Chapter 1
Probabilistic Background

1.1 Markov Chains

For this brief section, we only provide the minimum amount of information necessary;
for further details, readers who are not probabilists may refer to any standard textbook
on countable Markov chains (MCs) in discrete time.

A discrete time homogeneous Markov chain with a denumerable state space A is
defined by the stochastic matrix

P=|pus|. aBeA

such that
Pap =0, D pap=1, VaeA
B
The matrix elements of P” will be denoted by pf{" 3

Definition 1.1.1 An MC s called irreducible if, for any ordered pair «v, (3, there exits
an m, depending on («, [3), such that

pl #0.

In addition, an irreducible MC is called aperiodic if, for some «, 8 € A, the set
{n: p&"ﬁ # 0} has a greatest common divisor equal to 1. It follows that the same

property is true for all ordered pairs «, 3.

Definition 1.1.2 An irreducible aperiodic MC is called ergodic if, and only if, the
equation
P =, (1.1.1)
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where 7 is the row vector m = (7, « € A), has a unique ¢;-solution up to a multi-
plicative factor, which can be chosen so that

Zwa =1, together with 7, > 0.
«

The 7, ’s are called stationary probabilities (see [15]). The random variable repre-
senting the position of the chain at time n will be written X, and X will denote the
random variable with distribution 7.

1.2 Random Walks in a Quarter Plane

The class of MCs we shall mainly consider in this book are called maximally space
homogeneous random walks. They are characterized by the following three proper-
ties.

P1 The state space is A = Z2 = {(i, j) : i, j > 0 are integers}.

P2 (Maximal space homogeneity) Zi_ is supposed to be represented as the
union of a finite number of non-intersecting classes

z:=Js. (1.2.1)

Moreover, for each r and for all o € S, such that

Paa+ijy 0, a+(,)) € 7%,

Da.a+, j) does not depend on «, and can therefore be denoted by , p;;. Throughout
most of the book, the classes S, will have the following structure:

Z3 =SUS US"U{(0,0)} (1.2.2)

where
S ={GJj):i,j>0},
S = {@,0):i >0}
S” = {(,j):j >0}

The internal parts S" and S” are called respectively the x-axis and y-axis. In this
case, the probabilities , p; ; will be simply written pi;, p;;, pj, p?j, according to
their respective regions S, S’, S”, and {(0, 0)}. It is worth noting, nevertheless, that
in Sect. 1.3 a more general partition of the state space is considered.
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The last property deals with the boundedness of the jumps, which will be assumed
unless otherwise stated (see e.g., Chaps.5 and 6).

P3 (Boundedness of the jumps) For any o € S,
Pap =0, unless —d~ < (B—a); <dt,

for some constants 0 < dri < 00, where (6 — «); is the i-th coordinate of the vector
B — a,i = 1, 2. In addition, the next important assumption will hold throughout this
book

df =1, fortheclass S, =S.

The ergodicity conditions for the random walk £ can be given in terms of the mean
jump vectors

= (Mo M) = (D > jrs)
M’ M’ (le”,Z]p”) (1.2.3)
" (M” M” (lelj,ZJp )

We shall consider only irreducible aperiodic random walks.

=D g¢ =

Theorem 1.2.1 When ﬁ # 0, the random walk is ergodic if, and only if, one of the
following three conditions holds:

M, <0, M, <0,
1 { MM, — MM, <0,

MM — MXM;,’ < 0;
2. M, <0, My>0, M,M]— MXM;’ <0,
3 M. >0, My, <0, M.M,— M,M, <O0.

A probabilistic proof of this theorem exists in [36]. A new and purely analytic proof

is presented in Chap. 5 and the analysis of the case ﬁ = 0 is carried out in detail in
Chap.6.

As stated in the general introduction, this monograph intends to provide a method-
ology of an essentially analytic nature for constructing and effectively computing the
invariant measures associated with the random walks introduced in the present sec-
tion. In fact, it is worth emphasizing that all these methods can also be employed
(up to some additional technicalities) to analyze the transient behavior of the random
walk, and to solve explicitly Kolmogorov’s classical equations, which describe the
time-evolution of the semigroup associated to a Markov process, see, e.g., [15].
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1.3 Functional Equations for the Invariant Measure

We derive here the fundamental functional equations to be used throughout the book.
It seems useful to present them in a more general situation, which means that for
now we do not assume any boundedness of the jumps. To that end, consider the MC

X,=(X).....X}), n>=0, X,eZ’,
with state space
Zh =lz=@,...,w) 520, i=1,...,k

which is partitioned into a finite number of classes

7t =JSs..

so that the following assumption holds: two states belong to the same class S, if,
and only if, the probability distributions P, of the jumps from these states are the
same. The corresponding probability densities are the , p;; introduced previously in
Sect. 1.2.

Let us define the vector of complex variables

u= Wwy,...,ur), u; €C, |u|=1, i=1,...k,
and the jump generating functions
Pr(u) = Elu™ ™) /X, =z], z€S, (1.3.1)

with the standard notation

k
A Zi
M—IIM,

i=1

Since by our assumptions P, (u) does not depend on z, Kolmogorov’s equations take
the form

E[MX"“] =F [MX"MX"“_X”] = Z E [MX” H{Xngsy}] P.(u). (1.3.2)

To account for the stationary case, we introduce the generating functions

™) = E [u¥lixes)] = D mut, (1.3.3)

z€S,
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where 7, denotes the stationary probability of being in state z. Taking the limit
n — oo in (1.3.2) and using (1.3.3), we get the basic equation

> = Pl 7 (u) = 0. (1.3.4)

Note that when the jumps are bounded from below, (1.3.4) is defined for all u =
Uy, ...,u),u; €C, |lu;| <1, i =1,...,k. Since we shall mainly consider the
case k = 2, it will be convenient to rewrite (1.3.4) in a more explicit way, by means
of the notation below, which will be ubiquitous throughout the book.

. 00
m(x,y) = Zﬁijxiflyjfl,
ij=1
T o= > mex'
i>1
T = > my
I
Q(x,y) = xy(Zpijx"yj - 1)7 (13.5)
ij
q(x,y) = x(z > pxty - 1)
i>—1 j>0
gx,y) = y(z > pixty - 1),
i>0 j>—1
oy = (X pha'y 1),
iJj

where we have set p%; = p0,0).q.j)-
Now Eq. (1.3.4) takes the fundamental form

[— 0, 7, y) = g, T + G0, DTG + Toogo(x, y) | (1.3.6)

When property P3 holds, it is immediate to check that the functions Q, ¢, ¢ and g
introduced in (1.3.5) are polynomials in x, y. In addition, 7 (x, y), 7(x), 7(y) have to
be holomorphic in the region |x|, |y| < 1. Thus, the analysis of the invariant measure
of the random walk amounts to solving the functional Eq. (1.3.6), in agreement with
the next theorem.

Theorem 1.3.1 For the irreducible aperiodic random walk to be ergodic, it is nec-
essary and sufficient that there exist w(x, y), m(x), w(y) holomorphicin |x|, |y| < 1,
and a constant my, satisfying the fundamental Eq.(1.3.6) together with the £;-

condition .

Z || < oo. (1.3.7)

i,j=0

In this case these functions are unique. |
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Theorem 1.3.1 proceeds directly from the material given in Definition 1.1.2, asserting
existence and uniqueness of a finite invariant measure for irreducible ergodic Markov
chains. We shall look for solutions of (1.3.6) from the following point of view:

Find functions m(x, y), m(x), 7(y), satisfying (1.3.6), holomorphic in D x D and
continuous in D x D, where

def T~ def

D={ze€C:l|z]<1} and D={z€C :|z] < 1}.

The main idea consists in working on the variety Q(x, y) =0, (x,y) € D x D and
the content of this book shows, by means of various approaches, that this is sufficient
to obtain all the aforementioned functions.

Remark 1.3.2 A priori, finding a solution 7(x, y), holomorphic in D x D and con-
tinuous in D x D, does not imply the ¢;-condition (1.3.7), as it emerges from the
theory of functions of several complex variables (see for instance [10]). Furthermore,
supposing that the system is not ergodic, we will see that a solution of (1.3.6) exists,

holomorphic in D, x D,, witha < 1, where D, is the disc D, Z£{zeC :|z] <a).
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