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2.1 Introduction

In survival analysis with covariates, many parameters of interest are special cases of
the integral:

θ(ϕ) =
∫
Rp

∫ ∞

0
ϕ(t, z)F( dt | z) H( dz). (2.1)

Here, T is the time of an event and Z a p-dimensional vector of covariates,
ϕ a square integrable function, and F(t | z) = P (T ≤ t | Z = z) and H( dz) =
P (Z ∈ dz) denote the conditional survival distribution and the marginal law of Z ,
respectively. For example, θ(I {t > t∗}) is the marginal survival probability at time
t∗, θ(I {t > t∗, z1 > z∗1}) the bivariate distribution at (t∗, z∗1) (Akritas 1994), and
θ([I {t > t∗} − m(t∗|z)]2) the expected Brier score of a regression model m which
predicts survival at time t∗ conditional on the covariates (Graf et al. 1999). In the
absence of covariates, using the integrand ϕs(t) = exp(st) in (2.1) has been used for
expressing the moment generating function of multi-state survival times (Hudson
et al. 2014).
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In a remarkable series, Stute (1993, 1996, 1999) analyzed an estimator of (2.1) for
right censored observations of the survival time. The estimator is called the Kaplan-
Meier integral. In this paper we first show that Stute’s estimator can be written as an
inverse of the probability of censoringweighted (IPCW) estimator (Van der Laan and
Robins 2003) and then review the structural assumptions of the estimation problem
and the asymptotic properties of the estimator.

In biostatistics, Stute’s method has recently been put to prominent use for esti-
mating transition probabilities in non-Markov illness-death models (e.g., Meira-
Machado et al. 2006;Andersen and Perme 2008;Allignol et al. 2014; deUña-Álvarez
and Meira-Machado 2015). For instance in oncology, illness-death models are used
to jointly model progression-free survival and overall survival, and Kaplan-Meier
integrals apply interpreting progression-free survival as the covariate and overall
survival as time-to-event. We illustrate the general program of the present paper
in this example. Using IPCW representations, we obtain simplified estimators that
even allow for left-truncated data. Left-truncation is another common phenomenon
in survival analysis describing a situation of delayed study entry where individuals
are included in prospective cohorts after time origin, conditional on still being alive
(Keiding 1992).

2.2 The Kaplan-Meier Integral

Let C be a positive random variable (the censoring time) and suppose that instead
of (T, Z) one observes X = (T̃ , �, Z) where T̃ = min(T,C) and � = I {T ≤ C}.
Stute’s estimate of (2.1) is defined on a set of n iid right censored observations
X1, . . . , Xn . Let T̃1:n ≤ · · · ≤ T̃n:n denote the ordered values of T̃1, . . . , T̃n , and
(δi :n, Zi :n) the concomitant status and covariate values. Stute (1993) introduced the
estimate

θ̂(ϕ) =
n∑

i=1

Win ϕ(T̃i :n, Zi :n) (2.2)

where

Win = δi :n
n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ j :n
.

The weightsWin do not only match the initials of their inventor’s first name, they are
also equal to the jump sizes of the Kaplan-Meier estimator for the marginal survival
function of Ti and thereby justify the name “Kaplan-Meier integral”.
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Lemma 1 Assume that there are no tied event times, i.e., T̃i :n < T̃(i+1):n, i =
1, . . . , n − 1. The product limit forms of the Kaplan-Meier estimators of the mar-
ginal survival time distribution S(t) = P(T > t) and the marginal censoring time
distribution G(t) = P(C > t) are given by

Ŝ0(t) =
∏

i :T̃i :n≤t

{
1 − δi :n

n − i + 1

}
Ĝ0(t) =

∏
i :T̃i :n≤t

{
1 − (1 − δi :n)

n − i + 1

}
.

The corresponding IPCW sum forms are:

Ŝ0(t)Ĝ0(t) = 1

n

n∑
i=1

I {T̃i :n > t}

Ŝ0(t) = 1 − 1

n

n∑
i=1

I {T̃i :n ≤ t}δi :n
Ĝ0(Ti :n)

,

and

Ĝ0(t) = 1 − 1

n

n∑
i=1

I {T̃i :n ≤ t}(1 − δi :n)
Ŝ0(Ti :n)

.

Proof These relations were readily noted by Gill (1980, page 36) in slightly more
general form, that is allowing for tied times.

Lemma 2 Under the assumption of Lemma 1 the weights of the Kaplan-Meier inte-
gral equal the jump size of the Kaplan-Meier estimator:

Wi :n = Ŝ0(T(i−1):n) − Ŝ0(Ti :n)

The Kaplan-Meier integral has the following IPCW representation:

θ̂(ϕ) = 1

n

n∑
i=1

ϕ(Ti :n, Zi :n)δi :n
Ĝ0(Ti :n)

.

Proof It follows from Lemma 1 that

Ŝ0(T(i−1):n) − Ŝ0(Ti :n) = −1

n

i−1∑
j=1

δ j :n
Ĝ0(Tj :n)

+ 1

n

i∑
j=1

δ j :n
Ĝ0(Tj :n)

= 1

n

δi :n
Ĝ0(T̃i :n)

.

The claim follows since

nWin = n δi :n
n − i + 1

i−1∏
j=1

(
n − j

n − j + 1

)δ j :n
= n δi :n

n − i + 1

i−1∏
j=1

(
1 − δ j :n

n − j + 1

)

= δi :n
n

n − i + 1
Ŝ0(T̃(i−1):n) = δi :n

Ĝ0(T̃i :n)
.
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Interestingly, Lemma 2 shows that the IPCW sum form of the Kaplan-Meier
estimator (Satten and Datta 2001) is the special case of the Kaplan-Meier integral
where ϕ(t, z) = θ̂(I {t > t∗}) Akritas (2000).

2.3 Identifiability and Structural Assumptions

2.3.1 Support

In biomedical applications of survival analysis, due to limited follow up times, the
support of the censoring times is usually strictly smaller than the support of the
survival times. This means that inference on the tail of the survival distribution
is not feasible and to identify the parameter in (2.1) based on the right censored
observations we have to truncate the parameter at some point in time. To formalize
all this let τ0 = infs P(C > s) = 0 and τ1 = infs P(T > s) = 0 denote the limits
of the supports of C and T , respectively. To meet the setting of typical biomedical
applications of survival analysis, we assume τ0 < τ1, and to achieve identifiabilitywe
assume thatϕ satisfies the following condition for some functionϕ∗ of the covariates
only and ε > 0:

ϕ(t, z) = ϕ(t, z)I {t ≤ τ0 − ε} + ϕ∗(z)I {t > τ0 − ε}. (A1)

For example, the mean restricted lifetime is defined as θ(t I {t > t∗}) for a suitably
chosen truncation time t∗. We refer to Stute (1993, 1996) for a rigorous discussion
of the borderline cases where ε → 0.

2.3.2 Independence

Assumption (A1) is not sufficient to achieve identifiability and a further assumption
is needed regarding the independence of the censoring mechanism (Tsiatis 1975;
Grüger et al. 1991; Gill et al. 1995). To discuss the different assumptions that lead
to identifiability we introduce the function G whose values are the conditional prob-
abilities that an observation is uncensored given the event time and the covariates:

P (� = 1 | Z = z, T = t) = P (C > t | Z = z, T = t) = G(t, z). (2.3)

Even without further independence assumptions, the density of a right censored
observation X (with respect to an appropriately chosen dominating measure) can be
decomposed as

P (T̃ ∈ dt,� = δ, Z ∈ dz) = {P (� = 1 | Z = z, T = t) P (T ∈ dt, Z ∈ dz)}δ
+ {P (� = 0 | Z = z,C = t) P (C ∈ dt, Z ∈ dz)}(1−δ).
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The first term can be expressed as

P (T̃ ∈ dt, � = 1, Z ∈ dz) = P (� = 1 | Z = z, T = t)P (T ∈ dt, Z ∈ dz)

= G(t, z) F( dt | z) H( dz) = P (1)( dt, dz)

and this relation motivates the general form IPCW estimation equations for θ:

θϕ(F, H) =
∫

ϕ(t, z) F( dt | z) H( dz) =
∫

ϕ(t, z)
P (1)( dt, dz)

G(t, z)
= νϕ(P (1),G).

(2.4)
Since P (1) only depends on the right censored observations it can be estimated non-

parametrically, i.e., by the empirical lawof theuncensoredobservations P̂
(1)
n (A, B) =

1
n

∑n
i=1 I{T̃i ∈ A,�i = 1, Zi ∈ B}. The general form of the IPCW estimate of θ is

then obtained by also substituting an estimate Ĝ for G:

θ̂n(ϕ) = ν̂n(ϕ; P̂ (1)
n , Ĝ) = 1

n

n∑
i=1

�iϕ(Ti , Zi )

Ĝ(Ti , Zi )
.

To justify the IPCW estimate defined in Lemma 2 above, Stute (1993, 1996)
restricted the model for G by assuming

T and C are independent, (A2)

P (T ≤ C | T, Z) = P (T ≤ C | T ). (A3)

These two conditions together imply

G(t, z) = P (C > t |T = t, Z = z)
A3= P (C > t |T = t)

A2= P (C > t). (2.5)

Alternatively, we may assume

T and C are conditionally independent given Z (A4)

which is familiar from the Cox regression model (compare Begun et al. 1983, page
448). Under (A4) we have

G(t, z) = P (C > t | Z = z). (2.6)

Comparing (2.5) and (2.6) shows that under (A2) and (A3) the function G is a
simpler parameter, because it does not depend on the covariates.Note also that neither
(A2) implies (A4) nor (A4) implies (A2), and that in generality both assumptions
permit that the censoring times depend on the covariates. However, we emphasize
that under (A2) and (A3) the functionG does not depend on the covariates and hence
the conditional censoring distribution may depend on the covariates only in regions
of the underlying probability space that are irrelevant for estimation of θϕ.
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Under (A2) and (A3) the function G(t) = P (C > t) equals the marginal survival
function of the censoring times and can be estimated consistently by the marginal
reverse Kaplan-Meier estimator for the survival function of the censoring times as
defined in Lemma 1. Under (A4) we need to estimate the conditional censoring
distribution. Only when all covariates are discrete variables this can be done without
further modelling assumptions.

2.4 Large Sample Properties of the Kaplan-Meier Integral

Lemma2 shows that the plug-in IPCWestimator ν̂n(P̂
(1)
n , Ĝ0) equals Stute’sKaplan-

Meier integral (2.2). Stute (1993, 1996) proves strong consistency and weak conver-

gence of θ̂(ϕ)=ν̂n(P̂
(1)
n ,Ĝ0) and obtains the following i id representation (translated

to our notation)

√
n(θ̂(ϕ) − θ) = 1√

n

n∑
i=1

ICθ̂(ϕ)
(T̃i ,�i , Zi ) + oP (1)

where the influence function ICθ̂(ϕ)
of the Kaplan-Meier integral is given in the

following theorem.

Theorem 1 Under (A1), (A2) and (A3) the Kaplan-Meier integral

θ̂(ϕ) = ν̂n(P̂
(1)
n , Ĝ0)

is consistent and regular, asymptotically Gaussian linear with influence function

ICθ̂(ϕ)
(T̃i , �i , Zi ) = �i

ϕ(T̃i , Zi )

G(T̃i )
+ (1 − �i )

W (T̃i )

∫ ∞

T̃i
ϕ(s, z) F( ds | z) H( dz)

−
∫ {∫ T̃i∧s

0

G( du)

W (u)G(u−)

}
ϕ(s, z) F( ds | z) H( dz) − θ(ϕ)

(2.7)

where W (t) = P (T̃i > t).

Proof See Stute (1993, 1996). An alternative proof can be obtained by applying the
functional delta method (e.g. Van der Vaart 1998, Theorem 20.8) to the Hadamard
differentiable functional ν(G,P (1)) using that both the Kaplan-Meier estimator for

the censored times Ĝ0 and the empirical distribution function P̂
(1)
n are

√
n-consistent

in appropriately normed spaces of distributions (Reeds 1976; Van der Vaart 1991).
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2.5 Bias and Efficiency

The Kaplan-Meier integral can have a large sample bias and it is not efficient even
not when assumptions (A2) and (A3) are satisfied. The bias can be seen when the
conditional survival distribution of the censoring times depend on the covariates
P(C > t |Z = z) 	= P(C > t). In this case the marginal Kaplan-Meier estimator for
the censored times Ĝ0(t) converges in probability to G̃(t) = ∫

Rp G(t | z) H( dz)

and the large sample bias of θ̂(ϕ) is given by the following limit as n → ∞:

∣∣∣θ̂(ϕ) − θ(ϕ)

∣∣∣ →
∣∣∣∣
∫

ϕ(t, z)

{
1

G̃(t)
− 1

G(t, z)

}
P (1)( dt, dz)

∣∣∣∣ .

Rotnitzky and Robins (1995) were the first to observe that the Kaplan-Meier integral
is not efficient even not when it is consistent and the survival distribution of the
censored times does not depend on the covariates.

The following is a special case of Van der Laan and Robins (2003, Theorem 1.1
and Example 1.12), see also Gerds (2002).

Proposition 1 The efficient influence function for estimation of θ based on the right
censored data (T̃i , �i , Zi ) is given by

ICeff(T̃i ,�i , Zi ) = �i
ϕ(T̃i , Zi )

G(T̃i | Zi )
+ (1 − �i )

W̃ (T̃i | Zi )

∫ ∞

T̃i
ϕ(s, Zi ) F( ds | Zi )

−
∫ ∫ T̃i∧s

0

G( ds | z)
W̃ (s | z)G(s− | z) ϕ(s, Zi ) F( ds | Zi ) − θ(ϕ) (2.8)

where W̃ (t | z) = P (T̃ > t | Z = z).

A regular, asymptotically linear estimator is asymptotically efficient if and only
if the influence function of the estimator equals the efficient influence function for
the estimation problem. Hence, comparing (2.8) with (2.7) shows that θ̂(ϕ) is inef-
ficient except for the case where G(t, z) = G(t, z′) and F(t, z) = F(t, z′) for all
z, z′, i.e. where the covariates are independent of both survival and censoring times
(Malani 1995). At first glance, the inefficiency of the Kaplan-Meier integral may
appear counter-intuitive as it is not so obvious where the information is lost. A closer
look however reveals that the covariate values corresponding to the right censored
observations do not enter the statistic (2.2). But, there is information in the fact that
no event happened until the end of followup (right censored). This information can
be recovered by a model for the conditional survival function of the censored times
given the covariates. For example, a standard Cox regression model fitted to the
censored times yields

Ĝ1(t, z) = exp

{
−

∫ t

0
exp(̂β z) �̂0( ds)

}
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where β̂ and �̂0 are the partial likelihood estimates of the regression coefficients
and the Breslow estimate of the cumulative baseline hazard function, respectively.

The corresponding plug-in IPWC estimator ν̂n(P̂
(1)
n , Ĝ1) is more efficient than the

IPCW estimator using Kaplan-Meier for the censoring, but it is still inefficient. The
influence curve for this estimator equals (�i ϕ)/G − θ(ϕ) minus its projection on
the tangent space of the scores of the censoring model, as shown in Van der Laan and
Robins (2003, Sect. 2.3.7). The principle of adaptive estimation (Bickel et al. 1993) in
this situation can be expressed as follows: The bigger the censoring model the more
efficient the IPCW estimator. In particular, if one has available a consistent estimator
in a saturated model for G, then the correspondingly defined IPCW estimator is
fully efficient. Similarly, it is known that in general the traditional survival rank
test needs the whole nonparametric model for its efficiency (Neuhaus 2000). But if
the covariates are continuous or high dimensional such estimators perform not very
nicely in small samples due to the curse of dimensionality. A practical solution is
given by doubly robust estimators which rely on models for both G and F and are
locally efficient if both models are correctly specified. If either the model forG or the
model for F is correctly specified then the estimator is consistent and asymptotically
linear.

2.6 Empirical Results

This section illustrates the magnitude of the potential bias and efficiency loss in the
special case θ(I {t > t∗}), i.e., where the parameter is the marginal survival function
at t∗. Note that in this case the Kaplan-Meier integral (with Ĝ0) equals the ordinary
Kaplan-Meier estimate. See (e.g. Gerds and Schumacher 2006) for a similar sim-
ulation study of IPCW estimators of a more complex parameter. We consider two
simulation scenarios. For both settings, a binary covariate is drawn from the binomial
distribution with P(X = 1) = 0.5. The survival and censoring times were generated
using parametric Cox proportional hazard models λT

0 exp(1.5Z) and λC
0 exp(γZ),

respectively, as described in Bender et al. (2005). In the first setting we set γ = 1.2
so that the censoring time distribution depends on the covariate. In the second set-
ting we set γ = 0 so that only the survival times depend on the covariate. In both
settings the baseline hazards λT

0 and λC
0 were chosen so that S(t = 70) = 62% and

P(C ≤ 70, T > C) = 60%. We contrast estimates of the parameter θ(I {t > 70})
obtained with the Kaplan-Meier estimate ν̂n(P̂

(1)
n , Ĝ0) and with the IPCW estimate

ν̂n(P̂
(1)
n , Ĝ2) where

Ĝ2(t, z) =
∏

i :Zi=z,T̃i :n≤t

{
1 − (1 − δi :n)

n − i + 1

}
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Table 2.1 Summary of simulation study for estimating P(T > 70) = 62% based on right cen-
sored data where P(C ≤ 70, T > C) = 60%. In setting 1 both the survival time distribution and
the censoring time distribution depend on a binary covariate. In setting 2 only the survival time
distribution depends on a binary covariate

Setting Estimate Bias (%) Variance (%) MSE (%)

Censoring
dependent

ν̂n(P̂
(1)
n , Ĝ0) 5.0118 0.309 0.560

on covariate ν̂n(P̂
(1)
n , Ĝ2) −0.0366 0.266 0.266

Censoring
independent

ν̂n(P̂
(1)
n , Ĝ0) −0.0228 0.286 0.286

of covariate ν̂n(P̂
(1)
n , Ĝ2) −0.0369 0.261 0.261

is the stratified Kaplan-Meier estimate for the censored times conditional on the
strata defined by Z = z. We report averaged small sample bias and mean squared
errors across 2000 simulated data sets.

Table2.1 shows the results for sample size 200. In the first setting there is a large

bias in the marginal Kaplan-Meier estimate whereas ν̂n(P̂
(1)
n , Ĝ2) is less biased.

In addition, the variance of the marginal Kaplan-Meier estimate is bigger. In the
second setting the marginal Kaplan-Meier IPCW estimate is no longer biased. The
same holds for the stratified Kaplan-Meier IPCW estimate. However, the marginal
Kaplan-Meier IPCW estimate still has a larger variance than the stratified Kaplan-
Meier IPCW estimate (see Table2.1).

Figure2.1 illustrates the difference between the estimators as a function of the
sample size. We see that the MSE can be large and this is due to a large bias as
can be seen from the data in Table2.1. The left panel of the figure indicates that the
difference in MSE decreases with increasing sample size. However, Fig. 2.2 reveals
that the relative advantage of the stratified Kaplan-Meier IPCW estimate does note
decrease with increasing sample size. The figure also shows that the magnitude of
the relative gain in MSE depends on the predictiveness of the covariate and on the
amount of censoring.

2.7 Non-Markov Illness-DeathModelWithout Recovery

The illness-death model without recovery has important biostatistical applications,
for example in oncology. In this section we make the connection with the Kaplan-
Meier integral. We therefore consider a stochastic process (Xt )t∈[0,∞) which has
state space {0, 1, 2}, right-continuous sample paths, initial state 0, P(X0 = 0) = 1,
intermediate state 1 and absorbing state 2. This process describes an illness-death
model without recovery when also the probability of a recovery event is zero, i.e.,
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n , Ĝ0), solid line) and IPCW estimator based on stratified Kaplan-Meier for censor-

ing time distribution (ν̂n(P̂
(1)
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when P(X (t) = 0|X (s) = 1) = 0 for all s ≤ t . The process can equivalently be
described by a pair of random variables

T0 = inf{t : Xt 	= 0} and T = inf{t : Xt = 2}

so that T0 is the waiting time in the initial state, XT0 ∈ {1, 2}, and T the time until
the absorbing state is reached. The process passes through the intermediate state 1, if
and only if T0 < T , and T0 = T if the process does not pass through the intermediate
state. Our aim is to estimate the transition probabilities between state l ∈ {0, 1} and
state j ∈ {1, 2}

Pl j (s, t) = P(Xt = j | Xs = l) (2.9)

for pairs of time points (s, t) that satisfy s ≤ t .
Based on right censored data of the illness-death process Meira-Machado et al.

(2006) derive an estimator for (2.9) starting with the following representations:

P01(s, t) = P(s < T0 ≤ t, t < T )

P(T0 > s)
,

P11(s, t) = P(T0 ≤ s, t < T )

P(T > s) − P(T0 > s)
. (2.10)

The challenge in estimating the right hand sides in (2.10) stems from the numerators,
while straightforward Kaplan-Meier estimation applies to estimating P(T0 > s) and
P(T > s). For the numerators, Meira-Machado et al. (2006) apply Stute’s Kaplan-
Meier integral with ‘covariate’ Z = T0. Allignol et al. (2014) showed that the esti-
mator of Meira-Machado et al. (2006) can alternatively be derived from a suitably
defined competing risks process and they also obtain an IPCW representation of the
estimator ofMeira-Machado et al. (2006) for P01(s, t) in a similar fashion as we have
for the Kaplan-Meier integral in Sect. 2.2. In bivariate (T0, T )-time several IPCW
estimators are available, and Allignol et al. (2014) also discuss an IPCW estimator
which uses the estimate of the survival function of the censored times suggested by
Tsai and Crowley (1998). This results in a simplified estimator which could easily be
extended to left-truncated data. Unfortunately, the Tsai andCrowley (1998) approach
is not applicable for estimating P11(s, t).

In what follows we discuss the Kaplan-Meier-integral based estimator of P11(s, t)
from the IPCW-perspective. For this we express P(T0 ≤ s, t < T ) as a special case
of (2.1):

P(T0 ≤ s, t < T ) =
∫

I (z ≤ s, y > s) P T0,T ( dz, dy).
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For estimation we assume i.i.d. replications (T̃0i , T̃i ,�i ), i = 1, . . . n, where T̃0i =
min(T0i ,Ci ), T̃i = min(Ti ,Ci ), and �i = I (Ti ≤ Ci ). It is convenient to introduce
counting processes

N (u) =
n∑

i=1

I {i : T̃i ≤ u, �i = 1},

N∗(u) =
n∑

i=1

I {i : T̃i ≤ u, �i = 1, T0i ≤ s, Ti > t},

Y (u) =
n∑

i=1

I {i : T̃i ≥ u}.

Straightforward algebra shows that the estimator of Meira-Machado et al. (2006) for
P(T0 ≤ s, t < T ) equals

∑
u

∏
v

(
1 − �N (v)

Y (v)

)
�N∗(u)

Y (u)
, (2.11)

where both the sum and the product in (2.11) are over all observed unique times
to the absorbing state and �N and �N∗ denote the increments of the count-
ing processes. Since

∏
v(1 − �N (v)

Y (v)
) is a standard Kaplan-Meier estimator, the

IPCW-representations discussed earlier give rise to different possible IPCW-variants
of (2.11),

1

n

∑
u

(
P̂a(C ≥ u)

)−1
�N∗(u),

where P̂a(C ≥ ·) is some consistent estimator of the censoring survival function.
Recall that in bivariate time there are several possible Kaplan-Meier-type estimators
of P(C ≥ ·), simple choices only using either {T̃0i : T0i > Ci , i = 1, . . . n} or {T̃i :
Ti > Ci , i = 1, . . . n}. Using representation (2.10), we may estimate P11(s, t) by

1
n

∑
u

(
P̂a(C ≥ u)

)−1
�N∗(u)

|{i : T̃i>s}|
n P̂b(C>s)

− |{i : T̃0i>s}|
n P̂c(C>s)

, (2.12)

where P̂b(C ≥ ·) and P̂c(C ≥ ·) are some consistent estimators of the censoring
survival function. Because P11(s, t) conditions on being in state 1 at time s, the idea
is now to estimate the censoring survival function using the censoring times of the
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subjects that are uncensored by time s and are in the intermediate state at the end of
followup. In order to formalize this, introduce

Y (u; s) =
n∑

i=1

I {i : T0i < s, T̃i ≥ u}, u > s,

N (u; s) =
n∑

i=1

I {i : T0i < s, T̃i ≥ s, T̃i ≤ u,�i = 1}, u > s,

NC (u; s) =
n∑

i=1

I {i : T0i < s, T̃i ≥ s, T̃i ≤ u,�i = 0}, u > s.

In words, Y (u; s) is the number of individuals at risk of absorption at u− in the
subset of the data of subjects who are in the intermediate state and uncensored at
time s with associated counting process of observed absorption event N (u; s). NC is
the censoring counting process in this data subset. Note that N∗ only counts events
in the data subset at hand.

Now, define the following estimator of P(C ≥ u), u > s,

P̃(C ≥ u; s) = P̃(C ≥ u |C > s)P̃(C > s)

=
∏

v∈(s,u)

(
1 − �NC (v; s)

Y (v; s) − �N (v; s)
)
P̃(C > s), (2.13)

where the product in the last display is over all unique jump times of NC (·; s) and
P̃(C > s) is some consistent estimator of P(C > s).

Using (2.13) in (2.12) (and the same P̃(C > s) also for P̂b and P̂c) leads to the
estimator

P̂11(s, t) =
∑
u

∏
v

(
1 − �N (v; s)

Y (v; s)
)

�N∗(u; s)
Y (u; s) . (2.14)

We note four important facts about P̂11(s, t). Firstly, the estimator is similar
to (2.11) but evaluated in the data subset ‘in the intermediate state 1 at time s and
under observation at s’. Secondly, this data subsetting accounts for the condition-
ing on Xs = 1, and such data subsetting is, in biostatistics, known as landmarking
(e.g., Anderson et al. 2008; van Houwelingen and Putter 2012). Thirdly, the new
estimator (2.14) is just the right-hand limit of the standard Aalen-Johansen estimator
of a cumulative incidence function (irrespective of X (t) being Markov or not) and
inherits its asymptotic properties (e.g., Andersen et al. 1993, Sect. 4.4). And finally,
data subsetting (or landmarking) can easily be extended to random left-truncation
(delayed study entry). We illustrate this last aspect with a brief simulation study
comparing the Aalen-Johansen estimator of P11(s, t) with the new P̂11(s, t) in a
left-truncated non-Markov illness-death model. Recall that the original estimator of
Meira-Machado et al. (2006) has only been developed for right-censored data, but an
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IPCW-perspective on Kaplan-Meier-integrals has led to an estimator that naturally
accounts for left-truncation via landmarking.

To this end, consider n i.i.d. units under study with data (Li , T̃0i , T̃i ,�i ) as before
but with the addition of left-truncation times Li . We assume that (T0i , Ti ) is indepen-
dent of (Li ,Ci ) with P(Li < Ci ) = 1. We also assume that these n units are under
study in the sense that Li < T̃i for all i . In order to account for delayed study entry
at time Li , we re-define

Y (u; s) =
n∑

i=1

I {i : T0i < s, T̃i ≥ u, Li < s}, u > s,

and analogously for N (u; s) and NC (u; s). Then Y (u; s) still denotes the number
of individuals at risk of absorption at u− in the subset of subjects who are in the
intermediate state and under observation at time s, but now in the presence of left-
truncation.

Our simulation design is similar to the one of Meira-Machado et al. (2006).
We simulate waiting times T0 in the initial state from an exponential distribution
with parameter 0.039 + 0.026 and entries into the intermediate state, XT0 = 1, with
binomial probability 0.039/(0.039 + 0.026). For individuals moving through the
intermediate state, we set T = 4.0 · T0, making the model non-Markov. Random
right-censoring times were drawn from an exponential distribution with parameters
0.013 and 0.035, respectively, and random left-truncation was simulated from a skew
normal distribution with location parameter −5, scale 10 and shape 10. We report
averages of 1000 simulation runs per scenario, each with a simulated sample size
of 200 units.

Table2.2 shows bias (negative values indicate underestimation) and empirical
variance of our new estimator (2.13) and the standard Aalen-Johansen estimator
for P11(s, t) (Table2.3),

∏
u∈(s,t]

(
1 − |{i : Li < u = Ti ≤ Ci , T0i < Ti }|

|{i : Li < u ≤ T̃i , T0i < u}|
)

for s = 25. In the scenarios considered, the new estimator underestimates and the
Aalen-Johansen estimator over-estimates the true probability. The absolute bias in
general favours the new estimator, save for early time points and in particular with
more pronounced censoring. The empirical variance of theAalen-Johansen estimator
tends to be smaller save for later time points, one possible explanation being that the
new estimator uses less data.

2.8 Discussion

The Kaplan-Meier integral can be written as an inverse of probability of censoring
weighted estimator for which the weights are estimated with the usual Kaplan-Meier
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Table 2.2 Simulation results for estimating P11(25, t) from left-truncated and right-censored non-
Markovian data

censoring hazard 0.013 censoring hazard 0.035

t P̂11(25, t) Aalen-Johansen P̂11(25, t) Aalen-Johansen

Bias Variance Bias Variance Bias Variance Bias Variance

30 −0.0063 0.0029 0.0052 0.0023 −0.1090 0.0311 0.0066 0.0041

40 −0.0089 0.0065 0.0376 0.0047 −0.1101 0.0386 0.0404 0.0094

50 −0.0093 0.0081 0.0818 0.0056 −0.1049 0.0419 0.0877 0.0136

60 −0.0072 0.0082 0.1266 0.0060 −0.0999 0.0415 0.1341 0.0172

70 −0.0100 0.0077 0.1650 0.0061 −0.0974 0.0344 0.1691 0.0221

80 −0.0077 0.0064 0.2019 0.0058 −0.0728 0.0235 0.2132 0.0270

90 −0.0044 0.0037 0.2350 0.0055 −0.0378 0.0115 0.2530 0.0328

Table 2.3 True values of P11(25, t) to be estimated in the simulation study

t 30 40 50 60 70 80 90

P11(25, t) 0.8890 0.6930 0.5256 0.3843 0.2649 0.1623 0.0744

method for the censoring times. With this representation the large sample proper-
ties of the Kaplan-Meier integral and various modifications can be directly derived
with the functional delta method. We further showed in Sect. 2.3 that the conditions
imposed by Stute (1993, 1996, 1999) and followers (e.g. Orbe et al. 2003; De Uña
Álvarez and Rodriguez-Campos 2004) are practically equivalent to assuming that
the censoring is independent of the survival time and of the covariates. Then we
showed that it can be advantageous to derive estimators under the conditional inde-
pendence assumption allowing that the censoring distribution depends on covariates.
This improves efficiency and simultaneously reduces the risk of a large sample bias
(Robins and Rotnitzky 1992). Our empirical results illustrate the potential bias and
the inefficiency of the Kaplan-Meier integral in a specific setting (Table2.1).

However, in real data applications there is a tradeoff between the simplicity of
weighting all the uncensored observations with the Kaplan-Meier for the censoring
times and the potential advantages obtained with a working regression model for
the conditional censoring distribution. For example in a multi-state framework it is
possible to define consistent IPCW estimators for transition probabilities by using
the marginal Kaplan-Meier for the censoring (see e.g. Meira-Machado et al. 2006).
But, this approach implies that every censored process is weighted unconditional on
the state which is occupied at the censoring time. On the other hand, the methods
comprised in van der Laan et al. (2002); Van der Laan and Robins (2003) show
how to derive more efficient estimators based on an estimate of the survival function
of the censored times conditional on the history of the multi-state process and other
covariates. In Sect. 2.7, we have exploited this to derive a new estimator of a transition
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probability in a non-Markovian illness-deathmodel. Starting with an estimator based
on Kaplan-Meier integrals and using the IPCW principle, we also extended the
estimator for the case of right-censored and left-truncated data.

Stute’s theory of Kaplan-Meier integrals has arguably not entered the mainstream
literature on survival analysis, at least not the more biostatistically oriented one,
notable exceptions also including Orbe et al. (2002). On the other hand, Kaplan-
Meier integrals may form the basis for attacking complex survival models and
finding efficient estimators, which we have illustrated for the important illness-
death model. We believe that the theory deserves more attention, another pos-
sible field of application being competing risks models with a continuous mark
(e.g. Gilbert et al. 2008).
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