝ @f

@x�
:

Prove that neither operator depends on the choice of basis in V and that both
operators have zero squares, d2 D 0 D @2. Verify that their s-commutator d@C@d
acts on ƒkV ˝ SmV as a homothety .k C m/ � Id. Describe the homology spaces
ker d= im d and ker @= im @.

23Note that the decomposition of a Grassmannian polynomial into a sum of decomposable
monomials is highly nonunique.
24See Sect. 2.3.1 on p. 26 and Sect. 2.3.3 on p. 29.
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