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Abstract. In this paper, we investigate relative localization techniques
based on internode distance measurements for small wireless networks.
High precision ranging is assumed, which is achieved by using technolo-
gies such as ultra-wide band (UWB) ranging. A number of approaches
are formulated and compared for relative location estimation, which
include the Linear Least Squares (LLS) approach, the Maximum Like-
lihood Estimation (MLE) approach, the Map Registration Approach
(MAP), the Multidimensional Scaling (MDS) approach and the enhanced
MDS approaches. Finally, computer simulations are used to compare the
performances and effectiveness of these techniques, and conclusions are
drawn on the suitability of the relative localization techniques for small
networks.

Keywords: Wireless sensor networks · Localization · Ranging · Ultra-
wide band (UWB) · Least squares (LS) · Maximum likelihood method
(MLE) · Multidimensional scaling (MDS)

1 Introduction

Localization refers to the process of estimating the locations of objects based
on various types of measurements and the use of a number of anchors. Anchors
are simply objects that know their coordinates a priori. Localization is a pre-
requisite for many military operations where location information must be known
a priori in order to monitor the environment, gather data measurements, track
objects to make right decisions. Although GPS can be used for providing coor-
dinates, it requires line-of-sight (LOS) conditions to satellites, and does not
work reliably in urban and indoor environments. In addition, GPS is subject to
jamming. In the last two decades, many localization techniques have been devel-
oped for wireless sensor network applications [1,2]. In general, localization can
be relative or global. Relative localization provides relative coordinates that are
defined without reference to an external coordinate system while global local-
ization provides coordinates that are defined in the form of specific geographic
coordinates such as latitude and longitude. Relative coordinates can be derived
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from corresponding global coordinates. Relative coordinates are not unique, and
are arbitrary rigid transformations of their global coordinates.

In this study, a number of relative localization approaches are formulated and
discussed, which include the Linear Least Squares (LLS) approach, the Maxi-
mum Likelihood Estimation (MLE) approach, the Map Registration Approach
(MAP), the Multidimensional Scaling (MDS) approach and the enhanced MDS
approaches. All approaches are based on internode distance measurements that
are assumed to be provided by the ultra-wide band (UWB) ranging technol-
ogy. UWB radios employ very short pulse waveforms with energy spread over
a wide swath of the frequency spectrum. Due to the inherently fine temporal
resolution of UWB, arriving multi-path components can be sharply timed at a
receiver to provide accurate time of arrival estimates, and thus the internode
distance measurements. The LLS and the MLE method are based on the mul-
tilateration technique, which is seen to be one of the most popular localization
techniques [1,3]. The MDS and MAP approaches are based on the approaches in
[4–6], respectively. They use internode distance measurements to provide relative
coordinates. MDS requires the full knowledge of the Euclidean distance matrix
of the nodes, which is usually not available in practice due to the limited ranging
capability. Unavailable distance measurements need to be approximated, which
may introduce large localization errors. The MAP approach is a more elaborated
approach that is proposed to counter this difficulty by dividing the network into
many small sub-groups with adjacent groups sharing common nodes, construct-
ing local maps for the all sub-group, and merging them into a global map. The
MAP approach is able to alleviate the problems due to using the shortest path
distances for remote sensor nodes.

The rest of the paper is organized as follows. In Sect. 2, the LLS and MLE
methods are formulated. The procedures for determining the anchors are dis-
cussed in detail in this section. In Sect. 3, the MDS and the MAP method are
discussed and formulated in the context of relative localization. In Sect. 4, the
performance of various approaches are evaluated using computer simulations. A
number of different application scenarios are simulated, which include fully and
partially connected networks. Finally, conclusions are drawn on the suitability
of various approaches for relative localization for small networks.

2 The MLE and LLS Methods

The linear least squares (LLS) method and the maximum likelihood estimation
(MLE) method, in general, have two steps. The first step is to estimate three node
locations. These nodes will be used as anchors. The second step is to iteratively
estimate the locations of the rest of the nodes.

First, an arbitrary node is selected, denoted by s1, as the first anchor and
define it as the origin of the coordinate system. Secondly, a neighbour node of
s1, denoted by s2, is selected as the second anchor. Define the line connecting s1
and s2 as the x-axis. The coordinates of s2 are given by (d12, 0), where d12 is the
measured distance between s1 and s2. Select a third node, s3, that is a neighbour
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Fig. 1. Geometry of the first three anchor nodes.

to both s1 and s2 with distances d31 and d32, respectively. The geometry of the
first three anchor nodes are shown in Fig. 1. If the distances d21, d31 and d32
satisfy the triangle inequality relationship, the coordinates of s3 can be obtained
as the intersections of two circles with centers at s1 and s2 and radii of d31 and
d32, respectively. They are given as [7]

x3 =
d221 + d231 − d232

2d21
, y3 = ±

√
d231 − x2

3. (1)

In (1), the positive root is selected for y3. Note the selection is arbitrary and will
not affect the performance of relative localization. When the triangle inequality
is not satisfied due to distance measurement errors, the two circles will not
intersect. In this case, the coordinates of s3 can be estimated using the following
nonlinear least squares solution

min
{x3,y3}

(
√

x2
3 + y2

3 − d31)2 + (
√

(x3 − d21)2 + y2
3 − d32)2. (2)

Note that (2) is a nonlinear optimization problem and an analytical solution
does not exist. Numerical techniques are required to solve for minimizing x3

and y3.

Fig. 2. Geometric of anchor nodes and the node to be localized.
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2.1 Formulation of the MLE and LLS Methods

The second step of MLE and LLS is to estimate the locations of the rest of
the nodes based on the nodes with known locations. Figure 2 shows the geo-
metric configuration of anchors and the node to be localized. In the figure, M
anchors are used, and their coordinates and measured distances to the node
to be localized are denoted by {um, vm, dm}, for m = 1, 2, . . . ,M , respec-
tively. The multilateration approach is to estimate the coordinates (x, y) given
{um, vm, dm;m = 1, 2, . . . ,M}. The maximum likelihood method minimizes the
following sum of squared errors between the measured distances and hypothetical
ones based on the unknown sensor node location

min
x,y

∑
m

[√
(x − um)2 + (y − vm)2 − dm

]2
. (3)

Under the assumption that {dm;m = 1, 2, . . . , M} contain additive measurement
errors that are an independent, identically distributed (i.i.d.) Gaussian process
with zero mean, (3) can be shown to be equivalent to the maximum likelihood
estimator [8]. We refer to the formulation (3) as the maximum likelihood estima-
tor (MLE). Since (3) is a nonlinear minimization problem, a closed-form solution
does not exist, and numerical techniques are typically the resort. As mentioned
before, numerical optimization techniques are subject to convergence difficulties
and always suffer from the local minimum problem.

In practice, the least squares problem is often formulated in the squared
distance domain to simplify the solution

min
x,y

∑
m

[
(x − um)2 + (y − vm)2 − d2m

]2
. (4)

It can be shown that (4) is equivalent to solving the following least squares
problem

Bz − r2x
2

· 1 = η, (5)

where z = [x, y]T , 1 denotes an all one vector of length M ,

η = −1
2

⎡
⎢⎢⎢⎣

d21 − r21
d22 − r22

...
d2M − r2M

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

u1 v1
u2 v2
...

...
uM vM

⎤
⎥⎥⎥⎦ . (6)

and r2x = x2 + y2 and r2m = u2
m + v2

m. The nonlinear term r2x can be eliminated
from the equation by the use of projection operations. Define P⊥

1 as the orthog-
onal projection onto the null subspace of 1. By multiplying both sides of (5), we
can obtain the following equation

Az = b, (7)

where A = P⊥
1 B and b = P⊥

1 η. Equation (7) is linear in z and has a closed-form
least squares (LS) solution [9].
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3 The MDS and MAP Methods

The MDS method was first proposed for solving the problem of sensor local-
ization by Shang et al. [4,10], where either connectivity information or distance
measurements between neighbor nodes were used for localization. It is based on
the application of the popular multidimensional scaling (MDS) technique in sta-
tistics. It is a data analysis technique that can be used to represent a set of data
as a configuration of points in some Euclidean spaces based on their similarity
measures. The distances of the resulting configuration of points resemble the
original similarities. There are many types of MDS techniques, including metric
MDS and nonmetric MDS, replicated MDS, weighted MDS, deterministic and
probabilistic MDS [11]. The classical MDS method is more attractive than the
others because it has analytical solutions that can be obtained via eigendecom-
position of a transform of the Euclidean distance matrix. In [12], the authors
proposed an iterative MDS algorithm that uses a multivariate optimization for
location estimation. The iterative MDS is similar to the least squares refinement
step in [10]. The iterative MDS approach is less tractable than the classical
MDS solution because it involves complex computations and suffers from global
convergence problems. In general, the MDS technique is relatively resilient to dis-
tance errors due to the over-determined nature of the solution. However, MDS
requires full knowledge of the Euclidean distance matrix of the sensor nodes,
which is usually not available in practice due to the limited transmission range
of beacons or ranging modules on each sensor node. A commonly used approach
is to approximate the distances between nodes that are separated further than
the transmission range by their shortest path distances. The shortest path dis-
tances can be computed using shortest path algorithms such as Dijkstra’s [13]
or Floyd’s [14]. The approximation of the Euclidean distance matrix introduces
sensor localization errors, especially when the shortest paths do not correspond
well with the Euclidean distance in sparse networks or networks of irregular
topology. Refer to [4,10] for the details of the MDS method.

3.1 The MAP Approach

The MAP approach refers to the map registration approach proposed by Zhou
et al. [5,15]. It is known that the MDS approach requires that the Euclidean
distance matrix for all nodes be known, which may not be always available in
practice due to the limited ranging distance of the nodes. When two nodes are
out of their transmission range, the distance between them cannot be directly
obtained, and needs to be estimated. In MDS, the unavailable internode dis-
tances are typically approximated by its shortest path distance. A shortest path
distance corresponds well to the corresponding Euclidean distance in a network
of regular topology or a densely distributed network of nodes. In a sparse network
or a network of nodes of irregular topology, however, a shortest path distance
may not match its Euclidean distance and the use of the approximated distance
matrix will result in degraded localization performance [4,5]. A more elaborate
approach is to divide the network into many small sub-groups of nodes, where
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adjacent groups share common nodes. For each sub-group of nodes, a local map
with relative coordinates of the nodes, is built using some localization techniques
(e.g., MDS). The local maps are then merged into a global map based on the
common nodes. In [4], an incremental greedy algorithm was proposed for merg-
ing the local maps in a sequential manner. Each time a local map that has the
maximal number of common nodes with the core map is selected and merged
with the core map. The incremental greedy approach is locally optimal since it
only explores the commonalities of the shared nodes in two maps. In practice,
the common nodes are often shared by more than two local maps. In some cases,
adjacent local maps may not have a sufficient number of common nodes.

The MAP approach was introduced to counter the problems of the sequen-
tial approach. Instead of using a sequential pairwise approach for merging local
maps, the MAP approach constructs the global map at a global level. An affine
transformation is defined for each local map to transform it to a global map. The
set of optimal affine transformations are determined simultaneously by consid-
ering all available nodes that are shared by various local maps. The discrepancy
is represented by the sum of the squared distances of all nodes to their respec-
tive geometric centers in the global map. Assume that a network consists of N
nodes. For each node, the local map is assumed to contain its neighbor nodes
within k-hops. Define a neighbor vector ci of length N for the ith node. The
nth component of ci is given by 1 or 0 depending on whether the nth node is a
neighbor node or not. Define a neighbor matrix C = [c1, c2, . . . , cN ]. For the ith
local map, define an orthogonal matrix Ui ∈ R2×2 and a row vector Ti ∈ R1×2

to represent rotation/reflection (or a combination) and translation, respectively.
Define U ∈ R2N×2 and T ∈ RN×2 as

U = [U1;U2; . . . ;UN ] and T = [T1;T2; . . . ;TN ], (8)

respectively. Let zij ∈ R1×2 denote the local coordinates of the ith sensor node
in the jth local map. If the ith sensor node is not in the jth local map, then
zij = 0. Define a data matrix Zij ∈ RN×2, where the jth row of Zij is zij . If
the ith node is not in the jth local map, then, Zij is an all-zero matrix. Let
Ci = diag(ci) be a diagonal matrix of N × N , where diag puts the elements of
ci on its diagonal. For the ith local map, we construct a data matrix Xi

Xi = [Zi1, Zi2 . . . , ZiN ]. (9)

Let Yi denote an affine transform of Xi given by

Yi = XiU + CiT. (10)

All Yi are in a same coordinate system that is referred to as the global coordinate
system. The global coordinates of the sensor nodes form the global map. In MAP,
the optimal U is obtained from the following optimization problem [5]

min
U

tr{UTΣU}, (11)

subject to the constraint that Ui is an orthogonal matrix for i = 1, 2, . . . , N .
Denote M as the manifold that consists of all U = [U1, U2, . . . , UN ] and each Ui
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is an orthogonal matrix of 2 × 2. Then, the constraint implies that the optimal
U is in the manifold M. In (11), tr denotes the trace of a square matrix, and

Σ =
∑
i

XT
i P⊥

i Xi − AT
s B−1

s As (12)

Bs =
∑
i

C̃T
i P⊥

i C̃i, As =
∑
i

C̃T
i P⊥

i Xi, P⊥
i = I − 1

Ni
cic

T
i , (13)

and C̃i is Ci with its first column removed. The translation matrix T is related
to the optimal U by T = [0;−B−1

s AsU ].
The optimization problem (11) involves highly nonlinear criterion function,

and analytic solutions are not known to exist. In [5], a gradient projection algo-
rithm is developed for finding the optimal transforms for transforming local
maps to a global map. The algorithm is developed based on a general idea by
Jennrich in [16,17] and is particularly suitable to the constrained optimization
problem of coordinate transformation. The algorithm is iterative, and has the
advantages of faster convergence and computationally more efficient than many
general numerical optimization techniques [18] for nonlinear programming. The
detailed discussion of the GP algorithm can be found in [15].

4 Simulations and Performance Analysis

In this section, we use computer simulations to demonstrate the effectiveness and
performance of the proposed relative localization techniques. MLE uses the LLS
solution as the initial estimates in each iteration after the initial node selection
process. For the MDS method, Dijkstra’s algorithm [13] is used to compute the
shortest paths to approximate the unavailable internode distances. For MAP,
a local maps is constructed for each node, which consists of all direct neigh-
bor nodes within its maximum ranging distance. The root mean square errors
(RMSE) of the location estimates are used as a performance metric. In order to
compute meaningful RMSEs for relative location estimates, all relative estimates
are aligned to best conform to its ground truth node location.

The nodes are assumed to be uniformly distributed in a square area of 100 m
by 100 m. All nodes are assumed to have a common maximum ranging distance
that can be configured. The maximum ranging distance determines whether the
internode distance measurement between a pair of nodes is available or not. The
network is assumed to be connected, i.e., each of the nodes of the network is
connected to each other either one-hop or via multiple hops in terms of internode
ranging. The algebraic connectivity of a network is used to check whether the
network is connected or not [19]. The distance measurement errors are assumed
to be additive and uniformly distributed. The uniform distributed model ensures
that the errors are bounded, and leads to the more conservative estimates of
uncertainty than the Gaussian error model. Let d̃ij and dij denote the actual
and measured distances between the ith and the jth node, respectively. Then,
the measured distance is given by dij = d̃ij + εij , where εij is simulated to be
uniformly distributed in [−σd̃ij , σd̃ij ] and σ ∈ [0, 1].
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Fig. 3. Variation of RMSE for LLS, MLE and MDS versus σ in a fully connected
network of N = 5 nodes.
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Fig. 4. Variation of RMSE for LLS, MLE and MDS versus σ in a fully connected
network of N = 10 nodes.

Fully Connected Network. By a fully connected network, we mean that the
maximum ranging distance for all nodes in the network is sufficiently large such
that each node is able to measure its distances to all other nodes in the network.
For a fully connected network, distance measurements between all pairs of nodes
are available. Figures 3 and 4 show the variation of RMSE for the MLE, LLS
and MDS estimates versus the ranging error parameter σ for fully connected
networks with 5 and 10 nodes, respectively. The parameter σ is written in the
form of percentage. In the simulations, σ varies from 0 to 0.01 (or 1%), and for
each value of σ, 1000 tests are repeated to obtain the averaged RMSE results.
The averaged internode distances for the networks of 5 and 10 nodes are calcu-
lated as 52.39 and 52.25 m, respectively. When σ = 0.01, it would translate into
an averaged internode distance measurement error range of about ±0.5 m. For
each test, all nodes are randomly re-deployed and their random internode dis-
tance measurement errors re-generated. Thus, the RMSE results are averaged
over both node distribution and random distance measurement errors. For a
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fully connected network, since all pairs of nodes are within the maximum rang-
ing distance, the Euclidean distance matrix is completely available, and MAP
become equivalent to MDS. Thus, only LLS, MLE and MDS are evaluated for
fully connected networks. As discussed before, the LLS solutions are sensitive to
geometric distribution of the nodes. In order to isolate the impact of node distri-
bution on localization, a condition number of 400 is used to avoid scenarios that
would result in ill-conditioned data matrix. In Figs. 3 and 4, it can be observed
that the RMSEs of the LLS, MLE and MDS estimates increase as σ increases.
The MLE and MDS estimates have similar performance, and both outperform
the LLS estimates significantly, especially as σ increases. All approaches have
similar performance for networks with 5 and 10 nodes.

Partially Connected Networks. In a partially connected networks, a node
may not be able to measure the distances to all other nodes in the network due
to the limited ranging distance of the nodes. For the MDS type approaches,
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Fig. 5. Variation of RMSE for LLS, MLE, MDS, and MAP versus σ in a partially
connected network with a maximum ranging distance of 80 m.
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Fig. 6. Variation of RMSE for LLS, MLE, MDS, and MAP versus σ in a partially
connected network with a maximum ranging distance of 100 m.
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this means that the unavailable internode distances will need to be estimated
using their corresponding shortest path distances. The shortest path distances
are approximate of the Euclidean distances. Partially connected networks with
10 node are simulated. Three scenarios are simulated with the maximum rang-
ing distances being set to 80, 100 and 120, respectively. Figures 5, 6 and 7 show
the variations of RMSEs for LLS, MLE, MDS, and MAP versus the ranging
error parameter σ in those three scenarios. Connectivity level is defined, which
is computed as the averaged number of nodes that a node can measure distance
to. Connectivity level increases as the maximum ranging distance is increased.
For the three scenarios with maximum ranging distances of 80, 100, and 120 m,
the connectivity levels are 7.72, 8.77 and 8.99, respectively. In the simulations,
σ varies from 0 to 0.01 (or 1% in terms of percentage). For each value of σ,
1000 tests are repeated to obtain the averaged results. In each test, nodes are
re-deployed and random ranging errors are re-produced. Similarly, a condition
number of 500 is used to avoid the ill-conditioned data matrix for LLS. In Figs. 5,
6 and 7, the top figures show the variations of RMSE of the LLS, MLE, MDS
and MAP estimates versus σ. In all three scenarios, all approaches in the sim-
ulation study show similar performance patterns. The RMSEs of the LLS and
MLE estimates increase as σ increases while the RMSEs of the MDS and MAP
estimates are relatively constant over the tested range of σ. The accuracy of the
MDS and MAP estimates is dominated by the connectivity level of the network
rather than the assumed relatively small ranging errors. In all three scenarios,
MLE performs the best. The performance of MDS and MAP improves as the
network connectivity improves, as can be observed from Figs. 5, 6 and 7. As
shown in Fig. 7, MDS and MAP perform as well as MLE when the connectivity
level is 8.99 except for small values of σ. LLS outperforms MDS and MAP for
small values of σ, and is outperformed by MDS and MAP as σ increases. The
demarcation point for LLS moves down as the network connectivity increases as
observed from Figs. 5, 6 and 7. It is observed that MDS and MAP produce large
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Fig. 7. Variation of RMSE for LLS, MLE, MDS, and MAP versus σ in a partially
connected network with a maximum ranging distance of 120 m.
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RMSEs when the network has low connectivity levels, and improve as the con-
nectivity improves. Although the RMSE for MLE and LLS is less affected by the
network connectivity level, MLE and LLS may run into problems in the iteration
process due to the problem of insufficient number of anchors for localization in
the case of low network connectivity levels.

5 Conclusions

In this paper, the MLE, LLS, MDS, and MAP methods have been formulated
for estimating the relative locations of a set of node based on their internode
distance measurements. Their performances were discussed and analyzed using
computer simulations. Fully and partially connected networks were simulated
in the study. From the simulation results, MLE and MAP, among all proposed
approaches, are considered the viable solutions to relative localization for small
wireless sensor networks. MLE is able to provide the superior localization per-
formance in both fully and partially connected network scenarios. Simulation
results showed that, when LLS was used to provide the initial estimates, MLE
has converged to the desired optimal estimates almost every time. For partially
connected networks with low connectivity, however, MLE may suffer from the
problem of not having sufficient numbers of anchors in iterating across the entire
network. The performance of MAP is close to that of MLE in fully connected
networks and partially connected works with moderate and high connectivity
levels, and deteriorates as the network connectivity decreases. In addition, MAP
has the advantage of always being able to provide a localization solution in spite
of the network connectivity level, although the localization accuracy may be low
as in the case of networks with low connectivity levels.

References

1. Savvides, A., Han, C.C., Srivastava, M.B.: Dynamic fine-grained localization in
ad hoc networks of sensors. In: Proceedings of the 7th Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking (MobiCom 2001), Rome,
Italy, pp. 166–179, July 2001

2. Mao, G., Fidan, B., Anderson, B.D.O.: Wireless sensor network localization tech-
niques. Comput. Netw. 51(10), 2529–2553 (2007)

3. Savvides, A., Park, H., Srivastava, M.B.: The bits and flops of the N -hop multilat-
eration primitive for node localization problems. In: Proceedings of the First ACM
International Workshop on Wireless Sensor Networks and Applications, Atlanta,
Georgia, USA, pp. 112–121, September 2002

4. Shang, Y., Ruml, W.: Improved MDS-based localization. In: Proceedings of the
IEEE INFOCOM 2004, The 23rd Annual Joint Conference of the IEEE Computer
and Communications Societies, Hong Kong, China, March 2004

5. Zhou, Y., Lamont, L.: An optimal local map registration technique for wireless
sensor network localization problems. In: Proceedings of the 11th International
Conference on Information Fusion (FUSION 2008), Cologne, Germany, 30 June–
03 July 2008



26 Y. Zhou and F. Wong

6. Zhou, Y., Lamont, L.: A mobile beacon based localization approach for wireless
sensor network applications. In: Proceedings of the Fifth International Conference
on Sensor Technologies and Applications (SENSORCOMM), Nice, France, August
2011

7. Savarese, C., Rabaey, J.M., Beutel, J.: Location in distributed ad-hoc wireless
sensor networks. In: Proceedings of the 2001 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Salt Lake City, UT, vol. 4, pp. 2037–
2040, May 2001

8. Mendel, J.M.: Lessons in Digital Estimation Theory. Prentice Hall, Englewood
Cliffs (1987)

9. Golub, G.H., Van Loan, C.F.: Matrix Computation, 3rd edn. The Johns Hopkins
University Press, London (1996)

10. Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.: Localization from connectivity in
sensor networks. IEEE Trans. Parallel Distrib. Syst. 15(11), 961–974 (2004)

11. Borg, I., Groenen, P.: Modern Multidimensional Scaling, Theory and Applications.
Springer, New York (1997)

12. Ji, X., Zha, H.: Sensor positioning in wireless ad hoc networks using multidimen-
sional scaling. In: Proceedings of the IEEE 23rd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2004), Hong Kong,
China, vol. 4, pp. 2652–2661, March 2004

13. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math.
1, 269–271 (1959)

14. Warshall, S.: A theorem on Boolean matrices. J. ACM 9(1), 11–12 (1962)
15. Zhou, Y., Lamont, L.: Optimal local map registration technique for wireless sensor

network localization problems. In: Mukhopadhyay, S.C., Leung, H. (eds.) Advances
in Wireless Sensors and Sensors Networks. LNEE, vol. 64, pp. 177–198. Springer,
Heidelberg (2010)

16. Jennrich, R.I.: A simple general procedure for orthogonal rotation. Psychometrika
66(2), 289–306 (2001)

17. Jennrich, R.I.: A simple general method for oblique rotation. Psychometrika 67(1),
7–19 (2002)

18. Dennisand, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimiza-
tion, Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

19. Chung, F.R.K.: Spectra Graph Theory. American Mathematical Society, Provi-
dence (1997)



http://www.springer.com/978-3-319-51203-7


	Relative Localization for Small Wireless Sensor Networks
	1 Introduction
	2 The MLE and LLS Methods
	2.1 Formulation of the MLE and LLS Methods

	3 The MDS and MAP Methods
	3.1 The MAP Approach

	4 Simulations and Performance Analysis
	5 Conclusions
	References


