
Chapter 2

Essential Physics of Inertial Confinement

Fusion (ICF)

In order to study plasma physics and its behavior for a source of driving fusion in a

controlled thermonuclear reaction for purpose of generating energy, understanding

of the fundamental knowledge of electromagnetic theory is essential. In this

chapter, we introduce Maxwell equations and Coulomb’s barrier or Tunnel effects
for better understanding of plasma behavior for confinement purpose. The con-

trolled thermonuclear reaction for generating clean energy that is confined mag-

netically or inertially requires some basic understanding of physics and

mathematics rules and knowledge. We are mainly concerned with confinement of

plasmas at terrestrial temperature, e.g., very hot plasmas, where primarily of

interest is in application to controlled fusion research in magnetic confinement

reactors such as tokomak or using high-power laser or high-energy particles for

purpose of inertial confinement fusion. Dimensional analysis and self-similarity

allow us to have better understanding of implosion and explosion process in case of

lateral confinement approach. This chapter is walking through some of the essen-

tials that one needs to know for the process of inertial confinement in particular as

subject of this book, which are all about.

2.1 Introduction

Physics of laser-driven plasmas has a route that goes to day that the advent of the

laser was a substantial confirmation of Einstein’s derivation of Planck’s radiation
law, along with the discovery of quantum physics. The discovery of quantum

physics opened a new door to huge industry of physics and quantum optics,

which today is influencing our daily life in health to technical industry as well as

in advanced defense by introducing new weapons to tomorrow’s battle field, where
high-energy lasers are dominating weapon systems [1].
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Directed energy weapons are nothing new to mankind; historically the origin of

such weapons began centuries ago, when the famous Greek mathematician, phys-

icist, engineer, inventor, and astronomer Archimedes of Syracuse used different

mirrors to collect sunbeams and focused them on the Roman fleet in order to destroy

enemy ships with fire, driven by energy of the beams. This is known as the

Archimedes Heat Ray. Archimedes may have used mirror acting collectively as a

parabolic reflector to burn ships attacking Syracuse. The device was used to focus

sunlight onto approaching ships, causing them to catch fire. Of course, the myth or

reality of the Archimedes Heat Ray still is questionable. However, today with help

of High-Energy Laser (HEL) technology existence, the myth is approaching to

reality and battles of tomorrow will be fought with different weapons that have

more lethal effects and faster delivery systems with more accurate focusing on

target mechanisms.

The interaction of laser radiation or high-energy particle beam with matter has

introduced us to a new technological domain that has opened the door to new basic

physics rules. When the response of dielectric materials was extended to numerous

nonlinearities known before with all kind of applications in electronics of optics and

communication, a much stranger physics phenomena appeared at the very high

intensities, where all materials are vaporized and ionized. This ionization pushed

the laser interaction with matter to state of plasma, and the response of the

generated plasmas exceeded all of the previously known curiosities. This chapter

will cover the essential physics of such reaction that deals with behavior of plasma,

introduced by this intense energy driven by laser or particle beams.

Plasma is generated about 50,000 �K, emitting ions of few eV energy, slightly

higher intensities produced KeV ions. Not too long ago, scientists at different

national laboratories demonstrate the nuclear fusion reactions were ignited, but

highly nonthermal electron energy distributions were detected by X-rays and

anomalous fast groups of ions appeared. Invention of Inertial Confinement Fusion

(ICF) is a new way of creating clean source of energy, so long as we have oceans of

water surrounding us however, this innovating approach for renewable source of

energy has its own associated scientific and technological difficulties that require

overcoming. For us to understand the nature of ICF and be able to deal with

associated obstacles, we need to have the better understanding of essential physics

that handles these obstacles.

2.2 General Concept of Electromagnetisms

and Electrostatics

The subject of electricity is briefly touched upon for rest of this chapter to provide

us with a fundamental of magnetism that we need in order to understand the science

of plasma physics to go forward. We deal with the empirical concepts of charge and

the force law between charges known as Coulomb’s Law. However, we use the
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mathematical tools of previous section to express this law in other or more powerful

formulations and then extended to basics of plasma physics concept. The electric

potential formulation and Gauss’s Law are very important to the subsequent

development of the subject. Electric charge is a fundamental and characteristic

property of the microscopic particles that makes up matter. In fact, all atoms are

composed of photons, neutrons, and electrons, and two of these particles bear

charges. However, even charge particles, the powerful electrical forces associated

with these particles are fairly well hidden in a macroscopic observation. The reason

behind such statement exists because of nature of two kinds of charges existence,

namely, Positive and Negative charges, and an ordinary piece of matter contains

approximately equal amounts of each kind.

It is understood from experimental observation that charge can be neither

created nor destroyed. The total charge of a closed system cannot change. From

the macroscopic point of view, charges may be regrouped and combined in differ-

ent ways; nevertheless, we may state that net charge is conserved in a closed
system [2].

2.2.1 The Coulomb’s Law

To establish the Coulomb’s law we need to summarize in three following state-

ments as

1. There are two and only two kinds of electric charge, now known as positive or

negative.

2. Two point charges exert on each other forces that act along the line joining them

and are inversely proportional to the square of the distance between them.

3. These forces are also proportional to the product of the charges, are repulsive for

like charges, and attractive for unlike charges.

The last two statements, with the first as preamble, all together, are known as

Coulomb’s Law and for point charges may be concisely formulated in the vector

notation as

~F1 ¼ Cu
q1q2
r212

~r12
r12

~r12 ¼ ~r1 �~r2

(Eq. 2.1a)

where ~F1 is the force on charge q1,~r12 is the vector to charge q1 from charge q2, r12
is the magnitude of vector~r12, and Cu is a constant of proportionality about which is

defined as to be equal to 1 in adoption with Gaussian system of units. Figure 1.6 will

describe the vector ~r12 with respect to an arbitrary origin O.
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In Fig. 2.1 vector~r12 is extending from the point at the tip of vector~r2 to the point
at the tip of the vector~r1 and clearly~r12 ¼ �~r21. Note that Coulomb’s law applies

to point charges and in macroscopic sense, a “point charge” is one whose spatial

dimensions are very small compared with any other length pertinent to the problem

under consideration and that is why we use the term “point charge” in this sense.

In the MKS system, Coulomb’s law for the force between two point charges can

thus be written as

~F1 ¼ 1

4πε0

q1q2
r212

~r12
r12

(Eq.2.1b)

If more than two point charges are present, the mutual forces are determined by

the repeated application of Eqs. 2.1a and 2.1b. In particular, if a system of N charges

is considered, the force on the ith charge is given by

~F1 ¼ qi
XN
i6¼j

qj
4πε0

~rij
r3ij

~rij ¼ ~ri �~rj

(Eq.2.2)

where the summation on the right-hand side of Eq. 2.2 is extended over all of the

charges except the ith. Equation 1.61 is the superposition principle for forces, which
says that the total force acting on a body is the vector sum of the individual forces that

act on it. Note that inMKS unit the value of Coulomb ConstantC¼ 9� 109Nm2/C3.

There are cases such as fully ionized plasma, where we may need to describe a

charge distribution in terms of a charge density function, thus, it is defined as the

limit of charge per unit volume as the volume becomes infinitesimal. However, care

must be taken in applying this kind of description to atomic problems, since in such

cases only a small number of electrons are involved, and the process of taking the

limit is meaningless. Nevertheless, aside atomic case, we may proceed as though a

segment of charges might be subdivided indefinitely, we thus, describe the charge

distribution by means of point functions.

A volume charge density is defined by

ρ ¼ lim
ΔV!0

Δq
ΔV

(Eq. 2.3)

r12
r1

Or2

Fig. 2.1 Vector ~r12,
extending between

two points
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and a surface charge density is defined by

σ ¼ lim
ΔS!0

Δq
ΔS

(Eq. 2.4)

From above statements and what has been said about point charge q, it is evident
that ρ and σ are net charge, or excess charge, densities. It is worth to mention that in

typical solid materials even a very large charge density ρ will involve a change in

the local electron density of only about one part 109.

Now that we have some concept of point charge and established Eqs. 2.1a, 2.1b,

and 2.2, we extend our knowledge to more general case. In this case, the charge is

distributed through a volume V with density ρ, and on the surface S that bounds the
volume V with a surface density σ, then the force exerted by this charge distribution
on a point charge q located at~r is obtained from Eq. 2.2 by replacing qj with ρjdυ

0
j or

with σjda
0
j and processing to the limit as

~Fq ¼ q

4πε0

ð
V

~r �~r0

~r �~r0j j3 ρ ~r0ð Þdυ0

þ q

4πε0

ð
S

~r �~r0

~r �~r0j j3 σ ~r0ð Þda0
(Eq. 2.5)

The variable ~r0 is used to locate a point within the charge distribution that is

playing the role of the source point ~rj in Eq. 2.2 [2].

Equations 2.2 and 2.5 provide a ready means for obtaining an expression for the

electric field due to given distribution of charge as it is presented in Fig. 2.2 and

electric field is discussed in the next section.

It may appear that the first integral in Eq. 1.64 will diverge if point~r should fall

inside the charge distribution, but that is not the case at all.

In Fig. 2.2, the vector ~r defines the observation point (i.e., field point), and ~r0

ranges over the entire charge distribution, including point charges.

Fig. 2.2 Geometry of ~r, ~r0

and ~r �~r0
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2.2.2 The Electric Field

Our first attempt to seek the electric field is for point charge for the sake of

simplicity. The electric field at a point is defined operationally as the limit of the

force on a test charge placed at the point to the charge of the test charge and the

limit being taken as the magnitude of the test charge goes to zero. The customary

symbol for electric field in electromagnetic subject is ~E and not to be mistaken for

energy presentation, which is the case by default. Thus, we can write

~E ¼ lim
q!0

~Fq

q
(Eq. 2.6)

The limiting process is included in the definition of electric field to ensure that

the test charge does not affect the charge distribution that produces ~E.
Using Fig. 2.2, we let the charge distribution consists of N point q1 , q2 , � � � , qN

located at the points~r1,~r2, � � �,~rN , respectively, and a volume distribution of charge

specified by the charge density ρ ~r0ð Þ in the volume V and a surface distribution

characterized by the surface charge density σ ~r0ð Þ on the surface S. If a test charge

q is located at the point~r, it experiences force~Fgiven by the following equation due
to the given charge distribution:

~F ¼ q

4πε0

XN
i¼1

qi
~r �~ri

~r �~rij j3

þ q

4πε0

ð
V

~r �~r0

~r �~r0j j3 ρ ~r0ð Þdυ0

þ q

4πε0

ð
S

~r �~r0

~r �~r0j j3 σ ~r0ð Þda0

(Eq. 2.7)

In case of Eq. 2.7, the electric field at the point~r is then the limit of the ratio of

this force to the test charge q. Since the ratio is independent of q, the electric field at
~r is just

~E ~rð Þ ¼ 1

4πε0

XN
i¼1

qi
~r �~ri

~r �~rij j3

þ 1

4πε0

ð
V

~r �~r0

~r �~r0j j3 ρ ~r0ð Þdυ0

þ 1

4πε0

ð
S

~r �~r0

~r �~r0j j3 σ ~r0ð Þda0

(Eq. 2.8)
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Equation 2.8 is very general and in most cases, one or more of the terms will not

be needed.

In order to complete the electromagnetic foundation circle, we also quickly note

the general form of the potential energy associated with an arbitrary conservative

force ~F ~r0ð Þ as the following form.

U ~rð Þ ¼ �
ð~r
ref:

~F ~r0ð Þ � d~r0 (Eq. 2.9)

where U ~rð Þ is the potential energy at ~r relative to the reference point at which the

potential energy is arbitrarily taken to be zero. Proof is left to the reader by referring

to the book of Reitz et al. [2].

2.2.3 The Gauss’s Law

One of the important relationships that exist between the integral of the normal

component of the electric field over a closed surface and the total charge distribu-

tion enclosed by the surface is Gauss’s Law. To investigate that briefly here, we

look at the electric field~E ~rð Þ for a point charge~r q located at the origin we can write
the following relation as before

~E ~rð Þ ¼ q

4πε0

~r

r3
(Eq. 2.10)

Consider the surface integral of the normal component of this electric field over

a closed surface such that shown in Fig. 2.3 that encloses the origin and, conse-

quently, the charge q, then we can writeþ
S

~E � bnda ¼ q

4πε0

þ
s

~r � bn
r3

da (Eq. 2.11)

n E

S

ˆ

da

O

Fig. 2.3 An imaginary

closed surface S including

point charge at origin
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The quantity ~r=rð Þ � bnda is the projection of da on a plane perpendicular to~r. This
projected area divided by r2 is the solid angle subtended by da, which is written in

dΩ. It is clear from Fig. 2.4 that the solid angle subtended by the da is the same as the

solid angle subtended by da
0
, an element of the surface area of the sphere S

0
whose

center is at origin and whose radius is r
0
. It is then possible to writeþ

s

~r � bn
r3

da ¼
þ
S0

~r0 � bn
r03

da0 ¼ 4π (Eq. 2.12)

which shows that as the following equation in the spherical case described aboveþ
S

~E � bnda ¼ q

4πε0
4πð Þ q

ε0
(Eq. 2.13)

Figure 2.4, illustrates the construction of the spherical surface S
0
as an aid to

evaluation of the solid angle subtended by da. If q lies outside of S, it is clear from
Fig. 1.10 that S can be divided into two areas, S1 and S2 each of which subtends the

same solid angle at the charge q. For S2, however, the direction of the normal is

toward q, while for S1 it is away from q.
More details can be found in reference by Reitz et al. [2], where readers need to

go to; however, in case of several point charges q1 , q2 , . . . , qN are enclosed by the

surface S, then the total electric field is given by the first term of Eq. 2.8. Each

charge subtends a full solid angle (4π); hence Eq. 2.13 becomesþ
S

~E � bnda ¼ 1

ε0

XN
i¼1

qi (Eq. 2.14)

The result in Eq. 2.14 can be readily generalized to the case of a continuous

distribution of charge characterized by a charge density [2].

n̂

da

da'

S'
r'

E

Fig. 2.4 Construction of the spherical surface S
0
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2.3 Solution of Electrostatic Problems

Briefly, we mention and write equations for the solution to an electrostatic problem,

which is straightforward for the case in which the charge distribution is everywhere,

specified, for then, as we have illustrated so far. The potential and electric field are

given as an integral form over this charge distribution as

φ ~rð Þ ¼ 1

4πε0

ð
dq0

~r �~r0j j (Eq. 2.15)

~E ~r0ð Þ ¼ 1

4πε0

ð
~r �~r0ð Þdq0
~r �~r0j j3 (Eq. 2.16)

However, many of the problems that we encountered in real practice are not of

this kind. If the charge distribution is not specified in advance, it may be necessary

to determine the electric field first, before the charge distribution can be

calculated.

2.3.1 Poisson’s Equation

The only basic relationships we need here so far are developed in the preceding

sections, thus for that matter, we first write the differential form of Gauss’s law as

~∇ � ~E ¼ 1

ε0
ρ (Eq. 2.17)

Equation 2.17 in a purely electrostatic field ~E may be expressed as minus the

gradient of the potential φ:

~E ¼ �~∇φ (Eq. 2.18)

Combining Eqs. 2.17 and 2.18, we obtain the following relation as

~∇ � ~∇φ ¼ � ρ

ε0
(Eq. 2.19a)

Using vector identity as a single differential operator, ~∇ � ~∇ or ∇2, which is

called the Laplacian.
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The Laplacian is a scalar differential operator and Eq. 2.18 is a differential

equation that is known as Poisson’s Equation and written as

∇2φ ¼ � ρ

ε0
(Eq. 2.19b)

The Laplace operator for Poisson Equation, in rectangular, cylindrical, and

spherical coordinates is presented here as well.

2.3.1.1 Rectangular or Cartesian Coordinate

∇2φ � ∂2φ

∂x2
þ ∂2φ

∂y2
þ ∂2φ

∂z2
¼ � ρ

ε0
(Eq. 2.20)

2.3.1.2 Cylindrical Coordinate

∇2φ � 1

r

∂
∂r

r
∂φ
∂r

� �
þ 1

r

∂2φ

∂θ
þ ∂2φ

∂z2
¼ � ρ

ε0
(Eq. 2.21)

2.3.1.3 Spherical Coordinate

∇2φ � 1

r2
∂
∂r

r2
∂φ
∂r

� �
þ 1

r2 sin θ

∂
∂θ

sin θ
∂φ
∂θ

� �
þ 1

r2sin 2θ

∂2φ

∂ϕ2
¼ � ρ

ε0
(Eq. 2.22)

For the form of the Laplacian in other more complicated coordinated system, the

reader is referred to the reference such as any vector analysis or advanced calculus

books.

2.3.2 Laplace’s Equation

Problems in electrostatic that are involving conductors, all the charges are either

found on the surface of the conductors or in the form of fixed-point charges. In these

cases, charge density ρ is zero at most points in space and in absence of charge

density, the Poisson equation reduces to the simpler form as follows

∇2φ ¼ 0 (Eq. 2.23)
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2.4 Electrostatic Energy

From then on, without further detailed discussion and proof of different aspects of

electrostatic equation,we justwrite themdownas basic knowledge andwe leavedetails

to the readers to refer themselves to various subject books out in the open market.

Therefore to go on with the subject in hand, we express that under static

condition, the entire energy of the charge system exists as potential energy, and

in this section we are particularly concerned with the potential energy that arises

from electrical interaction of the charges, so-called electrostatic energy U.
We presented that the electrostatic energy U of a point charge is closely related

to the electrostatic potential φ at the position of the point charge ~r per Eq. 2.9. In
fact, if q is the magnitude of a particular point charge, then the work done by the

force on the charge when it moves from position A to position B is given as

Work ¼ Ð BA ~F � d~l ¼ q
Ð B
A
~E � d~l

¼ �q
Ð B
A

~∇φ � d~l ¼ �q φB � φAð Þ
(Eq. 2.24)

Here ~F has been assumed to be only the electric force q~E at each point along

the path or the total work is finalized to

W ¼ �q φB � φAð Þ (Eq. 2.25)

2.4.1 Potential Energy of a Group of Point Charges

The equation for potential energy of a group of point charges can be expressed as

U ¼
Xm
j¼1

Wj ¼
Xm
j¼1

Xj�1

k¼1

qjqk
4πε0rjk

 !
(Eq. 2.26)

or in summary Eq. 1.85 can be reduced to

U ¼ 1

2

Xm
j¼1

X 0
m

k¼1

qjqk
4πε0rjk

(Eq. 2.27)

Note that on the second term of summation in Eq. 2.27, where the prime is the

term k¼ j is specifically needs to be excluded and Eq. 2.27 may be written in a

somewhat different way by noting that the final value of the potential φ at the jth
point charge due to the other charges of the system is

φj ¼
X 0
m

k¼1

qk
4πε0rjk

(Eq. 2.28)
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Thus, the electrostatic energy of the system is given as

U ¼ 1

2

Xm
j¼1

qjφj (Eq. 2.29)

Proof of all the above equation is left to the readers.

2.4.2 Electrostatic Energy of a Charge Distribution

The electrostatic energy of an arbitrary charge distribution with volume density φ
and surface density can be expressed based on assembled charge distribution by

bringing in charge increments δq from a reference potential φA¼ 0. If the charge

distribution is partly assembled and the potential at a particular point in the system

is φ
0
(x, y, z), then from Eq. 1.84, the work required to place δq at this point is

written as

δW ¼ φ0 x; y; zð Þδq (Eq. 2.30)

In this equation the charge increment δq may be added to a volume element

located at (x, y, z), so that δq¼ δρΔυ, or may be added to a surface element at the

point in question, in which case δq¼ δρΔa. The total electrostatic energy of the

assembled charge distribution is obtained by summing contributions of the form

Eq. 2.30.

Let us assume that at any stage of the charging process, all charge densities will be

at the same fraction of their final values and represented by symbol α, and if the final
values of the charge densities are given by the function φ(x, y, z) and σ(x, y, z), then
the charge densities at an arbitrary stage are αφ(x, y, z) and ασ(x, y, z). Furthermore,

the increments in these densities are δρ¼φ(x, y, z)dα and δσ¼ σ(x, y, z)dα, then the
total electrostatic energy, which is obtained by summing Eq. 2.30, is given by

U ¼ Ð 1
0
δd
Ð
Vφ x; y; zð Þφ0 x; y; zð Þdυ

þ Ð 1
0
δd
Ð
Sσ x; y; zð Þφ0 x; y; zð Þda

(Eq. 2.31)

However, since all charges are at the same fraction, α is readily done and yields

as

U ¼ 1

2

ð
V

ρ ~rð Þφ ~rð Þdυþ 1

2

ð
S

σ ~rð Þφ ~rð Þda (Eq. 2.32)
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This equation provides the desired result for the energy of a charge distribution.

If all space is filled with a single dielectric medium except for certain conductors,

the potential is then given by

φ ~rð Þ ¼ 1

4πε

ð
V

φ ~r0ð Þdυ0
~r �~r0j j þ

1

4πε

ð
V

σ ~r0ð Þda0
~r �~r0j j (Eq. 2.33)

Equations 2.32 and 2.33 are the generalization of Eqs. 2.28 and 2.29 for point

charges. The latter can be recovered as a special case letting the following relation-

ships as

ρ ~rð Þ ¼
Xm
j¼1

qjδ ~r �~rj
� �

ρ ~r0ð Þ ¼
X 0
m

k¼1

qkδ ~r �~rkð Þ
(Eq. 2.34)

where again, the prime on the second summation in Eq. 2.34 is indication of the

term k¼ j and is excluded when the double sum is constructed. Note that when ρ is a
continuous distribution, the vanishing of the denominator in Eq. 2.33 does not cause

the integral to diverge, and it is unnecessary to exclude the point ~r0 ¼ ~r.
The last integral involves, in part, integration over the surface of the conductor

of interest; however, since a conductor is an equipotential region, each of these

integrations may be done as

1

2

ð
conductor j

σφda ¼ 1

2
Qjφj (Eq. 2.35)

where Qj is the charge on the jth conductor.

Equation 2.32 for electrostatic energy of a charge distribution, which includes

conductor, then becomes as

U ¼ 1

2

ð
V

ρφdυþ 1

2

ð
S0
σφdaþ 1

2

X
j

Qjφj (Eq. 2.36)

where in Eq. 2.36, the last summation is over all conductors, and the surface integral

is restricted to nonconducting surfaces.

Furthermore, in many practical problems of interest, all of the charges reside on

the surfaces of conductor. In these circumstances, Eq. 2.36 reduces to the following

form as

U ¼ 1

2

X
j

Qjφj (Eq. 2.37)
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Equation 2.37 is derived based on starting with uncharged macroscopic

conductors that were gradually charged by bringing in charge increments.

Thus, the energy is described by Eq. 2.37 including both interaction energy

between different conductors and the self-energies of the charge on each indi-

vidual conductors.

2.4.3 Forces and Torques

Thus far, we have developed to some extent a number of alternative procedures for

calculating the electrostatic energy of a charge system. We now take an attempt to

establish the force on one of the objects in the charge system that may be calculated

from knowledge of this electrostatic energy.

If we dealing with an isolated system composed of conductors, point charges,

and dielectrics and we make all of these items to make a small displacement under

the influence of the electrical force ~F acting upon it. The work performed by the

electrical force on the system in these circumstances is

dW ¼ ~F � d~r ¼ Fxdxþ Fydy þ Fzdz (Eq. 2.38)

Since we assume the system is isolated, this work is done at the expense of the

electrostatic energy U. In other words, according to Eq. 2.24 we can write

dW ¼ �dU (Eq. 2.39)

Combining Eqs. 2.38 and 2.39, the result is as follows:

�dU ¼ Fxdxþ Fydyþ Fzdz (Eq. 2.40)

and

Fx ¼ �∂U
∂x

Fy ¼ �∂U
∂y

Fz ¼ �∂U
∂z

(Eq. 2.41)
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Therefore, sets of Eq. 2.41 indicate that in case ~F is a conservative force and

~F ¼ �~∇U. If the object under consideration is constrained to move in such a way

that it rotates about an axis, then Eq. 2.38 may be replaced by the following

equation as

dW ¼ ~τ � d~θ (Eq. 2.42)

where ~τ is the electrical torque and d~θ is the differential angular displacement.

Writing ~τ and d~θ in terms of their components, (τ1, τ2, τ2) and (dθ1, dθ2, dθ3), and
combining Eqs. 1.98 and 2.42, we obtain the following relationships

τ1 ¼ � ∂U
∂θ1

τ2 ¼ � ∂U
∂θ2

τ3 ¼ � ∂U
∂θ3

(Eq. 2.43)

This proves that our goal has been, achieved and we can write

Fx ¼ � ∂U
∂x

� �
Q

τ1 ¼ � ∂U
∂θ1

� �
Q

8><>: (Eq. 2.44a)

Fy ¼ � ∂U
∂y

� �
Q

τ2 ¼ � ∂U
∂θ2

� �
Q

8>><>>: (Eq. 2.44b)

Fz ¼ � ∂U
∂x

� �
Q

τ3 ¼ � ∂U
∂θ3

� �
Q

8><>: (Eq. 2.44c)

where the subscript Q has been added to denote that the system is isolated and

hence, its total charge remains constant during the displacement d~r or d~θ.
Now we are at the stage that we need to talk electromagnetic force that is known

as Lorentz force here.

The electromagnetic field exerts the following force (often called the Lorentz

force) on charged particles:

~F ¼ q~Eþ q~v� ~B (Eq. 2.45)
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where vector~F is the force that a particle with charge q experiences,~E is the electric

field at the location of the particle, v is the velocity of the particle, and ~B is the

magnetic field at the location of the particle.

The above equation illustrates that the Lorentz force is the sum of two vectors.

One is the cross product of the velocity and magnetic field vectors. Based on the

properties of the cross product, this produces a vector that is perpendicular to both

the velocity and magnetic field vectors. The other vector is in the same direction as

the electric field. The sum of these two vectors is the Lorentz force.

Therefore, in the absence of a magnetic field, the force is in the direction of the

electric field, and the magnitude of the force is dependent on the value of the charge

and the intensity of the electric field. In the absence of an electric field, the force is

perpendicular to the velocity of the particle and the direction of the magnetic field.

If both electric and magnetic fields are present, the Lorentz force is the sum of both

of these vectors.

Therefore, in summary we can express that the classical theory of electrody-

namics is built upon Maxwell’s equations and the concepts of electromagnetic field,

force, energy, and momentum, which are intimately tied together by Poynting’s
theorem and the Lorentz force law. Whereas Maxwell’s macroscopic equations

relate the electric and magnetic fields to their material sources (i.e., charge, current,

polarization, and magnetization), Poynting’s theorem governs the flow of electro-

magnetic energy and its exchange between fields and material media, while the

Lorentz law regulates the back-and-forth transfer of momentum between the media

and the fields. As it turns out, an alternative force law, first proposed in 1908 by

Einstein and Laub, exists that is consistent with Maxwell’s macroscopic equations

and complies with the conservation laws as well as with the requirements of special

relativity. While the Lorentz law requires the introduction of hidden energy and

hidden momentum in situations where an electric field acts on a magnetic material,

the Einstein–Laub formulation of electromagnetic force and torque does not invoke

hidden entities under such circumstances. Moreover, the total force and the total

torque exerted by electromagnetic fields on any given object turn out to be inde-

pendent of whether force and torque densities are evaluated using the Lorentz law

or in accordance with the Einstein–Laub formulas. Hidden entities aside, the two

formulations differ only in their predicted force and torque distributions throughout

material media. Such differences in distribution are occasionally measurable and

could serve as a guide in deciding, which formulation, if either, corresponds to

physical reality.

Furthermore, to have some general idea about Poynting’s theorem, we can say

that, in electrodynamics, Poynting’s theorem is a statement of conservation of

energy for the electromagnetic field. Moreover, it is in the form of a partial

differential equation, due to the British physicist John Henry Poynting. Poynting’s
theorem is analogous to the work–energy theorem in classical mechanics, and

mathematically similar to the continuity equation, because it relates the energy

stored in the electromagnetic field to the work done on a charge distribution (i.e., an
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electrically charged object) through energy flux. A detail of deriving this theorem is

beyond the scope of this book and we leave to the readers to refer to some other

classical electrodynamics books.

However, in general we can say this theorem is an energy balance and the

following statement does apply:

The rate of energy transfer (per unit volume) from a region of space equals the rate of

work done on a charge distribution plus the energy flux leaving that region.

A second statement can also explain the theorem: “The decrease in the electro-

magnetic energy per unit time in a certain volume is equal to the sum of work done

by the field forces and the net outward flux per unit time.”

Mathematically, the above statement can be expressed and is summarized in

differential form as follows:

�∂u
∂t

¼ ~∇ � ~Sþ ~J � ~E (Eq. 2.46)

where ~∇ � ~S is the divergence of Poynting vector or energy flow and~J � ~E is the rate

at which the fields do work on a charged object (~Jf is the free current density

corresponding to the motion of charge, ~E is the electric field, and � is the dot

product). The energy density u is given by

u ¼ 1

2
~E � ~Dþ ~B � ~H� �

(Eq. 2.47)

In this equation ~D is the electric displacement filed, ~B is the magnetic flux

density, and ~H is the magnetic field strength. Since only some of the charges are free

to move, and the ~D and ~H fields exclude the “bound” charges and currents in the

charge distribution (by their definition), one obtains the free current density~Jf in the

Poynting theorem, rather than the total current density ~J.
The integral form of Poynting’s theorem can be, established via utilization of

divergence theorem expressed before as

� ∂
∂t

ð
V

udV ¼ ∯∂V
~S � d~Aþ

ð
V

~J � ~EdV (Eq. 2.48)

where ∂V is the boundary of a volume V and the shape of the volume is arbitrary,

but fixed for the calculation.

In summary all of past couple sections in this chapter could be put in perspec-

tives that are presented by Fig. 2.5, below
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2.5 Maxwell’s Equations

In order to understand physics of plasma and associated subject such as

magneto-hydrodynamic equations that are known as MHD, in particular,

encountering confinement of plasma as a way of driving fusion energy, we

need to have some understanding of sets of equations that are known as Max-

well’s Equations.
We are at the point and ready to introduce the keynote of Maxwell’s electro-

magnetic theory as brief course and what is so-called displacement current. We

shall now write all classical, i.e., nonquantum electromagnetic phenomena are

governed by Maxwell’s equations, which take the form as follows:

~∇ � ~E ¼ ρ

ε0
Also known as Coulomb’s Law (Eq. 2.49)

~∇ � ~B ¼ 0 Also known as Gauss’s Law (Eq. 2.50)

~∇ � ~E ¼ �∂~B
∂t

Also known as Faraday’s Law (Eq. 2.51)

~∇ � ~B ¼ μ0~J þ μ0ε0
∂~E
∂t

Also known as Ampere’s Law (Eq. 2.52)

All the quantities in the above equations defined as before. Here, ~E ~r; tð Þ, ~B ~r; tð Þ,
ρ ~r; tð Þ, and ~J ~r; tð Þ represent the electric field strength, the magnetic field strength,
the electric charge density, and the electric current density, respectively. Moreover

Fig. 2.5 Right-hand rule review
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ε0¼8.8542 � 10�12 C2 N�1 m�2 is the electric permittivity of free space, whereas
μ0 ¼ 4π � 10�7 N A�2 is the magnetic permeability of free space. As is well

known, Eq. 2.49 is equivalent to Coulomb’s law for the electric fields generated by

point charges. Equation 2.50 is equivalent to the statement that magnetic mono-

poles do not exist, which implies that magnetic field lines can never begin or end.

Equation 2.51 is equivalent to Faraday’s law of electromagnetic induction. Finally,
Eq. 2.52 is equivalent to the Biot–Savart’s law for the magnetic fields generated by

line currents and augmented by the induction of magnetic fields by changing

electric fields.

Maxwell’s equations are linear in nature. In other words, if ρ! αρ and~J ! α~J,
where α is an arbitrary spatial and temporal constant, then it is clear from Eqs. 1.108

to 1.111, that ~E ! α~E and ~B ! α~B. The linearity of Maxwell’s equations accounts
for the well-known fact that the electric fields generated by point charges and as

well as the magnetic fields generated by line currents are super imposable.

Taking the divergence of Eq. 1.108, and combining the resulting expression with

Eq. 1.108, we obtain

∂ρ
∂t

þ ~∇ � ~J ¼ 0 (Eq. 2.53)

In integral form, making use of the divergence theorem, this equation becomes

d

dt

ð
V

ρdV þ
ð
S

~J � d~S ¼ 0 (Eq. 2.54)

where V is a fixed volume bounded by a surface S. The volume integral represents

the net electric charge contained within the volume, whereas the surface integral

represents the outward flux of charge across the bounding surface. The previous

equation, which states that the net rate of change of the charge contained within the

volume V is equal to minus the net flux of charge across the bounding surface S is

clearly a statement of the conservation of electric charge. Thus, Eq. 2.53 is the

differential form of this conservation equation.

As is well known, a point electric qmoving with velocity~v in the presence of an

electric filed ~E and a magnetic field ~B experiences a force that is known as Lorentz

Force and was expressed by Eq. 2.45 as before. Likewise, a distributed charge

density ρ and current density ~J experiences a force density that is given as

~f ¼ ρ~Eþ ~J � ~B (Eq. 2.55)

This is the extent of our presentation for the Maxwell’s Equations within this

book; further deviation of these equations can be found in any classical electrody-

namics books [2].
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2.6 Debye Length

Debye length is an important aspect of plasma physics and it is a quantity which is a

measure of the shielding distance or thickness of the charged particle cloud also

called sheath in plasma. One of the most significant properties of plasma is its

tendency to maintain electrically neutral, that is, its tendency to balance positive

(Ion) and negative (Electron) space charge in each macroscopic volume element. A

slight imbalance in the space–charge densities gives rise to strong electrostatic

forces that act, wherever possible, in the direction of restoring neutrality. On the

other hand, if plasma is deliberately subjected to an external electric field, the

space–charge densities will adjust themselves so that the major part of the plasma is

shielded from the field.

To carry out this subject further, we can pay our attention to Poisson’s equation
and seek a solution for that equation in case of a point charge +Q that is introduced

into a plasma and thereby subjecting the plasma to an electric field for simplicity of

analyses. Under these conditions, negative electrons existing in plasma, energeti-

cally have tendency to move closer to this positive charge favorably, whereas

positive ions tend to move away from it. Under equilibrium conditions, the prob-

ability of finding a charged particle in a particular region of potential energy U is

proportional to the Boltzmann factor as exp(�U/kT). Thus, the electron density ne is
given by the following equation as

ne ¼ n0exp e
φ� φ0ð Þ
kT

� �
(Eq. 2.56a)

For Eq. 2.56a, the following quantities are in order and are as follows:

φ¼Is the local potential,

φ0¼Is the reference potential or in our case plasma potential,

T¼Is the absolute temperature of the plasma,

k¼Is the Boltzmann constant, and

n0¼Is the electron density in regions where φ¼φ0.

If n0 is also the positive ion density in regions of potential φ0, then positive ion

density ni is also given by the similar relation as Eq. 2.56b and that is

ni ¼ n0exp �e
φ� φ0ð Þ
kT

� �
(Eq. 2.56b)

Now that we have setup the initial conditions, first we attempt to derive Debye

length by means of Poisson’s Equation and then show its use in plasma physics and

as criteria to identify a definition that plasmas fall into it.

A particular solution of Poisson’s equation for potential φ is carried out here in

the form of one-dimensional spherical symmetry around radius coordinate of r, and
we start with the following differential equation as
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1

r2
d

dr
r2
dφ

dr

� �
¼ � 1

ε0
nie� neeð Þ ¼ 2n0e

ε0
sinh e

φ� φ0ð Þ
kT

� �
(Eq. 2.57)

The differential Eq. 2.57 is nonlinear, and hence must be integrated numerically.

On the other hand, an approximate solution to Eq. 2.57, which is rigorous at high

temperature plasma, is adequate for these purposes here. If kT> eφ, then sinh(eφ/
kT)¼ eφ/kT, and the differential Eq. 2.57 reduces to the following and simple form

as

1

r2
d

dr
r2
dφ

dr

� �
¼ 2n0e

2

ε0kT
φ� φ0ð Þ (Eq. 2.58)

The solution to this equation is found to be (Readers can carry out the solution,

as hint using Taylor series expansion for |eφ/kT|� 1 to drop the second order and

higher terms off in expansion of eφ=kT þ 1
2
eφ=kTð Þ2 þ � � �)

φ ¼ φ0 þ
Q

4πε0r
exp �r

h

� �
(Eq. 2.59)

where r is the distance from the point charge +Q, and λD, the Debye shielding

distance or Debye length, is given by

λD ¼ ε0kT

2n0e2

� �
(Eq. 2.60)

Thus, the redistribution of electrons and ions in the gas is such as to screen out

+Q completely in a distance of a few λD.
The quantity λD as we said before is called the Debye length and is measure of

the shielding or thickness of the charges cloud, which is also known as sheath. Note

that as the density increases, λD decreases, as one would expect, since each layer of

plasma contains more electrons. In addition, λD increases with increasing kT.
Without thermal agitation, the charge cloud would collapse to an infinitely thin

layer. Last but not least, it is the electron temperature which is used in the definition

of λD and that is T¼ Te, because the electrons being more mobile than their

counterpart ions. In general, shielding do the moving so as to create a surplus or

deficit of negative charge. Only in special situations is this not true. The following

are a set of useful forms of Eq. 2.60

λD ¼ 69 Te=nð Þ1=2m Te in
�K (Eq. 2.61a)

λD ¼ 7430 Te=nð Þ1=2m kTe ineV (Eq. 2.61b)
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2.7 Physics of Plasmas

An ionized gas is called a plasma if the Debye length, λD, is small compared with

other physical dimensions of interest. This restriction is not severe so long as

ionization of the gas is appreciable. Other conditions that will make an ionized

gas to fall in the category of plasma can be described as the following statements.

One criterion for an ionized gas to be called plasma is that it needs to be dense

enough that λD is much smaller than a dimensions L of a system and this dimension

is much larger than λD, in other words, λD� L, then whenever local concentrations

of charge arise or external potentials are introduced into the system, system could

be a magnetron, klystrons.

The phenomenon of Debye shielding also occurs—in modified form—in single-

species systems, such as the electron streams in Klystrons and Magnetrons or the

proton beams in a Cyclotron. Under these situations, any local bunching of particles

causes a large unshielded electric field unless the density is extremely low, which is

more often is the case.

The Debye shielding picture that we have painted in above is valid only if there

are enough particles in charge cloud or sheath. Thus, it is clear, if there is only one

or two particles in the sheath region, Debye shielding would not be a statistically

valid concept from viewpoint of electromagnetic physics. Using Eq. 2.56 in a

general form, we can compute the number of ND particles in a Debye sphere as

ND ¼ n
4

3
πλ3D ¼ 1:38� 106T3=2=n1=2 T in�K (Eq. 2.62)

In addition to λD� L, “collective behavior” requires [3]

ND � 1 (Eq. 2.63)

Furthermore, to qualify an ionized gas as plasma we can define more criteria.

The two conditions in above were given so that an ionized gas must satisfy to be a

plasma. A third condition has to do with collisions. The ionized gas in an airplane’s
jet exhaust, for example, does not qualify as a plasma because the charged particles

collide so frequently with neutral atoms that their motion is controlled by ordinary

hydrodynamic forces rather than by electromagnetic forces [3].

If ω is the frequency of typical plasma oscillations and τ is the mean time

between collisions with neutral atoms, we require ωτ> 1 for the gas to behave

like plasma rather than a neutral gas. Therefore, the three conditions a plasma must

satisfy are therefore:

1: λD � L

2: ND � 1

3: ωτ > 1

(Eq. 2.64)
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As you can see, the three above conditions are necessary for an ionized gas to be,

called plasma.

In addition, as part of physics of plasma, we look at plasma processes for purpose

of our study of plasma confinement via Inertial Confinement Fusion (ICF). We see

all objects through a medium, which could be interplanetary interstellar, or inter-

galactic and question arises that, how does this medium affect photons, what

information we gain?. Doing so, we can focus on specific microphysical process

by ignoring the effect of other matter. In fact, we can implicitly or explicitly assume

propagation through a vacuum for most part and applications using our knowledge

of electrodynamics.

When we introduced Maxwell’s equations in above, we defined ~D ¼ ε~E and ~H

¼ ~B=μ to include the effects of matter, where ε is the dielectric constant and μ is the
magnetic permeability. However, remember that Maxwell’s equations explicitly

include sources, in the form of charge density ρ and current density~J. If we do this
consistently, for all charges and currents, whether or not they are in medium, then

Maxwell’s equations for electric field ~E and magnetic field ~B alone will work

just fine.

From this point of view, then Maxwell’s equations for a vacuum conditions work

fine, as long as both free and bound charges are included. In that case, we can again

think about the propagation of radiation, this time with more general form. Thus, we

can assume a space and time variation of the form solution to Helmholtz equation as

expi ~k �~r � ωt
� �

for propagation of radiation, where wave period in terms of wave

frequency f is given as ω¼ 2πf and k¼ 2π/λ in terms of wavelength λ. Another form
of wave property k is written in terms of speed of light c in vacuum and ω as k¼ω/
c. Helmholtz equation in z-direction within medium as empty or empty space,

where there is no gravity (i.e., g¼ 0) can be written as

d2~E zð Þ
dz2

þ ω=cð Þ2~E zð Þ ¼ 0 (Eq. 2.65)

Equation 2.65 is derived from the general form of a monochromatic wave

equation, where the wave is characterized by a single frequency in the entire field

of propagation using Maxwell’s equations.
The methods of complex variable analysis provide a convenient way of

implementing this procedure. For the time dependence of the field ~E ~r; tð Þ is taken
to be as e�iωt, so that we can write the following mathematical relationship as

~E ~r; tð Þ ¼ ~E ~rð Þe�iωt (Eq. 2.66)

Note that the physical electric field is obtained by taking the real part of complex

form of Eq. 2.66. Furthermore,~E ~rð Þ is in general complex, so that the actual electric

field is proportional to cos(ωt +ϕ), where ϕ is the phase of ~E ~rð Þ. Thus using

Eq. 2.66, we can write
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~E ~r; tð Þ ¼ ~E ~rð Þe�iωt ∇2~E ~rð Þ þ ω2εμþ iωgμ~E ~rð Þ� 	 ¼ 0 (Eq. 2.67)

Thus, using Eq. 2.67 in a medium of empty space, so that g¼ 0, ε¼ ε0, μ¼ μ0 and

assuming one-dimensional form of ~E ~rð Þ that varies just in z-direction allow us to

deduce the result of Eq. 2.66. In this case, we have written ε0μ0¼ 1/c2 and ε0 as well
as μ0 are dielectric constant and magnetic permeability in free space, respectively

[2, 4].

Back to our discussion on plasma processes and considering the relation of

expi ~k �~r � ωt
� �

, then we can conclude that

i~k � ~E ~rð Þ ¼ 4πρ

i~k � ~B ~rð Þ ¼ 0

i~k � ~E ~rð Þ ¼ i ω=cð Þ~B ~rð Þ
i~k � ~B ~rð Þ ¼ 4π=cð Þ~J � ii ω=cð Þ~E ~rð Þ

8>>>>><>>>>>:
(Eq. 2.68)

Moreover, utilization of expi ~k �~r � ωt
� �

for propagation of radiation is totally

justified because the Maxwell’s equations are linear, i.e., there are no terms of the

form E2 or EB, thus every Fourier mode propagates independently. The wave

number is designated as ~k.
There are other physical theories (e.g., strong field general relativity) that are not

linear, which means that these modes would mix and, thus it could not be consid-

ered independently in this way. The linearity of Maxwell’s equations is also why we
can get away with using complex numbers; the real and imaginary parts never mix,

so they can be considered to yield independent solutions based on the original

equations. However, in general this could be very difficult, if the medium is

something arbitrary (air, water, glass). In our case, though, we are specifically

interested in a plasma, which can be loosely defined as an ionized gas that is

globally neutral. That means that all charges are mobile in principle. However, as

we have done before, we will assume that the ions are basically stationary for our

purposes and mainly serve to keep the plasma neutral. Another important simpli-

fying assumption is that the plasma is isotropic (i.e., so ε and μ do not vary from

point to point). Bear in your mind that in case of magnetic field, there is no

significant external magnetic field, just because, that would violate the isotropy

condition.

Now let us consider nonrelativistic electrons. A given electron follows Newton’s

law (i.e., Lorentz Equation with ~B ~rð Þ ¼ 0) as

m _~v ¼ �e~E ~rð Þ (Eq. 2.69)
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Here, we have ignored the magnetic field as an internal impact and reason of this

negligent is because the magnetic component of the force, that is an order of υ/
c! 0, which is small if the motion is nonrelativistic. Given our assumption about

the space and time variations of quantities, this means that:

~v ¼ e~E=i ωmð Þ (Eq. 2.70)

The current density is~j ¼ �me~v, meaning that we get:

~J ¼ σ~E (Eq. 2.71)

where the conductivity is σ¼ ine2/(ωm). This is Ohm’s law; the current responds

directly to the electric field. Note, however, that this statement requires isotropy.

From charge conservation, our propagation of radiation of expi ~k �~r � ωt
� �

assumption will provide the following:

�iωρþ i~k � ~J ¼ 0 (Eq. 2.72)

so that

ρ ¼ ω�1~k � ~J ¼ σω�1~k � ~E (Eq. 2.73)

If we define the dielectric constant by the following equations as

ε � 1� 4πσ= iωð Þ (Eq. 2.74)

Note that this is real, since σ has an i in it, thus we get

i~k � ε~E ¼ 0

i~k � ~B ¼ 0

i~k � ~E ¼ i ω=cð Þ~B
i~k � ~B ¼ �i ω=cð Þε~E

8>>>>><>>>>>:
(Eq. 2.75)

This looks just like the “source-free” vacuum equations we had before, except

for ε. Indeed, arguing as before, we find that~k,~E, and~B are mutually perpendicular.

However, we find that

c2k2 ¼ εω2 (Eq. 2.76)
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Since ε depends on ω, we no longer have the simple vacuum situation in which

all frequencies travel at the same rate, the phase velocity is the same as the group

velocity, and so on. Thus, the presence of a plasma introduces dispersion, where

wave packets spread and there is effectively an index of refraction. If we substitute

in expressions, we can rewrite the dielectric constant as

ε ¼ 1� ωp

ω

� �2
(Eq. 2.77)

whereωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πne2=m

p
is called the plasma frequency. Numerical value of plasma

frequency is found to be ωp¼ 5.63� 104 n1/2 s�1 if n is in cm�3.

Now what we can ask ourselves is, from these definitions and dispersion relation,

what does it tell us about propagation, when ω<ωp? This means that~k is imaginary

and it is given as

Img ~k
� �

¼ i=cð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p � ω2

q
(Eq. 2.78)

Now we can look at the condition for this dispersion relation, when propagation

of radiation is below ωp. This means that there is an exponential cutoff in the

amplitude, with a distance scale of order 2πc/ωp. Therefore, effective frequencies

below ωp cannot propagate in a plasma.

We can make two side notes from what we have learned so far and they are as

follows:

1. One way to get quick intuition in a number of astrophysical situations is to have a

number of characteristic quantities in mind. The plasma frequency is an exam-

ple: if you have a plasma of a given number density and are considering

propagation of electromagnetic waves, you should compare the frequency of

the wave with the plasma frequency. If a magnetic field is involved, think of the

cyclotron frequency. If a high-density plasma is relevant, think of the Fermi

energy. Stuff like that. It helps you decide quickly what regime you are in and

what processes are likely to be relevant.

2. Since σ is purely imaginary, Ohm’s law means that there is a 90� phase shift

between~j and ~E. Therefore, in a time-averaged sense,~j � _E ¼ 0 and there is no

network done by the field in an isotropic plasma. That also means there is no

dissipation, so below the plasma frequency you have a pure reflection. Thus, you

can probe the ionosphere of the Earth by finding out when a wave of a given

frequency is completely reflected. You can also communicate intercontinentally

by bouncing low-frequency waves off of the ionosphere.

Back to our discussion of plasma processes, we know that electromagnetic

radiation travels at a velocity different from c due to the presence of matter. The

phase velocity, υph¼ω/k, is greater than the speed of light [2, 4]. However, the
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physically relevant speed is the group velocity υgr ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ωp=ω

� �2q
, which is less

than c and this is the speed at which wave energy or information travel. The

frequency dependence means that there is dispersion in the propagation of light

over a variety of frequencies. One especially useful application is to pulsars.

Suppose a pulsar is a distance d away, then question comes to our mind is that,

how long does it take for light of a given frequency to reach us? The answer for the

time travel, tp is given as follows:

tp ωð Þ ¼
ð d
0

ds=υgr ωð Þ (Eq. 2.79)

Here s measures the line of sight distance to us. Plasma frequencies in the

Interstellar Medium (ISM) are really low, usually 103 Hz or so, thus we can assume

ω�ωp and therefore, we can write

υ�1
gr 	 1

c
1þ 1

2

ω2
p

ω2

 !
(Eq. 2.80)

Therefore, the propagation time is

tp ωð Þ 	 d

c
þ 2cω2
� ��1

ð d
0

ω2
pds (Eq. 2.81)

Interstellar Medium (ISM) Definition

In astronomy, the interstellar medium (ISM) is the matter that exists in the

space between the star systems in a galaxy. This matter includes gas in ionic,

atomic, and molecular form, as well as dust and cosmic rays. It fills interstel-

lar space and blends smoothly into the surrounding intergalactic space. The

energy that occupies the same volume, in the form of electromagnetic radi-

ation, is the interstellar radiation field.

The interstellar medium is composed of multiple phases, distinguished by

whether matter is ionic, atomic, or molecular, and the temperature as well as

density of the matter. The interstellar medium is composed primarily of

hydrogen followed by helium with trace amounts of carbon, oxygen, and

nitrogen comparatively to hydrogen [5]. The thermal pressures of these

phases are in rough equilibrium with one another. Magnetic fields and

turbulent motions also provide pressure in the ISM and are typically more

important dynamically than the thermal pressure is. The distribution of

ionized hydrogen (known by astronomers as H II from old spectroscopic

terminology) in the parts of the Galactic interstellar medium visible from the

Earth’s northern hemisphere as observed with the Wisconsin Ha Mapper

(Haffner et al. 2003) [6] and it is shown in the following figure

(continued)
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Wisconsin H-Alpha Mapper in Northern Sky Survey [6]

Equation 2.81 is the vacuum time (d/c) plus some extra terms. There is therefore a

gradient in the time as a function of frequency, thus we can write

dtp ωð Þ
dω

¼ � 4πe2

cmω3
 (Eq. 2.82)

where  � Ð d
0
nds is the dispersion measure. In principle, this can be used to find

the distance to a pulsar, given an estimate of the average number density of plasma

in the ISM. In practice, the errors are pretty large, because the interstellar medium

has a lot of small-scale structure. This is especially true in directions that have a lot

of plasma, such as toward the galactic center.

For the above analysis to be valid as part of calculation, we assumed the absence

of an external magnetic field~B; however, if wemake the problemmore complicated,

we introduce this term into our analysis as part of plasma of our consideration andwe

observe what this term can do qualitatively. This means that the plasma and

propagation in it can no longer be considered isotropic, since the magnetic field

introduces a preferred direction. It also means that not all polarizations are equal in

their propagation properties. This phenomenon in physics is called Faraday Effect or

Faraday Rotation and it is a magneto-optical phenomenon and that is an interaction

between light and a magnetic field in a medium. Faraday Effect causes a rotation of

the plane of polarization, which is linearly proportional to the component of the

magnetic field in the direction of propagation. Formally, it is a special case of gyro-

electromagnetism obtained when the dielectric permittivity tensor is diagonal [7].

However, the linear polarized light that is seen to rotate in the Faraday effect can

be seen as consisting of the superposition of a right- and a left-circularly polarized
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beam (this superposition principle is fundamental in many branches of physics). We

can look at the effects of each component (right- or left polarized) separately, and

see what effect this has on the result.

In circularly polarized light, the direction of the electric field rotates at the

frequency of the light, either clockwise or counterclockwise. In a material, this

electric field causes a force on the charged particles comprising the material

(because of their low mass, the electrons are most heavily affected). The motion

thus affected will be circular, and circularly moving charges will create their own

(magnetic) field in addition to the external magnetic field. There will thus be two

different cases: the created field will be parallel to the external field for one

(circular) polarization, and in the opposing direction for the other polarization

direction, thus the net ~B field is enhanced in one direction and diminished in the

opposite direction. These change the dynamics of the interaction for each beam and

one of the beams will be slowed down more than the other, causing a phase

difference between the left- and right-polarized beams. When the two beams are

added after this phase shift, the result is again a linearly polarized beam, but with a

rotation in the polarization direction.

The direction of polarization rotation depends on the properties of the material

through which the light is shined. A full treatment would have to take into account

the effect of the external and radiation-induced fields on the wave function of the

electrons, and then calculate the effect of this change on the refractive index of the

material for each polarization to see whether the right or left circular polarization is

slowed down more. See Fig. 2.6, which is the schematic of Faraday rotation. This is

for the rotation of polarization in matter, where there is a quantity � related to the

properties of that matter. In our case, the angle V of rotation is proportional to the

integral of the number density times the magnetic field strength along the propa-

gation direction over the extent of the region.

E

B

d

v

b

Fig. 2.6 Polarization rotation due to faraday effect
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In order to deal with this complicated scenario, we can make some progress by

thinking about the special case of propagation along the direction of the field and by

considering only cold plasma (i.e., nonrelativistic motion). Also, let us assume that

the magnitude of the external field is a lot greater than the magnitude of the fields of

the propagating wave, so that the equation of motion becomes

m
d~v

dt
¼ �e~E� e

c
~v� ~B (Eq. 2.83)

Equation 2.83 is the familiar equation of Lorentz in electromagnetic.

For propagation along a fixed direction, we only have to consider two polariza-

tion modes. Let us choose circular modes:

~E tð Þ ¼ E0e
�iωt bε1 
 ibε2ð Þ (Eq. 2.84)

where in this equation minus sign gives right circular, while plus sign is indication

of left circular polarization [4].

If the wave propagates along ~B ¼ B0bε3, then by substituting we find that the

steady-state velocity has the form of following equation:

~v tð Þ ¼ �ie

m ω� ωBð Þ
~E tð Þ (Eq. 2.85)

where ω0¼ eB0/mc is the cyclotron frequency for nonrelativistic particles. To see

this explicitly, let us assume that ~B ¼ B0bε3, so that ~B� ~E ¼ 0. Note that bε1,bε2 andbε3 are unit vectors. One more assumption that we can make is that ~v tð Þ ¼ C1
~E tð Þ,

where C1 is constant quantity, thus our equation becomes

C1 �imωð ÞE0e
�iωt bε1 
 ibε2ð Þ ¼ �eE0e

�iωt bε1 
 ibε2ð Þ
� e=cð ÞC1E0e

�iωt bε1 
 ibε2ð Þ � B0bε3½ �
C1 imωð Þ bε1 
 ibε2ð Þ ¼ �e bε1 
 ibε2ð Þ � e=cð ÞC1 �bε2 
 ibε1ð ÞB0

�C1mωð Þbε1 
 C1mωð Þbε2 ¼ �e� iC1 eB0=Cð Þ½ �bε1 þ �ieþ C1

�
eB0=c

� �bε2

8>>>>><>>>>>:
(Eq. 2.86)

Thus, we have two equations, one for the bε1 direction and one for the bε2
direction as

bε1 :) �eiC1mω� iC1 eB0=cð Þ ¼ 0 ) �eþ C1

�
imω� i

�
eB0=c

� ¼ 0bε2 :) �eiC1mωþ C1 eB0=cð Þ ¼ 0 ) �ieþ C1 eB0=cð Þ � mω½ � ¼ 0

(Eq. 2.87)
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Both equations have the solution of the form C1¼ ie/[m(ω� {eB0/mc})], which
gives us our previous expression. However, the implications involved here comes

about when the wave goes through the medium, since the speeds of different

polarization are different, then there will be a net rotation of the polarization vector

as the wave propagates through plasma. Thus, one can write this as an expression

for the dielectric constant for right and left direction as

εR,L ¼ 1� ω2
p

ω ω� ωBð Þ (Eq. 2.88)

In general, an electric field vector with wave number~k traveling a distance d will

rotate in phase by~k � d. If the wave number is not constant along the path, then this

must be integrated.

Further analysis of the equation reveals that for the field with very small

strength, the rotation is also small and Eq. 2.88 satisfies this constraint as well.

This just because small magnetic field B0 means small ωB, and hence a small

difference between the polarizations. Now considering the above formula, what

happens at extremely large B0? The answer is that there also the difference is small,

because ωB in the denominator means that ε! 0, when B0 is large.

As it can be verified easily that in the common astrophysical limits ω�ωP and

ω�ωB, we have for angle of rotation the following relation as

Δθ ¼ 2πe3

m2c2ω2

ð d
0

nBkds (Eq. 2.89)

In Eq. 2.89 Bk is the component of ~B parallel to the line of sight. By practical

application of such result, we first will be concerned with a uniform magnetic field,

which means no change in direction or magnitude in the region, and in this case,

what happens to the degree of polarization due to Faraday rotation? Nothing

happens except it rotates. Additionally, what if the region has a tangled magnetic

field and you observe a region that involves many tangles? Then, different parts are

rotated by different amounts, so the net result is a decrease in the degree of

polarization. This is sometimes used in observations of active galactic nuclei.

Many times parts of the spectrum are thought to be due to synchrotron radiation,

which you remember produces highly polarized light.

However, observed with low angular resolution, there is little polarization.

Observations of higher angular resolution do give net polarization, so by com-

paring the two one can estimate the line of sight integrated in magnetic field.

Similar methods are used to estimate the magnetic field strength in the interstellar

medium or molecular clouds, when more direct spectroscopic information is

unavailable.

Finally, we can just mention in passing one other effect of plasmas. Since the

speed of electromagnetic waves is less than the vacuum speed of light, it becomes

possible for particles to travel faster than the local speed of electromagnetic waves.
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This produces effects similar to shocks in the atmosphere and generates Cerenkov

radiation, which is bluish (i.e., it has a spectrum tipped toward high frequency and

would actually look blue to the eye). Only particles traveling faster than c/n emit

radiation, which has been used to detect neutrinos (if they scatter electrons in water,

the electrons can move faster than c/n) and estimate the energies of cosmic rays by

using materials with different indices of refraction.

2.8 Fluid Description of Plasma

Before paying our attention and departing for the actual derivation of the Magneto-

Hydrodynamics (MHD) equation, which is the topic of our next section in this

chapter, it is helpful to discuss briefly some general concepts of fluid dynamics.

Fluid equations are probably the most widely used equations for the description

of inhomogeneous plasmas. While the phase fluid, which is, governed by the

Boltzmann equation, represents a first example, many applications do not require

the precise velocity distribution at any point in space.

Ordinary fluid equations for gases and plasmas would be obtained from the

Boltzmann equation or can be derived using properties like the conservation of

mass momentum and energy of the fluid. In the following chapter, we will derive a

single set of ordinary fluid equations for a plasma and examine properties such an

equilibrium and waves for these equations.

To further investigate the fluid aspect of plasma, we look at the equations of

kinetic theory and taking a fundamental equation such as f ~r; ~v; tð Þ under consider-
ation, which satisfies the Boltzmann equation as follows:

∂f ~r; ~v; tð Þ
∂t

þ ~v � ~∇f ~r; ~v; tð Þ þ
~F

m
� ∂f ~r; ~v; tð Þ

∂~v
¼ ∂f ~r; ~v; tð Þ

∂t

� �
e

(Eq. 2.90)

In Eq. 2.90, ~F is the force acting on the particles and ∂f ~r; ~v; tð Þ=∂tð Þc is the time

rate of change of f ~r; ~v; tð Þ due to collisions. The symbol ~∇, as usual, for the

gradient in (x, y, z) space. The symbol ∂=∂~v or ~∇~v stands for the gradient in

velocity space and it is written as

∂
∂~v

¼ bx ∂
∂vx

þ by ∂
∂vy

þ bz ∂
∂vz

(Eq. 2.91)

The Boltzmann equation becomes more meaningful, if one should remember

that function f ~r; ~v; tð Þ is a function of seven independent variables, which includes

three for space (x, y, z), three for components of velocity (vx, vy, vz), and the seventh

one that accounts for time t, therefore we can expand Eq. 2.90 to all its seven

variables and write down
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df

dt
¼ ∂f

∂t
þ ∂f
∂x

dx

dt
þ ∂f
∂y

dy

dt
þ ∂f

∂z
dz

dt
þ ∂f
∂vx

dvx
dt

þ ∂f
∂vy

dvx
dt

þ ∂f
∂vy

dvy
dt

þ ∂f
∂vz

dvz
dt

(Eq. 2.92)

Here, ∂f/∂t is the explicit dependence on time. The next three terms are just

~v � ~∇f ~r; ~v; tð Þ. With the help of Newton’s third law, we can write

m
d~v

dt
~F (Eq. 2.93)

As it can be seen from Eq. 2.93, the last three terms are recognized as
~F=m
� � � ∂f=∂~vð Þ.

Additionally, the total derivative term presented by df/dt can be interpreted as

the rate of change as seen in a frame moving with the particles. However, here we

need to be concerned with particles to be moving in six-dimensional in space ~r; ~vð Þ,
i.e., three in (x, y, z) direction and the associate three component of velocity (vx, vy,

vz) in their corresponding directions as well.

df/dt is the convective derivative in phase space and the Boltzmann Equation

2.90 simply says that df/dt is zero, unless there are collisions. That this should be

true and it can be seen from the one-dimensional example shown in Fig. 2.7 here.

Figure 2.7, illustrates, a group of points in phase space, representing the position

and velocity coordinates of a group of particles. They all retain the same phase-

space density as it moves with time.

Taking the Fig. 2.7 under consideration and assuming the group of particles in an

infinitesimal element dx dvx at point A all having velocity vx and position x, then the
density of particles in this phase space is just f(x, vx). As the time passes, these

particles will move to a different position in x because of their velocity vx and will

change their velocity due to the result of the force acting on them.

Since the forces depend on x and vx only, all the particles at A will be accelerated

the same amount. After a time t, all the particles will arrive at B will be the same as

at A. If there exists any collisions, then the particles can be scattered and f ~r; ~v; tð Þ

A

B

X

VXFig. 2.7 Illustration of

group points in phase space

2.8 Fluid Description of Plasma 93



can be changed by the term ∂f ~r; ~v; tð Þ=∂tð Þc. In sufficiently hot plasma, collision

can be neglected and furthermore, if the force ~F is entirely electromagnetic,

Eq. 1.124 takes the speed form

∂f
∂t

þ ~v � ~∇f þ q

m
~Eþ ~v� ~B
� � � ∂f

∂~v
¼ 0 (Eq. 2.94)

Equation 2.94 is representing the Vlasov Equation and because of its compara-

tive simplicity, this is the equation that is most commonly studied in kinetic theory.

If there exist collisions with neutral atoms, then the collision term in Eq. 2.90 can be

approximated to

∂f ~r; ~v; tð Þ
∂t

� �
c

¼ f n ~r; ~v; tð Þ � f ~r; ~v; tð Þ
τ

(Eq. 2.95)

where f n ~r; ~v; tð Þ is the distribution function of the neutral atoms, and τ is a constant
collision time. This equation is called a Krook collision term.

If the fluid equation of motion including collisions for any species is given by the

following relation:

mn
d~v

dt
¼ mn

d~v

dt
þ ~v � ~∇Þ~v
� i

¼ �en~E�∇ρ� mnv~v



(Eq. 2.96)

where the sign � is indication of the sign of the charge and v is generally called the
collision frequency of plasma particles and is written as v ¼ nnσv, with σ being

cross-sectional area and v is the particle velocity in a Maxwellian distribution and

nn is the number of neutral atoms per m3 in slab of area A and thickness dx as

illustrated in Fig. 2.8.

It is the kinetic generalization of the collision term in Eq. 2.96. When there are

Coulomb collisions Eq. 2.90 can be approximated as

dx

A

Fig. 2.8 Illustration of the

definition of cross-section
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df

dt
¼ � ∂

∂~v
� f ∇~vh ið Þ1

2

∂2

∂~v∂~v
: f ∇~v∇~vh ið Þ (Eq. 2.97)

Equation 2.97 is called the Fokker–Planck Equation and it takes into account

binary Coulomb collisions only [2].

2.9 Magneto-Hydrodynamics (MHD)

Magneto-hydrodynamics (MHD) describes the “slow” evolution of an electrically

conducting fluid—most often a plasma consisting of electrons and protons (perhaps

seasoned sparingly with other positive ions). In MHD, “slow” means evolution on

time scales longer than those on which individual particles are important, or on

which the electrons and ions might evolve independently of one another. Briefly,

we can say that MHD falls in the following descriptions:

• MHD stands for magneto-hydrodynamics

• MHD is a simple, self-consistent fluid description of a fusion plasma

• Its main application involves the macroscopic equilibrium and stability of a

plasma

Basically MHD can be described as a coupling of fluid dynamics equations with

Maxwell’s equations resulting in MHD equations and together these sets of equa-

tion are often used to describe the equilibrium state of the plasma. MHD can also be

used to derive plasma waves, but it is considerably less accurate than the two-fluid

equations we are familiar with and have used in our fluid mechanics knowledge.

Moreover, to define the plasma equilibrium and stability, we can categorize the

definition into the following format as well and they are as follows:

• Why separate the macroscopic behavior into two pieces?

• Even though MHD is simple, it still involves nonlinear 3D + time equations

• This is tough to solve

• Separation simplifies the problem

• Equilibrium requires 2D nonlinear time independent

• Stability requires 3D+ time, but is linear

• This enormously simplifies the analysis

We need to understand the idea behind the plasma equilibrium, so it allows in

case of Magnetic Confinement Fusion (MCF) to design a magnet system such that

the p in steady state-force balance. So far, tokamak machines are the best design to

demonstrate such equilibrium in plasma that we are looking for purpose of MCF.

However, the spherical torus is another option and yet the Stellarator is another best

option and each can provide force balance for a reasonably high plasma pressure.

Stability in plasma can be depicted in Fig. 2.9 and in general a plasma equilib-

rium may be stable or unstable. Naturally from both words expression we can tell
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that stability is good and instability is bad in plasma confinement. However, effects

of MHD instability can be summarized as follows:

• Usually disastrous

• Plasma moves and crashes into the wall

• No more fusion

• No more wall (in a reactor)

• This is known as a major disruption

The job of MHD is to find magnetic geometries that stably confine high-pressure

plasmas and large amount of theoretical and computational work has been done and

well tested in experiments. Although the claim is that some say there is nothing left

to do in fusion MHD based on the fact that the theory is essentially complete and

computational tools are readily available and used routinely in experiments.

Although there is some truth in this view, however, still there are major unsolved

MHD problems that need attention.

Historically, the MHD equations have been used extensively by astrophysicists

working in cosmic electrodynamics, by hydrodynamicists working on MHD energy

conversion, and by fusion scientist and theorists working with complicated mag-

netic geometries.

Later we will talk about Rayleigh-Taylor Instabilities (RTI) in inertial confine-

ment fusion targets, which is a growth rate in inertial confinement fusion (ICF) and

it is so important and critical for determining the required driver energy. Many

attempts have been made over the years to drive it analytically. The growth rates of

Fig. 2.9 Examples of stability
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the acceleration and deceleration-phase Rayleigh–Taylor instability for imploding

inertial confinement fusion target can be calculated analytically and numerically. In

addition, many physicist and scientist who are doing research in target design for

purpose of ICF investigate the effects of different physical parameters on RTI.

Calculations of the growth of Rayleigh–Taylor instabilities (1) in the ablator–

pusher region may be caused by irregularities in an electron beam, and (2) in the

pusher–fuel interface, a problem common to all inertial confinement fusion targets.

For the first case, it can be found that long density gradient scale lengths and

scattering of the beam by the target both stabilize the shorter wavelength instabil-

ities, which would otherwise grow most rapidly of all. In the second case, it also can

be found that moderately short wavelength instabilities may not degrade the target

performance as much as has previously been supposed.

The determination of the instability growth rate is crucial to the success of

inertial confinement fusion (ICF) because an excessive distortion of the front

could lead to a severe degradation of the capsule performance with respect to the

final core conditions by seeding the deceleration-phase Rayleigh–Taylor (RT)

instability and preventing the onset of the ignition process. In later part of this

book, we will discuss the growth rate under constant acceleration of fluid layers at

the surface of ablation of the fusion of pellet target.

2.10 Physics of Dimensional Analysis Application

in Inertial Confinement Fusion ICF

Dimensional Analysis is a method by which we deduce information about a

phenomenon from the single premise that a phenomenon can be described by a

dimensionally consistent equation of certain variables. The generality of the

method is both its strength and its weakness. The result of a dimensional analysis

of a problem is to reduce the number of variables in the problem, thereby gathering

sufficient information from only a few experiments.

Dimensional analysis treats the general forms of equations that describe natural

phenomena and its application is abounded in nearly all fields of engineering,

particularly in fluid mechanics and in heat transfer theory.

The application of dimensional analysis to any particular phenomenon is based

on the assumption that certain named variables are the independent variables of the

problem, and that aside from the dependent variable all others are redundant or

irrelevant. This initial steps of naming the variables—often requires and sometimes

brings a philosophical insight into the natural phenomena that is being investigated.

The first step in modeling any physical phenomena is the identification of the

relevant variables and then relating these variables via known physical laws. For

sufficiently simple phenomena, we can usually construct a quantitative relationship

among these variables from first principles; however, for many complex phenom-

ena (which often occur in engineering applications) such an ab initio theory is often
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difficult, if not impossible. In these situations, modeling methods are indispensable,

and one of the most powerful modeling methods is dimensional analysis. We have

probably encountered dimensional analysis in our previous physics courses when

we were admonished to “check our units” to ensure that the left- and right-hand

sides of an equation had the same units (so that our calculation of a force had the

units of kg m/s2, for example). In a sense, this is all there is to dimensional analysis,

although “checking units” are certainly the most trivial example of dimensional

analysis. Here we will use dimensional analysis to actually solve problems or at

least infer valuable information about the solution.

According to Professor G. I. Barenblatt of University California at Berkeley,

“many of those who have taught dimensional analysis (or have merely thought

about how it should be taught) have realized that it has suffered an unfortunate fate.

In fact, the idea on which dimensional analysis is based on, is very simple, and can

be, understood by everybody: physical laws do not depend on arbitrarily chosen

basic units of measurement. An important conclusion can be drawn from this

simple idea, using a simple argument: the functions that express physical laws

must possess a certain fundamental property, which in mathematics is called

generalized homogeneity or symmetry. This property allows the number of argu-

ments in these functions to be, reduced, thereby making it simpler to obtain them

(by calculating them or determining them experimentally). This is, in fact, the

entire content of dimensional analysis – there is nothing more to it.”

The basic idea is the following: physical laws do not depend upon arbitrariness
in the choice of the basic units of measurement. In other words, Newton’s second
law, F¼ma, is true whether we choose to measure mass in kilograms, acceleration

in meters per second squared, and force in Newton’s, or whether we measure mass

in slugs, acceleration in feet per second squared, and force in pounds. As a concrete

example, consider the angular frequency of small oscillations of a point pendulum

in small angle oscillation with length l and mass m:

ω ¼
ffiffiffi
g

l

r
(Eq. 2.98)

where g is the acceleration due to gravity, which is 9.8 m/s2 on earth in the SI

system of units. To derive Eq. 1.1, one usually needs to solve the differential

equation which results from applying Newton’s second law to the pendulum

(do it!). See Appendices A and B for the analysis [8, 9]. Let us instead deduce

(Eq. 2.98) from dimensional considerations alone. What can ω depend upon? It is

reasonable to assume that the relevant variables are m, l, and g (it is hard to imagine

others, at least for a point pendulum). Now suppose that we change the system of

units so that the unit of mass is changed by a factor ofM, the unit of length is changed

by a factor of L, and the unit of time is changed by a factor of T. With this change of

units, the units of frequency will change by a factor of g, the units of velocity will

change by a factor of LT�1, and the units of acceleration by a factor of LT�2.
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Therefore, the units of the quantity g/l will change by T�2, and those of (g/l)1/2 will
change by T�1. Consequently, the ratio

Π ¼ ωffiffiffiffiffiffiffi
g=l

p (Eq. 2.99)

is invariant under a change of units; Π is called a dimensionless number. Since it

does not depend upon the variables (m, g, l ), it is in fact a constant. Therefore, from
dimensional considerations alone we find that

ω ¼ constant �
ffiffiffiffiffiffiffi
g=l

p
(Eq. 2.100)

A few comments are in order:

1. The frequency is independent of the mass of the pendulum bob, a somewhat

surprising conclusion to the uninitiated;

2. The constant cannot be determined from dimensional analysis alone.

These results are typical of dimensional analysis—we uncover often unexpected

relations among the variables, while at the same time we fail to pin down numerical

constants. Indeed, to fix the numerical constants we need a real theory of the

phenomena in question, which goes beyond simple dimensional considerations.

Unites is a quantitative statement about an objective magnitude and is neces-

sarily composed of two parts or factors: a number and a statement of the unit of

measurement. The number is the mathematical ratio of the magnitude to that of the

specific unit. Similarly, the ultimate end of all applied mathematics is the numerical

evaluation, by the working of an arithmetical sum, of the magnitude of some

physical quantity, which is inferred from the known magnitudes of others. Any

physical quantity can be completely defined by a number and any arbitrarily valued

unit, provided that the unit is exactly specified and relevant to the physical system.

A collection of units for the measurement of physical quantities is known as a

system of units, and, in such a system, the various units may be either arbitrarily

defined or they may be made to depend in a simple way on other units. Per Prof.

Barenblatt “The units for measuring physical quantities are divided into two

categories: fundamental units and derived units.” This means the following:

A class of phenomena (e.g., mechanics, i.e., the motion and equilibrium of

bodies) is singled out for study. Certain quantities are listed and standard reference

values for these quantities either natural or artificial are adopted as fundamental

units; there is a certain amount of arbitrariness here. For example, when describing

mechanical phenomena, we may adopt mass, length, and time standards as the

fundamental units, even though it is also possible to adopt force, length, and time

standards. However, these standards are insufficient for the description of, for

example, heat transfer due to temperature. Additional standards also become

necessary when studying electromagnetic phenomena, etc.

A set of fundamental units, which is sufficient for measuring the properties of the

class of phenomena under consideration, is called a system of units. Until recently,
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the CGS (Centimeter–Gram–Second) system, in which units for mass, length, and

time are used as the basic units, and 1 gram (g) is adopted as the unit of mass,

1 centimeter (cm) is adopted as the unit of length, and 1 second (s) is adopted as the

unit of time, has customarily been used. However, a system of units need not be

minimal [2]. For example, one can use a system of units in which the unit of length

is 1 cm, the unit of time is 1 s, and the unit of velocity is 1 knot (approximately

50 cm/s). However, in the case of this system, the velocity will not be numerically

equal to the ratio of the distance traversed to the magnitude of the time interval in

which this distance was traversed.

Classes of systems of units: In addition to the CGS system, there is a second

system, in which a standard length of 1 km (¼105 cm) is used as the unit of length.

A standard mass of 1 metric ton (¼106 g) is used as the unit mass, and finally, a

standard time interval of 1 h (¼3600 s) is used as the unit of time. These two

systems of units have the following property in common:

• Standard quantities of the same physical nature (mass, length, and time) are used

as fundamental units. Consequently, we say that these systems belong to the

same class. To generalize, a set of systems of units that differ only in the

magnitude (but not in the physical nature) of the fundamental units is called a

class of systems of units.
• The system just mentioned and the cgs systems are members of the class in

which standard lengths, masses, and the times are used as the fundamental units.

The corresponding units for an arbitrary system in this class are as follows:

Unit of length ¼ cm L

Unit of mass ¼ g M

Unit of time ¼ s T

(Eq. 2.101)

where L, M, and T are abstract positive numbers that indicate the factors by which

the fundamental units of length, mass, and time decrease in passing from the

original system (in this case, the cgs system) to another system in the same class.

This class is called the LMT class.

Note: The designation of a class of system of units is obtained by writing down, in

consecutive order, the symbols for the quantities whose units are adopted as the

fundamental units. These symbols simultaneously denote the factor by which the

corresponding fundamental unit decreases upon passage from the original sys-

tem to another system in the same class.

The SI (MKS) system has recently come into widespread use. This system, in

which 1 m (¼100 cm), is adopted as the unit of length, 1 kg (¼1000 g) is adopted as

the unit of mass, and 1 s is adopted as the unit of time, also belongs to the LMT class.

Thus, when passing from the original system to the SI system,M¼ 0.001, L¼ 0.01,

and T ¼ 1.
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Systems in the LFT class, where units for length, force, and time are chosen as

the fundamental units, are also frequently used; the fundamental units for this class

are as follows:

Unit of length ¼ cm L

Unit of force ¼ kgf M

Unit of time ¼ s T

(Eq. 2.102)

The unit of force in the original system, the kilogram force (kgf), is the force that

imparts an acceleration of 9.80665 m/s2 to a mass equal to that of the standard

kilogram.

Note:A change in the magnitudes of the fundamental units in the original system of

units does not change the class of systems of units.

For example, the classes where the units of length, mass and time are given by
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(Eq. 2.103)

is the same as that defined in LMT. The only difference is that the numbers L,M and

T for a given system of units (e.g., the SI system) will be different in the two

representations of LMT class in the second representation, we obviously have L¼ 1,

M ¼ 1, and T ¼ 3600.

Thus, in the investigation and study of implosion and explosion problem for

pellet of fusion driven by high-energy laser or particles beams, understanding the

method of similarity and self-similar with assist from dimensional analysis is very

useful. These methods do represent classes of solutions to the hydrodynamic

equations, which involves recognition of symmetry properties to overcome

Rayleigh–Taylor instability (RTI) during ablation surface acceleration by the

high-energy beams of laser or particles and can often be written in analytic form.

In the mathematical form, the dimensional analysis derives in from of Pi-Theorem

and the reader may refer to the books by Zohuri [8, 9].
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2.10.1 Dimensional Analysis and Scaling Concept

Scaling is the branch of measurement that involves the construction of an instru-

ment that associates qualitative constructs with quantitative metric units and the

term describes a very simple situation. S.S. Stevens came up with the simplest and

most straightforward definition of scaling. He said:

‘Scaling is the assignment of objects to numbers according to a rule’

However, what does that mean?

Most physical magnitudes characterizing nanoscale systems differ enormously

from those familiar in macro-scale systems. Estimate some of these magnitudes can

be achieved, by applying scaling laws to the values for macro-scale systems. There

are many different scaling laws. At one extreme, there are simple scaling laws that

are easy to learn, easy to use, and very useful in everyday life. This has been true

since Day One of modern science. Galileo presented several important scaling

results in 1638 [10].

The existence of a power law relationship between certain variables y andx.

y ¼ Axα (Eq. 2.104)

where A and α are constant values. This type of relationship often can be seen in the

mathematical modeling of various phenomena, not only in mechanical engineering

and physics, but also in other science fields such as biology, economics, and other

engineering discipline.

Distribution of Power Law is unique and has certain interesting features and

graphically can be, presented as a log–log scale as a straight line. This can

methodically be shown, if we take the base 10 of logarithm of Eq. 1.4 as follows:

log yð Þ ¼ log Axαð Þ
log yð Þ ¼ logAþ logxα

Assume logA ¼ B Than

logy ¼ Bþ αlogx

8>>>><>>>>: (Eq. 2.105)

Last relationship in Eq. 1.5 has a general form of a linear function as presented

by logy, and the slope of this linear logarithmic function is the exponential of power

law α and it is known as Hausdorff–Besicovitch or fractal dimension [11].

Scaling analysis has its mathematical foundation in specifically the continuous

symmetry group of uniform magnifications and contractions, which is known as Lie

group theory. The properties of the latter group are useful when considering the

operations involved when we change the units on the quantities that appear in

dimensional equations [1].

Scaling laws reveal the fundamental property of phenomena, namely,

self-similarity–repeating in time and/or space–that substantially simplifies the
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mathematical modeling of the phenomena themselves. There are many books

dealing with analysis of scaling and of the good one written by G. I. Barenblatt.

This book begins from a nontraditional exposition of dimensional analysis, physical

similarity theory, and general theory of scaling phenomena, using classical exam-

ples to demonstrate that the onset of scaling is not until the influence of initial

and/or boundary conditions has disappeared but when the system is still far from

equilibrium. Numerous examples from a diverse range of fields, including theoret-

ical biology, fracture mechanics, atmospheric and oceanic phenomena, and flame

propagation, are presented for which the ideas of scaling, intermediate asymptotic,

self-similarity, and renormalization were of decisive value in modeling [12].

For example, when converting the length unit of centimeters to meters, all

quantities expressed totally or partially in terms of length, units (heights, widths,

velocities, accelerations, densities, etc.) experience either a uniform magnification

or contraction. Knowingly then, all heights become smaller when expressed in

terms of meters rather than centimeters, whereas all densities become larger.

Scalar analysis might not be very clear in connection between uniform magni-

fications and contractions in view of the fact that one is not changing units when one

nondimensionalize a system of equations. Nondimensionalizing a quantity, it will

involve dividing the quantity by another quantity or combination of quantities that

should have same units.

2.10.2 Similarity and Estimating

The notion of similarity is familiar from geometry. Two triangles are said to be

similar if all of their angles are equal, even if the sides of the two triangles are of

different lengths. The two triangles have the same shape; the larger one is simply a

scaled-up version of the smaller one. This notion can be generalized to include

physical phenomena. This is important when modeling physical phenomena; for

instance, testing a prototype of a plane with a scale model in a wind tunnel. The

design of the model is dictated by dimensional analysis. Similarity is an extension

of geometrical similarity. By definition, two systems are similar if their

corresponding variables are proportional at corresponding locations and times.

The famous of all and familiar similarity that one can even buy in today’s market

is Russian nested dolls. (See Sect. 10.1 of Chap. 2 for more details).

A Matryoshka doll or a Russian nested doll (often incorrectly referred to as a

Babushka doll–babushka means “grandmother” in Russian) is a set of dolls of

decreasing sizes placed one inside the other. “Matryoshka” (Матрёшка) is a

derivative of the Russian female first name “Matryona,” which was a very popular

name among peasants in old Russia. The name “Matryona” in turn is related to the

Latin root “mater” and means “mother,” so the name is closely connected with

motherhood and in turn, the doll has come to symbolize fertility [8, 9].

A set of matryoshkas consists of a wooden figure, which can be pulled apart to

reveal another figure of the same sort inside. It has, in turn, another figure inside,
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and so on. The number of nested figures is usually five or more. The shape is mostly

cylindrical, rounded at the top for the head and tapered toward the bottom, but little

else; the dolls have no hands (except those that are painted). Traditionally the outer

layer is a woman, dressed in a sarafan. Inside, it contains other figures that may be

of both genders, usually ending in a baby that does not open. The artistry is in the

painting of each doll, which can be extremely elaborate. See Fig. 2.10

Return to the mathematical statement of the Π Theorem. We can identify the

following dimensionless parameters [8, 9]:

Π ¼ an
ap
1 . . . a

r
k

Π1 ¼ akþ1

a
pkþ1

1 . . . arkþ1

k

(Eq. 2.106)

and so on, such that, it can be written as

Π ¼ Φ Π1; . . . ;Πn�kð Þ (Eq. 2.107)

The parameters (Π, Π1, . . . ,Πn� k) are known as similarity parameters. Now if

two physical phenomena are similar, they will be described by the same functionΦ.

Denote the similarity parameters of the model and the prototype by the superscripts

m and p, respectively. Then if the two are similar, their similarity parameters are

equal:

Π pð Þ
1 ¼ Π mð Þ

1 , . . . ,Π pð Þ
n�k ¼ Π mð Þ

n�k (Eq. 2.108)

Fig. 2.10 Russian nested

dolls
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So that

Π pð Þ ¼ Π mð Þ (Eq. 2.109)

Therefore, in order to have an accurate physical model of a prototype, we must

first identify all of the similarity parameters and then ensure that they are equal for

the model and the prototype.

2.10.3 Self-Similarity

Now that we are here, the question is what is self-similarity?. Simply we can use the

answer that is given in Wikipedia and it seems a good description of it.

“In mathematics, a self-similar object is exactly or approximately similar to a

part of itself (i.e. the whole has the same shape as one or more of the parts). Many

objects in the real world, such as coastlines, are statistically self-similar: parts of

them show the same statistical properties at many scales. Self-similarity is a typical

property of fractals.

Scale invariance is an exact form of self-similarity where at any magnification

there is a smaller piece of the object that is similar to the whole. For instance, a side

of the Koch snowflake is both symmetrical and scale invariant; it can be continually

magnified 3� without changing shape.”

Therefore, in a simple form, self-similar means that the form of the solutions is

scaled invariant (temporally and spatially). Dealing with astrophysical hydrody-

namics problem, mostly supernova and strong shock phenomenon we encounter,

‘similar’ or ‘self-similar’ solutions and using ‘similarity methods.’
Self-similarity means that a structure, or a process, and a part of it appear to be

the same when compared. A self-similar structure is infinite and it is not differen-

tiable in any point.

In physics and mathematics, scale invariance is a feature of objects or laws that

do not change if length scales (or energy scales) are multiplied by a common factor.

The technical term for this transformation is a dilatation (also known as dilation),

and the dilatations can also form part of a larger conformal symmetry.

• In mathematics, scale invariance usually refers to an invariance of individual

functions or curves. A closely related concept is self-similarity, where a function

or curve is invariant under a discrete subset of the dilatations. It is also possible

for the probability distributions of random processes to display this kind of scale

invariance or self-similarity.

• In classical field theory, scale invariance most commonly applies to the invari-

ance of a whole theory under dilatations. Such theories typically describe

classical physical processes with no characteristic length scale.

• In quantum field theory, scale invariance has an interpretation in terms of

particle physics. In a scale-invariant theory, the strength of particle interactions

does not depend on the energy of the particles involved.
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• In statistical mechanics, scale invariance is a feature of phase transitions. The

key observation is that near a phase transition or critical point, fluctuations occur

at all length scales, and thus one should look for an explicitly scale-invariant

theory to describe the phenomena. Such theories are scale-invariant statistical

field theories, and are formally very similar to scale-invariant quantum field

theories.

• Universality is the observation that widely different microscopic systems can

display the same behavior at a phase transition. Thus, phase transitions in many

different systems may be described by the same underlying scale-invariant

theory.

• In general, dimensionless quantities are scale invariant. The analogous concept

in statistics is standardized moments, which are scale-invariant statistics of a

variable, while the unstandardized moments are not.

The self-similarity can be grouped to the following general categories as

follows [13]:

1. Approximate self-similarity: means that the object does not display perfect

self-similarity. For example, a coastline is a self-similar object, a natural fractal,

but it does not have perfect self-similarity. A map of a coastline consists of bays

and headlands, but when magnified, the coastline is not identical but statistically

the average proportions of bays and headlands remain the same no matter the

scale. It is not only natural fractals, which display approximate self-similarity

but the Mandelbrot set is another example. Identical pictures do not appear

straight away, but when magnified, smaller examples will appear at all levels

of magnification [14, 15].

2. Statistical self-similarity: means that the degree of complexity repeats at

different scales instead of geometric patterns. Many natural objects are statisti-

cally self-similar whereas artificial fractals are geometrically self-similar.

3. Geometrical similarity: is a property of the space–time metric, whereas phys-

ical similarity is a property of the matter fields. The classical shapes of geometry

do not have this property; a circle if on a large enough scale will look like a

straight line. This is why people believed that the world was a flat pancake; the

earth just looks that way to humans [15–18].

One well-known example of self-similarity and scale invariance is fractals,

patterns that form of smaller objects that look the same when magnified. Many

natural forms, such as coastlines, fault and joint systems, folds, layering, topo-

graphic features, turbulent water flows, drainage patterns, clouds, trees, leaves,

bacteria cultures [16], blood vessels, broccoli, roots, lungs, and even universe,

etc., look alike on many scales [17].

Let us see what experts such as Barenblatt [18] are saying about self-similarity

and how they describe it.

Although, in general, self-similarity may be expressed in several different ways

it is often manifested mathematically as a power function y¼ axβ, which obeys the

homogeneity relation y(λx)¼ λβy(x), where λ is a (positive) scale factor, and β is a

scaling exponent. Functions that satisfy this relation are said to be scaling functions
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while processes or objects that are described by such functions are said to exhibit

scaling behavior. With this, the terms scaling, scale invariance, and self-similarity

are often used as interchangeable terms. There are numerous examples of power

relationships between geological variables (Turcotte) [10], though the ranges of

reported scaling behavior are often less than one order of magnitude. Actually, this

is not surprising, as scaling behavior in nature is always limited between internal

(small) and external (large) scales introduced by the driving mechanisms or by

structural properties. A good example may be found in turbulence where classical

Kolmogorov’s scaling (Monin and Yaglom [19]; Frisch [20]) is constrained by

viscosity at small scales and by the flow size at large scales. With limited data, such

constraints introduce unavoidable uncertainties in the identification of true scaling

behavior or scaling regions.

Self-similarity is a special condition of a single system. A system is said to be

self-similar if there exists a separable variable of the principal equations and initial

and boundary conditions of the system. The separable variable is called a similarity

variable. Similarity variables are valuable in the solution of special partial differ-

ential equations with special initial and boundary conditions. Solutions of the

diffusion equation and the Prandtl boundary-layer equations are classical examples

of the application of similarity variables [21].

Self-similar solutions provide some of the greatest simplifications to

one-dimensional flows. Self-similarity allows the reduction of the partial differen-

tial equations, which contain two independent variables (space and time), into a set

of ordinary differential equations (ODEs), where the single independent variable is

a combination of space and time. The ODEs are then relatively easy to solve

numerically or even analytically in some cases. They describe the asymptotic

behavior of one-dimensional flow in a variety of circumstances. Typically, they

are far away from the initial conditions and provided that the boundary conditions

contain no spatial scale.

Some exceptions apply. For example, self-similarity can prevail in exponential

density gradient in planar geometry.

Whether or not a system is self-similar is not obvious, and the discovery of

similarity variables may be a tedious process. Two approaches may be followed.

The first one starts with the initial and boundary conditions. The second one starts

with the principal equations. The first approach is simpler, if it is known or assumed

similarity variables apply. The second approach may reveal a more general class of

separable variables, which may or may not satisfy specified initial and boundary

conditions.

A typical initial or boundary condition of self-similar systems is that

f a; yð Þ ¼ f x; bð Þ (Eq. 2.110)

where x, y may be either coordinates or time. Equation 2.110 may be satisfied, in

some cases, by a similarity variable of the form

ζ ¼ xmyn (Eq. 2.111)
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Besides geometrical similarity, the first one to recognize a coherent structure in a

physical phenomenon was Fourier with his study of the heat propagation. Then,

mostly the fluid dynamists of the late nineteenth to the beginning twentieth century

recognize the idea of physical similarity between different experiments and the

possibility of comparing their results after the introduction of properly chosen

dimensionless quantities. From these works, it emerges the concept of Dimensional

Analysis with Π theorem. At the same time, reduced models are used in engineer-

ing. Invariance under similarity transformation and/or under time translation is

quite common properties in the equations modeling the physical world. They

allow partial or total integration and lead to much simpler equations, which

eventually can be solved numerically with a much reduced numerical effort

(decrease in the dimension of the phase space or the parameters space, or decrease

in the number of independent variables). Nevertheless, similarity transformations

and time translations put constraints on the initial conditions which can be treated

although they often point out these initial conditions or the critical parameters for

which the nature of the solution changes. Embedding these concepts in the physical

frame of rescaling can permit to precise the nature of these Self-Similar Solutions

(SSS) and give information on their possible asymptotic nature. In that case, the

knowledge of the physicists complements nicely the more rigorous mathematical

treatment [8, 9].

2.10.4 General Results of Similarity

If the general requirements of similarity are satisfied, the solution of the

nondimensional equations will be the same for a prototype and its model. There-

fore, the result of similarity is that corresponding, dependent, nondimensional

variables are equal at corresponding points. Mathematically, the result of similarity

is that

nD χi; τð Þp ¼ nD χi; τð Þm (Eq. 2.112)

where nD is a dependent nondimensional variable.

2.10.5 Principles of Similarity

By combining the requirements and results of similarity, the principles of similarity

are

Nom ¼ Nop and nu χi; τð Þm ¼ nu χi; τð Þp (Eq. 2.113)

108 2 Essential Physics of Inertial Confinement Fusion (ICF)



where

Nom¼model reference similarity number.

Nop¼ prototype reference similarity number.

u¼ dimensional variable.

n¼ nondimensional variable.

χi¼ nondimensional coordinate.

τ¼ nondimensional time.

nu(χi, τ)m¼ nu(χi, τ)p includes geometrical requirements.

To derive a corollary to the principle of similarity, consider a local similarity

number

N χi; τð Þ ¼ uα
1 u

β
2 . . . :u

η
m (Eq. 2.114)

By combining Eq. 2.114 with Eq. 2.114, we get Eq. 2.115 as follows
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however, since Nop¼Nom, the denominators are equal, and the numerators

N χi; τð Þp ¼ N χi; τð Þm (Eq. 2.117)

Therefore, a corollary to the principle of similarity is that corresponding local

similarity numbers are equal at corresponding points of similar systems. Local

similarity numbers do not involve reference variables and are useful in some

applications.

2.10.6 Self-Similarity Solutions of the First and Second Kind

We have learned so far that two geometrical objects are called similar if they both

have the same shape. The second object may be obtained from the first by the result

of a uniform scaling (enlarging or shrinking). Also from all demonstrations and

example presented in above section, we have established for certain engineering

and physics problems that we cannot find a close analytical solution, therefore

dimensional analysis is a good tool to use. Meanwhile we observed how extensions
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of this tool such as scaling and similarity as well as self-similarity have great

influence to establish a solution for these non linear problems. Now we need to

take one step beyond where we are by defining different types of self-similarities in

particular when we are dealing with typical gas dynamic and fluid mechanics where

non-linear ordinary or partial differential equations present themselves. For exam-

ple, in gas dynamics two types of self-similar process, termed as self-similar

motions of the first kind and the second kind, have been considered by scientist

such as Zel’dovich and Raizer [19] and G. I. Barenblatt [22]. Taylor’s explosion
problem and one-dimensional centered rarefaction waves are typical scenarios of

the flows of this kind, while emergence of strong shock near the surface of star,

Sakurai [17], Sachdev and Ashraf [23], and converging cylindrical and spherical

shocks Guderley [24], are examples of the flows of the second kind.

Zel’dovich and Raizer [19] are suggesting that the solutions of the first type

possess the property that the similarity exponent α and the exponent of t and R in all

scales are determined either by dimensional considerations or from the conserva-

tion laws [19]. They also describe under these circumstances the exponents are

simple rational fractions with integral numerators and denominators. They explain

the problem of this type always contain two parameters with independent dimen-

sions, which means there is a type of self-similar solution in which the exponents

are determined by the boundary conditions and may be set arbitrary within certain

limits. Although the exponents in such solutions are not simple rational fractions in

general, the solutions are to be considered as the first type, because the two

independent parameters exist and the exponents are determinable in advance.

These parameters are used to construct a parameter a whose dimensions contain

the primary type units, which is mass and the other two parameters of length and

time and it is designated by A. With latter parameter, A it is possible to construct a

dimensionless combination, the similarity variable ξ¼ r/Atα. The dimensions of the

parameter A are given in terms of length and time as LT�α and are determined by

the similarity exponent a. Examples of these types were well presented in above

(i.e., Taylor Explosion problem) [25].

Taylor [25, 26], Von Neumann, [27] and Sedov [28], known as the Sedov–

Taylor solution describe an explosion in which a strong shock wave propagates into

cold surroundings whose density (i.e., gas is assumed ideal and the density is for

preshocked status) profile decreases as a power law ρ/ r�k where r being varying

radius of shock expansion from point blast. They all used the conservation of

energy approach to obtain the scaling of the shock radius as a function of time

(see Sect. 8.1 of Chap. 1). That is why such solutions are called First Kind (or Type)
solutions. Yet in contrast looking at Guderley [14] (also see the discussion in

Zel’dovich and Raizer) [12] on implosion problem where they also found a self-

similar solution describing imploding shock waves in a constant density environ-

ment, energy consideration cannot be used to deduce the scaling of the shock radius

as a function of time. Instead, the scaling of the radius as a function of time must be

found by forcing that the solution pass through a singular point of equation and that

is why such solutions are considered or called self-similar solutions of the Second
Kind (or Type). Therefore, it is safe to say that second-type solutions do not obey
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global conservation laws. In reality, the true problem therefore cannot be

completely described by a second-type self-similar solution. Those describe only

part of the flow, in some region of interest whereas other regions deviate from the

solutions. So in order to prevent any influences on the self-similar part, a sonic

point, where the equations are singular, must separate the non-self-similar parts

from it. This requirement replaces the energy conservation as a means of reducing

the scaling of Lorentz factor with radius, i.e., finding m (see Waxman and Shavarts)

[29] for a discussion of the nonrelativistic case and (Best and Sari) [30] for the

relativistic case. Reference 27 shows that if the density falls fast enough (k> 3),

energy considerations give the wrong scaling. Same reference also showed that

solution should be of the second type for k> 3.26. A good discussion around the

first- and second- type self-similar solution of implosions and explosions containing

ultra-relativistic shocks is given by Re’me Sari [31].

In self-similar problem of the second kind, the exponent α cannot be found from

dimensional considerations or from the conservation laws without solving the

equations. In this case, the determination of the similarity exponent requires that

the ordinary differential equations for the reduced functions be integrated. Exam-

ples of self-similar motions of the second kind are the problems of an imploding

shock wave and of an impulsive load [8].

Solutions of specific problems of the second kind show that in all these cases the

initial conditions of the problem contain only one-dimensional parameter with the

unit of mass but lacking parameter A. This condition eliminates the possibility of

determining the number α from the dimensions of A, which means it would not be

possible to construct the dimensionless combination ξ¼ r/Atα. However, the dimen-

sions of this parameter α are not dictated by the initial conditions of the problem but

rather are found from the solution of the equations [19]

In summary, many engineering problems are too complex to find a mathemat-

ically closed form of solution for them. In such cases, a type of analysis, which

involves the dimensions of the quantities entering the problem, may be useful. This

is as we have describing and shown in different examples called Dimensional
Analysis. Uses and applications for dimensional analysis include the following:

• To reduce the number of variables to be studied or plotted

• In planning experiments

• In designing engineering models to be studied and in interpreting model data

• To emphasize the relative importance of parameters entering a problem

• To enable units of measurement to be changed from one system to another

The last of these is common, although relatively trivial, application.

In general, dimensional analysis is any mathematical operation, which involves

units or dimensions.

Finally, as far as similar and self-similar definition is concerned, we can put it

into the following perspective [8].
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Note: Blandford and McKee [32] are using notation of m and Γ as Lorentz

factor of the shocked fluid and they show for their analysis of an adiabatic

blast wave where they argue an approximate adiabatic similarity solution

as part of suggested blast wave variables and is appropriate choice of

similarity for well-known Sedov–Taylor similarity for a non-relativistic as

follows:

ξ¼ (1� r/R)Γ2
 0

where R being the radius of blast from the center. If the total energy contained

in shocked fluid remains constant with t representing time for shock

traveling at some characteristic velocity, then

Γ2/ t�3

If we consider the more general case, then we can show the above equation in

the following form.

Γ2 / t�m, m > �1

This allows us to treat the case when the energy is supplied continuously at a

rate proportional to a power of the time.

Their solution is valid when the density of the external medium into which the

shock wave propagates varies with the distance r from the origin as r�k, for

k< 4. These are first-type self-similar solutions in which the shock Lorentz

factor Γ varies as Γ2/ t�m, where m¼ 3� k to ensure energy

conservation.

Best and Sari [30] show new second-type self-similar solutions, valid for

k > 5� 3
ffiffiffi
3

p 	 4:13, in their paper. In these types of solution, Γ varies as

Γ2/ t�m, with m ¼ 3� 2
ffiffiffi
3

p� �
k � 4 5� 3

ffiffiffi
3

p� �
so that the shock acceler-

ates and the fraction of the flow energy contained in the vicinity of the

shock decreases with time.

We need to have the better understanding of similar and self-similar methods

and their definition in subject of dimensional analysis. Once we have these methods

defined properly, then we can extend it to motion of a medium in particular from

self-similarity point of view. In addition, we are able to deal with complexity of

partial differential equations of conservation laws, such as mass conservation law,

the momentum conservation law and finally the energy conservation law of

non-linear type both in Eulerian and in Lagrangian schemes using all three coordi-

nates systems that we are familiar with. These coordinates are, i.e., cartesian,

cylindrical, and spherical coordinate systems. Further this allows us to have better

understanding of what is the self-similarity of first and second kind, and their

definitions, what are the differences between them, as well as where and how

they get applied to our physics and mathematics problems in hand. Few of these

examples that we can mention here are self-similar motion of a gas with central
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symmetry, both sudden explosion (Taylor) [5, 6] and sudden implosion (Guderley)

[7] problems. The first one is considered self-similarity of first kind while the lateral

is considered as self-similarity of second kind. Through these understandings, we

can have better grasp of gas dynamics differential equations and their properties in a

medium. In addition, the analysis of such differential equations for a gas motion

with central symmetry becomes much easier, by utilizing self-similar method.

Self-similar motion of a medium is one in which the parameters that are

characterizing the state and motion of the medium vary in a way as the time varies,

the spatial distribution of any of these parameters remains similar to itself. How-

ever, the scale characterizing this perturbation/distribution can also vary with time

in accordance with definite rules. In other words, if the variation of any of the above

parameters with time are specified at a given point in space, then the variation of

these parameters with time will remain, the same at other points lying on a definite

line or surface, providing, that the scale of given parameter and the value of the time

are suitably changed [9].

The analytical conditions for self-similar motion lead to one or more relations

between the independent variables, defining functions, which play the role of new

independent variables using dimensional analysis and self-similarity approach

[8]. This approach follows that, in case of self-similar motion, the number of

independent variables in the fundamental systems of equations is correspondingly,

reduced. This technique, considerably, simplifies the complex and nonlinear partial

differential equations to sets of ordinary differential equations. Thus, sometimes,

this makes it possible to obtain several analytical solutions describing, for example,

the self-similar motion of the medium, As it was said, in the case of two indepen-

dent variables, and sometimes even in the case of three independent variables, the

fundamental system of equations becomes a system of ordinary rather than partial

differential equations [9].

Applications of self-similar approach can be seen to all unsteady self-similar

motions with symmetry, all steady plane motions and certain axial symmetrical

motions as well. These types of approaches have solved problems of Self-Similarity

of First Kind [5, 6] and Second Kind [7] in past, where complex partial differential

equations of conservations law are described by systems of ordinary differential

equations. Investigation of most important of modern gas dynamics motions or

plasma physics such as laser-driven pellet for fusion confinement via self-similar

methods enables us to produce very useful conclusions by solving the conservation

law equations in them, using self-similarity model. To be concerned about more

general types of motion of the medium also allows us to develop and establish laws

of motion in various cases of practical interest. They may include the propagation

of strong shock waves in case of explosion and implosion events, propagation of

soliton waves, and the reflection of shock waves are few examples that can fall into

category of self-similarity methods. To further have better understanding of subject

similarity and self-similarity requires knowledge of fundamental equation of gas

dynamics, where we can investigate a compressible liquid or gas. Therefore, next

few sections of this chapter are, allocated to this matter and related thermodynamics

aspect of state of medium equations. For this, we also need to understand the

2.10 Physics of Dimensional Analysis Application in Inertial Confinement Fusion ICF 113



difference between compressible and incompressible flows. In addition, the detail

analyses of similarity can be found in the book by this author, so we do not have to

repeat the same information here [8].

2.11 Physics of Implosion and Explosion in ICF: Self-

Similarity Methods

In order to consider this problem and possible integration of it into physics of

inertial confinement fusion (ICF) mechanism, we need to have some fundamental

understanding of self-similar motion of spherical symmetry in particular. Applying

the self-similar method for motions of spherical, cylindrical, and plane waves in a

gas, was understood by many scientist and researcher in the past. Here we look at in

one-dimensional motion of a fluid to determine this motion whose characteristics

depend only on a single geometrical coordinate (i.e., r in case spherical and

cylindrical shape) and on time t.
As it has been stated in previous two chapters of this book, Sedov [8], Guderley

[1], Taylor [2] and others have tackled this problem independent of each other

within various closed time. Basically, what they have shown is that in a one-

dimensional motions, which are produced by spherical, cylindrical, and planar

waves, the method of dimensional analysis and similarity theory lead the problem

of nonlinear to an exact solutions for problems unsteady motion of a compressible

fluid. These types of approaches by finding the exact solutions might be helpful to

confirm the accuracy of various approximated solutions of the problem in fluid

dynamics.

For this matter, we consider the characterization of the problems that can be

solved by dimensional analysis and similarity methods; we can consider suitable

functions and characteristic parameters describing the one-dimensional motion

within Eulerian system. From this condition viewpoint the main suitable/desired

function has variables of velocity υ, density ρ, and pressure p and the characteristic
parameters as we stated are the linear coordinate r and time t. This assumption is

involving another characteristic among the ones in above as a constant a, with the

dimension that at least contains the symbol of mass M. Therefore, putting constant

characteristic of a and its dimension perspective without loss of generality, we can

write it as

a½ � ¼ MLkTs (Eq. 2.118)

Thus, for the unknown functions of velocity, density, and pressure, we can

establish the following relationships as

υ ¼ r

t
V ρ ¼ a

rkþ3ts
R p ¼ a

rkþ1tsþ2
P (Eq. 2.119)
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where, V, R, and P are abstract quantities and therefore, they depend only on

nondimensional combinations including r, t, and other parameters involved in the

problem of interest in hand. Generally speaking, these characteristics are functions

of two dimensional variables; however, if among the characteristic parameters, in

addition to a, there is one more individual constant bwith dimension independent of

a. In general, there can be many characteristic constants, but their dimension has to

depend on a and b with possible independent dimensions with fixed exponent of k,
s, m, and n that can be integral, fractional, or transcendental numbers [33].

However, the actual determination of these exponents in a particular problem of

interest is connected with the setup formulation of the problem and properties of

unknown solutions, which always exceed the limits of dimensional theory. See

Chapter one of the book by Zohuri [8].

Given the preceding text, since the dimension constant characteristic a is

depending on symbol of mass M, then without again, loss of generality, we can

always present the constant b so that its dimension will not contain the element of

mass symbol M as

b½ � ¼ LmTn (Eq. 2.120)

In this case, rmtn/b will lead to only nondimensional combination, which for

m 6¼ 0 can be replaced by the variable λ asfollows:

λ ¼ r

b1=mtδ
where δ ¼ �n

m
(Eq. 2.121)

However, if m¼ 0, then V, R, and P will be dependent only on time t, where in
that case velocity υ is proportional to r. The corresponding particular motions are

studied by Sedov [8] in detail;, he also shows in addition to the variable parameter λ,
the solution can also depend on number of constant abstract parameters. He

assumes that among characteristic parameters of the problem, in addition to r and
time t. there are only two constants with independent dimensions. With this content

in mind, then partial differential equations, which are satisfied by the velocity,

density, and pressure in the unsteady one-dimensional motion of an incompressible

fluid, can be replaced by a set of ordinary differential equations for the quantities V,
R, and P. Solutions of these ordinary differential equations either, can be, obtained

in exact closed form or approximated by means of numerical integration. Suck

kinds of motions are called self-similar types, and we now formulate problem of

explosion and implosion, which can easily be solved by the method of self-similar.

Considering the continuity equation of motion and energy in an ideal gas

medium in absence of heat conductivity as follows

∂υ
∂t

þ υ
∂υ
∂r

þ 1

ρ

∂ρ
∂r

¼ 0 (Eq. 2.122)

2.11 Physics of Implosion and Explosion in ICF: Self-Similarity Methods 115



∂ρ
∂t

þ ∂ρυ
∂r

þ v� 1ð Þ ρυ
r
¼ 0 (Eq. 2.123)

∂
∂t

p

ργ

� �
þ υ

∂
∂r

p

ργ

� �
¼ 0 (Eq. 2.124)

These sets of equation are very similar to sets of equations of conservation of

momentum and mass energy, but written in different form, where again, γ is

adiabatic index, and v¼ 1 is for the planar motion for ideal gas, v¼ 2 for the

cylindrical, and v¼ 3 for the spherical case (see Chap. 3 of the book by Zohuri)

[8]. Applying the arbitrary quantities V, R, and P from Eq. 3–18, we can easily find

that k¼ 3, s¼ 2 and in case of general relativity theory there are two other

fundamental constants such as speed of light c and the gravitational constant

f come to play. In this case a¼ f and arbitrary quantities V, R, and P are dependent

only on a quantityλ¼ r/ct.
A self-similar method can be in place to solve the new sets of equation based on

the functions of V, R, and P so in case of strong shock in one-dimensional spherical

coordinate system moving outward we are solving Taylor’s Problem and for the

shock going inward we are solving Guderley’s Problem. Sedov [8] has shown the

algebraic integrals solution for self-similar motions in detail by and for strong

shock, we have the following form by introducing a new variable z as function of

V in the form of z(V ) that results from relation of z¼ γP/R, where it is formulated

from ℜT¼ (r2/γt2)z. Here T is the temperature and ℜ is the gas constant.

z

Rγ�1
¼ C1 R V � 1ð Þ þ C2

λv�ω


 � ω γ�1ð Þ½ �= v�ω½ �
1

λ2
(Eq. 2.125)

where ω¼ k+ 3 and C1, C2. are arbitrary constant of integration. It is obvious that

variables z and V as well as function of z(V ) are independent of indexes k, s, and m,
but are well determined by the type of self-similar motion of first or second kind

that falls into explosion and implosion problem, respectively. Sedov [28] shows

different plots of adiabatic integral paths for different conditions of point O(z,V) is
z and V v plane, where an asymptotic formulation induced from Eq. 2.125, based on

ω either being, negative (ω< 0), positive (ω> 0) or being equal to zero (ω¼ 0).

These asymptotic sets of formulation in case of O(z¼ 0,V¼ 0) are given as

z ¼ CV2 λ ¼ C1

V
and z ¼ γ

ω
V λ ¼ C1ffiffiffiffi

V
p (Eq. 2.126)

Note that for non-self-similar motions, different curves in z�V plane, corre-

spond to the gas motion at different instants. On the other hand, for self-similar
motions, the field of gas motion in z�V plane at different instants or for different

points or particles corresponds with same curve on the adiabatic integral curve,

which is corresponding to the plot of ordinary differential equations (ODEs) for the

shock conditions under self-similar motions [8].
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From the formulation of self-similar motion of these ODEs, it follows that the

shock coordinate r in form of r¼ λbtα and variable λ¼ r/btα at the shock are

functions of time t and characteristic dimensional constant a and b.
In particular cases, the following situation is possible: The gas motion is self-

similar but the motion of boundaries of shock waves is determined by supplementary

constants. Thus, the shock coordinate r depends not only on a, b, and t, but also on

other dimensional constants. In these cases, the formula for λ¼ r/btδ approaching to
constant value λ0 at the shock is not true, thus, in correspondence with the assumed

definitions, such motions, considered as a whole, will be called non-self-similar,

although self-similarity is violated only on the boundary. Moreover, a

nondimensional combination cannot be formed from the three quantities on a, b,
and t, therefore for the discontinuity surface, we have the following conditions [8]:

λ ¼ λ0 ¼ constant r ¼ λ0bt
α (Eq. 2.127)

Consequently, in z�V plane a fixed point corresponds to the shocks for self-

similar motions with fixed values of variables λ, R, z, P, and V. Furthermore, for the

value of shock velocity c, a formula of the following form always may be written as

c ¼ dr

dt
¼ α � r

t
(Eq. 2.128)

Analyses of Eq. 2.128, it is obvious for self-similar motions, α is constant. For

r> 0 and t> 0, the velocities of phase propagation are directed outward and away

from center when α> 0. Therefore, for α> 0, the shock waves are divergent and

thus, for α< 0, the shock waves are directed inward and they are convergent and the

velocity of phase motion decreases. If r> 0, the time t increases, but t< 0, then we

have the reverse character behavior of the motion of shock waves. Figure 2.11 shows

depiction of divergence and convergence of such shock waves behavior and char-

acteristics along with adiabatic compression or rarefaction arises in front of the core.

Fig. 2.11 Depiction of motion (a) implosion and (b) explosion characteristics
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On parabola, equation of z¼ (α�V )2 phase velocities is equal to the speed of

sound, thus above this parabola, the velocities are subsonic and below it, they are

subsonic. In the general case of non-self-similar motions, the abstract quantity α is a

certain function of time t.
For case of explosion and implosion problem at a point where the corresponding

pointO(z,V) is placed at infinity asO(z¼ 0,V¼ 1), when initial velocity, density, and

pressure is uniform everywhere as it is depicted in Fig. 3.10, thenω¼ 0 and α¼ 1, the

appropriate field of the integral curves in the z�V plane is depicted in Fig. 2.12.

However, for points at infinity, corresponding to strong implosion or explosion,

the asymptotic formulas near the point O(z,V ) are given as

z ¼ CV2 λ ¼ C1

V
(Eq. 2.129)

Sedov [28] extensively has provided the interpretations of curves in both plots of

Fig. 2.12.

2.12 Self-Similarity and Sedov–Taylor Problem

The mathematical formulation of the problem of the nuclear explosion and the

estimation of its mechanical and physical effects on the surroundings was itself a

challenging task. There was hardly any literature on this subject. Therefore, some of

the best minds in applied mathematics and physics were made to put their heads

together to unravel this topic. This gave a great fillip to nonlinear science, which has

since made great strides and which now permeates and influences all sciences—

pure and applied.

The explosion problem in a perfect gas could be considered for the case when

initial velocity, density, and pressure are assumed to be uniform. Many authors

have studied the motion of diverging spherical and cylindrical shock waves in a

perfect gas, for a homogeneous and symmetrical form [2–7].

Fig. 2.12 Depiction of integral curves corresponding to (a) implosion at a point and (b) explosion

from a point
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The diverging spherical shock waves for Trinity explosion of fission atomic

bomb was studied by Taylor (1950a) [25] and Sedov (1969) [28] are few examples

that are mentioned here, although there were other authors that independently did

similar study. This is the class of solutions known as self-similar solutions of the

first kind. Taylor (1950a) [25] demonstrated the existence of the self-similar

solutions for a shock wave propagating in the vicinity of the center of divergence.

Mathematically, the continuous flow behind the shock is governed by the

nonisentropic equations of gas dynamics, which must be solved subject to the

so-called Rankine–Hugoniot conditions at the shock and the symmetry condition

at the center requiring that the particle velocity there is zero. Along the shock

trajectory, the theory of shocks imposes more boundary conditions than are appro-

priate to the given system. This overdetermined data, however, leads to the finding

of the shock trajectory, which itself is unknown factor. This, in this sense, consti-

tutes a free boundary value problem. In this simplest model, the role of heat

conduction is ignored. Taylor (1950) [25, 26] made some highly intuitive physical

statements about this phenomenon [3].

For example, he observed that the explosion forces most of the air within the

shock front into a thin shell just inside the front (see Fig. 2.13). This, is subject of

discussion for this section, forms the basis of an analytic theory of blast waves in an

exponential atmosphere by Laumbach and Probestein (1969) [4]. Taylor (1950) [3]

Fig. 2.13 Trinity nuclear test, New Mexico on July 16 1945
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also observed that as the front expands, the maximum pressure decreases till at

about 10 atmospheres: the analysis under the assumption of an infinitely strong

shock ceases to hold.

On July 16 1945, the first atomic bomb ever was detonated in New Mexico. The

pictures shown in Fig. 2.13 were released and published in Life Magazine. The

energy of the blast, however, was highly classified and it was kept secret. The story

goes that Geoffrey Ingram Taylor, the British physicist, used dimensional analysis

to estimate the latter energy from the data available in the pictures. The analysis is

presented here to guide you through Taylor’s analysis and formulation of the

similarity solution was derived entirely from physical arguments.

What is seen in the pictures is a spherical shock wave separating the undisturbed

air from the region affected by the explosion. As usual, a dimensional analysis is

simplified by some educated guess. Taylor’s analysis is based on the following

assumptions:

• The explosion itself is so rapid that the only relevant characteristic of the bomb is

the amount of energy E that it releases. The duration of the explosion is

irrelevant,

• The shock wave propagation is so quick that it can be modeled as an adiabatic

process, characterized by adiabatic exponent (i.e., adiabatic index) γ,
• The pressure generated by the shock is much larger than the atmospheric

pressure, so that the latter should not be accounted for in the analysis. Only

the density of the air ρ0 matters.

Based on these simplifying assumptions, use dimensional analysis to find the

way in which the radius R of the shock wave increases, with time t, and it can be

seen as function of R¼ f(t,E, ρ, γ), and this function can be established from

classical mechanics theory of kinetic energy. By using dimensional arguments, he

wrote the similarity form of the solution in Eulerian coordinates in terms of the

similarity variables r/R, where R, the radius of the shock, was found to be propor-

tional to t2/5; he did not use any sophisticated transformation theory of nonlinear

Partial Differential Equations (PDEs). Taylor reduced the system of nonlinear

PDEs to nonlinear Ordinary Differential Equations (ODEs) and numerically solved

the latter, subject to the strong shock conditions (appropriately transformed) and the

requirement of spherical symmetry, namely, that the particle velocity at the center

of the explosion must be zero. He also used the conservation of total energy, E,
behind the shock to derive the shock trajectory. The constant B¼E/ρ0A

2, which

appears in the shock law R¼Bt2/5, involves the nondimensional form of energy and

was found from the numerical solution; it varies with adiabatic index γ the ratio of

specific heats as γ¼Cp/Cυ, where Cp and Cυ are specific heat at constant pressure

and volume, respectively.

The general solution of the problem is as follows [8, 9]:

f γð Þ ¼ ρR5

Et2
(Eq. 2.130)
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Equation 2.130 predicts a propagation of the shock according to a R’ t2/5 power
law, as it is, stated before. This law is extremely well, followed by the data as it can

be, seen in Fig. 2.14.

The general solution of Taylor’s problem in terms of energy releases from

nuclear fission explosion is then given as follows:

E ¼ R5ρ0
� �

=t2 (Eq. 2.131)

Table 2.1, presents the values of R as a function of t, determined from the

released pictures of the Trinity test explosion in 1947.

In one frame r¼ 100m at a time of t¼ 0.016 s after the explosion and air density

at that altitude was ρ¼ 1.1� 1.2 kg/m3. See Table 2.1 and Fig. 1.8a. Substituting in

these values in Eq. 2.131 gives an estimated energy release of E¼ 4� 1013 J, which

is equivalent to 1000 tons of TNT explosion of about 4.2 � 1012 J, which is

indication of Trinity fission test bomb had a yield of 10 kilotons TNT based on

the above calculation. The actual test bomb yield was 18–22 kilotons. Even closer

values can be obtained from other frames.

Fig. 2.14 Comparison of

the data from the released

trinity test pictures (small
circles) and R¼ t2/5 power
law (red line)

Table 2.1 Time-dependent

radius of the trinity shock

wave as determined from the

released pictures

Time (ms) t 3.3 4.6 16 62

Radius (m) R 59 67 100 185
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See http://en.wikipedia.org/wiki/Nuclear_weapon_yield

Still this estimate is remarkably close to the reality, given the crudeness of our

analysis. Taylor (1950) [2] carefully has shown the numerical solution and noticed

that the particle velocity distribution behind the shock as a function of similarity

variable was quite close to linear as it is depicted in Fig. 2.14, particularly near the

center of the blast. His assumption was toward particle velocity to form a solution,

which the sum of a linear term and nonlinear correction term in the similarity

variables, then he was able to explicitly determine this term by making use of the

governing equations and the Rankine–Hugoniot conditions. This enabled him to

find an approximate closed form solution of the entire problem, which was in error

in comparison with the numerical solution by less than 5%.

As it is stated in above, Taylor (1950b) [26] in his second publication was able to

check power law of R	 t2/5 to show comparison with the shock trajectory that was

obtained, experimentally from the Trinity fission bomb explosion in New Mexico.

The agreement of the two various values for adiabatic index γ¼Cp/Cυ was

remarkably good.

In this comparison, photographs were used to measure the velocity of the rise of

the slowing center of the heated volume. This velocity was found to be 35 m/s. The

hemispherical explosive ball behaves like a large bubble in water until the hot air

suffers turbulent mixing with the surrounding cold air. The vertical velocity of this

‘equivalent’ bubble was computed from this analysis and was found to be 35m/s [1].

While, Taylor (1950) [25, 26] was quite aware of the advantages of a Lagrangian

approach to the problem, he was rather skeptical of its practicality since, as he

remarked, that would introduce great complexity, and, in general, solutions can

only be derived by using step-by-step “numerical integration” of the full system of

nonlinear PDEs. Actually, as a particle crosses the shock, it has an adiabatic

relationship between pressure and density corresponding with the entropy, which

is endowed upon it by the shock wave during its passage past it. This naturally

suggests a Lagrangian approach wherein the Lagrangian coordinate is defined as

one which retains its value along the particle path. Indeed, this matter was raised

much later again by Hayes (1968) [34] who tried to contradict the suggestion by

Zel’dovich and Raizer (1967) [19] that the Lagrangian formulation is as convenient

as the Eulerian, even more so for the problems of blast wave type. He argued that

the basic differential equation to be solved numerically is in a nonanalytic form in

the Lagrangian formulation and would therefore pose difficulties, a view in agree-

ment with “Taylor’s apprehension” [24].
Further analysis of this matter could be found in the classical text by Sachdev

[35]. In the same reference, equations involving shock wave for exact solutions of

spherically symmetric flows in Eulerian coordinates are, presented with details. The

exact solution is for one-dimensional gas dynamic equation, which shade light on

the structure of the solutions, the blast wave being one class of solutions of these

equations, where self-similarity approach has taken place. He also has suggested

even exact solutions of gas dynamic equations in Lagrangian coordinates, where the

approach is quite distinct and applies to all geometries—planar, cylindrical, and

spherical. The basic idea behind this approach is to use the single second-order
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nonlinear partial differential equation governing the Eulerian coordinate with the

Lagrangian coordinate enthalpy h and time t as independent variables.
These solutions depend upon an arbitrary function, which is related to the

entropy distribution in the gas. Applications of isentropic and nonisentropic solu-

tions include flows with shocks of finite and infinite strength and vacuum fronts.

This presentation is as follows:

h ¼
ðy h;tð Þ

y 0;tð Þ
rn�1ρ r; tð Þdr n ¼ 1, 2, 3 (Eq. 2.132)

where y(h, t) is the radius of the particle with Lagrangian coordinate h at time, and

n¼ 1 , 2 , 3 for planar, cylindrical, and spherical symmetry, respectively. In the

latter two cases, y represents the distance from the axis and center of symmetry,

respectively. However, for complete details of this approach, refer to Sachdev

book [3].

As a final note for Taylor’s Explosion Problem, as a warning and drawback, you

should remember mathematical functions only take dimensionless arguments. This

is shown by power series expansions:

f ξð Þ ¼ eξ

¼ 1þ ξþ 1

2
ξ2 þ . . .

(Eq. 2.133)

In this case, the leading term is obviously dimensionless, and all terms added to

it must be also. In general, a function has terms of many different orders, which

must be dimensionless to add up.

• Some ratios of variables and their derivatives can lead to ambiguous cases. Like

the ideal pendulum that is presented in Appendix A of this book as

ωB ¼
ffiffiffiffiffiffiffiffiffi
g

θ

dθ

dz

r
(Eq. 2.134)

This equation is dimensionally correct for any substitution for θ.
• Derivatives and ratios are indistinguishable to a dimensional analysis, since g/z

has the same dimensions as dg/dz
• Dimensional analysis is an aid to insight, thus it cannot completely describe the

physics.

In conclusion, the creation and performance of shock waves have been the focus

of study by many engineers and scientists working in topics related to continuum

physics. Shock waves—either in their weak form (acoustic waves) or their moder-

ate to stronger form—play an important part in scientific and engineering calcula-

tions whether their existence is desirable or not.
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2.13 Self-Similarity and Guderley Problem

The study of converging spherical and cylindrical shock waves in a homogeneous

and symmetrical mode is of importance due to its applications in the field of nuclear

engineering such as controlled thermonuclear fusion, cavitations, and blast waves.

Although, Guderly (1949) [24] was the first author among the others demonstrating

such study in a perfect gas situation, similar technique was used in nuclear fission

bomb fabrications both during the Manhattan project and later on in design of super

bomb for thermonuclear fusion process.

The creation and performance of shock waves have been the focus of study by

many engineers and scientists working in topics related to continuum physics.

Shock waves, either in their weak form (acoustic waves) or their moderate to

stronger form, play an important part in scientific and engineering calculations

whether their existence is desirable or not. For example, in the case of gas pipelines,

a sudden valve closure or opening (or any other blockage or leak) creates a response

signal in the form of shock or expansion waves, whose speeds depend on the aero-

thermodynamic state of the gas. The change in properties behind such waves should

be taken into consideration for designing the pipeline as well as the surrounding

installations (for safety considerations)

For internal combustion engines, the sudden opening and closing of valves

create a continuous stream of shock or expansion waves, interacting and moving

down the muffler as well as other ducts. This stream has to be controlled and

optimized for environmental protection, Matsumora (1993) [36].

In the field of interior ballistics of guns, the existence of shock waves ahead of

and behind the projectile is an unavoidable side effect to contend with. The designs

are made to divert the blast and reduce its noise level, Phan (1991) [37]. Another

important military application of cylindrical converging shock waves, are the

generating partly converging and partly advancing shock waves in shaped charges

for armor piercing. In this case, the important usage of cylindrical converging shock

waves lies in production of localized high gas pressure and enthalpies. Theoreti-

cally, area convergence is expected to strengthen the shocks, thus producing

infinitely dense amounts of energy at the center of convergence (point of collapse).

The common factor here is the need for accumulating great amounts of energy in

virtually point-size domains. This fact probably explains why the technical steps

required to create converging shocks have their inherent difficulties.

The converging shock waves via a powerful spherical and cylindrical compres-

sion in the neighborhood of the center of the sphere and of the cylinder axis, that

originally was studied by Guderley is the first examples of a class of self-similar

solutions of second kind. However, Stanyukovich (1969) [12] first developed an

approximate method for obtaining the similarity exponent analytically.

For the case of cylindrical converging shock waves, one of the main issues faced

in establishing the physical process is the shock stability. This is defined as the

ability of the generated shocks to retain their required symmetric shapes if

subjected to perturbations due to geometrical or physical irregularities, which is
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inevitable in practical considerations. Unlike plane shocks, which retain their shape

due to transverse waves [13–16], two contradictory processes affect cylindrical

waves: stabilizing effect due to the transverse waves, and the increase in shock

speed associated with the reduction in the frontal area. Therefore, the measure of

stability for converging shocks should aim at minimizing the ratio between the

magnitude of unavoidable perturbations and the mean value of the shock radius.

The need to stabilize the shock for as long as possible requires an efficient

method for simulating the shock performance throughout the implosion process. In

this respect, research activities have been diversified according to the available

theoretical and technical facilities.

The ‘Classical Guderley Problem’ [9] is considering an infinitely strong, sym-

metric, and homogeneous shock wave focusing on either cenetr (or point) of

spherical geometry or axial of cylindrical geometry shape. Although, he did not

discuss the source of generating the shock, for solving this classical problem,

however, the initial state of the gas into which the shock wave is propagating is

well defined and described and denoted by sets of Eq. 2.138, in one-dimensional

Eulerian space of r-coordinate (i.e., Spherical and Cylindrical geometry). His

assumption for the perfect gas was under perfect inviscid gas conditions. The

inviscid flow is a schematic representation of the motion of mobile media such as

gaseous or liquid, and as well as solids under the rapid action of high pressures,

which is the main theoretical model for many fields of modern technology.

Guderley demonstrated that strong cylindrical converging shock waves propa-

gate according to a power law relation as described below, when approaching the

center and that their Mach numbers reach infinite values at the point of collapse.

However, this is not possible in reality due to the effect of viscosity and heat

conduction. Lighthill [17], Butler [10, 18], Stanyukoouvich [12], and Whitman [10]

conducted subsequent studies under the same assumptions.

The sets of Eulerian Conservation Equations for inviscid flow or gas conditions

are as follows and they are valid if the viscosity and thermal conductivity of the

fluid or gas is ignored

ρ
d~u

dt
¼ ρ~F� gradp Conservation of Momentum (Eq. 2.135)

1

ρ

dρ

dt
¼ �div~u Conservation of Mass (Eq. 2.136)

ρ
d

dt
eþ u2

2

� �
¼ ρ~F~u� divp~uþ ρq Conservation of Energy (Eq. 2.137)

In all these three sets of equation, variables and parameters expressed in them are

defined as follows:

~u ¼ Velocity of gas in vector form

p ¼ Pressure quantity

ρ ¼ Density of fluid or gas

e ¼ Specific internal energy
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The above four elements are measures at the point within a fluid or gas, where

they are continuous in that space.

Equation 2.135 also known as Eider’s Equation relates fluid particle acceleration

within an element of volume of that fluid to an external body force ~F and the

pressure force applied on the side of the neighboring fluid particles. This equation is

generalized form of Newton’s second law, which is in classical mechanics we know

it as the conservation of momentum as applied to the motion of fluid particles.

Equation 2.136 is basically expressing the law of mass conservation, which is

indicating that the rate of change of density of a fluid particle is equal, with the sign

reversed, to the rate of change of volume.

Equation 2.137 is expression for the law of energy conservation, which is

describing change in the internal energy e and kinetic energy 1
2
v2 of a fluid or gas

particle as a result of an action of impressed mass forces ~F and surface forces (i.e.,

pressure p), and to an inflow of heat with intensity q from an external source.

Denoting physical flow variables in the unshocked region by the subscript 0 that

is depicted in Fig. 2.15, the initial state is then expressed as

u0 r; tð Þ ¼ 0

ρ0 r; tð Þ ¼ constant

p0 r; tð Þ ¼ 0

8>><>>: (Eq. 2.138)

where r denotes position (r
 0), t time in interval of (�1 < t< 0) for the

converging shock wave mode and for the interval of (0< t< +1) for the reflected

shock wave mode, while u velocity, ρ mass density, and p material pressure.

-1 -0.5 0

Region 0

Region 2a Region 2b

Region 3

Time

S
ho

ck
 P

os
iti

on

0

0.4

0.8

Rs-(t) Rs+(t)

1.2

1.6

0.5 1

Fig. 2.15 Notional

representation of

converging and reflecting

shock trajectory

126 2 Essential Physics of Inertial Confinement Fusion (ICF)



Note that in Fig. 2.15,R�
s tð Þ is designation for converging shock wave trajectory,

whileRþ
s tð Þ is trajectory for reflecting shock wave, and space–time regions are 0, 2a,

2b, and 3.

The basic sets of conservation equations (Eqs. 2.135 through 2.137) of mass,

momentum, and energy governing adiabatic flow for Guderley problem, where we

have smooth flow free of viscosity, heat conduction, radiation, and body forces, the

one-dimensional Eulerian equations that are describing fluid motion at all contin-

uous (i.e., non-shock) are expressed as

∂ρ
∂t

þ ∂ ρuð Þ
∂r

þ m� 1ð Þρu
r
¼ 0 (Eq. 2.139)

∂u
∂t

þ u
∂u
∂r

þ 1

γ

a2

ρ

∂ρ
∂r

þ 2a
∂a
∂r


 �
¼ 0 (Eq. 2.140)

∂a
∂t

þ u
∂a
∂r

þ γ � 1ð Þ ∂u
∂r

þ m� 1ð Þu
r


 �
¼ 0 (Eq. 2.141)

where a is expressing the local speed of sound, and defined through the pressure and
density by

a2 � γ
p

ρ
(Eq. 2.142)

Here, we are considering only a polytropic gas with the incomplete equation of

state is given by the following equation known as Mie–Gruneisen type as

p ρ; eð Þ � ρeΓ
ρ

ρ0

� �
¼ γ � 1ð Þρe (Eq. 2.143)

Again, symbol of e is the specific internal energy and γ denotes the adiabatic

index of fluid or gas in the range of 1< γ<1, and m the space dimension

m¼ 1 , 2 , 3 for one-dimensional planar, cylindrical, or spherical geometries of

symmetry and homogeneous of the shock wave. The symbol of Γ(ρ/ρ0) is the

Gruneisen coefficient and for a perfect gas is a constant and is equal to γ� 1 [38].

Note that Eqs. 2.139 through 2.141 are not valid globally, though shock jump

conditions are available to connect the preshock and postshock flow field. In

particular, since the converging shock wave is assumed to be infinitely strong

limit to Rankine–Hugoniot jump conditions may be used to connect the flow just

behind and ahead of the shock front and they can be written as
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ρ2a
ρ0

¼ γ þ 1

γ � 1

u2a ¼ 2

γ � 1
R�
s tð Þ

p2a ¼
2

γ � 1
ρ0 R�

s tð Þ� �2

8>>>>>>>><>>>>>>>>:
(Eq. 2.144)

Equation 2.144 sets are valid for all value of t< 0 where the convergent mode

and subscript 2a as per Fig. 2.15 denotes the state just behind the converging shock
along with symbol of R�

s tð Þ is presentation of converging shock [38].

After shock focus and subsequent reflection about the axis or point of symmetry

as well as analogous to reflection from a rigid wall in one-dimensional planar

symmetry, these equation cease to be valid. Ramsey, et al. [19] show the detail

analysis of their novel approach to the Guderley [24] solution and argue the case

for t> 0.

Theoretical handling of the one-dimensional form of governing equations con-

tinues to this day, with the introduction of new equations of state or constitutive

relations to simulate shock dynamics in more, complicated physical situations, or in

other types of continua (including real gases).

Some other techniques were developed by Chester-Chisnell-Whitham, which is

known as (C-C-W) [39–41] theory and along with Whitham’s Easy-shock theory

[23, 24], provided researchers with a new graphically operable tool to simulate

shock dynamics.

For the CCW theory, shocks are considered as discontinuities between contin-

uously varying sections of fluids. The continuous fluid sections were solved for by

using the modified set of quasi-1-dimensional Euler equations in its characteristics

form, while the variations across wave fronts are governed by the Rankine–

Hugoniot relations.

The ultimate result was a new governing equation relating the local duct area

(at shock location) to the local shock Mach number, incorporating the newly,

defined Chester function, named after its inventor. Although the quasi-1D deriva-

tion was meant to deal with flows in ducts with varying cross-sections, the simpli-

fied set of equations was used for handling the cylindrical and spherical converging

shocks (where symmetry ensures one-dimensionality) [42, 43].

This method of solution was, extended to multiple dimensions using the Ray

shock theory deduced by Whitham [23, 24]. Based on concepts from geometrical

acoustics, the method employs successive shock contours and their orthogonal

trajectories (rays) as curvilinear coordinate lines. It was assumed that no lateral

flow takes place across the ray lines, meaning that the rays coincide with stream-

lines at the shock location. The geometrical compatibility requirements lead to one

differential equation relating the shock Mach number, M, and the ray-tube area, A,
for each tube. A second relationship between the two quantities is deduced using the

C-C-W theory for the motion of a shock wave down a tube of varying cross-section.
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The resulting equations are of hyperbolic nature and a solution can be deduced

using the method of characteristics, which also describes the motion of lateral

waves on the shock front. These are interpreted as the intersection of acoustic

waves with the shock front, and the case where these waves break is termed a

“shock–shock” (which is well visualized in the case of Mach reflection) [44].

More details can be found in reference by El-Mallah [44] in his thesis. In

summary, the problem of Collapse of a Spherical or Cylindrical Cavity and

Converging Shock Wave from a Spherical or Cylindrical as result of implosion

are considered to be self-similar solutions and it can be shown to be unstable for

most ranges of γ.
A related problem is that of converging shock waves, which also possesses a

similarity solution. Indeed, self-similar solutions of both these problems belong to

the class called the “second kind” (Zel’dovich and Raizer (1967)) [19] for which

dimensional analysis or group properties of the PDEs do not fully determine the

self-similar form of the problem; they require a global solution of an eigenvalue

problem for the reduced system of ODEs. Typically, for this class of problems the

exponent in the definition of the similarity variable turns out, in general, to be an

irrational number.

For the converging shock problem, which was first studied by Guderley (1942)

[24], this exponent in the similarity variable ξ¼ rt�α was found to be 0.717 for the

spherical converging shock for γ ¼ 1.4. Several other investigators later refined this

value and good discussion is given by Sachdev [23].
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