Chapter 2
Tensor Algebras

2.1 Free Associative Algebra of a Vector Space

Let V be a vector space over an arbitrary field k. We write V"€V QV® --- ® V
for the tensor product of n copies of V and call it the nth tensor power of V. We also
put V&0 € [c and V®! € V. The infinite direct sum

TVE g Ve

n=0

is called the fensor algebra of V. The multiplication in TV is provided by the tensor
multiplication of vectors V& x V®" . y@&+tm (1 1 )5 1, ®t,,. For every basis
E of V over k, all the tensor monomials ¢; ® e, ® - -- ® ey with e; € E form a basis
of V®?, These monomials are multiplied just by writing them sequentially with the
sign ® between them:

(eiy @ e, @ - ®eik)'(ej1 Qe ® - ®ejm)
=€ ®e, Q- Qe ®ej ®e, ® - Ve,

Thus, TV is an associative but not commutative k-algebra. It can be thought of
as the algebra of polynomials in noncommuting variables e € E with coefficients
in k. From this point of view, the subspace V®¢ C TV consists of all homogeneous
polynomials of degree d.

Another name for TV is the free associative k-algebra with unit spanned by
the vector space V. This name emphasizes the following universal property of the
k-linear map ¢ : V <> TV embedding V into TV as the subspace V®! of linear
homogeneous polynomials.

Proposition 2.1 (Universal Property of Free Associative Algebras) For every
associative k-algebra A with unit and k-linear map f : V. — A, there exists a unique
homomorphism of k-algebras f : TV — A such that f = f o 1. Thus, for every
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22 2 Tensor Algebras
k-algebra A, the homomorphisms of k-algebras TV — A are in bijection with the
linear maps V — A.

Exercise 2.1 Let ¢/ : V — T’, where T’ is an associative k-algebra with unit, be
another linear map satisfying the universal property from Proposition 2.1. Show that
there exists a unique isomorphism of k-algebras ¥ : TV = T’ such that ¥t = /.

Proof (of Proposition 2.1) A homomorphism of Ik-algebras? : TV — A such that
f = 7 o ¢ maps every decomposable tensor v; ® V2 ® -+ ® v, to the product
f1) - f(v2)---f(vy) in A, and therefore?is unique, because the decomposable
tensors span TV. Since the product f(v;)-f(vz2) - - - f(v,) is multilinear in v;, for each
n € N there exists the linear map

HiVVE® - ®V—-A vi®u®: - ®u, f(v)-f(v2)--f(vn).

Weputfy:k — A, 1~ 1,and deﬁne?: TV — A to be the sum of all the f,:

FPve—A D e e A

n=0 n=0 n=0

Since every tensor polynomial r = )_ 7, € TV has a finite number of nonzero homo-
geneous components £, € V®", the map f is a well-defined algebra homomorphism.
0

2.2 Contractions

2.2.1 Complete Contraction

For dual vector spaces V, V* and two decomposable tensors of equal degree
=0 Q@1® - QU eV I =£RE6E® - ®E € V*® the product

(. 9) & [T&@) =] (v &) €k 2.1
i=1 i=1
is called the complete contraction of t with €. For a fixed

P=5ER6H® - Q& €V,

the constant (v ® V2 ® -+ @ v,, V) € k depends multilinearly on the vectors
vy, V2,...,V, € V. Hence, there exists a unique linear form

oV Sk QU QU (VRL® - U, V).
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Since the covector ¢y € yen* depends multilinearly on &1, &, ..., §,, there exists a
unique linear map

VA L v 9 s oy (2.2)

In other words, the complete contraction assigns a well-defined pairing' between
the vector spaces V®”" and V* ®",

VO X VT Sk, (1,0) > (1, D). (2.3)

Proposition 2.2 For a finite-dimensional vector space V, the pairing (2.3) is
perfect, i.e., the linear map (2.2) is an isomorphism.

Proof Choose dual bases ey, e3,...,¢, € Vandxy, xz,...,x, € V*. Then the tensor
monomials ¢;; ® ¢;, ® --- ®e;, and x;;, ® xj, ® --- & x; form bases in Ve " and
V*®" dual to each other with respect to the full contraction pairing (2.1). O

Corollary 2.1 For every finite-dimensional vector space V, there is a canonical
isomorphism

(V*)®" = Hom(V, ...,V k) (2.4)

mapping the decomposable tensor 9 = £ @ & ® --- ® &, € V*®" 10 the n-linear
form

VXVx - xV—k, (vl,vz,...,vn)HHSi(vi).

i=1
Proof The universal property of tensor product V®" asserts that the dual space
(V®")", that is, the space of linear maps V& — k, is isomorphic to the space
of n-linear forms V x V x .-+ x V — k. It remains to compose this isomorphism
with the isomorphism (2.2). O
2.2.2 Partial Contractions

Given a pair of injective but not necessarily order-preserving maps

(L2, o2, om (1,2, g,

'See Sect. 7.2 of Algebra L
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we write I = (i, i, ...,i,)and J = (j1,j2, .. .,Jn) for the sequences of their values
iy = 1(v), j, = J(v). The partial contraction in the indices [, J is the linear map

ch v @ v YT g y@lamm) (2.5)

sending a decomposable tensor §; ® £, ® - @ E QU @ 12 ® --+ ® v, to the
product

m

[T{vi &) (&) @ (R v). (2.6)

v=1 i¢l JEJ

obtained by contracting the i,th tensor factor of V* ® with the j,th tensor factor
of V®4 forv =1,2, ..., mand leaving all the other tensor factors in their initial
order. Note that the different choices of injective maps I, J lead to different partial
contraction maps (2.5) even if the maps have equal images and differ only in the
order of sequences iy, iz, ...,y and ji,j2, ..., jm-

Exercise 2.2 Verify that the linear map (2.5) is well defined by its values (2.6) on
the decomposable tensors.

Example 2.1 (Inner Product of Vector and Multilinear Form) Consider an n-linear
formg : VxVx --- xV — k as a tensor from V*®" by means of the isomorphism
from Corollary 2.1, and contract this tensor with a vector v € V at the first tensor
factor. The result of such a contraction is called the inner product of the n-linear
form ¢ with the vector v, and is denoted by vL¢ € v*®@=D This tensor can be
viewed as the (n — 1)-linear form on V obtained from the form ¢ by setting the first
argument equal to v. In other words,

vLo(ui,uz, ... up—1) = @ (v, Ur, Uz, ..., Up—1)

for all uy, us, ..., u,—; € V. Indeed, since both sides of the equality are linear in ¢,
it is enough to verify it only for the n-linear forms ¢ coming from the decomposable
tensors

§R6H® - ®E, € Ve
because the latter span V* ®" For such ¢, we have

VRUI QUr @ «+- ®Mn_1,§1®%‘2® ®§n)
v, E1) - (ur, &) - (ua, &) -+ (up—1, &)

o, up, up, . uy—y) =
(
(@U@ -+ ®uy—1, (v, 61) 5@ - ®E)
(u
v

UWRUWR QU1 (| (VRERER® -+ ®E,))

Lo (1, Uz, ..., Up—1).
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Exercise 2.3 Verify that for every pair of vector subspaces U, W C V, one has
U®' N we = (UN W)@ in V&,

2.2.3 Linear Support and Rank of a Tensor

It follows from Exercise 2.3 that for every tensor t € V®", the intersection of
all vector subspaces U C V such that t+ € U®" is the minimal subspace of
V with respect to inclusions whose nth tensor power contains ¢. It is called the
linear support of t and denoted by Supp(r) C V. Its dimension is denoted by
rkt & dim Supp(#) and called the rank of the tensor ¢. Tensors ¢ with rk¢ < dim V
are called degenerate. If we think of tensors as polynomials in noncommutative
variables, then the degeneracy of a tensor ¢ means that ¢ depends on fewer than
dim V variables for an appropriate choice of basis in V. For example, every tensor
t € V® of rank 1 can be writtenas 1 - ¢®" = - e ® ¢ ® - -+ ® e for some nonzero
vector e € Supp(f) and A € k. For a practical choice of such special coordinates and
the computation of rk 7, we need a more effective description of Supp().

Let t € V®" be an arbitrary tensor. For every sequence J = jijs ... j,—1 of n — 1
distinct but not necessarily increasing indices 1 < j, < n, write

c{ 7l A NN v £ cjlljzj(::l)(s ®1) 2.7

for the contraction map that pairs all (n — 1) factors of V¥~ with the n—1)
factors of # chosen in the order determined by J, that is, the vth factor of y*®0=D 4q
contracted with the j,th factor of t foreach v = 1, 2, ..., n — 1. The result of such
a contraction is a linear combination of vectors that appear in monomials of ¢ at the
position not represented in J. This linear combination certainly belongs to Supp(?).

Theorem 2.1 For every t € V®", the subspace Supp(t) C V is spanned by the
images of the n! contraction maps (2.7) corresponding to all possible choices of J.

Proof Let Supp(t) = W C V. We have to show that every linear form § € V*
annihilating all the subspaces im (c/) C W has to annihilate all of W as well.
Assume the contrary. Let § € V* be a linear form having nonzero restriction on the
subspace W and annihilating all the subspaces c{ (V*®(”_l) ) Write &1, &,, ..., &, for
a basis in V* such that & = £ and the restrictions of &, &, .. ., & to W form a basis
in W*. Let wy, wa, ..., w be the dual basis of W. Expand ¢ as a linear combination
of tensor monomials built out of the w;. Then

S(C{(Evl ®E,Q - ® g\ln—l))

is equal to the complete contraction of ¢ with the monomial £, ® £, ® -+ ® &,
whose indices @1, U2, . . ., i, form the permutation of the indices 1, vi,va, ..., v,—
uniquely determined by J. The result of this contraction equals the coefficient of the
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monomial w,, ®w,, ® - - - ®w,,, in the expansion of ¢. Varying J and vy, va, ..., V-
allows us to obtain every monomial wy,, ® wy,, ® -+ ® w,, containing wi. Our
assumption on § = & forces the coefficients of all these monomials in 7 to vanish.
Therefore, w; ¢ Supp(7). Contradiction. O

2.3 Quotient Algebras of a Tensor Algebra

There are three kinds of ideals in a noncommutative ring R. A subring I C R is
called a left ideal if xa € I for all a € I, x € R. Symmetrically, / is called a right
ideal if ax € [ forall a € I, x € R. If I C R is both a left and right ideal, then I is
called a two-sided ideal or simply an ideal of R. The two-sided ideals are exactly the
kernels of ring homomorphisms, because for a homomorphism of rings ¢ : R — S
and a € R such that ¢(a) = 0, the equality ¢(xay) = ¢(x)@(a)e(y) = 0 holds for
all x,y € R. Conversely, if an additive abelian subgroup I C R is a two-sided ideal,
then the quotient group® R/I inherits the well-defined multiplication by the usual
rule [a][b] ¥ [ab].

Exercise 2.4 Check this.

Therefore, the quotient map R —> R/I is a homomorphism of rings with kernel 7. It
follows from the factorization theorem for a homomorphism of abelian groups® that
an arbitrary homomorphism of rings ¢ : R — § is factorized into a composition of
the surjective quotient map R — R/ ker¢ =~ im ¢ followed by the monomorphism
R/kerp ~imgp — S.

The algebra of polynomials on a vector space V introduced in Sect.11.2.1 of
Algebral and the algebra of Grassmannian polynomials from Sect. 9.4 of Algebra I
can be described uniformly as the quotient algebras of the free associative algebra by
appropriate two-sided ideals spanned by the commutativity and skew-commutativity
relations. The details follow in the next four sections.

2.3.1 Symmetric Algebra of a Vector Space

Let V be a vector space over an arbitrary field k. Write Iy, C TV for the two-sided
ideal generated by the k-linear span of all the differences

URW—wRueVRV. (2.8)

The ideal iy, consists of finite linear combinations of the tensors obtained from
the differences (2.8) by taking left and right products with arbitrary elements of TV.

2See Sect. 6.6.1 of Algebra 1.
3See Proposition 2.1 of Algebra I.
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Therefore, the intersection Zyy, N V" is linearly spanned by the differences
(- QUAWR - )— (- QWRV® ---), 2.9)

where the right dotted fragments in both decomposable tensors are the same, as are
the left dotted fragments as well. The whole ideal Iy, is the direct sum of these
homogeneous components:

Zsym = neZBO (lsym N V®n) .

def

The quotient algebra SV = TV/ L, is called the symmetric algebra of the vector
space V. The multiplication in SV is induced by the tensor multiplication in TV and
denoted by the dot sign -, which is, however, usually omitted. The relations (2.8)
force all vectors u,w € V to commute in SV. As a vector space, the symmetric
algebra splits into the direct sum of homogeneous components

SV =P sV, where "V E VO /(L N VE").

n=0

The space S"V is called the nth symmetric power of V. Note that S°V = k and
S'V = V. The inclusion ¢ : V < SV, which maps V to S'V, has the following
universal property.

Exercise 2.5 (Universal Property of Free Commutative Algebras) Show that for
every commutative k-algebra A and linear map f : V — A, there exists a unique
homomorphism of k-algebras f : SV — A such that f = @ o . Also show that for
every linear map ¢’ : V — §’ to a commutative algebra S’ that possesses the same
universal property, there exists a unique isomorphism of algebras ¥ : ' = SV such
that Yt/ = «.

For this reason, the symmetric algebra SV is also called the free commutative k-
algebra with unit spanned by V. For every basis e, ey, . . . , ¢4 of V, the commutative
monomials e} ) - - - ¢/* of total degree ), m; = n form a basis in $"V, as we have
seen in Proposition 11.2 of Algebra I. Thus, the choice of basis in V assigns the
isomorphism of k-algebras SV >~ klej, ez, .. ., e4].

Exercise 2.6 Calculate dim S"V fordimV = d.

2.3.2 Symmetric Multilinear Maps

An n-linear map ¢ : VxVx .- xV — Uis called symmetric if p(vg,, Vg,, ..., Vg,) =
@(v1, vy, ..., v,) for all permutations g € S,,. The symmetric multilinear maps form
a subspace of the vector space Hom(V, ..., V; U) of all n-linear maps. We denote
this subspace by Sym”"(V, U) C Hom(V,...,V;U).
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Given a symmetric n-linearmap ¢ : VXV x --- x V — U, then for every vector
space W, the right composition of linear maps F' : U — W with ¢ assigns the linear
map

0, : Hom(U, W) — Sym"(V, W), Fi> Fooq.

A symmetric multilinear map ¢ is called universal if g, is an isomorphism for
all W. The universal symmetric n-linear map is also called the n-ary commutative
multiplication of vectors.

Exercise 2.7 Verify that the target spaces of any two universal symmetric n-
linear maps are isomorphic by means of the unique linear map commuting with
the commutative multiplication.

Proposition 2.3 The universal symmetric n-linear map
0, VXVX.- XV —>U

is provided by tensor multiplication followed by factorization through the commu-
tativity relations, i.e.,

T

O VXV X o xV =~ o o gn(y),

Proof By the universal property of tensor multiplication 7 : VxVx -+ xV — V&,
every n-linear map ¢ : V. x V x --- x V — W is uniquely factorized as ¢ = Fot
for some linear map F : V® — W.If the multilinear map ¢ is symmetric, then the
linear map F annihilates the commutativity relations (2.8):

f(( QUAWE® )= (- QWRV® ))
:f( RQURIWRX )_f( QWRUVR )
=¢(...,o,w, ...)—¢(...,w,v,...)=0.

Hence, there exists a linear map F : S"V — W such that

F(vivy ... vy) = @(v1,v2,...,0,)

and F = Fr, where 77 : V& — §"V is the factorization by the symmetry relation.
Therefore, ¢ = F ot = Frt = Fo. Given another linear map F’ : "V — W such
that ¢ = F'o = F'mt, the universal property of T forces F/7r = Frm. Since 7 is
surjective, this leads to F/ = F. ]

Corollary 2.2 For an arbitrary (not necessarily finite-dimensional) vector space
V, the nth symmetric power S"V and the space Sym"(V, k) of symmetric n-linear
forms VxV x .-+ xV — k are canonically dual to each other.
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Proof Right composition with the commutative multiplication
0, VXVX .o xV—=>S"V,

which takes a covector £ : $"V — k to the symmetric n-linear form
£00,: VXVX e xV ok,

establishes an isomorphism (S"V)* = Sym"(V, k) by the universal property of o,,.
O

2.3.3 The Exterior Algebra of a Vector Space

Write Tgew C TV for the two-sided ideal generated by the k-linear span of all
propersquaresv @ v e VQ V,v e V.

Exercise 2.8 Convince yourself that the k-linear span of all proper squares
v ®v € V® V contains all the sums u ® w + w ® u with u, w € V and is linearly
generated by these sums if chark # 2.

As in the commutative case, the ideal Iy splits into the direct sum of homoge-
neous components

Ligew = @ (Iskew N V®n) >

n=0

where the degree-n component Zge, N V®" is linearly generated over k by the
decomposable tensors -+ ® v @ v @ ---, containing a pair of equal sequential
factors. By Exercise 2.8, all the sums

(- QUIW® )+ (- QWRVR --+). (2.10)

also belong to Tgey N V. The quotient algebra AV ¥ TV/ I, is called the
exterior or Grassmannian algebra of the vector space V. The multiplicationin AV is
induced by the tensor multiplication in TV. It is called the exterior or Grassmannian
multiplication and is denoted by the wedge sign A. The skew-symmetry relations
imply that all the vectors from V anticommute and have zero squares in AV, i.e.,
unw=—wAuanduAu = 0 forall u,w € V. A permutation of factors in any
monomial multiplies the monomial by the sign of the permutation,

Vg, AUgy A =os AVg =8gN(g) VI AV A -+ AU VgES
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The algebras possessing this property are commonly called skew commutative in
mathematics and supercommutative in physics. We will shorten both names to
s-commutativity.

As a vector space over k, the Grassmannian algebra splits into the direct sum of
homogeneous components

AV =P A"V, where A"V = V") (Lyew N VE").

n=0

The vector space A"V is called the nth exterior power of V. Note that A°V = k
and A'V = V. As in the symmetric case, the inclusion ¢ : V <> AV, mapping V to
A'V, has a universal property.

Exercise 2.9 (Universal Property of Free s-Commutative Algebras) Show that
for every s-commutative k-algebra L and linear map f : V — L, there exists a unique
homomorphism of k-algebras?: AV — L such that f = 70 t. Also show that for
every linear map ¢/ : V — A’ to an s-commutative algebra A’ possessing the same
universal property, there exists a unique isomorphism of algebras ¥ : A’ = AV
such that Y/ = ¢.

For this reason, the algebra AV is also called the free s-commutative k-algebra

spanned by V.

2.3.4 Alternating Multilinear Maps

Ann-linearmap ¢ : VXV x --- x V — U is called alternating if

@(Vgy, gy, - -5 Vg,) = sg0(g) - @(V1, V2, ..., V)

for all permutations g € S,. We write Alt"(V,U) C Hom(V,...,V;U) for the
subspace of alternating n-linear maps.

Associated with every alternating n-linearmap ¢ : VXV x --- xV — U and
vector space W is the linear map

Hom(U, W) — Alt"(V,W), F+> Fog. (2.11)

The map ¢ is called the universal alternating n-linear map or the n-ary
s-commutative multiplication of vectors if the linear map (2.11) is an isomorphism
for all vector spaces W.

Exercise 2.10 Prove that the universal alternating n-linear map

o, VXVX-ee xV->U
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is provided by tensor multiplication followed by factorization by the skew-commu-

T
tativity relations, i.e., @ 1 V' X ... XV — —> Ve —— A"(V), and verify that
the target spaces of every two universal symmetric n-linear maps are isomorphic by
means of the unique linear map commuting with the s-commutative multiplication.

Corollary 2.3 For an arbitrary (not necessarily finite-dimensional) vector space V,
the nth exterior power A"V and the space Alt"(V, k) of alternating n-linear forms

VX Vx-.- xV — kare canonically dual to each other.
Proof The same as for Corollary 2.2 on p. 28. O
Proposition 2.4 For every basis e, ey, . .. ,eq of V, a basis in AV is formed by the

Grassmannian monomials
def
e;éeil/\eiz/\--- N e, (2.12)

numbered by all I = (i1, iy,..., i) with1 < i) <ip < --- <, < d. In particular,
dim A"V = (%) and dim AV = 2%,

Proof Write U for the vector space of dimension (j) with the basis {¢;} numbered
by the same multi-indices I as the Grassmannian monomials (2.12). We know from
Sect. 1.1.1 on p. 1 that every n-linear map o : V x V x .- x V — U is uniquely
determined by its values on all the collections of basis vectors a(e;,, ej,, ..., €;,),
and these values may be arbitrary. Let us put a(ej,ej,,...,¢;,) = 0 if some
arguments coincide, and «e(ej,, ej,, . . ., €j,) = sgn(g)-uy, where I = (jg,,jor» - - -+ Jg,)
is the strictly increasing permutation of the indices ji, jz, . . . , j, if all the indices are
distinct. The resulting n-linear map o« : V X V x .- x V — U is alternating and
universal, because for every n-linear alternatingmap ¢ : VXV x --- XV — W,
there exists a unique linear operator F' : U — W such that ¢ = F o o, namely, the
operator acting on the basis of U as F (u;) = ¢(e;;, e, . .., ¢€;,). By Exercise 2.10,
there exists a linear isomorphism U = A"V sending the basis vectors u; to the
s-symmetric products e;, Ae;, A -+ Ae;, = e;. This forces the latter to form a basis

in A"V. O
Corollary 2.4 For every basis ej,es,...,eq of V, the exterior algebra AV is
isomorphic to the Grassmannian polynomial algebra k<ei,es, ..., e ) defined in
Sect. 9.4 of Algebra I. O

2.4 Symmetric and Alternating Tensors

Starting from this point, we will always assume by default that chark = 0. For
every n € N, the symmetric group S, acts on V®" by permutations of factors in the
decomposable tensors:

SVI®V® - V) =V, @V, @ - QU,, YgES,. (2.13)
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Since vg, @ Vg, ® -+ ® Vg, is multilinear in vy, vy, . . ., vy, there exists a well-defined
linear operator g : V®" — V®” acting on decomposable tensors by formula (2.13).
The subspaces of S,-invariant and sign-alternating tensors are denoted by

Sym" V€ {rev® |VgeS, g =1}, (2.14)

Al VE e V® |VgeS, g(t) =sgn(g)- 1} (2.15)

and called, respectively, the spaces of symmetric and alternating tensors of degree
nonV.

2.4.1 Symmetrization and Alternation

If chark = O, then for all n > 2, the tensor power V®" is projected onto
the subspaces of symmetric and alternating tensors, respectively, by means of the
symmetrization and alternation maps

1
sym, : VO = Sym" V.t Y g(h), (2.16)
n!
gES,
1
alt, : VO > A"V, 1> Y sgn(g) - g(1). (2.17)
n! 5
8ESH

Exercise 2.11 Forall t € V®" s € Sym"V,a € A"V, and n = 2, prove that
(a) sym,,(s) = s, (b) alt,(a) = a, (¢) sym,(a) = alt,(s) =0, (d) sym,,(f) € Sym" V,
(e) alt,(r) € Alt" V.

Therefore, the symmetrization and alternation maps satisfy the relations

sym,zl = sym,, altﬁ =alt,, sym, calt, = alt, e sym, = 0. (2.18)

Example 2.2 (Tensor Square Decomposition) For n = 2, the symmetrization and
alternation maps form a pair of complementary projectors,* that is,

sym, + alt, = (Id + s12)/2 + (Id — s12)/2 = 1d,

where 515 € S5 is a transposition. Therefore, there exists the direct sum decomposi-
tion

V®2 = Sym*V @ Al V. (2.19)

“4See Example 15.3 in Algebra L.
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If we interpret V®2 as the space of bilinear forms on V*, then the decomposition
(2.19) turns out to be the decomposition of the space of bilinear forms into the direct
sum of subspaces of symmetric and alternating forms considered in Sect. 16.1.6 of
Algebral.

Example 2.3 (Tensor Cube Decomposition) For n = 3, the direct sum
Sym3 V @ Alt® V does not exhaust all of V&3,

Exercise 2.12 Find codim (Sym® V & Alt’ V) in V®3.

To find the complement to Sym® V @ Alt® V in V®3, write T = |123) € S; for the
cyclic permutation and consider the difference

p=1Id—syms —alt; =Id— (Id + T + 7%) /3. (2.20)
Exercise 2.13 Verify thatp?> = pand p e alt; = altz o p = p o sym; = sym; o p = 0.
Since sym; + alt3 + p = Idy®s, there exists the direct sum decomposition
Vv® = sym’ V@ AIP V @ im(p),

where im(p) = {t € V®3 | t+Tt+T?t = 0} consists of all cubic tensors annihilated
by averaging over the action of a 3-cycle. An example of such a tensor is provided

by [u, [v, w]], where [a,b] € a ® b — b ® a means the commutator in the tensor
algebra.

Exercise 2.14 (Jacobi Identity) Verify that [u, [v, w]] + [v, [w, u]] + [w, [u, v]] =0
in V®3 forall u,v,w e V.

If we think of V®3 as the space of 3-linear forms on V*, then im(p) consists of all
3-linear forms 7 : V* x V* x V* — k satisfying the Jacobi identity:

1. n0.0) +1(n.8.§) +1(5.§5.m) =0
forall £,n,¢ € V*.
For larger n, the decomposition of V®" by the “symmetry types” of tensors

becomes more complicated. It is the subject of the representation theory of the
symmetric group, which will be discussed in Chap. 7 below.

2.4.2 Standard Bases

Let us fix a basis ey, e, ..., e in V and break the basis monomials

¢, e, ® - Ve, €V®n
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into a disjoint union of S,-orbits. Since the monomials of every S,-orbit appear in
the expansion of every symmetric tensor ¢t € Sym” V with equal coefficients, a basis
in Sym" V is formed by the monomial symmetric tensors

wr sum of all tensor monomials formed by

e}

€imy my.....mq] — ‘ ‘ (2.21)
m, factors ey, m, factors e,, .. ., my factors ey

numbered by the sequences (m;, ma, ..., my) of nonnegative integers satisfying the

condition
my+my+---+mg =n.

It follows from the orbit length formula® that the sum on the right-hand side of (2.21)

consists of n!/(m!m,! --- my!) summands, because the stabilizer of each summand

is formed by m; ! my! - - - my! independent permutations of equal tensor factors.
Similarly, a basis in Alt" V is formed by the monomial alternating tensors

def

€1 = €iir,.in) — Z sgn(g) - ei,yy ® €y ® 0+ ® ey, (2.22)

8ESy
numbered by strictly increasing sequences of positive integers
I=(i,iz,...,0n), 1<ii<ihb<---<i,<d.

Remark 2.1 (Bases (2.21) and (2.22) for Infinite-Dimensional V) We do not
actually need to assume that d = dimV < oo in both formulas (2.21), (2.22).
They make sense for an arbitrary, not necessarily finite, basis E in V under the
following agreement on notation. Let us fix some total ordering on the set E and
number once and for all the elements of every finite subset X C E in increasing order
by integer indices 1, 2, ..., |X|. Then a basis in $"V is formed by the monomial
tensors (2.21), where d, my,m»,...,my € N are any positive integers such that
my +my + -+ myg =n,and ey, ez, ..., e4 run through the (numbered) subsets of
cardinality d in E. Similarly, a basis in Alt" V is formed by the monomials (2.22),
where ¢;,, ¢;,, ..., ¢;, run through the (numbered) subsets of cardinality n in E.

Proposition 2.5 [fchar(k) = 0, then the restriction of the quotient map
Ve — s"v
to the subspace Sym™ C V®" and the restriction of the quotient map

Ve — A"V

3See Proposition 12.2 of Algebra L.
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to the subspace Alt" C V®" establish the isomorphisms of vector spaces
Teoym - Sym" V = S"V  and  wy : Alt"V = A"V,

These isomorphisms act on the basis monomial tensors (2.21) and (2.22) by the
rules

n!
mp _my mg
€(my.my.....mg] ce ey ey, (223)
my!-mp! - myg!

Cliin,.ig) P> 1l ey Nep A-e- Ney,. (2.24)

Proof The projection gy, maps each of the n!/(m;!my! - - -my!) summands in (2.21)

to the commutative monomial e} €? ... ¢//*. Similarly, the projection 7g sends
each of the n! summands in (2.22) to the Grassmannian monomial ¢;, Aej, A -+ Ae;, .
0

Caution 2.1 In spite of Proposition 2.5, the subspaces Sym" V, Alt*V C V®"
should not be confused with the quotient spaces §"V and A"V of the tensor power
V@1 If chark = p > 0, then many symmetric tensors and all the alternating
tensors of degree larger than p are annihilated by projections V®" —» S"V and
V®" —» A"V. Even if chark = 0, the isomorphisms from Proposition 2.5 do not
identify the monomial bases of tensor spaces directly with the standard monomials
in the polynomial rings. Both isomorphisms contain some combinatorial factors,
which should be taken into account whenever we need either to pull back the
multiplication from the polynomial (respectively exterior) algebra to the space of
symmetric (respectively alternating) tensors or push forward the contractions of
tensors into the polynomial algebras.

2.5 Polarization of Polynomials

It follows from Proposition 2.5 that for every homogeneous polynomial f € $"V*,
there exists a unique symmetric tensor f € Sym” V* mapped to f under the
factorization by the commutativity relations (V)®" — §"V* on p- 23 allows us
to treat f as the symmetric n-linear form

7‘: VxVx...xV—=lk, ?(vl,vz,...,vn)‘é"f (v1 QU ® -+ ®vn,.7)-
This form is called the complete polarization of the polynomial f. For n = 2, the

polarization?of a quadratic form f € S>V* coincides with that defined in Chap. 17
of Algebra I by the equality

2f (u,w) = fu+w) —fu) — fF(w).
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For arbitrary n, the complete polarization of every monomial x| x5 - - - xj* of degree

n = m;+my+---+myis given by the first formula from Proposition 2.5 and equals

mi!my! - myg!
* Xmymy....mq] - (2.25)

n!
The complete polarization of an arbitrary polynomial can be computed using (2.25)
and the linearity of the polarization map NS_YIln D S"VF > Sym" V* f +— f. By
Remark 2.1 on p. 34, this works for every (not necessarily finite) basis in V* as
well.

2.5.1 Evaluation of Polynomials on Vectors

Associated with every polynomial f € S"V* is the polynomial function
fiVok vef)Yf(v,v,.... ). (2.26)

Note that the value of f on v is well defined even for infinite-dimensional vector
spaces and does not depend on any extra data on V, such as the choice of basis. Now

assume that dim V < oo, fix dual bases e, es,...,eq € V,x1,%2,...,x4 € V*, and
identify the symmetric algebra SV* with the polynomial algebra k[x;, xa, . .., x4].
Then the value of a polynomial f(x;,x;,...,x,) at a vector v = > we; € V

coincides with the result of the substitution x; = ¢; in f:

f) =f(ay,0a,...,0q). (2.27)

Indeed, for every monomial f = x|"x?---x/, the complete contraction of v®"

with

= ml! 'I’IZQ! md!
f= nl Xlmy ms....,mq)
is the sum of n!/(m;! - my! --- my!) equal products
m1! -mz! md!
n! cx (V)™ - x (V)™ - xg (v)™
m1!~m2! md' m_mo my
= . al az oo ad .
n!
It coincides with the result of the substitution (xi, x2, ..., x,) = (1, 02,...,®,) in
the monomial
n!
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We conclude that the evaluation of a polynomial f € kfxi,xz,...,x4] at the
coordinates of a vector v € V depends only on f € §"V* and v € V but not on
the choice of dual bases in V, V*.

2.5.2 Combinatorial Formula for Complete Polarization

Since the value of a symmetric n-linear form does not depend on the order of
arguments, let us write

?(v;"‘,v;'lz, ey vZ’k)

for the value of? at m; vectors vy, my Vectors vj,...,ny vectors v; with ZV
m, = n.

Exercise 2.15 Show that for every polynomial f € S§"V* and all vectors
V1, V2,..., U €V, one has

Fi+va4-F ) =F (01 +v2+ -+ )"

n! ~
= > T v, o),

mi 'mz' s mk!
(2.28)

mymy ... my

where the summation is over all integers m;, my, . .., my such that
m +m+---+m=n

and 0 < m, < nforall v.

Proposition 2.6 Let V be a vector space, not necessarily finite-dimensional, over a
field k of characteristic zero. Then for every homogeneous polynomial f € S"V*,

n! ']7(1)1, V2,...,Up) = Z (—l)mf(Z v,-), (2.29)

IS{1...n} i¢l

where the left summation is over all subsets I < {1, 2, ..., n}including I = @, for
which |@| = 0. For example, for f € S3V*, one has

6, v, w) = fu+v+w) = (u+v) =f(u+w) = (v +w) +f @) +f(©) +f (),

Proof Consider the expansion (2.28) from Exercise 2.15 for k = n = degf. Its
right-hand side contains the unique term depending on all the vectors vy, va, ..., Uy,
namely n! -?(vl,vz, ...,Vy). For every proper subset I < {1, 2, ..., n}, the
summands of (2.28) that do not contain vectors v; with i € I appear in (2.28) with

the same coefficients as they do in the expansion of f (Z il vi), because the latter is
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obtained from f(v; + v, +- - -4 v,) by setting v; = 0 forall i € I. Therefore, all terms
that do not depend on some of the v; can be removed from (2.28) by the standard
combinatorial inclusion—exclusion procedure. This leads to the required formula

n! -?(vl,vz,...,vn)
:f(zvv)_Zf(Zvv) + Zf(z Uv) - Zf( Z Uu) + -
v {i} Vi {ij}  v#ig {ijk}  v#ijk

2.5.3 Duality

Assume that chark = 0 and dim V < oo. The complete contraction between V&
and V*®" provides the spaces $”V and S$”V* with the perfect pairing® that couples
polynomials f € $"V and g € S"V* to a complete contraction of their complete
polarizations f € V®" andg € V*®".

Exercise 2.16 Verify that for every pair of dual bases
€1,62,...,64 €V, X1,X2,...,X5 € V*,
all the nonzero couplings between the basis monomials are exhausted by

M1!MQ! md!
my mp mqg _mp _mp mg\ __
(el ey ey Xy xy )— ol . (2.30)

Note that the monomials constructed from the dual basis vectors become the dual
bases of the polynomial rings only after rescaling by the same combinatorial factors
as in Proposition 2.5.

2.5.4 Derivative of a Polynomial Along a Vector

Associated with every vector v € V is the linear map
iyt V¥ S @D e, (2.31)

provided by the inner multiplication’ of n-linear forms on V by v, which takes an
n-linear form ¢ € V*®" to the (n — 1)-linear form

VL@(V1, V2, ..., Up—1) = @(V, V1, V2, ..., Vye1).

6See Sect. 7.1.4 of Algebra L.
7See Example 2.1 on p. 24.
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The map (2.31) preceded by the complete polarization map
S"V* = Sym" V* c v*&"
and followed by the quotient map yr®0=h _y gn-lyx gives the linear map
pl, : S"V* — §"T'VE f(x) > plf(x) €F (v, x, x, ..., ), (2.32)

which depends linearly on v € V. This map fits in the commutative diagram

vl
V*®” 3 Symn V* V*®(Vl*1)

Tsym J/ 0 £ Tsym

pl,
SVIV* Snfl V* (233)

The polynomial pl,,f (x)f(v, x,...x) € " 1(V*)is called the polar of v with respect
to f. For n = 2, the polar of a vector v with respect to a quadratic form f € S?V* is
the linear form w |—>]7(v, w) considered?® in Sect. 17.4.3 of Algebra 1.

In terms of dual bases e, e, ...,eq € V, x1,x2,...,x4 € V*, the contraction
of the first tensor factor in V*®" with the basis vector ¢; € V maps the complete
symmetric tensor Xj, m,....m, €ither to the complete symmetric tensor containing
the (m; — 1) factors x; or to zero for m; = 0. By formula (2.23) from Proposition 2.5,

Mi mi—y mi—1_mi41 mq

m mz..._xmd— Xy beeex X X cee X = B P I
d n 1 i—1 i i+1 d - L2 d -

ple,"xl 'x2

Since pl,f is linear in both v and f, we conclude that for every v = Y o;e;, the polar
polynomial of v with respect to f is nothing but the derivative of the polynomial f
along the vector v divided by degf, i.e.,

1 I BN,
P = gea) T = dea(r) 22 ey

Note that this forces the right-hand side of the formula to be independent of the
choice of dual bases in V and V*. It follows from the definition of polar map that
the derivatives along vectors commute, d,d,, = 9,,0,, and satisfy the following

8Recall that the zero set of this form in P(V) is the hyperplane intersecting the quadric
Z(f) C P(V) along its apparent contour viewed from v.
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remarkable relation:
an —_ an—m
m! f(w):n!f(u,u,...,u,w,w, cow) = (n—m)! f(u), (2.34)
u™ ~ m—— = = - own—m

m n

which holds forallu,w € V,f € §"V*,and 0 < m < n.
Exercise 2.17 Prove the Leibniz rule 0,(f - g) = 0,(f) - g +f - 9,(g)-

Exercise 2.18 Show that

7 1
fur, vz, 0,) = n|3U13U2 s 0y f
for every polynomial f € §"V* and all vectors v, va,...,v, € V.

Example 2.4 (Taylor Expansion) For k = 2, the expansion (2.28) from Exer-
cise 2.15 turns into the identity

flu+w) :T(u +w,ut+w, ..., ut+w = Z (:1) .f(um’wn—m)

m=0

where n = degf, which holds for every polynomial f € S"V* and all vectors
u,w € V. The relations (2.34) allow us to rewrite this identity as the Taylor expansion
for f at u:

degf 1
fu+w) =Y 1 Df ). (2.35)
m=0

Note that this is an exact equality in the polynomial ring SV*, and its right-hand side
actually is completely symmetric in u, w, because of the same relations in (2.34).

2.5.5 Polars and Tangents of Projective Hypersurfaces

Let S = Z(F) C IP(V) be a projective hypersurface defined by a homogeneous
polynomial equation F(x) = O of degree n. For every line { = (pg) C P(V), the
intersection £ N S consists of all points Ap + g € £ such that (A : p) satisfies
the homogeneous equation f(A, ) = 0 obtained from the equation F(x) = 0 via
the substitution x < Ap + pg. Over an algebraically closed field k, the binary form
f(A, 1) € k[A, p] either is zero or is completely factorized into a product of n forms
linear in A, u:

FOu ) = [J@h — oy = [ det (i Z;-/) , (2.36)

l
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where a; = () : @) are distinct points on P; = P(k?) and }_; s; = n. In the first
case, the line £ lies on S. In the second case, the intersection £ N S consists of points
a; = ajp + o'q. The exponent s; of the linear form o’ — /A in the factorization
(2.36) is called the intersection multiplicity of the hypersurface S and the line £ at
the point a;, and is denoted by (S, £),,. If (S, £), = 1, then q; is called a simple (or
transversal) intersection point. Otherwise, the intersection of £ and S at a; is called
multiple. Note that the total number of intersections counted with their multiplicities
equals the degree of S.

Letp € S. Then a line £ = (p, q) is called tangent to the hypersurface S = Z(F)
at p if either £ C Sor (S, £), = 2. In other words, the line £ is tangent to S at p if the
polynomial F(p + tgq) € k[{] either is the zero polynomial or has a multiple root at
zero. It follows from formulas (2.35), (2.34) that the Taylor expansion of F(p + tg)
at p starts with

F(p+1q) =t ([11) Fp' ' q) + 7 (;l) Fp"2,¢%) + .

Therefore, £ = (p, g) is tangent to S at p if and only if f@"‘l, q) = 0. Thisis a
straightforward generalization of Lemma 17.4 from Algebra I.

If F(p"~',x) does not vanish identically as a linear form in x, then the linear
equation F(p"~!,x) = 0 on x € V defines a hyperplane in IP(V) filled by the lines
(pg) tangent to S at p. This hyperplane is called the fangent space to S at p and is
denoted by

T, = {xe P(V) | F(p" ', x) = 0}.

In this case, the point p is called a smooth point of S. The hypersurface S C P(V) is
called smooth if every point p € S is smooth.

If F(p"~', x) is the zero linear form in x, the hypersurface S is called singular at
p, and the point p is called a singular point of S.

By formulas (2.34), the coefficients of the polynomial F(p"~!,x) = 0.F(p),
considered as a linear form in x, are equal to the partial derivatives of F evaluated at
the point p. Therefore, the singularity of a point p € S = Z(F) is expressed by the
equations

oF
(»p) =0 foralli,
8x,~
in which case every line £ passing through p has (S, £), = 2, i.e., is tangent to S at p.

Thus, the tangent lines to S at p fill the whole ambient space IP(V) in this case.
If g is either a smooth point on S or a point outside S, then the polar polynomial

pl,F(x) = F(g.x"™")
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does not vanish identically as a homogeneous polynomial of degree n — 1 in x,
because otherwise, all partial derivatives of pl F(x) = F (g, x"™") in x would also
vanish, and in particular,

- an—Z
F(g" '\ x) = pl,F(x) =0
aqn—Z q

identically in x, meaning that ¢ would be a singular point of S, in contradiction to
our choice of g. The zero set of the polar polynomial pl F' € §"~1V* is denoted by

pl,SLZ (pl,F) = {x e P(V) | F(g.x""") = 0} (2.37)

and called the polar hypersurface of the point g with respect to S. If S is a quadric,
then pl, S is exactly the polar hyperplane of ¢ considered in Sect. 17.4.3 of Algebra .
As in that case, for a hypersurface S of arbitrary degree, the intersection S N pl S
coincides with the apparent contour of S viewed from the point ¢, that is, with the
locus of all points p € S such that the line (pg) is tangent to S at p.

More generally, for an arbitrary point g € IP(V), the locus of points

pIirSE {x e P(V) | F(g"".x') =0}

is called the rth-degree polar of the point g with respect to S or the rth-degree
polar of S at g for g € S. If the polynomial f(q”_’,x’) vanishes identically in x,
we say that the rth-degree polar is degenerate. Otherwise, the rth-degree polar is a
projective hypersurface of degree r. The linear® polar of S at a smooth point g € S
is simply the tangent hyperplane to S at g,

7,8 =pl;~'s.

The quadratic polar plg_zS is the quadric passing through g and having the same

tangent hyperplane at g as S. The cubic polar plg_?’S is the cubic hypersurface
passing through g and having the same quadratic polar at g as S, etc. The rth-degree
polar pl’;_zS at a smooth point ¢ € S passes through ¢ and has pl(’]_kpl’;_’S = pl’;_kS
forall 1 <k <r—1,because

pl;_kplz_’F(x) — pl‘ni?rF (qr—k, xk) — 7;7 (qn—r, qr—k, xk) — 7;7 (qn—k, xk)
= pli ™ F(x).

9That is, of first degree.
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2.5.6 Linear Support of a Homogeneous Polynomial

Let V be a finite-dimensional vector space and f € S"V* a polynomial. We write
Suppf for the minimal'® vector subspace W C V* such that f € §"W, and call this
subspace the linear support of f. For chark = 0, the linear support of a polynomial
f coincides with the linear support of the symmetric tensor!! 7 € Sym" V*, the
complete polarization of f. By Theorem 2.1, it is linearly generated by the images
of the (n — 1)-tuple contraction maps

v v s cjl”zzd(r:”(t 7).
coupling all the (n — 1) factors of V&~ with some n — 1 factors of 7 € V*®" in
the order indicated by the sequence J = (j1./2, . . ., ja—1). For the symmetric tensor
f, such a contraction does not depend on J and maps every decomposable tensor
V] ® V3 ® -+ ® vU,—; to the linear form on V proportional to the (n — 1)-tuple
derivative 0y, 0y, - -+ 0y,_,f € V*.
Therefore, Supp(f) is linearly generated by all (n — 1)-tuple partial derivatives

aml amz amd

mj my T my .
oxy" ox; ox;

f(x). where Y “m, =n—1. (2.38)

The coefficient of x; in the linear form (2.38) depends only on the coefficients of the
monomial

my mi—1 mi+1_mit] mg
XX X X Ay

in f. Writing the polynomial f in the form

n! vy v v,
d
f= E ool | vy, ...vg x11x22 ceeXy (2.39)
ViVl = Vg:
vitetvg=n

turns the linear form (2.38) into

d
Y Gy nt O Xi (2.40)

i=1
Altogether, we get (”j;fl_z) such linear forms, which are in bijection with the non-
negative integer solutions mj, ms, . .., my of the equation m; +my+ - - - +my=n—1.

10With respect to inclusions.
See Sect.2.2.3 on p. 25.
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Proposition 2.7 Let k be a field of characteristic zero, V a finite-dimensional vector
space over k, and f € S"V* a polynomial written in the form (2.39) in some basis
of V¥. If f = ¢" is the proper nth power of some linear form ¢ € V*, then the
d x ("'x?z) matrix built from the coefficients of linear forms (2.40) has rank 1.
In this case, there are at most n linear forms ¢ € V* such that ¢" = f, and they
differ from one another by multiplication by the nth roots of unity lying in k. Over an
algebraically closed field k, the converse is true as well: if all the linear forms (2.40)

are proportional, then f = ¢" for some linear form @, which is also proportional to
the forms (2.40).

Proof The equality f = ¢" means that Supp(f) C V* is the 1-dimensional subspace
spanned by ¢. In this case, all linear forms (2.40) are proportional to ¢. Such a form
¥ = A has ¥" = f if and only if A" = 1 in k. Conversely, let all the linear forms
(2.40) be proportional, and let ¢ # 0 be one of them. Then Supp(f) = k- ¢ is
the 1-dimensional subspace spanned by 1. Hence f = Ay" for some A € k, and
therefore, f = ¢" for'2 ¢ = VA - . O

Example 2.5 (Binary Forms of Rank 1) We know from Example 11.6 of Algebra I
that a homogeneous binary form of degree n,

f(xo,x1) = Zak‘ (Z) -xp A

k

is the proper nth power of some linear form oxy 4+ «1x; if and only if the ratio of
sequential coefficients a; : a;+1 = o : @) does not depend on i. This is equivalent

to the condition
ag ady ... Ay—
rk(O 1 n 1):1’
ay day ... dp

which is expanded to a system of homogeneous quadratic equations a;a;+1 = a;414;
in the coefficients of f. Proposition 2.7 leads to the same result, because the columns
of the above matrix are exactly the coefficients of linear forms (2.40) divided by n!.

Corollary 2.5 The proper nth powers of linear forms ¢ € V* form the projective
algebraic variety

Vo€ {@" | o € V¥ C P(S"V¥) (2.41)

in the space of all degree-n hypersurfaces'> in P(V). This variety is described by
the system of quadratic equations representing the vanishing of all 2 x 2 minors in

the d x ("jﬁ?z) matrix built from the coefficients of linear forms (2.40). O

2Here we use that k is algebraically closed.
13See Sect. 11.3.3 of Algebra .
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Definition 2.1 (Veronese Variety) The projective algebraic variety (2.41) is called
the Veronese variety.

Exercise 2.19 (Veronese Embedding) Verify that the prescription ¢ +— ¢" gives
the well-defined injective map IP(V*) — P(§"V*) whose image coincides with the
Veronese variety (2.41).

2.6 Polarization of Grassmannian Polynomials

It follows from Proposition 2.5 on p. 34 that for every Grassmannian polynomial
® € A"V* over a field of characteristic zero, there exists a unique alternating
tensor @ € Alt" V* C V*®" mapped to @ under the factorization by the skew-
commutativity relations 7y : V* ®" _» A"V*. It can be viewed as the alternating
n-linear form

D:VXxVXx o xV—ok @0,L,....00) %8 (V@WK - Qu,, @),

called the complete polarization of the Grassmannian polynomial w € A"V*. If
the covectors x; form a basis of V*, then by formula (2.24) on p. 35, the complete
polarization of the Grassmannian monomial x;, A x;, A -+ A Xx;, equals

1
! Xiirsinnin) = alty (Xi, X, @ -+ @ x;,) . (2.42)

The polarization of an arbitrary Grassmannian polynomial can be computed using
this formula and the linearity of the polarization map

il ATVE S ANV, 0o @. (2.43)

By Remark 2.1 on p. 34, this procedure is also well defined for infinite-dimensional
vector spaces.

2.6.1 Duality

Similarly to the symmetric case, for a finite-dimensional vector space V over a field
of characteristic zero, there exists a perfect pairing between the spaces A"V and
A"V* coupling polynomials T € A"V and w € A"V* to the complete contraction
of their complete polarizations T € V®" and @ € V*®".

Exercise 2.20 Convince yourself that the nonzero couplings between the basis
monomials ¢; € A"V and x; € A"V* are exhausted by

(er, x;) = 1/nl. (2.44)
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2.6.2 Partial Derivatives in an Exterior Algebra
By analogy with Sect. 2.5.4, the derivative of a Grassmannian polynomial w € A"V*

along a vector v € V is defined by the formula

d,0 ¥ degw - plw,
where the polarization map pl,, : A"V* — A" 'V* o > 7y (vL®), is composed
of the inner multiplication (2.31) preceded by the complete polarization (2.43) and
followed by the quotient map gy : y*®e=h . An=ly* Thus, pl, fits in the
commutative diagram

[
V*®n S Al V* v V*®(n—|)

Trsk i ¢ Trsk

pl,
ATV — Anfl V* (245)

which is similar to the diagram from formula (2.33) on p. 39. Since pl,® is linear in
v, it follows that

0y = Zai d,, for v= Zaiei‘

If @ does not depend on x;, then certainly d,,0 = 0. Therefore, a nonzero
contribution to d,x; is given only by the derivations d,, with i € /. Formula (2.42)
implies that

eiy Xiy A Xiy A v+ AXjy = Xiy AXig A =o+ A X,

for every collection of indices iy, iz, . . . , iy, N0t necessarily increasing. Hence,
_ k—1
aeikxil AN Xipg N\ oo ANXj, = aeik(—l) Xip NXip A\ s AN X, /\)CikJrl s X,
k—1
= (=D ey Xig AXig A e AXiy Ayt X,
—(_1)k_1x. A cor AX; A Xi e X
- O Tk—1 Ik+1 In*

In other words, the derivation along the basis vector that is dual to the kth variable
from the left in the monomial behaves as (—1)*"! .7 | where the Grassmannian
Tk

partial derivative ai- takes x; to 1 and annihilates all x; with j # i, exactly as in

the symmetric case. However, the sign (—1)* in the previous formula forces the
Grassmannian partial derivatives to satisfy the Grassmannian Leibniz rule, which
differs from the usual one by an extra sign.
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Exercise 2.21 (Grassmannian Leibniz Rule) Prove that for every homogeneous
Grassmannian polynomial w, T € AV* and vector v € V, one has

(@ AT) = 0y(@) AT+ (=1)*% A 3, (7). (2.46)

Since the Grassmannian polynomials are linear in each variable, it follows that
>0 = O forall v € V, w € AV. The relation 32 = 0 forces the Grassmannian
derivatives to be skew commutative, i.e.,

0,0, = —0,0, YuwelV.

2.6.3 Linear Support of a Homogeneous Grassmannian
Polynomial

Let V be a finite-dimensional vector space over a field k of characteristic zero. For
the needs of further applications, in this section we switch between V* and V and
consider w € A"V. The linear support Supp w is defined to be the minimal (with
respect to inclusions) vector subspace W C V such that w € A"W. It coincides with
the linear support of the complete polarization @ € Alt" V, and is linearly generated
by all (n — 1)-tuple partial derivatives'*

a 0 0
w = w,

0,0 =9 Oy, =+ O, 3. 9 P

X1
1 “€ Cin—1

where J = jj, ... j,—1 runs through all sequences of n — 1 distinct indices from the
set{l, 2, ..., d},d = dimV. Up to asign, the order of indices in J is not essential,
and we will not assume the indices to be increasing, because this simplifies the

notation in what follows. Let us expand @ as a sum of basis monomials
w = E aje; = E Ui iy ..iy€ip N\ iy, N\ === Ne, (247)
1 i1y ... 0y

where I = ijiy ... i, also runs through the n-tuples of distinct but not necessarily
increasing indices, and the coefficients o;,;, ;, € k are alternating in iis ... iy.
Nonzero contributions to d;w are given only by the monomials aje; with I D J.
Therefore, up to a common sign,

djw = =+ Z“jm wodnti €i- (2.48)
it

14Compare with Sect.2.5.6 on p.43.
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Proposition 2.8 The following conditions on a Grassmannian polynomial we A"V
written in the form (2.47) are equivalent:

l.w=u Auy A -+ A uy, for some uy,uy, ..., u, €V.

2. u Ao = 0forallu € Supp(w).

3. for any two collections iiiy ... im+1 and jija ... jm—1 consisting of n + 1 and
n — 1 distinct indices, the following Pliicker relation holds:

m—+1
v—1 —
2D ia, 2, =0, (2.49)
v=1
where the hat in a, . . means that the index i, should be omitted.

ey endiy

Proof Condition 1 holds if and only if @ belongs to the top homogeneous
component of its linear span, € A%mSUPP(@) Syupp(w). Condition 2 means the
same because of the following exercise.

Exercise 2.22 Show that @ € AU is homogeneous of degree dim U if and only if
unw=0foruecU.

The Pliicker relation (2.49) asserts the vanishing of the coefficient of
eiy N €jy N\ -+ /\e,-m+l

in the product (len ,jmfla)) A . In other words, (2.49) is the coordinate form of
condition 2 written for the vector u = 9;, _j,_,w from the formula (2.48). Since these
vectors linearly generate the subspace Supp(w), the whole set of Pliicker relations
is equivalent to condition 2. O

Example 2.6 (The Pliicker Quadric) Letn = 2,dimV = 4, and let ey, e, €3, es
be a basis of V. Then the expansion (2.47) forw € A2V looks like w = Zi.j ajeiNe;,
where the coefficients a; form a skew-symmetric 4 x 4 matrix. The Pliicker relation
corresponding to (i1, iz, i3) = (2,3,4) andj; = 1 is

a12a34 — a13az4 + ajsaz; = 0. (2.50)

All other choices of (i1, i», i3) and j; & {i1, iz, i3} lead to exactly the same relation.
Exercise 2.23 Check this.

For j; € {i1, i, i3}, we get the trivial equality 0 = 0. Thus for dimV = 4, the set
of decomposable Grassmannian quadratic forms w € A%V is described by just one
quadratic equation, (2.50).

Exercise 2.24 Convince yourself that the Eq.(2.50) in 0 = ), jaiei N ej is
equivalent to the condition'> w A @ = 0.

15Compare with Problem 17.20 of Algebra 1.
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2.6.4 Grassmannian Varieties and the Pliicker Embedding

Given a vector space V of dimension d, the set of all vector subspaces U C V
of dimension m is denoted by Gr(m, V) and called the Grassmannian. When the
origin of V is not essential or V = k“, we write Gr(m, d) instead of Gr(m, V). Thus,
Gr(1,V) = P(V), Gr(dimV — 1,V) = P(V*). The Grassmannian Gr(m, V) is
embedded into the projective space IP(A™V) by means of the Pliicker map

pm: Gr(m, V) — P(A™V), U A™U C A™V, 2.51)

sending every m-dimensional subspace U C V to its highest exterior power A" U,
which is a 1-dimensional vector subspace in A™V. If U is spanned by vectors
Uy, Uy, ..., Uy, then p,,(U) = u; Auy A --+ A uy, up to proportionality.

Exercise 2.25 Check that the Pliicker map is injective.

The image of the map (2.51) consists of all Grassmannian polynomials ® € A™V
completely factorizable into a product of m vectors. Such polynomials are called

decomposable. By Proposition 2.8, they form a projective algebraic variety given
by the system of quadratic Eq. (2.49) in the coefficients of the expansion (2.47).

Example 2.7 (The Pliicker Quadric, Geometric Continuation of Example 2.6) For
dim V = 4, the Grassmannian Gr(2, 4) = Gr(2, V) can be viewed as the set of lines
£ = P(U) in Py = P(V). The Pliicker embedding (2.51) maps a line (ab) C IP; to
the pointa A b € Ps = IP(A2V) and establishes a bijection between the lines in IP3
and the points of the smooth quadric

P:{w€A2V|wAw:O}

in IP5, called the Pliicker quadric.

2.6.5 The Grassmannian as an Orbit Space

The Grassmannian Gr(m, d) admits the following matrix description. Fix some basis
(e1,e2,...,e4) in V. Given a vector subspace U C V with a basis (uy, uz, ..., Uy),
consider the m x d matrix A, whose ith row is formed by the coordinates of the
vector u; in the chosen basis of V. Every other basis of U,

(W17W27~~7Wm) = (MLMZU-H“m)'Cuw,

where Cy,, € GL,(k) is an invertible transition matrix, leads to the matrix A,,
expressed through A, by the formula

A, =C A

uw* U
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Exercise 2.26 Check this.

Therefore, the bases in U are in bijection with the m x d matrices of rank m
forming one orbit of the action of GL,, (k) on Mat,,xs(k) by left multiplication,
G : A GAfor G € GL,, A € Mat,xy. Hence the Grassmannian Gr(m, d)
can be viewed as the set of all m x d matrices of rank m considered up to left
multiplication by nondegenerate m x m matrices. Note that for m = 1, this agrees
with the description of projective space P, = Gr(1,d) as the set of nonzero
rows (xy,x2,...,X5) € k? = Mat;x, considered up to multiplication by nonzero
constants A € k* = GL, (k). Thus, the matrix A, formed by the coordinate rows of
some basis vectors uy, us, ..., Uy, in U is the direct analogue of the homogeneous
coordinates in projective space.

Exercise 2.27 (Pliicker Coordinates) Verify that the coefficients «;,;, . ;, in the

expansion (2.47) written for ® = u; Aup A -+ A u,, are equal to the m X m minors
of the matrix A,,.

These minors are called the Pliicker coordinates of the subspace U C V spanned by
the vectors u;.

Example 2.8 (Segre Varieties Revisited, Continuation of Example 1.2) Let
W=V &V, ® --- &V, be a direct sum of finite-dimensional vector spaces
Vi. For k € N and nonnegative integers m, m», . . . , m, such that ZV m, = k and

denote by Wy, my....m, C AXW the linear span of all products w; A wp A +++ A Wy

formed by m; vectors from V|, m;, vectors from V>, etc.

Exercise 2.28 Show that the well-defined isomorphism of vector spaces

is given by the prescription w; @ 2 @ - @ W, = W1 AWy A -+ A w,, and verify
that

AkW - @ Wml,mz ..... My

mi,ma,...,nmy my,my,....ny

2
>
E
=
®
e
3
N
®
®
e
g
=

Thus, the tensor product V; ® V, ® --- ® V, can be identified with the component

Wii....1 C A"W. Under this identification, the decomposable tensors
U]®U2® ®Un
go to the decomposable Grassmannian monomials v; A v2 A -+ A v,. Therefore,

the Segre variety from Example 1.2 on p. 6 is the intersection of the Grassmannian
variety Gr(n, W) C P(A"W) with the projective subspace P (W, ;,.1) C P(A"W).
In particular, the Segre variety is actually an algebraic variety described by the
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system of quadratic equations from Proposition 2.8 on p. 48 restricted to the linear
subspace Wy ;..1 C A"W.

Problems for Independent Solution to Chapter 2

Problem 2.1 Let V be a finite-dimensional vector space of over a field k of charac-
teristic zero. Show that the following vector spaces are canonically isomorphic:
(a) Sym"(V*), (b) Sym"(V)*, (¢) (S"V)*, (d) S"(V*), (e) symmetric n-
linear forms Vx V x -+ x V — k, (f) functions V — k, v — f(v), where f
is a homogeneous polynomial of degree n in the coordinates of v with respect to
some basis in V.

Problem 2.2 For the same V and k as in the previous problem, show that the
following vector spaces are canonically isomorphic: (a) Alt*(V*), (b) Alt"(V)*,
@) (A"V)*, (d) A"(V*), (e) alternating n-linear forms Vx V x --- x V — k.

Problem 2.3 Which of the isomorphisms from the previous two problems hold

(a) over a field k of any positive characteristic?
(b) for an infinite-dimensional vector space V?

Problem 2.4 (Aronhold’s Principle) Let V be a finite-dimensional vector space
over a field k of zero characteristic. Prove that the subspace of symmetric
tensors Sym”(V) C V®" is linearly generated by the proper nth tensor powers
v®" =1V ®v® --- ®v of vectors v € V. Write the symmetric tensor

URWRWH+WRURW+Ww®w® u € Sym’ (V)

as a linear combination of proper tensor cubes.

Problem 2.5 Is there a linear change of coordinates that makes the polynomial
Ox° — 15> =628 + 9xy* + 1822x =2y} + 3 — 152y +72°

depend on at most two variables?

Problem 2.6 Ascertain whether the cubic Grassmannian polynomial
—EIANEANEGE T2 ANEANEFAENENE+3EAEGEANE

is decomposable. If it is, write down an explicit factorization. If not, explain why.

Problem 2.7 Let V be a vector space of dimension n. Fix some nonzero element
n € A"V. Check that for all k, m with k + m = n, the perfect pairing between
A*V and A™V is well defined by the formula w; A @ = (w;, w,) - 1. Given a
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vector v € V, describe the linear operator A”~'V — A™V dual with respect to
this pairing to the left multiplication by v : AKV — A*T'V, 0 > v A w.

Problem 2.8 Verify that the Taylor expansion for the polynomial det(A) in the space
of linear operators A : V. — V has the following form:

det(AA + uB) = Z APud-tr (APA - ABY),
ptg=n

where APA : APV — APV, v AV A -+ AV, > A(V) AA(D2) AL .. AA(V)p) is the
pth exterior power of A and AYB* : APV — APV is dual to AYB : A1V — A1V
with respect to the perfect pairing from Problem 2.7.

Problem 2.9 Write Py = P(S?V*) for the space of quadrics in P, = IP(V), and
S C Py for the locus of all singular quadrics. Show that:

(a) Sis an algebraic hypersurface of degree n + 1,

(b) a point Q € S is a smooth point of S if and only if the corresponding quadric
Q C P, has just one singular point,

(c) the tangent hyperplane TS C Py to S at such a smooth point Q € S is formed
by all quadrics in IP, passing through the singular point of the quadric Q C IP,,.

Problem 2.10 Find all singular points of the following plane projective curves' in

Py = P(C3): (@) (xo + x1 + x2)° = 27x0x1x2, (b) X%y + xy? = x* + 4,
(©) (> —y+ 1) =y +1).

Problem 2.11 Write an explicit rational parameterization'” for the plane projective
quartic

(x% + )cf)2 + 3x3x1x2 + xjx2 = 0

using the projection of the curve from its singular point to some line.'®

Problem 2.12 For a diagonalizable linear operator F : V — V with eigenvalues
A1, A2, ..., Ay, find the eigenvalues of F®" foralln € N.

Problem 2.13 Prove that for every collection of linear operators

Fi,F,....F,: V>V

16Though the last two curves are given by their affine equations within the standard chart Uy C P,
the points at infinity should also be taken into account.

17That is, a triple of rational functions xo(7), x; (£), x2(t) € k(z) such that f(xo(£), x (1), x2()) = 0
in k(z), where f € k[xo, x1, x2] is the equation of the curve.

18Compare with Example 11.7 and the proof of Proposition 17.6 in Algebra 1.
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and constants A1, A,, ..., A, € k, one has /\1F[®” + /\2F§®” +o At A FE =0
forall n € N only if A; = O for all i.

Problem 2.14 Express the following quantities in terms of the coefficients of the
characteristic polynomial of F for an arbitrary linear operator F : V — V:
(@) tr F®2, (b) tr F®3, (c) det F®2, (d) det F®3, (e) the trace and determinant of
the map Adr : End(V) — End(V), G — FGF™', assuming that F is invertible,
(f) the trace and determinant of the map S°F : S?V* — S2V* that sends a
quadratic form ¢ : V — k to the compositiong e F : V — k.

Problem 2.15 Let F be a diagonalizable linear operator on an n-dimensional vector
space over a field k of characteristic zero. Express the eigenvalues of the operators

S"F 1 v1vy -+ vy > F()F(v2) -+ F(v,),

AN'F: v A A - Av, > Fu) AF() A+ AF(vy),

through the eigenvalues of F, and prove the following two identities in k[z]:
(@) det(E — tF) ™' = Y, ot S¥F) - 15, (b) det(E + tF) = Y5 t{A*F) - -,

Problem 2.16 (Splitting Principle) Prove that the answers you got in the previous
two problems hold for nondiagonalizable linear operators F' as well. Use the
following arguments, known as a splitting principle. Interpret the relation on F
you are going to prove as the identical vanishing of some polynomial with rational
coefficients in the matrix elements f;; of F' considered as independent variables.
Then prove the following claims:

(a) If a polynomial f € Q[x1,x2,...,x,] evaluates to zero at all points of some
dense subset of C”, then f is the zero polynomial. (Thus, it is enough to check
that the relation being proved holds for some set of complex matrices dense in
Mat,(C).)

(b) The diagonalizable matrices are dense in Mat, (C). Hint: every Jordan block'
can be made diagonalizable by a small perturbation of the diagonal elements of
the cell.

(c) The polynomial identity being proved is not changed under conjugation?
F + gFg™! of the matrix F = (fj) by any invertible matrix g € GL,(C).
(Thus, it is enough to check the required identity only for the diagonal
matrices.)?!

19See Sect. 15.3.1 of Algebra 1.

20This is clear if the identity in question expresses some basis-independent properties of the linear
operator but not its matrix in some specific basis.

21Even for the diagonal matrices with distinct eigenvalues, because the conjugation classes of these
matrices are dense in Mat,, (C) as well.
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Problem 2.17 Use the splitting principle to prove the Cayley—Hamilton identity
xr(F) = 0 by reducing the general case to the diagonal F.

Problem 2.18 Prove that for every F € Mat,»(C), one has e/ ®ETE®F = oF @ ¢l in
Mat,> (C), where E is the identity matrix.

Problem 2.19* Prove the identity logdet(E — A) = trlog(E — A) in the ring of
formal power series with rational coefficients in the matrix elements a;; of the
n x n matrix A. Show that for all small enough complex matrices A € Mat,(C),
this identity becomes a true numerical identity in C.

Problem 2.20 Let V be a vector space of dimension 4 over C and g € S*V*
a nondegenerate quadratic form with the polarization g € Sym?V*. Write
G C IP3 = P(V) for the projective quadric defined by the equation g(x) = 0.

(a) Prove that there exists a unique symmetric bilinear form A%g on the space A2V
such that

AZE’(UI A V2, Wi A Wz) £ det

~

def (?(Uls wi) ?(Ul, Wz))
g(v2, w1) g2, W)

for all decomposable bivectors.

(b) Check that this form is symmetric and nondegenerate, and write its Gram
matrix in the monomial basis e; A e; constructed from a g-orthonormal basis
ey, e, €3, é4 of V.

(¢) Show that the Pliicker embedding Gr(2, V) < P3 = P(V) from Example 2.7
on p.49, which establishes a one-to-one correspondence between the lines in
IP3 = IP(V) and the points of the Pliicker quadric P = {w € A%V | w Aw = 0}
in Ps = IP(A%V), maps the tangent lines to G bijectively to the intersection
P N A%G, where LG C Ps is the quadric given by the symmetric bilinear
form AZg.

Problem 2.21 (Pliicker—Segre—Veronese Interaction) Let U be a vector space
of dimension 2 over C. Consider the previous problem for the vector space
V = End U and the quadratic form g = det, whose value on an endomorphism
f:U— Uisdetf € C and the zero set is the Segre quadric’> G C P; = P(V)
consisting of endomorphisms of rank one.

(a) Construct canonical isomorphisms
S?V ~ Sym’ V ~ (S°U* ® S°U) @ (A’U* ® A*U),
AV >~ APV ~ (SPU* @ A*U) @ (A*U* ® S*U).
(b) Show that the Pliicker embedding sends two families of lines on the Segre

quadric to the pair of smooth conics P N Ay, P N A_ cut out of the Pliicker

22See Example 1.3 on p. 8 and Example 17.6 from Algebra L.
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quadricP C IP (A2 End(U )) by the complementary planes
A_ =P (S’U*® A’U) and Ay =P (A’U*®S°V),
the collectivizations of components of the second decomposition in (a).

(c) Check that the two conics P N A_ and P N A4 in (b) are the images of the
quadratic Veronese embeddings

P(U*) — P (S°U*) = P (S°U* ® A*U), &+ £,
P(U) < P (S’U) =P (A*U* ® S*U), v

In other words, there is the following commutative diagram:

P =P() P(S?U)= Ay
Veronese
. ]
Segre Pliicker AzU* ® SZU
P} x P; G CPEnd(U) — — — — — ~ P ®
SPU* @ A*U
- \J
Veronese
Py =P(U*) € P(S?U*) = A_

where the Pliicker embedding is dashed, because it takes lines to points.

Problem 2.22 (Hodge Star) Under the conditions of Problem 2.20, verify that for
every nondegenerate quadratic form g on V, the linear operator * : A2V — A2V,
o — o*, is well defined by the formula

o1 Aw) = NG (w1, m)-e1 nea Aeshey Yor,w € AV,

where ej, e;, e3, es4 is a g-orthonormal basis of V. Check that, up to a scalar
complex factor of modulus one, the star operator does not depend on the choice
of orthonormal basis. Describe the eigenspaces of the star operator and indicate
their place in the diagram from Problem 2.21.

Problem 2.23 (Grassmannian Exponential) Let V be a vector space over a
field k of arbitrary characteristic. The Grassmannian exponential is defined for
decomposable @ € A" by the assignment e” £ 1 + . For an arbitrary even-
degree homogeneous Grassmannian polynomial { € A*"V, we write { = Y w;,
where all ; are decomposable, and put ¢ ¥ []e®. Verify that this product
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depends neither on an ordering of factors nor on the choice of expression’

¢ = Y ;. Prove that the exponential map A"V <> A®"V, ¢ > €, is
an injective homomorphism of the additive group of even-degree Grassmannian
polynomials to the multiplicative group of even-degree Grassmannian polyno-
mials with unit constant term. Show that over a field of characteristic zero,
Dge® = €5 A0y forall € V*, and ¢f = 2 =0 kl!Q’\k.

Problem 2.24 Let V be a finite-dimensional vector space. Show that the subspaces
Iym N(VOV)CVV and Igw N(V*QV*) CV*®V*,

which generate the ideals of the commutativity and skew-commutativity rela-
tions2* Tym C TV, Igew C TV*, are the annihilators of each other under the
perfect pairing between V® V and V* ® V* provided by the complete contraction.

Problem 2.25 (Koszul and de Rham Complexes) Lete,es,...,e, be abasis of a
vector space V over a field k of characteristic zero. Write x; and &; for the images
of the basis vector e; in the symmetric algebra SV and the exterior algebra AV
respectively. Convince yourself that there are well-defined linear operators

0
d¥ AV STV - ATV g s,
ZV:& ® o ® S"V — ®
EDY D en  AVESTV > ATV g sy
- Bgu v 9
acting on decomposable tensors by the rules
d:oQf — Z 0 Rxy-f
. - asv v 9

of
0:w [ by A® c
®f ;s ® o0
Prove that neither operator depends on the choice of basis in V and that both
operators have zero squares, d> = 0 = 9°. Verify that their s-commutator dd + dd
acts on AV ® §™V as a homothety (k + m) - Id. Describe the homology spaces
kerd/imd and ker 9/ im 0.

ZNote that the decomposition of a Grassmannian polynomial into a sum of decomposable
monomials is highly nonunique.

24See Sect. 2.3.1 on p. 26 and Sect.2.3.3 on p. 29.
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