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Abstract The paper describes a semi-heterarchical manufacturing control solution
based on a private cloud infrastructure which collects data in real time from
intelligent devices associated to shop-floor entities: resources and mobile devices
embedding the work in process (WIP) on products during their execution cycle. The
cloud platform acts as a centralized system scheduler (SS), planning jobs and
allocating resources optimally at batch level, and integrates real-time data and status
information from agentified shop floor devices. The cloud infrastructure is also used
for storage of historic data, for manufacturing set up and control (configuring
resource teams for production orders received, selecting the control strategy choice,
dynamic rescheduling of order execution in case of resource failure or rush order
occurrence) and for hosting the web interface for: remote cell monitoring, reception
of client requests, cell configuration, raw material inventory and reports generation.
Implementation and experimental results are reported.

Keywords Cloud manufacturing + Private cloud «+ MES - High availability -
Distributing intelligence - Mobile/intelligent devices - Agentification

1 Introduction

Control paradigms for the manufacturing domain have evolved over time from
centralized to decentralized or semi-heterarchical [1] and were mainly driven by the
new trends in information and communication technology (ICT) such as: mobility,
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connectivity, increase of the decisional capabilities, service orientation and more
recently the usage of cloud infrastructures to host control applications, run intensive
optimization procedures and store large amount of production and resource data [2].
This is how the concept of cloud manufacturing (CMfg) arose [3]; its scope is to
handle manufacturing resources and processes according to the quality of services
(QoS) they provide, and thus efficiently operate and manage them in a unified
manner, providing high availability and flexibility in realizing customer orders in
both small batches and mass production [2].

At the manufacturing execution system (MES) level, cloud computing refers
mainly to virtualization of applications such as mixed batch planning, job
scheduling and resource allocation, or product traceability and production tracking
[4]. While MES implementations are different and dependent of the physical
infrastructure, the generic MES functions are standardized by ISA-95.03 specifi-
cations [5]. ISA-95 defines 5 levels for the hierarchical organization of a manu-
facturing enterprise, as follows: (i) layers 0, 1 and 2 represent the process control
level together with its associated intelligent devices and control system, (ii) layer 3
represents the manufacturing operating level and consists of a series of activities
such as scheduling, quality management, maintenance, production tracking, a.o.
and (iii) layer 4 is in charge with managing the business-related activities of the
manufacturing operation.

In conventional production structures with multiple workstations which allow
job-shop fabrication scenarios, there are several physical control and computing
entities that are single points of failure (SPoF) which can be avoided only by
hardware redundancy; among these entities which execute centralized tasks are the
system scheduler (for high performance computing (HPC) tasks), the product router
(the controller (PLC) responsible for routing products throughout the cell towards
assigned resources), and the central application for production tracking and
resource monitoring.

Private cloud platforms integrated as IaaS (Infrastructure as a Service) in man-
ufacturing solve the high availability (HA) problem through resource virtualization
techniques and provisioning of computing resources (CPU, storage, I/O) and
applications. Also, the system scheduler (SS) implemented in the cloud infras-
tructure must communicate with the distributed MES (dMES), in which manu-
facturing resources and product execution orders are agentified; these agents
cooperate in a multi-agent framework (MAS), both with the SS to receive scheduled
orders and report their execution, and between them at dMES level [6].

Secure communication protocols must be used in such CMfg systems in order to
access real-time production data and resource status information from agentified
devices: (i) mobile intelligent embedded devices containing both the order execu-
tion data (scheduled operations for product execution and assigned resource for
each operation) and the WIP data over the product’s execution lifecycle; (ii) sta-
tionary computing devices providing resource status data and receiving from the SS
application programs for assigned operations on products [7, 8].

The paper is structured in six sections: Sect. 2 describes the structure of the dual
SS-dMES control architecture, Sect. 3 describes the dynamic model of the control
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architecture, Sect. 4 describes the cloud infrastructure which will host the central-
ized system scheduler and integrating architecture, Sect. 5 presents an experimental
case study and the last section is devoted to conclusions.

2 The Control Architecture

The proposed semi-heterarchical control architecture performs manufacturing tasks
as follows: (i) resource team configuring, batch planning, product scheduling,
resource allocation, cell and production monitoring will be done on the upper SS
level running in cloud infrastructure for the received batch orders, and (ii) execution
and rescheduling of orders in execution will be done on the lower dMES level;
information will be communicated to the upper level for recording and decision
making at special event occurrence Resource breakdown/recovery, rush order, local
part storage depletion. The choice of having centralized batch optimization and
decentralized production control (which may override the centralized optimization)
is justified by the HPC availability to run complex optimization programs on far
(batch) horizon while having the ability to quickly react at unexpected events
possible through intelligence distribution, agentification and decentralization of the
control structure. The advantage of this semi-heterarchical control architecture is
that it can deal rapidly and locally with orders in execution while computing in
parallel at the upper level with high availability an optimized schedule for the orders
waiting to be executed. This reduces the myopia of the system at global batch level
and preserves the system’s agility.

The semi-heterarchical control solution is designed around a common database
containing four types of information distributed in 10 tables: (i) shop-floor level
information (1—available resources, 2—available operations, 3—products that can
be executed, 4—distribution of operations on resources, 5S—operations needed to
execute products), (ii) clients information (6—clients identification and 7—placed
orders), (iii) information resulted as a consequence of the planning and scheduling
(8—sequence of orders, sequence of operations, the resources processing the
operations and the specific time duration), and (iv) information needed to com-
municate between the web interface and the shop-floor level (9—operation exe-
cution reports and 10—synchronization data). The composing entities are
instrumented and the categories of information above defined are updated and
processed as depicted in Fig. 1.

(A) Orders, represented by WIP data, are instrumented with intelligent embedded
devices capable to run a multi-agent system and communicating over wireless
networks. From an informational point of view the WIP is represented by an
order agent. Each order agent sends to the database located on cloud the order
and operations status. It receives from cloud the product type, the operations to
execute according to a certain control strategy (hierarchical/heterarchical).
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Fig. 1 The 2-layer generic model for manufacturing control
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Processing resources (robots, CNC machines) have computing terminals
(PCs) attached to their controllers. The PCs run a multi-agent system used to
integrate the resources with the mobile embedded devices (located on pallet
carriers) embedding WIP, and with the cloud system. From an informational
point of view the resources are represented by resource agents who run on the
attached PC and send the periodically updated resource status to the database
located on cloud.

Resource and order agents are located on the same network and exchange
execution information (search operations on resources, request execution of an
operation, receive acknowledges from resources).

Transporting resources are represented by the devices of the conveyor (track
motors, lifts, diverting elements, etc.) controlled by a PLC which is accessed
through a TCP/OPC bridge. This type of resource communicates only with the
mobile order agents uploaded on the embedded devices of each pallet where a
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product will be progressively executed by the visited resources, and fulfils
transport services (ex.: order agent requests transport to a specified resource,
transport resource realizes the transport operation and an acknowledgement is
issued upon completion).

(D) The cloud infrastructure hosts a set of machines running the database, the
optimization engine, the web server and the agent used to synchronize the data
from the database with the optimization engine and with the shop-floor level.

3 The Dynamic Model

In order to provide coupling between applications running on the cloud infras-
tructure and shop-floor devices/resources composing the dMES [9], as well as a
flexible message structure which helps the integration of composing entities, the
Java Agent Development Framework (JADE) [10] has been used. JADE is specially
designed for the development of decentralized systems; control systems also fall
into this category, where software agents are loosely coupled and communicate
through messages standardized by the Foundation for Intelligent Physical Agents
(FIPA) (http://www.fipa.org).

Thus, each of the composing entities of the control architecture presented in
Fig. 1 has an associated agent: WIP is represented by an order agent, the resources
(both processing and transporting) are represented by a resource agent and a
supervisory agent runs on the cloud infrastructure. The result is an event-driven
architecture (EDA) [11] composed of individual agents used in a MAS framework
for monitoring and control; EAD’s main advantages are: easy integration of new
entities, smart data utilization and an asynchronous and non-blocking operating
mode.

The operating process (Fig. 2) of the control system is divided into several
sub-processes as follows:

e Continuous update of the GUI with information from shop-floor entities (re-
sources and WIP): resource confirm their online status periodically (each min-
ute) and order agents update the state of operations associated to resources after
their execution (Dynamic data for interface creation; System state and WIP,
Update WIP and visited resources state, Confirm the realization of a product,
Update resource data).

e Receipt of orders (orders are inserted through the CMfg GUI on the cloud
platform and stored in the associate database segment).

e Production optimization (orders are planned and scheduled taking into account
the resource availability); an optimization algorithm is selected and configured
by the user through the cloud GUI according to the enterprise strategy.

o Set up of the team of resources that will be involved in the execution of the
batch and updating their availability status.
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Fig. 2 The operating process of the control architecture

o Transmission of planned and scheduled orders to order agents embedded on
mobile devices entering the shop floor for product execution. The supervisor
agent is in charge with the individual transmission of each planned and
scheduled order to a dedicated order agent running on the embedded devices
entering the cell. (Signal start production, Read control strategy, Read
operations).

e Execution: each order agent will be in charge with the execution of its associated
product; when the product is finished, the pallet carrying the final product exists
the cell and the order holon is deleted, allowing thus the cloud SS to transfer a
new order agent for the execution of the next planned product.
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e Detection of resource failure and storage depletion. These events are discovered
due to continuous resource state update and monitoring of production execution;
they generate a rescheduling of orders on the newly available resources.
Resource update is done by resource agents in order to confirm they are online;
they are sent periodically (each minute) to the cloud infrastructure. Execution
monitoring is done by order agents, which are asynchronously tracking the
progressive realization of operations on resources.

4 HA Design of the Cloud Infrastructure

The upper control layer (Fig. 1) has been implemented using an IaaS (Infrastructure
as a Service) cloud system running the supervisor agent, database and optimization
engine. The cloud system used is an ISDM (IBM Service Delivery Manager) based
on Tivoli Service Automation Manager (TSAM) version 7.2 which uses as a
hypervisor VMware ESXi 4.1 [12]. Because the applications are running in cloud
one could consider that the applications benefit from all the cloud facilities, such as
High Availability (HA) offered by the hypervisor and also Distributed Resource
Sharing (DRS) offered by the hypervisor too. In reality the situation is not as simple
as that; using a cloud system does not mean that the CMfg applications will just
inherit the same facilities like the platform they are using.

Because the cloud system is an [aaS, it offers virtual machines as a service; these
virtual machines can be used to set up the environment in order to run the appli-
cations: in our case a complex database updated with differentiated timing and the
supervisor agent. The services in cloud are offered with the facilities that the cloud
system supports like HA, meaning that the virtual machines (VM) used will be
always available, but that does not guarantee that the applications inside the VM
will be offered with HA. The reason for this is that the software could have bugs
(the applications or the operating system) which will render the CMfg service
unavailable, even if the VM is properly running from hardware point of view.

In order to solve this high availability problem extended to real time CMfg
monitoring and control applications, an HA cluster was foreseen for database and
application availability. The solution we propose is depicted in Fig. 3 and is
composed by the following VMs:

1. Two load balancers (VMs) which are running in a cluster; the Load Balancer
VM is publicly available and can be accessed from Internet. The function of the
Load Balancer cluster is to get requests from internet for two types of services:
secure https requests (port 443) and JAVA agent communication, and to forward
these requests to the HA cluster in the internal network. The Load Balancer acts
also as a gateway for the HA Nodes. For the JAVA agent communication
requests a VPN tunnel implemented with IPSec (Internet Protocol Security) [13]
has been created between the Load Balancer and the manufacturing infras-
tructure. In this way the https requests are coming from Internet and the JAVA
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Fig. 3 The VM
infrastructure in cloud O

Internet

Service Network

Do
o

Load Balancer Load Balancer
(public IP) Backup

Internal Network

P
P

:
-

HA Node 1 HA Node 2
www, db, java www, db, java
DB Node Group 1 DB Node Group 2

Node 1 — P Node 3

Node 2 —<t— Node 4

agent communication requests are coming from an internal network over an
encrypted communication channel using VPN. The requests are processed by
the Load Balancer and distributed to the HA Nodes using a Round Robin
algorithm in order to load evenly the nodes. The HA Nodes are checked for
service availability by many agents (agents used to verify if the Node is up and
running and the service is accessible) from the Load Balancer. If a service is
unavailable on a HA Node the session will be commuted to the other node and
the other incoming requests are sent to the available node until the failed one
recovers. The Load Balancer Backup is used only to check the status of the main
Load Balancer; if the main Load Balancer fails, the backup one will take over by
assigning the public IP and starting the load balancing function—in this way it
becomes the main load balancer and the failed node becomes the backup one.
The load balancer is implemented using the piranha [14] load balancer from
RedHat on the Linux operating system.
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2. The HA Cluster is composed by two nodes (VMs) and offers availability for

three services: (i) web interface access using the https protocol on port 443; the
service uses apache as a web server and the connection is encrypted using 1024
bit SSL (Secure Socket Layer) certificates [15]; (ii) JAVA agent communication,
the connections being made between the agent which is running on the HA node
and the agents on the manufacturing infrastructure; the connection is encrypted
in Internet (an IPSec tunnel has been created between the Load Balancer and the
gateway of the manufacturing infrastructure), the connection is unencrypted in
the internal network; (iii) database access: the database management system
used is a MySQL database implemented using MySQL Cluster for High
Availability.
The HA Cluster is configured to execute the services on both nodes in parallel
which is quite unusual for the HA solution which was chosen, namely a RedHat
High Availability Cluster. This configuration has been designed in order to offer
a plus of performance by using load balancing. The behaviour of the cluster if a
service fails is to try to restart that service on the node where the service failed;
if this action has no effect and the service is already running on the other node
the service will be stopped on the current node. The last special situation is
when the service is not running on both nodes and the restart has failed; in this
situation the service will be migrated on the other node. The fencing function (a
function which isolates the failed node in order to avoid data corruption) was
inhibited on the cluster because the two nodes can execute the services in
parallel without restrictions.

3. The MySQL cluster is using four VMs grouped in two Node Groups. The
Database is distributed between the two Node Groups, for example if we con-
sider a table on the database which has four fields (F1, F2, F3 and F4), Node 1
will store F1 and F3, Node 2 will store F3 and F1, Node 3 will store F2 and F4,
and Node 4 will store F4 and F2. Between the nodes the cluster offers data
replication and data consistency. In the example above the database will be
available and consistent even if two nodes from two node groups will fail. The
MySQL Cluster protects against outages offering the following facilities:

o Synchronous Replication—Data within each data node is synchronously
replicated to another data node.

o Automatic Failover—the heart beating mechanism detects in real time any
failures and automatically fails over to other nodes in the cluster, without
service interruption.

o Self-Healing—TFailed nodes are able to self-heal by automatically restarting
and resynchronizing with other nodes before re-joining the cluster, with
complete application transparency.

o Shared Nothing Architecture, No Single Point of Failure—each node has its
own disk and memory, so the risk of a failure caused by shared components
such as storage, is eliminated.
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If an error event is detected on any level of the infrastructure (Load Balancer,
HA Cluster or MySQL Cluster) a notification to the system administrator will be
sent in order to inform about the problem and to offer the opportunity to debug and
solve the malfunctions.

5 Case Study: Experimental Results

Experiments have been done in order to validate data collection from shop-floor
entities (consisting of mobile devices associated to WIP and resources) and the
integration of this data into a cloud infrastructure. The results are shown in Fig. 4.

Thus, a batch of orders has been defined and launched in execution using the
control application running on cloud. The steps taken are: update resource status,
define product recipes using the available operations, define batch of orders from
the available products, plan and schedule orders, validate the delivery date based on
the computed makespan, select semi-heterarchical as control strategy, launch in
execution planned and scheduled orders.

During the execution period a resource has changed its state from online to
offline, no longer being available for production (resource failure). Since it no
longer updates its status in the cloud database it will be considered offline and the
remaining batch of orders was rescheduled using the available resources while the
orders in execution (WIP) are negotiating in real-time the allocation of remaining
operations on the available resources.

Since the data synchronization between the two levels (cloud and shop-floor
devices) is practically instantaneous, the efficiency of using the cloud infrastructure
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to realize the offline planning and scheduling consists in the fact that production is
still running with local, order agents optimization at shop-floor level until the Cloud
re-planning and rescheduling of remaining products are performed and the hierar-
chical mode is resumed. Thus, time is gained by realizing the two activities in
parallel (Fig. 4), since the Cloud SS optimization of scheduling a large batch of
orders takes less time (due to its speed HPC characteristics) in comparison with
classical SS implementing, thus guaranteeing the termination of rescheduling until
the execution of WIP completes.

6 Conclusions

The paper describes a semi-heterarchical manufacturing control solution based on a
private cloud infrastructure which collects data in real time from intelligent devices
associated to shop-floor entities: resources and mobile devices embedding the WIP
on products during their execution cycle. The cloud platform acts as a centralized
SS, planning jobs and allocating resources optimally at batch level, and integrates
real-time data and status information from agentified shop floor devices. The
advantages brought by this control architecture are: easy integration of manufac-
turing data into a cloud infrastructure using a multi-agent framework distributed on
the field entities and on the cloud (Fig. 1), fault tolerance and high availability of
the applications centralized at MES level, running on cloud (Fig. 3) and the pos-
sibility to run in real manufacturing time intensive applications (such as opti-
mization engines used for re-planning and re-scheduling in case of shop floor
disturbances) in the cloud (Fig. 3).

A Public Key Infrastructure (PKI) solution with SSL authentication and
encryption for intelligent products travelling on pallets in the shop floor and
embedding WIP data to be transferred to the Cloud has been designed. From an
implementation perspective, SOA alignment at shop floor level involves
TCP/IP-based communication over Wi-Fi supporting higher level protocols. Our
contribution in the security area CMfg implementation of the communication
between the Cloud SS and the intelligent devices in the AMES (embedded devices
for WIP, resource orders discovering the cell status) considered security challenges
associated with data and information flow protection as well as authentication and
authorization of the actors involved (order agents and resource agents).

Another advantage of using the Cloud IaaS for manufacturing management is
the service oriented connectivity with the upper, business layer of the enterprise,
offering direct access of clients to order acceptance, resource availability, and
estimation of delivery of products via a cloud GUIL SOA principles can be used for
the standardization of the data and information flow from the shop floor (production
execution) level to the management (customer order tracking) level of the
enterprise.

Regarding the infrastructure and the tools used to implement the CMfg solution,
they offer High Availability on two levels: the cloud system offers HA at the
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infrastructure level and the Load Balancing/HA Clustering solutions offers HA at
the application level.

From the point of view of security, the communication between clients and the
web interface is encrypted using self-signed SSL certificates that offer a good level
of security by using the Diffie-Helman algorithm [16]. The communication between
JAVA agents is also encrypted in Internet by using an IPSec VPN tunnel between
the gateways of the manufacturing infrastructure and the load balancer in the cloud
infrastructure. The other connections are made in the local network which is a
private network implemented with virtual LAN’s (VLAN). In the cloud system the
HA Cluster and the MySQL cluster are in the same VLAN, but if a higher level of
security is required there is the possibility to isolate the MySQL Cluster from the
Load Balancer by using a VLAN which will connect the HA Cluster with MySQL
Cluster.
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