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Abstract We consider outlier detection algorithms for time series regression based
on iterated 1-step Huber-skip M-estimators. This paper analyses the role of varying
cut-offs in such algorithms. The argument involves an asymptotic theory for a new
class of weighted and marked empirical processes allowing for estimation errors of
the scale and the regression coefficient.
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1 Introduction

We consider outlier detection methods that are based on iterated 1-step Huber-skip
M-estimators for linear regressionmodels with regressors that are stationary or deter-
ministically or stochastically trending. Each 1-step estimator relies on a cut-off value
when classifying observations as outliers or not. In this paper, we allow the cut-off
value to vary with sample size and iteration step. To analyze this asymptotically,
we generalize some recent results for residual empirical processes, which allow for
variation in location, scale and quantile. The model is a linear regression

yi = x′
iβ + εi, i = 1, 2, . . . , n, (1)

where εi/σ are independent ofFi−1 = σ(x1, . . . , xi, ε1, . . . , εi−1)with the common
density f. Outliers are pairs of observations that do not conform with the model.
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Iterated 1-step Huber-skip M-estimators mimic the Huber [14] skip estimator,
which has criterion function ρ(t) = min(t2, c2)/2 as opposed to the Huber estimator
with criterion function ρ(t) = t2/2 for |t| ≤ c and ρ(t) = c|t| − c2/2 otherwise, see
also [8, p. 104], [19, p. 175]. The 1-step Huber-skipM-estimator starts from an initial
estimator (˜β, σ̃ 2). This is used to decide which observations are outlying through

vi = 1(|yi−x′
i
˜β|≤σ̃c), (2)

where the choice of the cut-off c is related to the known reference density f. For
those observations that are not outlying, we run a least squares regression and get
the 1-step Huber-skip estimator

̂β =
(

n
∑

i=1

xix
′
ivi

)−1 (

n
∑

i=1

xiyivi

)

, (3)

σ̂ 2 = ς−2

(

n
∑

i=1

vi

)−1 {

n
∑

i=1

(yi − x′
i
̂β)2vi

}

, (4)

where ς2 is the consistency factor as in (8). This step can be iterated. The iteration
may be initiated by a robust estimator. More simply we get the Robustified Least
Squares and the Impulse Indicator Saturation starting with the full or split sample
least squares. The latter algorithm was introduced in the empirical work of US food
expenditure by Hendry, see [9, 10].

Outlier detection algorithms have a positive probability to find outliers evenwhen,
in fact, the data generation process has no outliers. We evaluate the performance of
such algorithms by the concept of a gauge, which is the expected retention rate of
falsely discovered outliers. This is a measure of type I error and it gives us an indirect
wayof choosing the cut-off c. It is defined as follows.The algorithms assign stochastic
indicators vi to all observations such as in (2) so that vi = 0 when observation i is
declared as an outlier, otherwise vi = 1. When the model has no contamination, the
sample and population gauge are

γ̂ = 1

n

n
∑

i=1

(1 − vi), Eγ̂ = 1

n

n
∑

i=1

E(1 − vi). (5)

Hoover and Perez [13] originally introduced the idea of a gauge in a simulation
study of general-to-specific variable selection algorithms. The concept of a gauge
was formally proposed by Hendry and Santos [12] as the expected retention rate of
irrelevant regressors in the context of model selection algorithms. Comprehensive
simulation studies on the gauge for the model selection algorithm Autometrics are
presented in [6, 10]. An asymptotic analysis for the gauge of some outlier detection
algorithms is presented in [18].
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One-step estimators have been considered before in [2, 23]. The 1-step Huber-
skip estimator was studied in [25]. Asymptotic distribution theory has been derived
for the location model in [11] and for the time series regression [15]. Iteration was
investigated in [16]. An asymptotic expansion for the sample gauge was established
in [18]. All these asymptotic analyses are restricted to the situation where the cut-off
and the number of iterations are not both increasing.

The purpose of this paper is to build an asymptotic theory which can explore
how variation in the cut-off affects the iterated 1-step Huber-skip M-estimator. In
particular, we prove the tightness and fixed point theorems for the iterated 1-step M-
estimator with the varying cut-off. Moreover, this paper demonstrates an asymptotic
Poisson distribution to the gauge in a situation where the cut-off increases with the
sample size while the number of iterations also increases.

The argument involves a theory for a new class of weighted and marked empirical
processes. This is defined from the generalized empirical distribution function

̂Fg,p
n (a, b, c) = 1

n

n
∑

i=1

ginε
p
i 1(εi≤σc+n−1/2ac+x′

inb), (6)

where the weights gin are combinations of the normalized Fi−1 measurable regres-
sors xin and ε

p
i are the Fi adapted marks, while a, b represent the normalized esti-

mation errors for σ , β. When p = 0 the mark is unity and we get the weighted
empirical distribution function considered by for instance [20]. Processes of the type
n−1/2 ∑n

i=1 εi1(xi≤c) are called marked processes, see [20, p. 43], but are not special
cases of the weighted and marked empirical distribution functions.

We derive asymptotic expansions that are uniform in a, b, c and allow for a near
n1/4 inefficiency in the estimation uncertainties a, b. This generalizes results by Koul
and Ossiander, see [20–22], who allowed unbounded weights gin but no marks ε

p
i .

They used a truncation argument for Fi−1 measurable weights gin. This together
with the boundedness of theFi measurable indicator function meant that they could
apply the Freedman [7] exponential inequality for bounded martingales. Here, we
use the iterated martingale inequality of [18] reported as Lemma 3 in the appendix.
This is based on the Bercu and Touati [1] exponential inequality for unbounded
martingales, so that we can avoid the truncation argument and more easily allow the
Fi measurable product of the mark and indicator to be unbounded. The result also
generalizes [15, 18] who did not allow joint variation of all of a, b, c.

The outline of this paper is the following. We first review the model and iterated
1-step Huber-skip M-estimator algorithm in Sect.2. Then, the main results follow
in Sect. 3. Section4 provides theory for the weighted and marked empirical process
with proofs in Appendix 1, 2, and 3. Proofs of the main theorems in Sect. 3 follow
in Appendix 4.
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2 Model and Outlier Detection Algorithms

The regression model with some notations is described first. We review the iterated
1-step Huber-skip M-estimators including the Robustified Least Squares and the
Impulse Indicator Saturation.

2.1 Model

Suppose we have data (yi, xi), i = 1, 2, . . . , n, where yi is univariate and xi is multi-
variate with dimension dim x. Assume the data satisfies the regression equation

yi = x′
iβ + εi, i = 1, 2, . . . , n.

This setting can represent both classical regression and time seriesmodels.Moreover,
regressors xi can be a deterministic or stochastic trend. Innovations εi are indepen-
dent of the filtrationFi−1 generated by (x1, . . . , xi, ε1, . . . , εi−1), and are identically
distributed with scale σ so that εi/σ has the known density f and distribution func-
tion F(c) = P(εi/σ ≤ c). In practice, the innovation distribution, characterized by
f,F, will often be assumed to be standard normal or at least symmetric. Outlier
detection algorithms use absolute residuals and then calculate robust least squares
estimators from the non-outlying sample. This implicitly assumes symmetry, while
non-symmetry leads to bias forms.We assume symmetrywhen analyzing the iterated
1-step Huber-skip M-estimator algorithm in Sect. 3, but not for the general empirical
process results in Sect. 4.

For the absolute error |εi|/σ we denote the density by g and the distribution func-
tion by G(c) = P(|εi|/σ ≤ c) for c > 0. Here we use c as notation for the quantile
of the distributionG(c). In the course of the analysis this will be linked to the cut-off
of the 1-step estimator in (3) and the argument of the weighted and marked empirical
distribution function in (6). Now, with a symmetry assumption, G(c) = 2F(c) − 1
and g(c) = 2f(c). Define ψ = G(c) so the probability of exceeding the cut-off c is
γ = 1 − ψ . Suppose the k-th moment of the density f exists, then introduce

τk =
∫ ∞

−∞
ukf(u)du, τ c

k =
∫ c

−c
ukf(u)du. (7)

Thus τ c
0 = ψ , τ2 = 1 while τk = τ c

k = 0 for odd k when assuming symmetry. Define
the conditional variance of εi/σ given (|εi|/σ ≤ c) as

ς2
c = τ c

2

ψ
=

∫ c
−c u

2f(u)du

P(|εi| ≤ σc)
. (8)
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This will be used as a bias correction factor for the variance estimate computed from
the selected non-outlying sample. For a standard normal reference distribution, we
have τ c

2 = ψ − 2cf(c), τ c
4 = 3ψ − 2c(c2 + 3)f(c) and τ4 = 3.

2.2 The Iterated 1-Step Huber-Skip M-Estimator Algorithm

We first define the iterated 1-step Huber-skip M-estimator algorithm. Specific exam-
ples include the Robustified Least Squares and the Impulse Indicator Saturation.

Algorithm 1 Iterated 1-step Huber-skip M-estimator. Choose a cut-off c > 0.

1. Choose initial estimators ̂β(0)
c , (̂σ (0)

c )2 and let m = 0.
2. Define indicator variables for selecting non-outlying observations

v(m)
i,c = 1

(|yi−x′
i
̂β

(m)
c |≤σ̂

(m)
c c). (9)

3. Compute least squares estimators

̂β (m+1)
c =

(

n
∑

i=1

xix
′
iv

(m)
i,c

)−1 (

n
∑

i=1

xiyiv
(m)
i,c

)

, (10)

(̂σ (m+1)
c )2 = ς−2

c

(

n
∑

i=1

v(m)
i,c

)−1 {

n
∑

i=1

(yi − x′
i
̂β(m+1)
c )2v(m)

i,c

}

. (11)

4. Let m = m + 1 and repeat 2 and 3.

In Sect. 3 we show how to choose the cut-off c indirectly from the gauge defined
in (5). The algorithm could start with a robust estimator, while the Robustified Least
Squares is initiated using the full sample least squares. The latter is not robust with
respect to high leverage points in cross section data. Leverage points seem to be less
of a problem in time series models when lagged variables are included as regressors.

Another example is the Impulse Indicator Saturation which was initially proposed
in the empirical work [9]. The algorithm was studied comprehensively in [10, 11].
The idea is to divide full sample into two sub-samples and use regression estimates
calculated from each sub-sample to detect outliers in the other sub-sample.

Algorithm 2 Impulse Indicator Saturation. Choose a cut-off c > 0.

1.1. Split full sample into two setsIj , j = 1, 2 of nj observationswhere
∑2

j=1 nj = n.
1.2. Calculate least squares estimators based upon each sub-sampleIj for j = 1, 2

̂βj =
⎛

⎝

∑

i∈Ij

xix
′
i

⎞

⎠

−1 ⎛

⎝

∑

i∈Ij

xiyi

⎞

⎠ , σ̂ 2
j = 1

nj

∑

i∈Ij

(yi − x′
i
̂βj)

2. (12)
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1.3. Define the initial indicator variables for selecting non-outlying observations

v(−1)
i,c = 1(i∈I1)1(|yi−x′

i
̂β2|≤σ̂2c) + 1(i∈I2)1(|yi−x′

i
̂β1|≤σ̂1c). (13)

1.4. Compute ̂β(0)
c , (̂σ (0)

c )2 using (10) and (11) with m = −1, and then let m = 0.
2. Follow the step 2,3,4 in Algorithm 1.

The Impulse Indicator Saturation is possibly more robust than the Robustified
Least Squares when we have prior knowledge that outliers are located in a particular
subset of the whole sample. The choice of the initial sets I1 and I2 should be
iterated since the location of contaminated observations is unknown inmost practical
situations, see [6].

3 The Main Results

We start by listing the assumptions. Then follows the new tightness and fixed point
result for the iterated estimator defined in Algorithm 1. Finally the gauge of the
iterated estimator is analyzed. The result is uniform in the cut-off value, which
generalizes [15, 16] which set the threshold fixed. This allows us to analyze the
gauge of the iterated estimator when the cut-off value is drifting.

3.1 Assumptions

We list the sufficient assumptions for asymptotic theory of iterated 1-step Huber-
skip M-estimators. These assumptions are somewhat stronger than they need to
be. In Sect. 4 on the one-sided empirical process, we will introduce some weaker
assumptions. For instance, we will then abandon the symmetry assumption of f.

Innovations εi and regressors ximust satisfy somemoment conditions so as to carry
out asymptotic analysis. Regressors xi can be temporally dependent and trending
deterministically or stochastically. We therefore need a normalisation matrix N that
allows for different behaviour of the components of the regressor vector xi. In the
case of a stationary regressor we need a standard n−1/2 normalisation so that N
must be proportional to the identity matrix of the same dimension as xi, that is N =
n−1/2Idim x. Likewise, if xi is a random walk we have N = n−1Idim x. If the regressors
are unbalanced as in xi = (1, i)′ we can choose N = diag(n−1/2, n−3/2).

Assumption 1 LetFi be an increasing sequence of σ -fields so εi−1 and xi areFi−1

measurable and εi is independent ofFi−1. Let εi/σ have a symmetric, continuously
differentiable density f which is positive on R. For some values of κ , η such that
0 ≤ κ < η ≤ 1/4, choose an integer r ≥ 2 so

2r−1 ≥ 1 + (1/4 + κ − η)(1 + dim x). (14)
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Let q = 1 + 2r+1. Denote c0 > 0 as a finite number. Suppose

(i) the density f satisfies

(a) uqf(u), |uq+1 ḟ(u)| are decreasing for large u;
(b) f(un − n−1/4A)/f(un) = O(1) as n → ∞ for some A > 0 and all sequences

un → ∞ so un = o(n1/4);
(c) f(u)/[u{1 − F(u)}] = O(1) for u → ∞;

(ii) the regressors xi satisfy

(a) Σn = ∑n
i=1 N

′xix′
iN

P→ Σ
a.s.
> 0;

(b) max1≤i≤n |n1/2−κN ′xi| = OP(1);
(c) n−1E

∑n
i=1 |n1/2N ′xi|q = O(1);

(iii) the initial estimator (˜β, σ̃ 2) satisfies

(a) N−1(˜β − β) = OP(n1/4−η);
(b) n1/2(̃σ 2 − σ 2) = OP(n1/4−η).

There is a trade-off between κ , η, the dimension dim x and the required number of
moments r, see [17, Remark 3.1]. The conditions (i), (ii) are satisfied in a range of
situations. In particular, condition (ia) is satisfied by the normal and t distribution, see
[17, Example 3.1]; condition (ib, ic) is satisfied by the normal, see [18, Remark 2];
condition (ii) is satisfied by stationary, random walk and deterministically trending
regressors, see [17, Example 3.2]. Condition (iii) allows the standardized estimation
errors to diverge at a rate of n1/4−η rather than being bounded in probability. In
particular, η = 1/4 can be chosen for estimators with standard convergence rates.

3.2 Properties of the Iterated Estimators

The first result is a stochastic expansion of the 1-step Huber-skip M-estimator in
terms of the original estimator, a kernel, and a small remainder term.

Theorem 1 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Suppose Assumption 1(ia, ii) holds, and that N−1(̂β(m)

c − β), n1/2(̂σ (m)
c − σ ) are

OP(1). Then uniformly in c ∈ [c0,∞) and as n → ∞

N−1(̂β(m+1)
c − β) = 2cf(c)

ψ
N−1(̂β(m)

c − β) + (ψΣ)−1
n

∑

i=1

N ′xiεi1(|εi|≤σc) + oP(1),

n1/2(̂σ (m+1)
c − σ) = c(c2 − ς2

c )f(c)
τ c
2

n1/2(̂σ (m)
c − σ)

+ 1

2στ c
2

n−1/2
n

∑

i=1

(ε2i − ς2
c σ

2)1(|εi|≤σc) + oP(1).
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Theorem 1 shows that the updated estimation error for β depends on the previous
estimation error for β, but not on the estimation uncertainty for σ . The estimation
error for σ has a similar property. This is a consequence of symmetry imposed on
the density f. More complex situations can also be analyzed where the reference
distribution f is non-symmetric and the cut-off c is chosen in a matching way, see
[15]. The proof uses the empirical process theory in Sect. 4.

The next result shows that the iterated estimator is tight in iteration m ∈ [0,∞)

and in the cut-off value c ∈ [c0,∞). This builds on [16].

Theorem 2 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Suppose Assumption 1(ia, ii, iii) holds with η = 1/4. Then as n → ∞

sup
0≤m<∞

sup
c0≤c<∞

|N−1(̂β(m)
c − β)| + |n1/2(̂σ (m)

c − σ)| = OP(1).

Assumption 1(iii) with η = 1/4 corresponds to a standard convergence rate
for the initial estimator. Theorem 1 provides the 1-step relationship between the
updated estimator and the original estimator. Since supc0≤c<∞ |2cf(c)/ψ | < 1 and
supc0≤c<∞ |c(c2 − ς2

c )f(c)/τ
c
2 | < 1 implied by Assumption 1(ia), see [16, Theorem

3.5], a geometric argument and mathematical induction are used to show tightness.
The fixed point result can now be shown. Initially the tight estimator is assumed

available. This is iterated through the 1-step equation presented in Theorem 1.

Theorem 3 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Suppose Assumption 1(ia, ii, iii) holds with η = 1/4. Then for all ε, δ > 0 a pair
m0, n0 > 0 exists, so for all m > m0 and n > n0

P
{

sup
c0≤c<∞

|N−1(̂β(m)
c − ̂β∗

c )| + |n1/2(̂σ (m)
c − σ̂ ∗

c )| > δ

}

< ε,

where

N−1(̂β∗
c − β) = 1

ψ − 2cf(c)
Σ−1

n
∑

i=1

N ′xiεi1(|εi|≤σc),

n1/2(̂σ ∗
c − σ) = 1

2σ {τ c
2 − c(c2 − ς2

c )f(c)}
n−1/2

n
∑

i=1

(ε2i − ς2
c σ

2)1(|εi|≤σc).

Based on Theorem2, if the initial estimator is bounded in a large compact set with
large probability, then any iterated estimator takes values in the same compact set
no matter what value of the cut-off c is chosen in the interval [c0,∞). The proof of
Theorem 3 is to further argue the deviation between them-fold iterated estimator and
the fixed point is the sum of two terms vanishing exponentially and in probability
respectively when m and n are sufficiently large.

The iterated 1-step Huber-skip M-estimator can be seen as a special case of itera-
tively reweighted least squareswith binaryweights. Dollinger and Staudte [5] applied
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an influence function argument to demonstrate convergence of iteratively reweighted
least squares with smooth weights. Even if the spirit is similar, our proof is different
due to binary weights. The idea of iterating 1-step estimator can also be found in [4],
which analyzed the first order autoregression with infinite variance.

3.3 Properties of the Gauge

Johansen and Nielsen [18] proved the Poisson approximation to the gauge for the
finite step Huber-skip M-estimator. But the iterated result was not established, since
they did not have the empirical process theorywhich investigates the varying quantile
c and estimation errors for β and σ . This paper shows the Poisson approximation to
the gauge for the iterated 1-step Huber-skip M-estimator.

A Poisson exceedence theory arises in the scenario where the cut-off value c is
set to allow the fixed number λ of outliers regardless of the sample size n. For some
λ > 0, the cut-off value cn is set so as to let

nP(|εi| > σcn) = λ. (15)

Notice that cn → ∞ as n → ∞. Define v(m)
i,cn

, ̂β(m+1)
cn , (̂σ (m+1)

cn )2 by replacing c by cn
in expressions (9–11). The corresponding sample gauge is

γ̂ (m)
cn = 1

n

n
∑

i=1

(1 − v(m)
i,cn

) = 1

n

n
∑

i=1

1
(|yi−x′

i
̂β

(m)
cn |>σ̂

(m)
cn cn)

. (16)

Theorems 2 and 3 shows that any iterated estimator is tight, so lower and upper
bounds can be found for the indicators appearing in the gauge. By exploring these
bounds, the following Poisson limit theorem arises.

Theorem 4 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Let cn be defined from (15). Suppose Assumption 1 holds with η = 1/4. Then for all
0 ≤ m < ∞ and as n → ∞, the sample gauge in (16) satisfies

nγ̂ (m)
cn

D→ Poisson(λ).

Table1 assumes that εi/σ follows a standard normal distribution. For a given
λ, the cut-off in (15) satisfies cn = �−1{1 − λ/(2n)}. Cut-off values are shown for
n = 100, 200. The Poisson approximation gives the probability of finding at most x
outliers. There is an increase from 62 to 90% for the probability of detecting at most
x = λ outliers as λ declines from 5 to 0.1. The reason is due to the left skewness of the
Poisson distribution. In particular, we focus on the case where λ = 1 and n = 100.
The cut-off is cn = 2.58 and the probability to find at most 1, 2 outliers are 0.74,
0.92. This means it regularly finds 2 outliers when there are none.
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Table 1 The probability of detecting at most x outliers approximated by a Poisson distribution for
a given λ, and the cut-off cn = �−1{1 − λ/(2n)} for n = 100, 200

x

λ c100 c200 0 1 2 3 4 5

5 1.960 2.241 0.01 0.04 0.12 0.27 0.44 0.62

1 2.576 2.807 0.37 0.74 0.92 0.98 1.00

0.5 2.807 3.023 0.61 0.91 0.98 1.00

0.25 3.023 3.227 0.78 0.97 1.00

0.1 3.291 3.481 0.90 1.00

The Robustified Least Squares and Impulse Indicator Saturation are special ver-
sions of iterated 1-step Huber-skip M-estimators with different starting points. Their
initial points do not depend on the cut-off, and thus satisfy the tightness property.
Therefore, Theorems 1–4 apply for these algorithms.

4 Weighted and Marked Empirical Process

Consider the weighted and marked empirical distribution function

̂Fg,p
n (a, b, c) = 1

n

n
∑

i=1

ginε
p
i 1(εi≤σc+n−1/2ac+x′

inb),

with Fi−1 adapted weights gin and Fi measurable marks ε
p
i . Let a ∈ R, b ∈ Rdim x

represent estimation errors ã = n1/2(̃σ − σ),˜b = N−1(˜β − β), while c ∈ R is the
quantile. Define normalized regressors xin = N ′xi so that

∑n
i=1 xinx

′
in converges. For

example, N = n−1/2Idim x if {xi}ni=1 is stationary, while N = n−1Idim x for a random
walk. Our interest focuses on weights gin given as either of 1, n1/2N ′xi, nN ′xix′

iN and
p as either of 0, 1, 2. To form the empirical process, introduce the compensator

F
g,p
n (a, b, c) = 1

n

n
∑

i=1

ginEi−1ε
p
i 1(εi≤σc+n−1/2ac+x′

inb), (17)

where Ei−1(·) = E(·|Fi−1). Note that F
1,0
n (0, 0, c) = F(c) = P(εi ≤ σc).

We embed these processes in the space D[0, 1] of processes that are continuous
from the right and with limits of left, where the space is endowed with the Skorokhod
metric. We do this as follows. The indicator 1(εi≤c) and the distribution function
F(c) can be defined as 0 or 1 when c takes the values −∞ and ∞ respectively.
We can then define quantiles cψ = F−1(ψ) for 0 ≤ ψ ≤ 1. Correspondingly we can
continuously extend the definition of the weighted and marked empirical distribution
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function and its compensator by choosing ̂Fg,p
n (a, b,−∞) = F̄g,p

n (a, b,−∞) = 0
whilêFg,p

n (a, b,∞) = 1
n

∑n
i=1 ginε

p
i and F̄g,p

n (a, b,∞) = 1
n

∑n
i=1 ginEi−1ε

p
i .

We now define the empirical process, for 0 ≤ ψ ≤ 1,

Fg,p
n (a, b, cψ) = n1/2{̂Fg,p

n (a, b, cψ) − F
g,p
n (a, b, cψ)}. (18)

We will show convergence that is uniform in a, b, cψ for the above process. This
generalizes results in [22], which had no marks and no variation a in scale, in [20,
Theorem2.2.5], which had no marks, in [15, 17], which had marks, but no variation
in quantile c and no variation a in scale respectively.

In the following, we first present the new result concerning variation in the scale
a and the quantile c. Subsequently, we combine this with existing results concerning
variation in b, c in order to get a result that is uniform in all three arguments a, b, c.

4.1 The Case of Estimated Scale and Known Regression
Parameter

The main technical contribution of the paper is to analyze the empirical process
in the case of estimated scale, but known regression parameter. Thus, we establish
results for the empirical process that are uniform in a, c. Koul [20, Theorem 2.2.5]
established a similar result for the case of unbounded weights gin but no marks ε

p
i .

His proof exploits that the function 1(εi≤σc) is monotone in c and bounded. These
properties are not shared by ε

p
i 1(εi≤σc), so we follow a different strategy for the proof

that exploits the iterated martingale inequality from [18] reported as Lemma 3 in the
Appendix 1.

We first present the uniformity result for the empirical process and then a uniform
linearization result for the compensator. The proof involves a chaining argument.
For this, we apply an iterated martingale inequality, see Lemma 3, to explore the tail
behaviour of the maximum of a family of martingales.

Theorem 5 Let Fi be an increasing sequence of σ -fields so εi−1 and gin are Fi−1

measurable and εi is independent ofFi−1. Let εi/σ have a continuous density f. Let
p and η be given so p ∈ N0 and 0 < η ≤ 1/4. Suppose

(i) the density f satisfies

(a) moments:
∫ ∞
−∞ |u|4pf(u)du < ∞;

(b) boundedness: supu∈R |u|(1 + |u|4p)f(u) < ∞;

(ii) the weights gin satisfy n−1E
∑n

i=1 |gin|4 = O(1).

Let cψ = F−1(ψ) for 0 ≤ ψ ≤ 1. Then for any B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|≤n1/4−ηB

|Fg,p
n (a, 0, cψ) − Fg,p

n (0, 0, cψ)| = oP(1).
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The second result provides a linearization of the compensator.

Theorem 6 Let Fi be an increasing sequence of σ -fields so εi−1 and gin are Fi−1

measurable and εi is independent of Fi−1. Let εi/σ have a differentiable density f.
Let p and η be given so p ∈ N0 and 0 < η ≤ 1/4. Suppose

(i) the density f satisfies

(a) moments:
∫ ∞
−∞ |u|pf(u)du < ∞;

(b) boundedness: supu∈R u2|up−1f(u) + up ḟ(u)| < ∞;

(ii) the weights gin satisfy n−1 ∑n
i=1 |gin| = OP(1).

Let cψ = F−1(ψ) for 0 ≤ ψ ≤ 1. Then for any B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|≤n1/4−ηB

|n1/2{Fg,p
n (a, 0, cψ) − F

g,p
n (0, 0, cψ)}

−σ p−1cpψ f(cψ)n−1/2
n

∑

i=1

ginn
−1/2acψ | = OP(n−2η).

4.2 The Case of Estimated Scale and Regression Parameter

We now turn to the general one-sided empirical process with estimated scale and
regression parameters. The case with known regression parameter was treated above
while the case with known scale was treated in [18]. Through an argument reported
in the appendix these results can be combined to prove the general result. For this
we need the union of the various assumptions. This is listed below as Assumption 2.
Note the density f is not necessarily symmetric in this section and Assumption 2 is
weaker than Assumption 1.

Assumption 2 Let Fi be an increasing sequence of σ -fields so εi−1, xi and gin
are Fi−1 measurable and εi is independent of Fi−1. Let εi/σ have a continuously
differentiable density f which is positive on R. Let p, η, κ be given so p ∈ N0 and
0 ≤ κ < η ≤ 1/4. Choose r ∈ N0 so

2r−1 ≥ 1 + (1/4 + κ − η)(1 + dim x). (19)

Suppose

(i) the density f satisfies

(a) moments:
∫ ∞
−∞ |u|2rpf(u)du < ∞;

(b) boundedness: supu∈R[{1 + |u|max(4p+1,2rp−1)}f(u) + (1 + u2
rp+2)|ḟ(u)|]

< ∞;
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(c) smoothness: a CH > 0 exists so that for all v > 0

supu≥v(1 + u2
rp)f(u)

inf0≤u≤v(1 + u2rp)f(u)
≤ CH,

supu≤−v(1 + u2
rp)f(u)

inf−v≤u≤0(1 + u2rp)f(u)
≤ CH;

(ii) the regressors xi satisfy max1≤i≤n |n1/2−κN ′xi| = OP(1);
(iii) the weights gin satisfy

(a) n−1E
∑n

i=1 |gin|2r (1 + |n1/2N ′xi|) = O(1);
(b) n−1 ∑n

i=1 |gin|(1 + |n1/2N ′xi|2) = OP(1).

Remark 1 Assumption 1(ia, iib, iic) implies Assumption 2 with r ≥ 2 satisfying
(14) when gin is either of 1, n1/2N ′xi, nN ′xix′

iN and p is either of 0, 1, 2. Details are
given in Lemma 4 in the appendix. �

We present two asymptotic results. The first theorem shows that the estimation
error for the scale and regression parameter is negligible uniformly in the quantile.

Theorem 7 Suppose Assumption 2 is satisfied. Let cψ = F−1(ψ) for 0 ≤ ψ ≤ 1.
Then for any B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|,|b|≤n1/4−ηB

|Fg,p
n (a, b, cψ) − Fg,p

n (0, 0, cψ)| = oP(1).

The proof has two parts. First, we keep a fixed and consider variation in b, c.
This has been done in [17, Theorem 4.1]. Secondly, we keep b fixed and consider
variation in a, c as done in Theorem 5.

The second result provides a linearization of the compensator.

Theorem 8 Suppose Assumption 2(ia, ib, iiib) holds with r = 0. Let cψ = F−1(ψ)

for 0 ≤ ψ ≤ 1. Then for any B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|,|b|≤n1/4−ηB

|n1/2{Fg,p
n (a, b, cψ) − F

g,p
n (0, 0, cψ)}

−σ p−1cpψ f(cψ)n−1/2
n

∑

i=1

gin(n
−1/2acψ + x′

inb)| = OP(n−2η).

Finally, the tightness of the empirical process Fg,p
n (0, 0, cψ) was shown in [17,

Theorem 4.4], see tightness in [3].

4.3 A Result for the Two-Sided Empirical Process

The 1-step Huber-skip M-estimator involves indicators depending on the absolute
value of the residuals. We therefore present some results for a class of two-sided
weighted and marked empirical processes.
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Define the weighted and marked absolute empirical distribution function

̂Gg,p
n (a, b, c) = 1

n

n
∑

i=1

ginε
p
i 1(|εi−x′

inb|≤σc+n−1/2ac). (20)

We suppose a so that σ + n−1/2a > 0, in which case it suffices to consider c ≥ 0.
This restriction on a is satisfied when choosing a as ã = n1/2(̃σ − σ) such that
σ + n−1/2̃a = σ̃ > 0. Introduce the compensator of ̂Gg,p

n (a, b, c)

G
g,p
n (a, b, c) = 1

n

n
∑

i=1

ginEi−1ε
p
i 1(|εi−x′

inb|≤σc+n−1/2ac). (21)

Note G
1,0
n (0, 0, c) = G(c) = P(|εi| ≤ σc). Then the absolute empirical process is

Gg,p
n (a, b, c) = n1/2{̂Gg,p

n (a, b, c) − G
g,p
n (a, b, c)}. (22)

We can now derive asymptotic theory for the absolute empirical process from
Theorems7 and 8. These results are presented under more restrictive Assumption1,
where the innovation distribution is symmetric, see Remark1 and Lemma4. In this
section, we only consider gin chosen as 1, n1/2N ′xi, nN ′xix′

iN and p as 0, 1, 2.

Theorem 9 Suppose Assumption 1(ia, iib, iic) holds. Let cψ = G−1(ψ) for 0 ≤
ψ ≤ 1. Then for all B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|,|b|≤n1/4−ηB

|Gg,p
n (a, b, cψ) − Gg,p

n (0, 0, cψ)| = oP(1).

Theorem 10 Suppose Assumption 1(ia, iic) holds. Let cψ = G−1(ψ) for 0 ≤ ψ ≤
1. Then for all B > 0 and as n → ∞

sup
0≤ψ≤1

sup
|a|,|b|≤n1/4−ηB

|n1/2{Gg,p
n (a, b, cψ) − G

g,p
n (0, 0, cψ)}

−2σ p−1cpψ f(cψ)n−1/2
n

∑

i=1

gin{1(p even)n
−1/2acψ + 1(p odd)x

′
inb}| = OP(n−2η).

5 Discussion

This paper contributes to the asymptotic theory of iterated 1-step Huber-skip
M-estimators. The results are derived under the null hypothesis that there are no
outliers in the model. It is well known that the first-order asymptotic approximation
is fragile in some small finite sample situations. Therefore, it would be of interest to
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carry out simulation studies to evaluate the finite sample performance of the results
in this paper. Likewise it would be of interest to extend the result to situations where
outliers are actually present in the data generating process. Scenario possibly contain
single outliers, clusters of outliers, level shifts, symmetric or non-symmetric outliers.
In such situations, we would analyze the potency, which is the retention rate for rele-
vant outliers. Moreover, it would be possible to compare the potency of two distinct
outlier detection algorithms with the same gauge.
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Appendix 1A Metric on R and Some Inequalities

The asymptotic theory uses a chaining argument. This involves a partitioning of the
quantile axis using a metric, which is presented first. Then follows some preliminary
inequalities including an iterated exponential martingale inequality.

Define the function

Ji,p(x, y) = (
εi

σ
)p{1(εi/σ≤y) − 1(εi/σ≤x)}. (23)

Our interest focus on Ji,p(x, y) of order 2r with r ∈ N. Note that u2
rp is non-negative

since 2rp is even for p ∈ N0 and r ∈ N. Introduce a positive and increasing function

Hr(x) =
∫ x

−∞
(1 + u2

rp)f(u)du. (24)

The derivative of this function is Ḣr(x) = (1 + x2
rp)f(x). Then, denote the constant

Hr = Hr(∞) =
∫ ∞

−∞
(1 + u2

rp)f(u)du, (25)

which is finite by Assumption 2(ia). Selection of the specific r ∈ N will be more
clear in proofs of the empirical process results. The intuition of Hr(x) is obtained
through setting p = 0 so that Hr(x) = 2F(x), Ḣr(x) = 2f(x) and Hr = 2. Therefore,
Hr(x) is the generalization of the distribution F(x) ∼ εi/σ . For x ≤ y and 0 ≤ s ≤ r,

0 ≤ |E{Ji,p(x, y)2s}| ≤ E{|Ji,p(x, y)|2s} ≤ Hr(y) − Hr(x), (26)

as |up| < |uq| + 1 for q ≥ p ≥ 0. Let |Hr(x) − Hr(y)| be theHr-distance for x, y ∈ R.
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In the context of chaining, partition the range of Hr(c) into K intervals of equal
size Hr/K . In other words, partition the support into K intervals by endpoints

− ∞ = c0 < c1 < · · · < cK−1 < cK = ∞, (27)

with c−k = c0 for k ∈ N so that for 1 ≤ k ≤ K

Hr(ck) − Hr(ck−1) = Hr

K
. (28)

We first present two preliminary inequalities.

Lemma 1 If |c̃ − c| ≤ |Ac + B| and |A| ≤ 1/2, then

|c| ≤ |c̃| + |B|
1 − |A| , (Ac + B)2 ≤ 16(A2c̃2 + B2).

Proof (Lemma 1) First inequality. Since |Ac + B| ≤ |A||c| + |B|, the assumption
implies c − |A||c| − |B| ≤ c̃ ≤ c + |A||c| + |B|. Suppose c ≥ 0, then the lower
inequality gives c(1 − |A|) − |B| ≤ c̃ so that c ≤ (c̃ + |B|)/(1 − |A|). Suppose c <

0, then the upper inequality gives c̃ ≤ c(1 − |A|) + |B| so that (c̃ − |B|)/(1 − |A|) ≤
c. Combine to get |c| ≤ max{|(c̃ + |B|)/(1 − |A|)|, |(c̃ − |B|)/(1 − |A|)|} ≤ (|c̃| +
|B|)/(1 − |A|).

Second inequality. The first inequality in the lemma, (x + y)2 ≤ 2(x2 + y2) and
|A| ≤ 1/2 imply c2 ≤ 8(c̃2 + B2) and (Ac + B)2 ≤ 2(A2c2 + B2). Combine to get
(Ac + B)2 ≤ 2(8A2c̃2 + 8A2B2 + B2) ≤ 16(A2c̃2 + B2). �

The following lemma concerns the Hr-distance of multiplicative shifts.

Lemma 2 Let r ∈ N0. Suppose f is a continuous density satisfying

(a) moments:
∫ ∞
−∞ |u|2rpf(u)du < ∞;

(b) boundedness: supc∈R |c|(1 + |c|2rp)f(c) < ∞.

Let cψ = F−1(ψ) for 0 ≤ ψ ≤ 1. Then, for any B > 0, there exists C > 0 so

sup
0≤ψ≤1

sup
|a|≤n1/4−ηB

|Hr
{

cψ

(

1 + n−1/2a/σ
)} − Hr(cψ)| ≤ Cn−1/4−η.

Proof (Lemma 2) DenoteH = |Hr{cψ(1 + n−1/2a/σ)} − Hr(cψ)|. Apply the first
order mean value theorem at the point cψ to get H = |σ−1n−1/2a||cψ ||Ḣr(c̃ψ)|,
where |c̃ψ − cψ | ≤ |σ−1n−1/2acψ | and Ḣr(c̃ψ) = (1 + c̃2

rp
ψ )f(c̃ψ).

There exists n0, so for any n > n0 we have |σ−1n−1/2a| ≤ 1/2 uniformly in |a| ≤
n1/4−ηB. First, for n > n0, we apply the first inequality in Lemma 1 to obtain |cψ | ≤
|c̃ψ |/(1 − |σ−1n−1/2a|) ≤ 2|c̃ψ |. It follows

H ≤ σ−1n−1/2n1/4−ηB2|c̃ψ ||Ḣr(c̃ψ)| ≤ 2σ−1B sup
c∈R

|c||Ḣr(c)|n−1/4−η.
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ThusH ≤ Cn−1/4−η by condition (b) that |cḢr(c)| = |c|(1 + |c|2rp)f(c) is bounded
uniformly in c.

Second, consider n ≤ n0. NoteHr(x) ≤ Hr(∞) = Hr for any x so that the triangle
inequality shows H ≤ 2Hr . With 0 < η ≤ 1/4, it follows

H ≤ 2Hrn
1/4+ηn−1/4−η ≤ 2Hrn

1/4+η

0 n−1/4−η = Cn−1/4−η,

where C = 2Hrn
1/4+η

0 is finite since Hr < ∞ by condition (a). �

The chaining argument involves the tail behaviour of the maximum of a fam-
ily of martingales which can be controlled using the following iterated martingale
inequality taken from [17]. It builds on an exponential martingale inequality derived
by Bercu and Touati [1, Theorem 2.1].

Lemma 3 ([17], Theorem 5.2) For l so 1 ≤ l ≤ L, let zl,i be Fi adapted satisfying
Ez2

r̄

l,i < ∞ for some r̄ ∈ N. Let Dr = max1≤l≤L
∑n

i=1 Ei−1z2
r

l,i for 1 ≤ r ≤ r̄. Suppose,
for some ς ≥ 0, λ > 0, that L = O(nλ) and EDr = O(nς ) for r ≤ r̄. If υ > 0 is
chosen such that

(i) ς < 2υ;
(ii) ς + λ < υ2r̄ ;

then, for all κ > 0 and as n → ∞

lim
n→∞P

{

max
1≤l≤L

|
n

∑

i=1

(zl,i − Ei−1zl,i)| > κnυ

}

= 0.

Appendix 2 Proofs of Empirical Process Results Concerning
Scale

Here we prove the empirical process results concerning the variation in scale when
the regression parameter is known. We use the distance function Hr with r = 2.

Proof (Theorem 5)Let cψ† = cψ(1 + n−1/2a/σ) soFg,p
n (a, 0, cψ) = Fg,p

n (0, 0, cψ†).
Note cψ† can be greater or less than cψ , since a such that |a| ≤ n1/4−ηB and cψ can
be either positive or negative. Assume cψ < cψ† without loss of generality. Denote
R(cψ, cψ†) = Fg,p

n (0, 0, cψ†) − Fg,p
n (0, 0, cψ). The aim is to prove Rn = oP(1) for

n → ∞ where Rn = sup0≤ψ≤1 sup|a|≤n1/4−ηB |R(cψ, cψ†)|.
1. Partition the support. For δ, n > 0 partition the range of quantiles c as laid

out in (27) with K = int(Hrn1/2/δ) and r = 2 since Hr < ∞ by assumption
(ia).

2. Assign cψ and cψ† to the partitioned support. For each ψ and ψ† there
exist k ≤ k† and grid points so that ck−1 < cψ ≤ ck and ck†−1 < cψ† ≤ ck† .
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3. Apply chaining.Relate cψ to the nearest right grid point ck and cψ† to the near-
est left grid point ck†−1. Add and subtract F

g,p
n (0, 0, ck) and F

g,p
n (0, 0, ck†−1)

to R(cψ, cψ†). The triangle inequality gives

|R(cψ, cψ†)| ≤ |R(cψ, ck)| + |R(ck, ck†−1)| + |R(ck†−1, cψ†)|.

Note that if cψ , cψ† are in the same interval, then |R(ck, ck†−1)| = |R(ck−1, ck)|.
If cψ , cψ† are in the neighbouring intervals, then |R(ck, ck†−1)| = 0. Apply
chaining to obtain Rn ≤ Rn,1 + Rn,2 + Rn,3 + Rn,4, where

Rn,1 = max
1≤k<k†−1<K

|R(ck, ck†−1)|,
Rn,2 = max

1≤k≤K
|R(ck−1, ck)|,

Rn,3 = max
1≤k≤K

sup
ck−1<cψ≤ck

|R(cψ, ck)|,
Rn,4 = max

1≤k†≤K
sup

ck†−1<cψ†≤ck†
|R(ck†−1, cψ†)|.

Thus, it suffices to show Rn,j = oP(1) for j = 1, 2, 3, 4 as n → ∞.
4. The term Rn,1 is oP(1). UseLemma3withυ = 1/2.Let gin have coordinates

g∗
in = σ pgin. Recall the notation Ji,p(x, y) in (23). Write the coordinates of

R(ck, ck†−1) asn−1/2 ∑n
i=1(zl,i − Ei−1zl,i)with zl,i = g∗

inJi,p(ck, ck†−1), where
l represents the indices k, k† with L ≤ K2. Two conditions of Lemma 3 need
to be verified.
The parameter λ. The set of indices l has the size L = O(nλ) where λ = 1,
since L ≤ K2 and K = O(n1/2).
The parameter ς . Consider 1 ≤ s ≤ r = 2 (instead of 1 ≤ r ≤ r̄ = 2). By
construction of partition and assignment in steps 1, 2, then cψ ≤ ck < ck†−1 <

cψ† . Thus,

Ei−1J
2s
i,p(ck, ck†−1) ≤ Hr(ck†−1) − Hr(ck) ≤ Hr(cψ†) − Hr(cψ) ≤ Cn−1/4−η,

by Lemma 2 using assumption (i) for some finite C > 0. Since

Ds = max
1≤l≤L

n
∑

i=1

Ei−1z
2s
l,i = max

1≤k<k†−1<K

n
∑

i=1

g∗2s
in Ei−1J

2s
i,p(ck, ck†−1),

we then find Ds ≤ Cn−1/4−η
∑n

i=1 g
∗2s
in . Moreover, using assumption (ii) we

find that En−1 ∑n
i=1 g

∗2s
in = O(1). Thus, with ς = 3/4 − η, we have EDs =

O(nς ).
Condition (i) is that ς < 2υ. This holds since η > 0 so ς = 3/4 − η < 1 =
2υ.
Condition (ii) is that ς + λ < υ2r where r = 2. This is satisfied since η > 0
so ς + λ = 7/4 − η < 2 = υ2r .
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5. The term Rn,2 is oP(1).UseLemma3withυ = 1/2 and zl,i = g∗
inJi,p(ck−1, ck),

where index l = k has the size L = K . Two conditions of Lemma 3 need to
be shown.
The parameter λ. The size L = O(nλ) where λ = 1/2, since L = K =
O(n1/2).
The parameter ς . Consider 1 ≤ s ≤ r = 2. The equality (28) shows

Ei−1J
2s
i,p(ck−1, ck) ≤ Hr(ck) − Hr(ck−1) = Hr

K
= O(n−1/2).

Then, we find

Ds = max
1≤l≤L

n
∑

i=1

Ei−1z
2s
l,i = max

1≤k≤K

n
∑

i=1

g∗2s
in Ei−1J

2s
i,p(ck−1, ck) = O(n−1/2)

n
∑

i=1

g∗2s
in .

It follows that EDs = O(nς ) where ς = 1/2 by assumption (ii).
Condition (i) holds, since ς = 1/2 < 1 = 2υ.
Condition (ii) holds, since ς + λ = 1 < 2 = υ2r .

6. Decompose the term Rn,3. Apply the triangle and Jensen’s inequality to
obtain,

|R(cψ, ck)| ≤ n−1/2
n

∑

i=1

|g∗
in|{|Ji,p(cψ, ck)| + Ei−1|Ji,p(cψ, ck)|}.

For ck−1 < cψ ≤ ck where1 ≤ k ≤ K ,wehave |Ji,p(cψ, ck)| ≤ |Ji,p(ck−1, ck)|.
Then,

Rn,3 ≤ max
1≤k≤K

n−1/2
n

∑

i=1

|g∗
in|{|Ji,p(ck−1, ck)| + Ei−1|Ji,p(ck−1, ck)|}.

Therefore, it can be argued that Rn,3 ≤ ˜Rn,3 + 2Rn,3, where

˜Rn,3 = max
1≤k≤K

n−1/2
n

∑

i=1

|g∗
in|{|Ji,p(ck−1, ck)| − Ei−1|Ji,p(ck−1, ck)|},

Rn,3 = max
1≤k≤K

n−1/2
n

∑

i=1

|g∗
in|Ei−1|Ji,p(ck−1, ck)|.

Thus, it suffices to show ˜Rn,3 and Rn,3 are oP(1) as n → ∞.
7. The term ˜Rn,3 is oP(1). Argue along the lines of step 5 to show ˜Rn,3 = oP(1).
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8. Bounding the term Rn,3. Use the equality (28) and K = O(Hrn1/2/δ) to get

Ei−1|Ji,p(ck−1, ck)| ≤ Hr(ck) − Hr(ck−1) = Hr

K
= O(n−1/2δ).

We then find Rn,3 = O(n−1/2δ)n−1/2 ∑n
i=1 |g∗

in| = OP(δ) by the Markov
inequality and the assumption (ii) that n−1 ∑n

i=1 E|g∗
in|4 = O(1). Thus,

choose δ sufficiently small so thatRn,3 = oP(1).
9. The term Rn,4 is oP(1). This is similar as to show Rn,3 = oP(1). Thus the

same argument can be made through steps 6, 7, 8. �

Proof (Theorem 6) The term of interest is

Dn(a, cψ) = n1/2{Fg,p
n (a, 0, cψ) − F

g,p
n (0, 0, cψ)}

−σ p−1cpψ f(cψ)n−1/2
n

∑

i=1

ginn
−1/2acψ,

where F
g,p
n is well-defined due to assumption (ia). Let w

a,cψ

i = 1(εi≤σcψ+n−1/2acψ ) −
1(εi≤σcψ ) and hi(a, cψ) = n−1/2acψ/σ and denote s(c) = cpf(c). Define Si(a, cψ) =
Ei−1ε

p
i w

a,cψ

i − σ phi(a, cψ)s(cψ) soDn(a, cψ) = n−1/2 ∑n
i=1 ginSi(a, cψ).WriteSi(a, cψ)

as an integral and apply the second order Taylor expansion at cψ to get

Si(a, cψ) = σ p

{

∫ cψ+hi(a,cψ )

cψ

s(u)du − hi(a, cψ)s(cψ)

}

= σ ph2i (a, cψ)ṡ(c̃ψ)/2,

where |c̃ψ − cψ | ≤ |hi(a, cψ)|. There exists n0 > 0 so for any n > n0 we have
|σ−1n−1/2a| ≤ 1/2. We then apply the second inequality in Lemma 1 to obtain
h2i (a, cψ) ≤ 16n−1a2c̃2ψ/σ 2. Exploit the bound |a| ≤ n1/4−ηB to get

|Si(a, cψ)| = O(n−1/2−2η)c̃2ψ |ṡ(c̃ψ)| = O(n−1/2−2η)

uniformly in ψ , a, since c̃2ψ |ṡ(c̃ψ)| ≤ supc∈R c2|ṡ(c)| < ∞ by assumption (i) noting

that ṡ(c) = cp−1f(c) + cp ḟ(c). Then the triangle inequality gives

|Dn(a, cψ)| ≤ n−1/2
n

∑

i=1

|gin||Si(a, cψ)| = O(n−2η)n−1
n

∑

i=1

|gin|.

By assumption (ii), this term is of order OP(n−2η) uniformly in ψ , a. �
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Appendix 3 Proofs of General Empirical Process Results

Proof (Theorem 7) The term of interest is W = Fg,p
n (a, b, cψ) − Fg,p

n (0, 0, cψ).
Denote cψ† = cψ(1 + n−1/2a/σ). Notice that Fg,p

n (a, b, cψ) = Fg,p
n (0, b, cψ†) so that

W = Fg,p
n (0, b, cψ†) − Fg,p

n (0, 0, cψ). Add and subtract Fg,p
n (a, 0, cψ) =

Fg,p
n (0, 0, cψ†) and apply the triangle inequality to get

|W | ≤ |Fg,p
n (0, b, cψ†) − Fg,p

n (0, 0, cψ†)| + |Fg,p
n (a, 0, cψ) − Fg,p

n (0, 0, cψ)|.

Thus, the problem reduces to showing

sup
0≤ψ†≤1

sup
|b|≤n1/4−ηB

|Fg,p
n (0, b, cψ†) − Fg,p

n (0, 0, cψ†)| = oP(1), (29)

sup
0≤ψ≤1

sup
|a|≤n1/4−ηB

|Fg,p
n (a, 0, cψ) − Fg,p

n (0, 0, cψ)| = oP(1). (30)

Then (29) is shown in [17, Theorem 4.1] by Assumption 2(i, ii, iiia) with r ≥ 2
such that (14) holds. Further, (30) was considered in Theorem 5, which requires
Assumption 2(ia, ib, iii) with r = 2. �

Proof (Theorem 8) We generalize the proof of Theorem 6. We note F
g,p
n is well-

defined due to Assumption 2(ia). The term of interest is

Dn(a, b, cψ) = n1/2{Fg,p
n (a, b, cψ) − F

g,p
n (0, 0, cψ)}

−σ p−1cpψ f(cψ)n−1/2
n

∑

i=1

gin(n
−1/2acψ + x′

inb).

Let w
a,b,cψ

i = 1(εi≤σcψ+n−1/2acψ+x′
inb) − 1(εi≤σcψ ), hi(a, b, cψ) = (n−1/2acψ + x′

inb)/σ

and s(c) = cpf(c). Define Si(a, b, cψ) = Ei−1ε
p
i w

a,b,cψ

i − σ phi(a, b, cψ)s(cψ) so that
Dn(a, b, cψ) = n−1/2 ∑n

i=1 ginSi(a, b, cψ). Write Si(a, b, cψ) as an integral

Si(a, b, cψ) = σ p

{

∫ cψ+hi(a,b,cψ )

cψ

s(u)du − hi(a, b, cψ)s(cψ)

}

.

Second order Taylor expansion at cψ shows Si(a, b, cψ) = σ ph2i (a, b, cψ)ṡ(c̃ψ)/2,
where |c̃ψ − cψ | ≤ |hi(a, b, cψ)|. There exists n0 > 0 so for any n > n0 we have
|σ−1n−1/2a| ≤ 1/2. We then apply the second inequality in Lemma 1 to obtain
h2i (a, b, cψ) ≤ 16{n−1a2c̃2ψ + (x′

inb)
2}/σ 2. Exploit bounds |a|, |b| ≤ n1/4−ηB and the

inequality x2 + y2 ≤ (1 + x2)(1 + y2) to get

|Si(a, b, cψ)| = O(n−1/2−2η)(1 + |n1/2xin|2)(1 + c̃2ψ)|ṡ(c̃ψ)|.
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Since (1 + c̃2ψ)|ṡ(c̃ψ)| ≤ supc∈R(1 + c2)|ṡ(c)| < ∞ by Assumption 2(ib) with
r = 0, we have |Si(a, b, cψ)| = O(n−1/2−2η)(1 + |n1/2xin|2) uniformly in ψ , a, b.
Then the triangle inequality gives

|Dn(a, b, cψ)| ≤ n−1/2
n

∑

i=1

|gin||Si(a, b, cψ)| = O(n−2η)n−1
n

∑

i=1

|gin|(1 + |n1/2xin|2).

ByAssumption 2(iiib), this term is of order OP(n−2η) uniformly inψ , a, b. �

The absolute empirical process results are given under more restrictive Assump-
tion 1, so the next lemma concerns the relationship between Assumptions 1 and 2.

Lemma 4 Suppose gin is either of 1, n1/2N ′xi, nN ′xix′
iN and p is either of 0, 1, 2.

Then Assumption 1(ia, iib, iic) implies Assumption 2 with r ≥ 2 satisfying (14).

Proof (Lemma 4) Assumption 1(ia) shows Assumption 2(ia, ic), while Assump-
tion 2(ib) further needs continuous differentiability of f, see discussion in [17,
Remark 4.1(c)]. Assumption 1(iib) is the same as Assumption 2(ii). Assumption
1(iic) implies Assumption 2(iiia) and (iiic) by Markov inequality. �

Proof (Theorem 9) The term of interest is G = Gg,p
n (a, b, cψ) − Gg,p

n (0, 0, cψ). Our
focus is on the absolute quantile cψ = G−1(ψ) > 0 rather than the one-sided quantile
cψ∗ = F−1(ψ∗) ∈ R. Note |εi|/σ ∼ G and εi/σ ∼ F. Since

1(|εi−x′
inb|≤σc+n−1/2ac) = 1(εi≤σc+n−1/2ac+x′

inb) − 1(εi≤−σc−n−1/2ac+x′
inb)

and by (18) and (22), we haveGg,p
n (a, b, c) = Fg,p

n (a, b, c) − limc†↓c F
g,p
n (a, b,−c†)

for any c > 0. By this and the triangle inequality, then for any cψ = G−1(ψ) > 0,

|G | ≤ |Fg,p
n (a, b, cψ) − Fg,p

n (0, 0, cψ)| + lim
c†ψ↓cψ

|Fg,p
n (a, b,−c†ψ) − Fg,p

n (0, 0,−c†ψ)|.

These vanish uniformly inψ , a, b by Theorem 7 using Assumption 2 with r ≥ 2 such
that (14) holds. Lemma 4 shows that Assumption 1(ia, iib, iic) suffices. �

Proof (Theorem 10)Argue as in the proof of Theorem 9 but using Theorem 8 instead
of Theorem 7. Due to the symmetry of f, the correction term is then

σ p−1cpψ f(cψ)n−1/2
n

∑

i=1

gin[{1 + (−1)p}n−1/2acψ + {1 − (−1)p}x′
inb].

This reduces as desired. �
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Appendix 4 Proofs of the Main Results

We first present an axillary result for asymptotic expansions of product moments.
Then, the tightness and fixed point result are shown for the iterated estimators. At
last, we provide the proof of the Poisson exceedence theory for the gauge.

The 1-step Huber-skip M-estimators are least squares estimators for selected
observations. The following result describes the asymptotic behaviour of the cor-
responding product moments. For this purpose introduce the indicators

va,b,ci = 1(|εi−x′
inb|≤σc+n−1/2ac). (31)

Lemma 5 Suppose Assumption 1(ia, ii) holds. Then we have expansions

n−1/2
n

∑

i=1

va,b,ci = n−1/2
n

∑

i=1

1(|εi|≤σc) + 2f(c)
ac

σ
+ Rv(a, b, c),

n−1/2
n

∑

i=1

ε2i v
a,b,c
i = n−1/2

n
∑

i=1

ε2i 1(|εi|≤σc) + 2σ 2c2f(c)
ac

σ
+ Rvεε(a, b, c),

n
∑

i=1

N ′xiεiva,b,ci =
n

∑

i=1

N ′xiεi1(|εi|≤σc) + 2cf(c)Σb + Rvxε(a, b, c),

n1/2
n

∑

i=1

N ′xix′
iNv

a,b,c
i = n1/2

n
∑

i=1

N ′xix′
iN1(|εi|≤σc) + 2f(c)Σ

ac

σ
+ Rvxx(a, b, c).

Let R(a, b, c) = |Rv(a, b, c)| + |Rvεε(a, b, c)| + |Rvxε(a, b, c)| + |Rvxx(a, b, c)|.
Then for any B > 0 and as n → ∞

sup
0<c<∞

sup
|a|,|b|≤n1/4−ηB

|R(a, b, c)| = oP(1).

Remark 2 The first and fourth item in Lemma 5 adjusted by n−1/2 have expansions

n−1
n

∑

i=1

va,b,ci = ψ + R′
v(a, b, c),

n
∑

i=1

N ′xix′
iNv

a,b,c
i = ψΣ + R′

vxx(a, b, c),

where for any B > 0 and as n → ∞

sup
0<c<∞

sup
|a|,|b|≤n1/4−ηB

|R′
v(a, b, c)| + |R′

vxx(a, b, c)| = oP(1).
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Indeed, for the first expansion, we apply the law of large numbers to obtain
n−1 ∑n

i=1 1(|εi|≤σc) = ψ + oP(1),while supc∈R |c|f(c) < ∞byAssumption1(ia) and
n−1/2a vanishes. For the second expansion, decompose

n
∑

i=1

N ′xix′
iN1(|εi|≤σc) =

n
∑

i=1

N ′xix′
iN{1(|εi|≤σc) − ψ} +

n
∑

i=1

N ′xix′
iNψ.

The first item vanishes by theChebyshev inequality andAssumption 1(iia, iic), while
the second converges to ψΣ . �

Proof (Lemma 5) The general class of empirical processes is

Mn = n−1/2
n

∑

i=1

ginε
p
i v

a,b,c
i , va,b,ci = 1(|εi−x′

inb|≤σc+n−1/2ac).

1. Decompose Mn. WriteMn = Mn,1 + Mn,2 + Mn,3, where

Mn,1 = n−1/2
n

∑

i=1

ginε
p
i 1(|εi|≤σc), Mn,2 = n−1/2

n
∑

i=1

ginEi−1ε
p
i {va,b,ci − 1(|εi|≤σc)},

Mn,3 = n−1/2
n

∑

i=1

ginε
p
i {va,b,ci − 1(|εi|≤σc)} − n−1/2

n
∑

i=1

ginEi−1ε
p
i {va,b,ci − 1(|εi|≤σc)}.

Therefore, the first term in stochastic expansion is Mn,1. We will linearize Mn,2 to
obtain the second term, and argue that Mn,3 is small in probability.

2. Linearize Mn,2. Note Mn,2 = n1/2{Gg,p
n (a, b, c) − G

g,p
n (0, 0, c)}, see (21).

Theorem 10 by Assumption 1(ia, iic) shows Mn,2 = M n,2 + OP(n−2η), where

M n,2 = 2σ p−1cpf(c)n−1/2
n

∑

i=1

gin{1(p even)n
−1/2ac + 1(p odd)x

′
inb}.

This reduces as desired by Assumption 1(iia). Note 0 < η ≤ 1/4. Thus, we have
Mn,2 = M n,2 + oP(1) uniformly in 0 < c < ∞ and |a|, |b| ≤ n1/4−ηB.

3. Bounding Mn,3. Note Mn,3 = Gg,p
n (a, b, c) − Gg,p

n (0, 0, c), see (22). Due
to Assumption 1(ia, iib, iic), Theorem 9 shows Mn,3 = oP(1) uniformly in a,
b, c. �

Proof (Theorem 1) The m + 1 step estimators for β, σ 2 are defined in (10), (11).
These are least squares estimators for the non-outlying observations and satisfy
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N−1(̂β(m+1)
c − β) =

(

n
∑

i=1

N ′xix′
iNv

(m)
i,c

)−1 (

n
∑

i=1

N ′xiεiv(m)
i,c

)

, (32)

n1/2{(̂σ (m+1)
c )2 − σ 2} = ς−2

c

(

n−1
n

∑

i=1

v(m)
i,c

)−1

n−1/2

{

n
∑

i=1

(ε2i − ς2
c σ 2)v(m)

i,c (33)

−
(

n
∑

i=1

εix
′
iNv

(m)
i,c

) (

n
∑

i=1

N ′xix′
iNv

(m)
i,c

)−1 (

n
∑

i=1

N ′xiεiv(m)
i,c

)

⎫

⎬

⎭

.

We express the weight v(m)
i,c in (9) as

v(m)
i,c = 1

(|yi−x′
i
̂β

(m)
c |≤σ̂

(m)
c c) = 1

(|εi−x′
in
̂b(m)
c |≤σc+n−1/2â(m)

c c) = v
â(m)
c ,̂b(m)

c ,c
i ,

wherêb(m)
c = N−1(̂β(m)

c − β) and â(m)
c = n1/2(̂σ (m)

c − σ) are the m step estimation
errors for β and σ .

Since |̂b(m)
c | + |̂a(m)

c | = OP(1) and by Assumption 1(ia, ii), then Lemma 5 and
Remark 2 with κ = 0, η = 1/4 show asymptotic expansions for product moments.
Substitute these expansions into (32), (33) to first get

̂b(m+1)
c = 2cf(c)

ψ
̂b(m)
c + (ψΣ)−1

n
∑

i=1

N ′xiεi1(|εi|≤σc) + Rβ (̂a(m)
c ,̂b(m)

c , c),

where the remainder Rβ(a, b, c) vanishes uniformly in c0 ≤ c < ∞ and |a|, |b| ≤ B.
A key to this is that c is bounded away from zero and that Σ is positive definite by
Assumption 1(iia) so that the denominator ψ , ψΣ is bounded away from zero.

Secondly, we get an expression for σ̂ (m+1)
c . By Taylor expansion, first note that

n1/2(̂σ (m+1)
c − σ) = 1

2σ
n1/2{(̂σ (m+1)

c )2 − σ 2} + n−1/2O[n{(̂σ (m+1)
c )2 − σ 2}2].

Then apply arguments as above to get

â(m+1)
c = c(c2 − ς2

c )f(c)
τ c
2

â(m)
c + 1

2στ c
2

n−1/2
n

∑

i=1

(ε2i − ς2
c σ

2)1(|εi|≤σc)

+Rσ (̂a(m)
c ,̂b(m)

c , c),

where the remainder Rσ (a, b, c) also vanishes uniformly. �
To prove the tightness and fixed point result, let | · | refer to the usual Euclidean

vector norm, while ‖M‖ = max{eigen(M ′M)}1/2 is the spectral norm for any matrix
M. Note that the norms are compatible so that |Mx| ≤ ‖M‖|x| for any vector x.

Proof (Theorem 2) Due to Assumption 1(ia, ii), Theorem 1 shows

û(m+1)
c = Γcû

(m)
c + Kc + Ru(̂u

(m)
c , c), (34)
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where the remainder term satisfies supc0≤c<∞ sup|u|≤B |Ru(u, c)| = oP(1) and

û(m)
c =

(

̂b(m)
c

â(m)
c

)

=
{

N−1(̂β(m)
c − β)

n1/2(̂σ (m)
c − σ)

}

, Γc =
{

2cf(c)
ψ

Idim x 0

0 c(c2−ς2
c )f(c)

τ c
2

}

, (35)

Kc =
{

(ψΣ)−1 0
0 (2στ c

2 )
−1

} n
∑

i=1

{

N ′xiεi
n−1/2(ε2i − ς2

c σ
2)

}

1(|εi|≤σc). (36)

Apply the difference Eq. (34) recursively to obtain the representation

û(m+1)
c = Γ m+1

c û(0)
c +

m
∑

l=0

Γ l
c {Kc + Ru(̂u

(m−l)
c , c)}. (37)

Use the triangle inequality and |Mx| ≤ ‖M‖|x| to get

|̂u(m+1)
c | ≤ ‖Γ m+1

c ‖|̂u(0)
c | + {|Kc| + max

0≤l≤m
|Ru(̂u

(l)
c , c)|}

m
∑

l=0

‖Γ l
c ‖.

Assumption 1(ia) shows supc0≤c<∞ max{|2cf(c)/ψ |, |c(c2 − ς2
c )f(c)/τ c

2 |} < 1, see
[16, Theorem 3.5], so supc0≤c<∞ ‖Γc‖ < 1. Gelfand’s formula in [24, Theorem 3.4]
gives limm→∞ ‖Mm‖1/m = max |eigen(M)|. Therefore for some ω satisfying that
supc0≤c<∞ ‖Γc‖ < ω < 1 there exists m0 > 0 so for all m > m0

sup
c0≤c<∞

‖Γ m
c ‖ < ωm < 1. (38)

Also note (Idim x+1 − Γc)
−1 = ∑∞

l=0 Γc. This in turn implies for some 1 < B0 < ∞

sup
0≤m<∞

sup
c0≤c<∞

‖Γ m
c ‖ < B0, sup

c0≤c<∞
‖(Idim x+1 − Γc)

−1‖ ≤
∞

∑

l=0

sup
c0≤c<∞

‖Γ l
c ‖ < B0.

(39)
Therefore, (39) shows for all m ∈ [0,∞)

|̂u(m+1)
c | < B0{|̂u(0)

c | + |Kc| + max
0≤l≤m

|Ru(̂u
(l)
c , c)|}. (40)

For any c ∈ [c0,∞), Assumption 1(iii) with η = 1/4 guarantees tightness of û(0)
c ,

while the kernel Kc is tight by [17, Theorem 4.4] using Assumption 1(ia, iib, iic).
Thus, for all ε, δ > 0 there exist n0,U0 > 0 so that the set

An = {B0 sup
c0≤c<∞

(|̂u(0)
c | + |Kc|) ≤ U0/3,B0 sup

c0≤c<∞
sup

|u|≤U0

|Ru(u, c)| < δ/2} (41)

has probability larger than 1 − ε for all n > n0.
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Mathematical induction over m is used to show sup0≤m<∞ supc0≤c<∞ |̂u(m)
c | ≤ U0

on the set An. For m = 0 as induction starts, supc0≤c<∞ |̂u(0)
c | ≤ B−1

0 U0/3 < U0

holds since B0 > 1. The induction assumption is that sup0≤l≤m supc0≤c<∞ |̂u(l)
c |

≤ U0. This implies B0 max0≤l≤m |Ru(̂u(l)
c , c)| < δ/2, and then the bound in (40)

becomes supc0≤c<∞ |̂u(m+1)
c | < 2U0/3 + δ/2 < U0 so sup0≤l≤m+1 supc0≤c<∞ |̂u(l)

c | ≤
U0. �

Proof (Theorem 3) Due to Assumption 1(ia, ii, iii), Theorem 1 provides the recur-
sive Eq. (34). Then, Theorem 2 shows sup0≤m<∞ supc0≤c<∞ |̂u(m)

c | = OP(1), so the
remainder term in (34) is oP(1). Thus, for m, n → ∞ the fixed point should satisfy
û∗
c = Γcû∗

c + Kc so that
û∗
c = (Idim x+1 − Γc)

−1Kc. (42)

Substitute (35), (36) of û∗
c , Γc and Kc into (42) to obtain

{

N−1(̂β∗
c − β)

n1/2(̂σ ∗
c − σ)

}

=
[ 1

ψ−2cf(c)Σ
−1 ∑n

i=1 N
′xiεi1(|εi|≤σc)

1
2σ {τ c

2−c(c2−ς2
c )f(c)}n

−1/2 ∑n
i=1(ε

2
i − ς2

c σ
2)1(|εi|≤σc)

]

.

Replace (37) and (42) into the deviation ̂Δ(m+1)
c = û(m+1)

c − û∗
c , and then apply

∑m
l=0 Γ l

c = (Idim x+1 − Γ m+1
c )(Idim x+1 − Γc)

−1 to attain

̂Δ(m+1)
c = Γ m+1

c {̂u(0)
c − (Idim x+1 − Γc)

−1Kc} +
m

∑

l=0

Γ l
c Ru(̂u

(m−l)
c , c).

To bound ̂Δ(m+1)
c , use the triangle inequality and |Mx| ≤ ‖M‖|x| to get

| ̂Δ(m+1)
c | ≤ ‖Γ m+1

c ‖{|̂u(0)
c | + ‖(Idim x+1 − Γc)

−1‖|Kc|} + max
0≤l≤m

|Ru (̂u
(l)
c , c)|

m
∑

l=0

‖Γ l
c ‖.

By Assumption 1(ia) and Gelfand’s formula, (38) and the second inequality in (39)
imply for m > m0

| ̂Δ(m+1)
c | < ωm+1(|̂u(0)

c | + B0|Kc|) + B0 max
0≤l≤m

|Ru(̂u
(l)
c , c)|.

On the set An as in (41), since sup0≤m<∞ supc0≤c<∞ |̂u(m)
c | ≤ U0 by Theorem 2, we

then have supc0≤c<∞ | ̂Δ(m+1)
c | < ωm+1(B−1

0 U0/3 + U0/3) + δ/2 < ωm+1U0 + δ/2.
As 0 < ω < 1, ωm+1 declines exponentially so m0 can be chosen sufficiently large
that for all m > m0 then ωm+1U0 < δ/2. Thus P(supc0≤c<∞ | ̂Δ(m+1)

c | < δ) > 1 − ε

for all m > m0 and n > n0. �

Proof (Theorem 4) Assumption 1(ia) implies E|εi/σ |l < ∞ for some l > 4. Apply
(15) and the Chebyshev inequality to get λ/n = P(|εi| > σcn) ≤ E|εi/σ |lc−l

n . Thus
cn ≤ (E|εi/σ |l)1/lλ−1/ln1/l so that the divergence rate of cn is O(n1/l) = o(n1/4).
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1. A bound on the sample space. By Assumption 1(ia, ii, iii) with η = 1/4,
Theorems 2 and 3 show that ̂β(m)

cn , (̂σ (m)
cn )2 are tight. Assumption 1(iib) gives

max1≤i≤n |xin| = OP(nκ−1/2) = oP(n−1/4) for some 0 ≤ κ < 1/4. Thus, for all ε > 0
there exists a large constant A0 so that the set

Bn = { sup
0≤m<∞

(|̂b(m)
cn | + |̂a(m)

cn |) + n1/4 max
1≤i≤n

|xin| ≤ A0}

has the probability larger than 1 − ε for all n. Note that̂b(m)
cn = N−1(̂β(m)

cn − β) and
â(m)
cn = n1/2(̂σ (m)

cn − σ).
2. Bound the indicator. Define the random quantity,

s(m)
i,cn

= σ̂ (m)
cn cn − yi + x′

i
̂β(m)
cn + εi = σcn + n−1/2â(m)

cn cn + x′
in
̂b(m)
cn .

On the setBn and as cn = o(n1/4), we have for some A1 > 0

s(m)
i,cn

≤ σcn + n−1/2A0cn + n−1/4A2
0 ≤ σ(cn + n−1/4A1),

s(m)
i,cn

≥ σcn − n−1/2A0cn − n−1/4A2
0 ≥ σ(cn − n−1/4A1).

Since the sets (yi − x′
i
̂β(m)
cn > σ̂ (m)

cn cn) and (εi > s(m)
i,cn

) are equal, we find

1(εi/σ>cn+n−1/4A1) ≤ 1
(yi−x′

i
̂β

(m)
cn >σ̂

(m)
cn cn)

≤ 1(εi/σ>cn−n−1/4A1).

A similar argument shows

1(εi/σ<−cn−n−1/4A1) ≤ 1
(yi−x′

i
̂β

(m)
cn <−σ̂

(m)
cn cn)

≤ 1(εi/σ<−cn+n−1/4A1).

Thus, we get the lower and upper bound for indicators uniformly in iteration m so

1(|εi/σ |>cn+n−1/4A1) ≤ 1
(|yi−x′

i
̂β

(m)
cn |>σ̂

(m)
cn cn)

≤ 1(|εi/σ |>cn−n−1/4A1). (43)

3. Expectation of indicator bounds. The aim is to prove

nE1(|εi/σ |>cn+n−1/4A1) → λ, nE1(|εi/σ |>cn−n−1/4A1) → λ. (44)

Since nE1(|εi/σ |>cn) = λ by (15), it suffices to show

En = nE{1(|εi/σ |>cn−n−1/4A1) − 1(|εi/σ |>cn+n−1/4A1)} → 0.

Note |εi/σ | ∼ g,G and g = 2f,G = 2F − 1. By this and (15), 2{1 − F(cn)} = λ/n.
Write En as integral, apply the mean value theorem and use the above identity to get

En = n
∫ cn+n−1/4A1

cn−n−1/4A1

2f(u)du = 4nn−1/4A1f(c̃) = 4λn−1/4A1f(c̃)
2{1 − F(cn)} ,
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where |c̃ − cn| ≤ n−1/4A1. Then, we find

En = 2λA1
f(c̃)

f(cn − n−1/4A1)

f(cn − n−1/4A1)

f(cn)
f(cn)

cn{1 − F(cn)}n
−1/4cn.

Since cn − n−1/4A1 ≤ c̃ and f has the decreasing tail by Assumption 1(ia), the first
ratio is bounded by 1. Since cn = o(n1/4), Assumption 1(ib, ic) shows the second
and third ratio are bounded. Then use n−1/4cn = o(1) to get En = o(1).

4. Poisson approximation. On the setBn, apply (43) to obtain

n
∑

i=1

1(|εi/σ |>cn+n−1/4A1) ≤
n

∑

i=1

1
(|yi−x′

i
̂β

(m)
cn |>σ̂

(m)
cn cn)

≤
n

∑

i=1

1(|εi/σ |>cn−n−1/4A1).

Using (44), the Poisson limit theorem shows that the lower and upper bound

have the Poisson limit with mean λ. By (16), nγ̂ (m)
cn

D→ Poisson(λ) for all 0 ≤ m
< ∞. �
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