Asymptotic Analysis of Iterated 1-Step
Huber-Skip M-Estimators with Varying
Cut-Offs
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Abstract We consider outlier detection algorithms for time series regression based
on iterated 1-step Huber-skip M-estimators. This paper analyses the role of varying
cut-offs in such algorithms. The argument involves an asymptotic theory for a new
class of weighted and marked empirical processes allowing for estimation errors of
the scale and the regression coefficient.
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1 Introduction

We consider outlier detection methods that are based on iterated 1-step Huber-skip
M-estimators for linear regression models with regressors that are stationary or deter-
ministically or stochastically trending. Each 1-step estimator relies on a cut-off value
when classifying observations as outliers or not. In this paper, we allow the cut-off
value to vary with sample size and iteration step. To analyze this asymptotically,
we generalize some recent results for residual empirical processes, which allow for
variation in location, scale and quantile. The model is a linear regression

yizx;ﬁ—i—gi, i=1,2,...,n, (D

where ¢; /0 are independent of %#;_| = o (xy, ..., x;, €1, . . ., &_1) with the common
density f. Outliers are pairs of observations that do not conform with the model.
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Iterated 1-step Huber-skip M-estimators mimic the Huber [14] skip estimator,
which has criterion function p (f) = min(s2, c?) /2 as opposed to the Huber estimator
with criterion function p (f) = 12/2 for |t| < c and p(¢) = c|t| — ¢*/2 otherwise, see
also [8, p. 104], [19, p. 175]. The 1-step Huber-skip M-estimator starts from an initial
estimator (8, &2). This is used to decide which observations are outlying through

Vi = Ly —yfi<so), @)

where the choice of the cut-off ¢ is related to the known reference density f. For
those observations that are not outlying, we run a least squares regression and get
the 1-step Huber-skip estimator

n -1 n
E = (z x,-xl’»vi) (Z xiyivi) , 3)
i=1 i=1

n -1 n
cl=¢"? (Z vi) {Z(y,’ —Xfﬁ)zvi} , 4
i=1 i=1

where ¢? is the consistency factor as in (8). This step can be iterated. The iteration
may be initiated by a robust estimator. More simply we get the Robustified Least
Squares and the Impulse Indicator Saturation starting with the full or split sample
least squares. The latter algorithm was introduced in the empirical work of US food
expenditure by Hendry, see [9, 10].

Outlier detection algorithms have a positive probability to find outliers even when,
in fact, the data generation process has no outliers. We evaluate the performance of
such algorithms by the concept of a gauge, which is the expected retention rate of
falsely discovered outliers. This is a measure of type I error and it gives us an indirect
way of choosing the cut-off c. It is defined as follows. The algorithms assign stochastic
indicators v; to all observations such as in (2) so that v; = 0 when observation i is
declared as an outlier, otherwise v; = 1. When the model has no contamination, the
sample and population gauge are

R 1 n R 1 n
)/:;;(I—Vi), EyzzzE(l—Vi)- (5)

Hoover and Perez [13] originally introduced the idea of a gauge in a simulation
study of general-to-specific variable selection algorithms. The concept of a gauge
was formally proposed by Hendry and Santos [12] as the expected retention rate of
irrelevant regressors in the context of model selection algorithms. Comprehensive
simulation studies on the gauge for the model selection algorithm Autometrics are
presented in [6, 10]. An asymptotic analysis for the gauge of some outlier detection
algorithms is presented in [18].
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One-step estimators have been considered before in [2, 23]. The 1-step Huber-
skip estimator was studied in [25]. Asymptotic distribution theory has been derived
for the location model in [11] and for the time series regression [15]. Iteration was
investigated in [16]. An asymptotic expansion for the sample gauge was established
in [18]. All these asymptotic analyses are restricted to the situation where the cut-off
and the number of iterations are not both increasing.

The purpose of this paper is to build an asymptotic theory which can explore
how variation in the cut-off affects the iterated 1-step Huber-skip M-estimator. In
particular, we prove the tightness and fixed point theorems for the iterated 1-step M-
estimator with the varying cut-off. Moreover, this paper demonstrates an asymptotic
Poisson distribution to the gauge in a situation where the cut-off increases with the
sample size while the number of iterations also increases.

The argument involves a theory for a new class of weighted and marked empirical
processes. This is defined from the generalized empirical distribution function

~ 1<
, P
Fﬁ p(as b, C) = ; E 8in€; 1(£,>§<7c+n’]/2ac+x;nb)9 (6)

i=1

where the weights g;, are combinations of the normalized .%;_; measurable regres-
sors x;, and sf are the .%; adapted marks, while a, b represent the normalized esti-
mation errors for o, 8. When p = 0 the mark is unity and we get the weighted
empirical distribution function considered by for instance [20]. Processes of the type
n=12 3" eil(y<c are called marked processes, see [20, p. 43], but are not special
cases of the weighted and marked empirical distribution functions.

We derive asymptotic expansions that are uniform in a, b, ¢ and allow for a near
n'/* inefficiency in the estimation uncertainties a, b. This generalizes results by Koul
and Ossiander, see [20-22], who allowed unbounded weights g;, but no marks 8f7 .
They used a truncation argument for .%;_; measurable weights g;,. This together
with the boundedness of the .%; measurable indicator function meant that they could
apply the Freedman [7] exponential inequality for bounded martingales. Here, we
use the iterated martingale inequality of [18] reported as Lemma 3 in the appendix.
This is based on the Bercu and Touati [1] exponential inequality for unbounded
martingales, so that we can avoid the truncation argument and more easily allow the
%; measurable product of the mark and indicator to be unbounded. The result also
generalizes [15, 18] who did not allow joint variation of all of a, b, c.

The outline of this paper is the following. We first review the model and iterated
1-step Huber-skip M-estimator algorithm in Sect.2. Then, the main results follow
in Sect. 3. Section4 provides theory for the weighted and marked empirical process
with proofs in Appendix 1, 2, and 3. Proofs of the main theorems in Sect. 3 follow
in Appendix 4.
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2 Model and Outlier Detection Algorithms

The regression model with some notations is described first. We review the iterated
1-step Huber-skip M-estimators including the Robustified Least Squares and the
Impulse Indicator Saturation.

2.1 Model

Suppose we have data (y;, x;),i = 1,2, ..., n, where y; is univariate and x; is multi-
variate with dimension dim x. Assume the data satisfies the regression equation

yvi=xp+e, i=1,2,...,n

This setting can represent both classical regression and time series models. Moreover,
regressors x; can be a deterministic or stochastic trend. Innovations ¢; are indepen-
dent of the filtration .%;_; generated by (xy, ..., x;, €1, ..., &_1), and are identically
distributed with scale o so that ¢; /0 has the known density f and distribution func-
tion F(¢) = P(¢g;/o < ¢). In practice, the innovation distribution, characterized by
f, F, will often be assumed to be standard normal or at least symmetric. Outlier
detection algorithms use absolute residuals and then calculate robust least squares
estimators from the non-outlying sample. This implicitly assumes symmetry, while
non-symmetry leads to bias forms. We assume symmetry when analyzing the iterated
1-step Huber-skip M-estimator algorithm in Sect. 3, but not for the general empirical
process results in Sect. 4.

For the absolute error |¢;|/o we denote the density by g and the distribution func-
tion by G(c) = P(J¢;|/o < ¢) for ¢ > 0. Here we use ¢ as notation for the quantile
of the distribution G(c). In the course of the analysis this will be linked to the cut-off
of the 1-step estimator in (3) and the argument of the weighted and marked empirical
distribution function in (6). Now, with a symmetry assumption, G(c¢) = 2F(c) — 1
and g(c) = 2f(c). Define ¢ = G(c) so the probability of exceeding the cut-off ¢ is
y = 1 — ¢. Suppose the k-th moment of the density f exists, then introduce

T = /00 fuydu, ¢ = /C 't (u)du. %)

o] c

Thus 75 = v, 7, = 1 while 7; = 77 = 0 for odd k when assuming symmetry. Define
the conditional variance of ¢;/0 given (|&;|/o < c) as

2 -1:_20 _ fie w*f(u)du
Ty T Plal <00 ®)
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This will be used as a bias correction factor for the variance estimate computed from
the selected non-outlying sample. For a standard normal reference distribution, we
have ©§ = ¥ — 2cf(c), ©§ = 3¢ — 2¢(c® + 3)f(c) and 74 = 3.

2.2 The Iterated 1-Step Huber-Skip M-Estimator Algorithm

We first define the iterated 1-step Huber-skip M-estimator algorithm. Specific exam-
ples include the Robustified Least Squares and the Impulse Indicator Saturation.

Algorithm 1 Iterated 1-step Huber-skip M-estimator. Choose a cut-off ¢ > 0.
1. Choose initial estimators ,EL(.O), @2 and let m = 0.
2. Define indicator variables for selecting non-outlying observations

m) __
Vie = 1<|y,-fx,f/§fm>\sa¥””c>' ©)

3. Compute least squares estimators

—1 n
Bl = (Zx, ; f"?) (inyivf,"?), (10)

(O-(m+1))2 62( § (m)) {Z(yl I m+1))2 (m)}. (11

i=1
4. Letm = m+ 1 and repeat 2 and 3.

In Sect.3 we show how to choose the cut-off ¢ indirectly from the gauge defined
in (5). The algorithm could start with a robust estimator, while the Robustified Least
Squares is initiated using the full sample least squares. The latter is not robust with
respect to high leverage points in cross section data. Leverage points seem to be less
of a problem in time series models when lagged variables are included as regressors.

Another example is the Impulse Indicator Saturation which was initially proposed
in the empirical work [9]. The algorithm was studied comprehensively in [10, 11].
The idea is to divide full sample into two sub-samples and use regression estimates
calculated from each sub-sample to detect outliers in the other sub-sample.

Algorithm 2 Impulse Indicator Saturation. Choose a cut-off ¢ > 0.

1.1. Splitfull sample into two sets .7}, j = 1, 2 of nj observations where z i nj=nh.
1.2. Calculate least squares estimators based upon each sub-sample .%; for j=1,2

S| (D] ——Z(y, XB)’. (12)

i€d; i€ 1 ic.g;
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1.3. Define the initial indicator variables for selecting non-outlying observations

-1 ~ _
Vie = Lies Lgy—xpoi<ero) T Lieom Liy—aiBii<aio- (13)

1.4. Compute B\C(O), (?fc(o))2 using (10) and (11) with m = —1, and then let m = 0.
2. Follow the step 2,3,4 in Algorithm 1.

The Impulse Indicator Saturation is possibly more robust than the Robustified
Least Squares when we have prior knowledge that outliers are located in a particular
subset of the whole sample. The choice of the initial sets .#; and .%, should be
iterated since the location of contaminated observations is unknown in most practical
situations, see [6].

3 The Main Results

We start by listing the assumptions. Then follows the new tightness and fixed point
result for the iterated estimator defined in Algorithm 1. Finally the gauge of the
iterated estimator is analyzed. The result is uniform in the cut-off value, which
generalizes [15, 16] which set the threshold fixed. This allows us to analyze the
gauge of the iterated estimator when the cut-off value is drifting.

3.1 Assumptions

We list the sufficient assumptions for asymptotic theory of iterated 1-step Huber-
skip M-estimators. These assumptions are somewhat stronger than they need to
be. In Sect.4 on the one-sided empirical process, we will introduce some weaker
assumptions. For instance, we will then abandon the symmetry assumption of f.

Innovations ¢; and regressors x; must satisfy some moment conditions so as to carry
out asymptotic analysis. Regressors x; can be temporally dependent and trending
deterministically or stochastically. We therefore need a normalisation matrix N that
allows for different behaviour of the components of the regressor vector x;. In the
case of a stationary regressor we need a standard n~!/? normalisation so that N
must be proportional to the identity matrix of the same dimension as x;, thatis N =
112 I4im .. Likewise, if x; is a random walk we have N = n~ !, .. If the regressors
are unbalanced as in x; = (1, i)’ we can choose N = diag(n~!/2, n=3/?).

Assumption 1 Let .%; be an increasing sequence of o-fields so ¢;_; and x; are .#;_;
measurable and ¢; is independent of .%;_|. Let ¢;/o have a symmetric, continuously
differentiable density f which is positive on R. For some values of «,  such that
0 <k < n < 1/4, choose an integer r > 2 so

27> 14 (1/44« — )1 + dimx). (14)



Asymptotic Analysis of Iterated 1-Step ... 29

Let g = 1 +2"*!. Denote ¢y > 0 as a finite number. Suppose
(i) the density f satisfies

(a) u?f(u), ust'f(u)| are decreasing for large u;

() f(u, —n="*A)/f(u,) = O(1) as n — oo for some A > 0 and all sequences
U, — 00 so u, = o(n'’*);

(©) f(w)/[u{l — F@w)}] =0Q) foru — oo;

(ii) the regressors x; satisfy

@ %y =3 NN 5 520,
(b) max;<i<, [n'/>*N'x;| = Op(1);
(©) n7'EXL, [n'2N'x;|1 = O(1);

(iii) the initial estimator (8, 52) satisfies

(@) N“'(B — B) = Op(n'/*7);
(b) n1/2(52 _ 02) — Op(n1/4”7)_

There is a trade-off between «, 1, the dimension dim x and the required number of
moments r, see [17, Remark 3.1]. The conditions (i), (if) are satisfied in a range of
situations. In particular, condition (ia) is satisfied by the normal and t distribution, see
[17, Example 3.1]; condition (ib, ic) is satisfied by the normal, see [18, Remark 2];
condition (ii) is satisfied by stationary, random walk and deterministically trending
regressors, see [17, Example 3.2]. Condition (iii) allows the standardized estimation
errors to diverge at a rate of n'/4~" rather than being bounded in probability. In
particular, n = 1/4 can be chosen for estimators with standard convergence rates.

3.2 Properties of the Iterated Estimators

The first result is a stochastic expansion of the 1-step Huber-skip M-estimator in
terms of the original estimator, a kernel, and a small remainder term.

Theorem 1 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Suppose Assumption 1(ia, ii) holds, and that N~ (B! — B), n'/?(G\™ — o) are
Op(1). Then uniformly in ¢ € [cy, 00) and as n — o0

2cf(c)

NTBIHD — B) = =N "B - B+ (WD) ZNx,sl<|s,\<ac>+0P<1>
i=1
2@ O,)ZC(C _tga)f(c) 112G _ 5y
2

1 P
—_/228-2—221.<UC op(1).
+20r2"n i=1( i = 6e0 ) (gy1=00) T 0P (1)
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Theorem 1 shows that the updated estimation error for 8 depends on the previous
estimation error for 8, but not on the estimation uncertainty for o. The estimation
error for o has a similar property. This is a consequence of symmetry imposed on
the density f. More complex situations can also be analyzed where the reference
distribution f is non-symmetric and the cut-off ¢ is chosen in a matching way, see
[15]. The proof uses the empirical process theory in Sect. 4.

The next result shows that the iterated estimator is tight in iteration m € [0, c0)
and in the cut-off value ¢ € [cg, 00). This builds on [16].

Theorem 2 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.

sup  sup [NTLB™ — B)| 4 |n'2@E™ — o)| = Op(1).

0<m<o0 cp<c<o0

Assumption 1(iii) with n = 1/4 corresponds to a standard convergence rate
for the initial estimator. Theorem 1 provides the 1-step relationship between the
updated estimator and the original estimator. Since sup,, _._, [2cf(c)/¥| < 1 and
SUP,<c <00 le(c? — gcz)f(c) /75| < 1 implied by Assumption 1(ia), see [16, Theorem
3.5], a geometric argument and mathematical induction are used to show tightness.

The fixed point result can now be shown. Initially the tight estimator is assumed
available. This is iterated through the 1-step equation presented in Theorem 1.

Theorem 3 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.

my, ny > 0 exists, so for all m > my and n > ny

P[ sup [NT'B™ — B+ |n'2@™ -G > 8 <e,

cp<c<0o0
where

NTUBE - ) =

———— 'Y N'xigil (e<00)s
¥ — 2ct(0) ; Xi€il (eil<oc)

1 _
= 20(5 — (@ — D))

n
n'2@; — o) 236 = 520 ez
i=1

Based on Theorem 2, if the initial estimator is bounded in a large compact set with
large probability, then any iterated estimator takes values in the same compact set
no matter what value of the cut-off ¢ is chosen in the interval [c(, 00). The proof of
Theorem 3 is to further argue the deviation between the m-fold iterated estimator and
the fixed point is the sum of two terms vanishing exponentially and in probability
respectively when m and n are sufficiently large.

The iterated 1-step Huber-skip M-estimator can be seen as a special case of itera-
tively reweighted least squares with binary weights. Dollinger and Staudte [5] applied
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an influence function argument to demonstrate convergence of iteratively reweighted
least squares with smooth weights. Even if the spirit is similar, our proof is different
due to binary weights. The idea of iterating 1-step estimator can also be found in [4],
which analyzed the first order autoregression with infinite variance.

3.3 Properties of the Gauge

Johansen and Nielsen [18] proved the Poisson approximation to the gauge for the
finite step Huber-skip M-estimator. But the iterated result was not established, since
they did not have the empirical process theory which investigates the varying quantile
¢ and estimation errors for 8 and . This paper shows the Poisson approximation to
the gauge for the iterated 1-step Huber-skip M-estimator.

A Poisson exceedence theory arises in the scenario where the cut-off value c is
set to allow the fixed number A of outliers regardless of the sample size n. For some
A > 0, the cut-off value ¢, is set so as to let

nP(lgi| > oc,) = A. (15)

Notice that ¢, — 00 as n — 00. Define v}, BI"+D, (5"+D)2 by replacing c by c,

i,cp?

in expressions (9—11). The corresponding sample gauge is

1 < 1 <
Sm) _ (m)y _
Ve, = n 2. =vi) = n 2 Ly 155800 (16)
i=1 i=1

Theorems 2 and 3 shows that any iterated estimator is tight, so lower and upper
bounds can be found for the indicators appearing in the gauge. By exploring these
bounds, the following Poisson limit theorem arises.

Theorem 4 Consider the iterated 1-step Huber-skip M-estimator in Algorithm 1.
Let ¢, be defined from (15). Suppose Assumption 1 holds with n = 1/4. Then for all
0 <m < oo and as n — 00, the sample gauge in (16) satisfies

n]’/:(:") 2 Poisson().

Table 1 assumes that ¢;/0 follows a standard normal distribution. For a given
A, the cut-off in (15) satisfies ¢, = ®~'{1 — A/(2n)}. Cut-off values are shown for
n = 100, 200. The Poisson approximation gives the probability of finding at most x
outliers. There is an increase from 62 to 90% for the probability of detecting at most
x = Aoutliers as A declines from 5 to 0.1. The reason is due to the left skewness of the
Poisson distribution. In particular, we focus on the case where A = 1 and n = 100.
The cut-off is ¢, = 2.58 and the probability to find at most 1, 2 outliers are 0.74,
0.92. This means it regularly finds 2 outliers when there are none.
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Table 1 The probability of detecting at most x outliers approximated by a Poisson distribution for
a given A, and the cut-off ¢, = o1 — A/(2n)} for n = 100, 200

X
A €100 €200 0 1 2 3 4 5
5 1.960 2.241 0.01 0.04 0.12 0.27 0.44 0.62
1 2.576 2.807 0.37 0.74 0.92 0.98 1.00
0.5 2.807 3.023 0.61 0.91 0.98 1.00
0.25 3.023 3.227 0.78 0.97 1.00
0.1 3.291 3.481 0.90 1.00

The Robustified Least Squares and Impulse Indicator Saturation are special ver-
sions of iterated 1-step Huber-skip M-estimators with different starting points. Their
initial points do not depend on the cut-off, and thus satisfy the tightness property.
Therefore, Theorems 1-4 apply for these algorithms.

4 Weighted and Marked Empirical Process

Consider the weighted and marked empirical distribution function

n

~ 1
B - P
Fﬁ p(a, b,c) = ; E 8in€; l(sig(rc-&-n*‘/zac-&-xlfnb)s

i=1

with .Z;_ adapted weights g;, and .%; measurable marks /. Let a € R, b € R4™*
represent estimation errors @ = n'/>(G — o), b = N’l(g — B), while ¢ € R is the
quantile. Define normalized regressors x;, = N'x; so that Z?zl XX}, converges. For
example, N = n~ 214, if {x;}\_, is stationary, while N = n~'Igm, for a random
walk. Our interest focuses on weights g;, given as either of 1, n'/>N'x;, nN'x;xN and
p as either of 0, 1, 2. To form the empirical process, introduce the compensator

_ 1<
8P
Fo' (@ b,0) =~ 3 gnBiorel lzachnnacsi by (17)

i=1

where E;_; (-) = E(-|Z_1). Note that F, (0, 0, ¢) = F(c) = P(e; < 00).

We embed these processes in the space D[0, 1] of processes that are continuous
from the right and with limits of left, where the space is endowed with the Skorokhod
metric. We do this as follows. The indicator 1<, and the distribution function
F(c) can be defined as O or 1 when ¢ takes the values —oo and oo respectively.
We can then define quantiles ¢y, = F~1() for 0 < ¢ < 1. Correspondingly we can
continuously extend the definition of the weighted and marked empirical distribution
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function and its compensator by choosmg FSP(a, b, oo) F&¢P(a, b, —o0) = 0
while F5”(a, b, 00) = L 3" g;,6” and F§¥ (a, b, 00) = L " | ¢, Eiy6”.
We now define the empirical process, for 0 < ¢ <1,

FSP(a, b, cy) = n'*(FSP(a, b, cy)) — Fo" (a, b, cy)}. (18)

We will show convergence that is uniform in a, b, ¢y, for the above process. This
generalizes results in [22], which had no marks and no variation a in scale, in [20,
Theorem2.2.5], which had no marks, in [15, 17], which had marks, but no variation
in quantile ¢ and no variation a in scale respectively.

In the following, we first present the new result concerning variation in the scale
a and the quantile c. Subsequently, we combine this with existing results concerning
variation in b, ¢ in order to get a result that is uniform in all three arguments a, b, c.

4.1 The Case of Estimated Scale and Known Regression
Parameter

The main technical contribution of the paper is to analyze the empirical process
in the case of estimated scale, but known regression parameter. Thus, we establish
results for the empirical process that are uniform in a, c¢. Koul [20, Theorem 2.2.5]
established a similar result for the case of unbounded weights g;, but no marks &/
His proof exploits that the function 1,<¢.) 1S monotone in ¢ and bounded. These
properties are not shared by &” 1 ;, <), so we follow a different strategy for the proof
that exploits the iterated martingale inequality from [18] reported as Lemma 3 in the
Appendix 1.

We first present the uniformity result for the empirical process and then a uniform
linearization result for the compensator. The proof involves a chaining argument.
For this, we apply an iterated martingale inequality, see Lemma 3, to explore the tail
behaviour of the maximum of a family of martingales.

Theorem 5 Let .%; be an increasing sequence of o-fields so ¢, and g;, are F;_,
measurable and ¢; is independent of %;_. Let ¢; /o have a continuous density f. Let
p and n be given so p € Ny and 0 < n < 1/4. Suppose

(i) the density f satisfies

(a) moments: ffooo lu|*Pf(u)du < oo;
(b) boundedness: sup,.g lu|(1 + |u|*?)f(u) < oo;

(ii) the weights g;, satisfy n~ IEZI 1 lgin|* = O(1).
Let cy = F~'(y) for0 < ¥ < 1. Then for any B > 0 and as n — o0

sup sup |F¢P(a,0,cy) —F57(0,0, cy)| = op(l).

0=y <l |a|<n!/4-1B
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The second result provides a linearization of the compensator.

Theorem 6 Let .%; be an increasing sequence of o -fields so ;1 and g;, are F;_,
measurable and ¢; is independent of F;_,. Let €;/o have a differentiable density f.
Let p and n be given so p € Ng and 0 < n < 1/4. Suppose

(i) the density f satisfies

(a) moments: ffooo lulPf(u)du < oo;
(b) boundedness: sup,cg WP~ (u) + upf(u)| < 00;

(ii) the weights g;, satisfy n=" > " |gin| = Op(1).
Let cy = F~'(y) for 0 < 4 < 1. Then for any B > 0 and as n — oo

sup  sup [0 HF (a,0,¢p) — F27 (0,0, ¢)}

0=y <1 |a|<n!/4-1B

n
—cr”_lc{;/f(cw)n_l/z Z g,-nn_]/zac,/,| = Op(n~ ).

i=1

4.2 The Case of Estimated Scale and Regression Parameter

We now turn to the general one-sided empirical process with estimated scale and
regression parameters. The case with known regression parameter was treated above
while the case with known scale was treated in [18]. Through an argument reported
in the appendix these results can be combined to prove the general result. For this
we need the union of the various assumptions. This is listed below as Assumption 2.
Note the density f is not necessarily symmetric in this section and Assumption 2 is
weaker than Assumption 1.

Assumption 2 Let .%; be an increasing sequence of o-fields so ¢;_1, x; and g;,
are .%;_| measurable and ¢; is independent of .%;_;. Let ¢;/0 have a continuously
differentiable density f which is positive on R. Let p, n, k be given so p € N and
0 <k <n <1/4.Choose r € Ny so

21> 14 (1/4 4+« — n)(1 + dimx). (19)

Suppose
(i) the density f satisfies

(a) moments: [ |ul*Pf(u)du < oo;
(b) boundedness: sup, g [{1 + [u|mxX@FL2P=DafG) + (1 + uzrp+2)|f(u)|]
< 00;
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(c) smoothness: a Cy > 0 exists so that forall v > 0

sup,», (1 + w2 Pf(u) - sup,_, (1 + w?P)f(u)

, < Cu;
infocuey (1 + u2P)f) — 1 H

inf_,<,<0(1 +u??)f(w) —

(ii) the regressors x; satisfy max<;<, |n'/>7*N'x;| = Op(1);
(iii) the weights g;, satisfy

(@ n'EXL | |gnl* (1 + [n'2N'x|) = O(1);
() n7 '3 gl + [n'2N'x;?) = Op(1).

Remark 1 Assumption 1(ia, iib, iic) implies Assumption 2 with r > 2 satisfying
(14) when g;, is either of 1, n'/2N'x;, nN'x;x/N and p is either of 0, 1, 2. Details are
given in Lemma 4 in the appendix. U

We present two asymptotic results. The first theorem shows that the estimation
error for the scale and regression parameter is negligible uniformly in the quantile.

Theorem 7 Suppose Assumption 2 is satisfied. Let cy, = F~'(yr) for 0 < ¢ < L.
Then for any B > 0 and as n — oo

sup sup |F7(a, b, cy) —FP(0,0, cy)| = op(1).

0<¥ <1 |a|,|b|<n'/*—"B

The proof has two parts. First, we keep a fixed and consider variation in b, c.
This has been done in [17, Theorem 4.1]. Secondly, we keep b fixed and consider
variation in a, ¢ as done in Theorem 5.

The second result provides a linearization of the compensator.

Theorem 8 Suppose Assumption 2(ia, ib, iiib) holds with r = 0. Let ¢y, = F-1(y)

for0 <y < 1. Then for any B > 0 and as n — o0

sup sup |n1/2{?i’p(a, b,cy) — ?ﬁ"’(o, 0, cy)}

0<¢ <1 |a|,|b|<n'/*B

n
—(7”_1c{)/,f(c,/,)n_l/2 Z gin(n""?acy + x),b)| = Op(n™?").

i=1

Finally, the tightness of the empirical process Fs” (0, 0, c,) was shown in [17,
Theorem 4.4], see tightness in [3].

4.3 A Result for the Two-Sided Empirical Process

The 1-step Huber-skip M-estimator involves indicators depending on the absolute
value of the residuals. We therefore present some results for a class of two-sided
weighted and marked empirical processes.
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Define the weighted and marked absolute empirical distribution function

~ 1<
Gi7 (@, b, 0) = — > gint] Loy, bizoctnPacy (20)

i=1

We suppose a so that o + n~124 > 0, in which case it suffices to consider ¢ > 0.
This restriction on a is satisfied when choosing a as @ = n'/>(G — o) such that

o +n~'2G =& > 0. Introduce the compensator of G5 (a, b, c)

_ 1 <
8P
Gn ((1, b, C) = ; Z ginEi—lsf1(|£;—x},xh\§ac+n*1/2ac)~ (21)

i=1
Note G,IL’O(O, 0, ¢c) = G(c) = P(|&;| < oc). Then the absolute empirical process is
G¢7(a, b, ¢) = n'/*{GS"(a, b, c) — G.” (a, b, ©)}. (22)

We can now derive asymptotic theory for the absolute empirical process from
Theorems 7 and 8. These results are presented under more restrictive Assumption 1,
where the innovation distribution is symmetric, see Remark 1 and Lemma4. In this
section, we only consider g;, chosen as 1, n'/>N'x;, nN "xix;N and p as 0, 1, 2.

Theorem 9 Suppose Assumption 1(ia, iib, iic) holds. Let ¢y = G () for 0 <
Y < 1. Then for all B > 0 and as n — o0

sup sup |G57(a, b, cy) — GEP(0,0, cy)| = op(1).

0=y=1 |a] [b|<n!/*-1B

Theorem 10 Suppose Assumption 1(ia, iic) holds. Let ¢y, = G™'(y) for 0 < ¢ <
1. Then for all B > 0 and as n — oo

=g =8.p
sup sup |n1/2{Gn (a,b,cy) — G, (0,0, cy)}
0<y<1 |al,|b|<n!/*-1B

20"t ep)n ™D gintlp evemn ™ 2acy + 1y oaayxj,b}| = Op(n~2").

i=1

5 Discussion

This paper contributes to the asymptotic theory of iterated 1-step Huber-skip
M-estimators. The results are derived under the null hypothesis that there are no
outliers in the model. It is well known that the first-order asymptotic approximation
is fragile in some small finite sample situations. Therefore, it would be of interest to
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carry out simulation studies to evaluate the finite sample performance of the results
in this paper. Likewise it would be of interest to extend the result to situations where
outliers are actually present in the data generating process. Scenario possibly contain
single outliers, clusters of outliers, level shifts, symmetric or non-symmetric outliers.
In such situations, we would analyze the potency, which is the retention rate for rele-
vant outliers. Moreover, it would be possible to compare the potency of two distinct
outlier detection algorithms with the same gauge.
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Appendix 1 A Metric on R and Some Inequalities

The asymptotic theory uses a chaining argument. This involves a partitioning of the
quantile axis using a metric, which is presented first. Then follows some preliminary
inequalities including an iterated exponential martingale inequality.

Define the function

Ej
Ji_,,(x, y) = (;)p{l(s;/afy) - 1(5,-/U§x)}- (23)

Our interest focus on J; ,(x, y) of order 2" with r € N. Note that u*?is non-negative
since 2"p is even for p € Ny and r € N. Introduce a positive and increasing function

H,(x) = / (1 + 2P du. (24)

The derivative of this function is H,(x) = (1 + x?P)f(x). Then, denote the constant
o r

H=Ho0) = [+ 5)

which is finite by Assumption 2(ia). Selection of the specific r € N will be more
clear in proofs of the empirical process results. The intuition of H, (x) is obtained
through setting p = 0 so that H, (x) = 2F(x), H, (x) = 2f(x) and H, = 2. Therefore,
H, (x) is the generalization of the distribution F(x) ~ ¢;/0.Forx <yand0 < s <,

0 < [E{Ji,(x, 2} < E{lJi,(x, IF} < H, () — H, (x), (26)

as|u’| < |uf| + 1forqg > p > 0.Let|H,(x) — H,(y)| be the H,-distance forx, y € R.
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In the context of chaining, partition the range of H,(c¢) into K intervals of equal
size H, /K. In other words, partition the support into K intervals by endpoints

—0=Ccyp<Cl <0< Cg_] <Cg = 00, 27

with c_y = c¢pfork € Nsothatforl <k <K
H,
Hr(ck) - Hr(ckfl) = ? (28)

We first present two preliminary inequalities.

Lemma 1 If|¢ — c| < |Ac + B| and |A| < 1/2, then

_ lel+1B]

b Ac + B)? < 16(A%¢* + BY).
=T (Ac+B)” < 16(A°c" + B%)

lcl
Proof (Lemma 1) First inequality. Since |Ac + B| < |Al|c| + |B|, the assumption
implies ¢ — |Al|c| — |B| < ¢ < c+ |Al|c| + |B|. Suppose ¢ > 0, then the lower
inequality gives c¢(1 — |A|) — |B|] < ¢ so that ¢ < (¢ + |B])/(1 — |A|). Suppose ¢ <
0, then the upper inequality gives ¢ < ¢(1 — |A|) + |B| so that (¢ — |B|)/(1 — |A]) <
c. Combine to get |c| < max{|(c + |B])/(1 — |AD], [(c — |B])/(1 — |ADI} = (l¢] +
IB])/(1 — |Al).
Second inequality. The first inequality in the lemma, (x + )2 <2(x®> +y?) and
|A| < 1/2 imply ¢? < 8(¢> + B?) and (Ac + B)?> < 2(A*c?> + B?). Combine to get
(Ac + B)? < 2(8A%¢% + 8A2B? + B?) < 16(A%&2 + B?). O

The following lemma concerns the H,-distance of multiplicative shifts.

Lemma 2 Let r € Ny. Suppose f is a continuous density satisfying

(a) moments: ffooo |u|* Pf(u)du < oo;
(b) boundedness: sup,g |c|(1+ |c[*P)f(c) < oo.

Let cy = F'(y) for 0 < 4 < 1. Then, for any B > 0, there exists C > 0 so

sup  sup |H, {C¢ (1 + nil/za/a)} —H,(cy)l < Cn~ /41,

0=y <1 |a|<n!/4-B

Proof (Lemma 2) Denote ¢ = |H,{cy (1 + n~'2a/o)}) — H, (cy)|. Apply the first
order mean value theorem at the point ¢ to get 2 = |o~'n"2al|cy ||H, @),
where [&y — ¢y | < o7 'n2acy| and H,(@y) = (1 + &, )(@y).

There exists ng, so for any n > ny we have |0 ~'n~'/2a| < 1/2 uniformly in |a| <
n'/4="B. First, for n > ng, we apply the first inequality in Lemma 1 to obtain ley| <
124 1/(1 = |0~ 10" 2a]) < 2|3, |. It follows

A < o' 2plAB2IE, 1AL @y)| < 207 Bsup [e||H (c) [n /4,
ceR
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Thus % < Cn~'/4=" by condition (b) that |cH, (c)| = |c|(1 + |c[*?)f(c) is bounded
uniformly in c.

Second, consider n < ny. Note H,(x) < H,(c0) = H, for any x so that the triangle
inequality shows 7 < 2H,. With 0 < n < 1/4, it follows

S < 2H "/ VA < oH /T VA = oA,

where C = 2H,n(1)/ 1 i finite since H, < oo by condition (a). (I

The chaining argument involves the tail behaviour of the maximum of a fam-
ily of martingales which can be controlled using the following iterated martingale
inequality taken from [17]. It builds on an exponential martingale inequality derived
by Bercu and Touati [1, Theorem 2.1].

Lemma 3 ([17], Theorem 5.2) Forlso 1 <1 <L, let z;; be .%; adapted satisfying
Ezlzl < oo for somer € N. Let D, = max; <<y 27:1 Ei_lzlzf;.forl < r < r. Suppose,
for some ¢ >0, A > 0, that L = O(n*) and ED, = O(né) forr<r.Ifu>0is
chosen such that

(i) ¢ <2v;

(ii)) c¢c+xr<v2';

then, for all k > 0 and as n — 00

n
lim P | max | E (@i —Eio1z)) > Kn“] =0.
n—o00 I<i<L 4 T

i=

Appendix 2 Proofs of Empirical Process Results Concerning
Scale

Here we prove the empirical process results concerning the variation in scale when
the regression parameter is known. We use the distance function H, with r = 2.

Proof (Theorem 5)Letcy: = cy (1 + n'?a/o)soFs?’ (a,0, Cy) = F:7 (0,0, Cyi).
Note ¢, can be greater or less than ¢y, since a such that |a| < n'/*7"B and ¢, can
be either positive or negative. Assume ¢y, < cy+ without loss of generality. Denote
R(cy, cyt) =F37(0,0, cyt) —F3(0,0, ¢y). The aim is to prove %, = op(1) for
n — 00 where %, = SUPyy, <1 SUP|qj<yi/i-ip IR(Cy, Cy)].

1. Partition the support. For §, n > 0 partition the range of quantiles c as laid
out in (27) with K = int(H,n'/?/8) and r = 2 since H, < oo by assumption
(ia).

2. Assign ¢y and cyi to the partitioned support. For each i and VT there
exist k < k' and grid points so that ¢;_; < ¢y < cpand cpiog < eyt < i
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3. Apply chaining. Relate ¢y, to the nearestright grid point ¢; and ¢+ to the near-
est left grid point cir_;. Add and subtract F5” (0, 0, ¢;) and F5 (0, 0, ¢ _1)
to R(cy, cy+). The triangle inequality gives

[R(cy, cyt)| < IR(cy, ci)l + [R(ck, crr—1)| + [R(cpi—1, cyt)l.
Note thatif ¢y, ¢+ are inthe same interval, then |R(cy, ¢xi—1)| = [R(ck—1, ci)|.

If ¢y, cy+ are in the neighbouring intervals, then [R(cy, cxi—1)| = 0. Apply
chaining to obtain %, < %1 + %n2 + %n3 + H#n 4, Where

Fny =  max  |R(ck, cpioy)l,
1<k<k™—1<K

Pnp = max |R(c—1, cp)l,
1<k<K

Fn3 = max  sup  |R(cy, ci)l,

I<k<K ¢, <Cy =Ck

Hyq = max sup [R(cri—1, cyi)l.

1<kt<K Cpt_y <Cyt SChi

Thus, it suffices to show %, ; = op(1) forj =1,2,3,4 asn — oo.

4. Theterm %, is op(1). Use Lemma3 withv = 1/2. Let g;, have coordinates
gr = 0”gin. Recall the notation J; ,(x, y) in (23). Write the coordinates of
R(ck, cir—)asn™ 230 (21 — Eiyzi) withzy; = g3 Ji p(ck, cxi—1), where
[ represents the indices k, k™ with L < K2. Two conditions of Lemma 3 need
to be verified.

The parameter . The set of indices [ has the size L = O(n*) where A = 1,
since L < K? and K = O(n'/?).

The parameter ¢.Consider 1 <s <r =2 (instead of 1 <r <r =2). By
construction of partition and assignmentinsteps 1,2,thency, < ¢x < cpr—; <
cyi. Thus,

Ei—1J,<2,;,(Ck, cri1) < Hy(cri—1) — Ho(er) < Ho(eyt) —Hy(ey) < Cn™ V4,

by Lemma 2 using assumption (i) for some finite C > 0. Since

n n

28 28 2

D, = max Ei_izj; = max E g Ei_lJip(ck,ckf_l),
1<I<L 4 N ? 1<k<kt—1<K “ ; k

= 1=

we then find Dy < Cn= /413" | ¢*2 Moreover, using assumption (ii) we
find that En~' 3", g% = O(1). Thus, with ¢ = 3/4 — n, we have ED, =
O(n).

Condition (i) is that ¢ < 2v. Thisholds sincen > 0so¢ =3/4—n <1 =
2uv.

Condition (ii) isthat ¢ + A < v2" where r = 2. This is satisfied since n > 0

SO¢c+A=7/4—n<2=02".
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5. Theterm %, is op(1).UseLemma3withv = 1/2andz;; = g} Ji p(cr—1, k),
where index [ = k has the size L = K. Two conditions of Lemma 3 need to
be shown.

The parameter ). The size L = O(n*) where A =1/2, since L =K =
on'/?).
The parameter ¢.Consider 1 < s < r = 2. The equality (28) shows

L,

. H, _
Ei1J7 (ci1, cx) < Ho(er) — Ho(cio1) = = =0 12y,

Then, we find
n n n
_ L2 K20 g2 _ —1/2 25
Dy = max 1 Ei1z, = lg}(a;KZ;g,,l Ei1J7 ) (ck—1,c1) = O(n )Zl‘,gm :
1= = 1=

It follows that ED; = O(n¢) where ¢ = 1/2 by assumption (if).
Condition (i) holds, since ¢ = 1/2 < 1 = 2v.
Condition (ii) holds, since ¢ + A =1 < 2 = v2".
6. Decompose the term %, 3. Apply the triangle and Jensen’s inequality to
obtain,

n
IR(cy. el <2 D 1gh l{ip(ey. el + Eimilip(ey. co)l}-
i=1

Forci_1 < ¢y < cpywherel < k < K,wehave |J; ,(cy, ci)| < |Jip(cr—1, ci)l.
Then,

n
—1/2
Fny = max 2|g;|{ui,p<ck_1,ck>| + Eitlip(cit, eol)-
=

Therefore, it can be argued that %, 3 < @,ﬁ + 2@,1,3, where

n
—1/2
Dinz = max n 2" |gx [{1Jp (o1, co)| — Eimiip(cht. cl)
1<k<K -
P

=
|

n
_ 23 gk [ i
max n X _1ip(ck=1, cr)l.
max ‘ 1|8m| i—1ip(cr—1, co)l
=

Thus, it suffices to show @,ﬁ and @M areop(l) asn — oo. _
7. Theterm %, 3 is op(1). Argue along the lines of step 5 to show %, 3 = op(1).
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8. Bounding the term %, 3. Use the equality (28) and K = O(H,n'/?/8) to get
H, —1p2
Eimi1Jip(ck—1, co)| < Hp(er) —Hy(ermr) = x- O(n=/74).

We then find Z, 3 = O(n~'/28)n="/23""_ |g%| = Op(8) by the Markov
inequality and the assumption (ii) that n=' > | E| gi’:l|4 = O(1). Thus,
choose § sufficiently small so that @M =op(1).

9. The term %, 4 is op(1). This is similar as to show %, 3 = op(1). Thus the
same argument can be made through steps 6, 7, 8. (]

Proof (Theorem 6) The term of interest is
Dy(a,cy) = n'{F,"(a,0,cy) = F," (0,0, cy)}
—o”’lc‘;f(cw)n’l/2 ngnfl/zacw,
i=1
where Ei’p is well-defined due to assumption (ia). Let w?’cv’ = l(e;<ocytn1acy) —
L(e;<oc,) and hi(a, cy) = n’l/zac,/,/o and denote s(c) = c”f(c). Define S;(a, ¢y) =

Ei_1e/w" — oPhi(a, cy)s(cy)soDy(a, cy) =n~ 23" | g,.8:(a, cy). Write Si(a, cy)
as an integral and apply the second order Taylor expansion at ¢y, to get

cy+thi(a,cy)
Si(a,cy) =0o” [/ s(u)du — hi(a, cll,)s(cw)] = U”hl-z(a, cy)$(Cy)/2,
Cy

where |¢y — cy| < |hi(a, cy)|. There exists nyp > 0 so for any n > nyg we have
|o~'n~12a| < 1/2. We then apply the second inequality in Lemma 1 to obtain
h2(a, cy) < 16n‘1a252w/02. Exploit the bound |a| < n'/*"B to get

1Si(a, cy)| = O™ P& |5(Ey)| = O™ /2721)

uniformly in v/, a, since Ei 5(y)| < sup,cg €215(c)| < oo by assumption (i) noting
that §(c) = c”~'f(c) + ¢”f(c). Then the triangle inequality gives

IDu(a, )l <02 1ginlISi(a, ¢p)l = O >n™" D | gil-

i=1 i=1

By assumption (ii), this term is of order Op (n~2") uniformly in v/, a. O
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Appendix 3 Proofs of General Empirical Process Results

Proof (Theorem 7) The term of interest is % = F3"(a, b, cy) — F37(0,0, cy).
Denote ¢+ = ¢y (1 +n7"2a/o). Notice that F3 " (a, b, ¢y) = F3”(0, b, ¢y+) so that
W =F;"(0,b,cyr) —F37(0,0,cp). Add and subtract F;”(a,0,cy) =
F3"(0, 0, cy+) and apply the triangle inequality to get

7| < [F37(0, b, cys) —FpP(0,0, cyi)| + [F3P(a, 0, cy) —F37(0,0, cy)l.

Thus, the problem reduces to showing

sup  sup |F8P(0, b, cyr) —F57(0,0, cyt)| = op(l), (29)
0<y7<1 |b|<n'/*="B
sup sup |F$P(a,0,cy) —F57(0,0,cy)| = op(1). (30)

0=y =<1 |a|<n'/4—"B

Then (29) is shown in [17, Theorem 4.1] by Assumption 2(i, ii, iiia) with r > 2
such that (14) holds. Further, (30) was considered in Theorem 5, which requires
Assumption 2(ia, ib, iii) with r = 2. O

Proof (Theorem 8) We generalize the proof of Theorem 6. We note Eﬁ’p is well-
defined due to Assumption 2(ia). The term of interest is

Dy(a, b, cy) =n"{F-7 (@, b, cy) —F.7(0,0, cy))

n
—o? 1ty z gin(n""*acy + x,b).
i1
,b,c -
Let W? Cy _ 1(s,-facw+ﬂ’l/200w+x;,,h) — I(SiSUt'w)’ h;(a, b, Cw) =(n l/2aC¢ +X;nb)/0'
and s(c) = c’f(c). Define S;(a, b, cy) = Ei718fW?’b’cw —oPhi(a, b, cy)s(cy) so that

Dy(a,b,cy) =n"'23"" | guSi(a, b, cy). Write S;(a, b, cy) as an integral

cy+hi(a,b,cy)
Si(a, b, cy) = o? [/ s(u)du — h;(a, b, cw)s(c]/,)] .

cy

Second order Taylor expansion at ¢y shows Si(a, b, cy) = (7Phi2 (a, b, cy)s(Cy)/2,
where |¢y — cy| < |hi(a, b, cy)|. There exists ng > 0 so for any n > ny we have
|o~'n~12a| < 1/2. We then apply the second inequality in Lemma 1 to obtain
hiz(a, b,cy) < 16{n_1a255 + (xlf”b)z}/crz.Exploitbounds la|, |b| < n'/*~"B and the
inequality x> 4+ y? < (1 4+ x?)(1 4 y?) to get

ISi(a, b, cy)| = O™ PN (1 + [n'xiu ) (1 + €)1y ).
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Since (1 + Ew)|&(a/,)| < sup,gp(l+ c?)|5(c)] < oo by Assumption 2(ib) with
r =0, we have [Si(a, b, cy)| = O(mn~1/2721)(1 + |n'/%x;,|*) uniformly in v, a, b.
Then the triangle inequality gives

IDu(a, b, cy)| <0 [gillSia. b. cy)l = O n™" > gl (1 + [n'2xi]?).

i=1 i=1
By Assumption 2(iiib), this term is of order Op (n~2") uniformly in ¥, a, b. U

The absolute empirical process results are given under more restrictive Assump-
tion 1, so the next lemma concerns the relationship between Assumptions 1 and 2.

Lemma 4 Suppose g, is either of 1, n'/>N'x;, nN'x;x|N and p is either of 0, 1, 2.
Then Assumption 1(ia, iib, iic) implies Assumption 2 with r > 2 satisfying (14).

Proof (Lemma 4) Assumption 1(ia) shows Assumption 2(ia, ic), while Assump-
tion 2(ib) further needs continuous differentiability of f, see discussion in [17,
Remark 4.1(c)]. Assumption 1(iib) is the same as Assumption 2(ii). Assumption
1(iic) implies Assumption 2(iiia) and (iiic) by Markov inequality. [l

Proof (Theorem 9) The term of interestis ¢ = G4 (a, b, cy) — G357 (0,0, ¢y). Our
focus is on the absolute quantile ¢y, = G~'(¥) > Orather than the one-sided quantile
cy- = F71(y¥*) € R. Note |¢;|/o ~ G and ¢;/0 ~ F. Since

1(\si—x£nh|§(rc+n*1/2ac) = l(s;gac+n*‘/2ac+x,fnb) - l(sig—(rc—n’lﬂaC-&-x;nh)

and by (18) and (22), we have G (a, b, ¢) = F3"(a, b, ¢) — lim+ . F3"(a, b, —c")
for any ¢ > 0. By this and the triangle inequality, then for any ¢, = G~!(y) > 0,

|g| S |F51[7(a’ ba Clﬂ) - Fi’p(oa 07 Clﬂ)| + Ile |F§,[7(a’ b7 _Cj/.f) - F;gl’p(oa 07 _Cj/'/)|

Cw}/ ley

These vanish uniformly in ¥, a, b by Theorem 7 using Assumption 2 with » > 2 such
that (14) holds. Lemma 4 shows that Assumption 1(ia, iib, iic) suffices. O

Proof (Theorem 10) Argue as in the proof of Theorem 9 but using Theorem 8 instead
of Theorem 7. Due to the symmetry of f, the correction term is then

o feyn™ D gulll + (=1 Pacy + {1 — (=1 }x},bl.
i=1

This reduces as desired. O
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Appendix 4 Proofs of the Main Results

We first present an axillary result for asymptotic expansions of product moments.
Then, the tightness and fixed point result are shown for the iterated estimators. At
last, we provide the proof of the Poisson exceedence theory for the gauge.

The 1-step Huber-skip M-estimators are least squares estimators for selected
observations. The following result describes the asymptotic behaviour of the cor-
responding product moments. For this purpose introduce the indicators

a,b,c
Vi = 1(\5,-7xfnb|§oc+n*1/2ac)- (3D

Lemma 5 Suppose Assumption I(ia, ii) holds. Then we have expansions
n n ac
12 Z pibe = =172 Z L(jej<o0) + 2f(c); +Ry(a,b,0),
i=1 i=1
n n ac
n~1/? Zl eI = p172 Z:’ €21 (16,1 <00) + 202%f(c) — + Rueela, b,0),
i= i=

n

n
ZN/xieiv:.”b’c = zN’xiSil(lgl‘fc‘c) + 2Cf(C)Eb + R, (a, b, C),
i=1 i=1

n n
: ac
n'/? E N'xxX,Nv*?¢ = n'/2 ZN’x,'fol(‘sdfgc) +2f(c) ¥ — + R (a, b, ).
o

i=1 i=1

Let  R(a,b,c) =I|Ry(a, b, c)| + |Ryes(a, b, )| + |Ruxe(a, b, ©)| + [Rixc(a, b, ¢)|.
Then for any B > 0 and as n — o0

sup sup |R(a, b, c)] = op(1).

0<c<00 |a|,|b|<n!/41B
Remark 2 The first and fourth item in Lemma 5 adjusted by n~'/? have expansions
n n
n~! Zv?’b’c =Y +R,(a,b,c), ZN’xixlva?'b‘c =yX+R, (ab,c),
i=1 i=1

where for any B > 0 and as n — oo

sup sup  |R (a,b,c)| + IR, (a,b,c)| =op(l).

VXX
0<c<00 |a|,|b|<n!/4—1B
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Indeed, for the first expansion, we apply the law of large numbers to obtain
n! Z:l:l L(jei1<0c) = ¥ + op(1), whilesup, g |c|f(c) < ooby Assumption 1(ia) and
n~12q vanishes. For the second expansion, decompose

n n n
> NXxIN(g <00 = D NGXN{L(e1200) — U} + D NxxNY.

i=1 i=1 i=1

The first item vanishes by the Chebyshev inequality and Assumption 1 (iia, iic), while
the second converges to ¥ X. (I

Proof (Lemma 5) The general class of empirical processes is
n
—-1/2 P ab.c a,b,c
My =n / Zgingi V; , Y = 1(\si—x‘fnhlg(rc+il*1/2ac)-
i=1
1. Decompose M,. Write My, = My + My + My 3, Where

n n
Y —12 b
My =n"" Zginsfl(wgnc), My =n"" ZginEi—lgip{V? C — L(jey1<o0)}s
i1 i=1

n n
—12 b -12 bye
AMyz =n"" Zgim?f{v? ‘= lglzo0} —n~" ZginEi—lgip{V? ¢ = 1ggl<o0}-
i=1 i=1

Therefore, the first term in stochastic expansion is .4, ;. We will linearize .4, » to
obtain the second term, and argue that .#, 3 is small in probability.

2. Linearize M, ,. Note My, = nl/z{Gi’p(a, b,c) — Gﬁ”’(o, 0, )}, see (21).
Theorem 10 by Assumption 1(ia, iic) shows 4, » = M ., + Op(n=2"), where

n
'%n,Z = 20[7_1Cpf(c)n_l/2 ng{](p even)n_l/zac + 1(p add)xl/'nb}~
i=1

This reduces as desired by Assumption 1(iia). Note 0 < n < 1/4. Thus, we have
My = My + op(1) uniformly in 0 < ¢ < oo and |al, |b| < n'/47"B.

3. Bounding My3. Note My,3 = Gy (a, b, c) —G3(0,0,c), see (22). Due
to Assumption 1(ia, iib, iic), Theorem 9 shows .#, 3 = op(1) uniformly in a,
b, c. O

Proof (Theorem 1) The m + 1 step estimators for 8, o2 are defined in (10), (11).
These are least squares estimators for the non-outlying observations and satisfy



Asymptotic Analysis of Iterated 1-Step ... 47
n
NGB gy = (ZN/x,-x;Nvf?) (ZNx,s, (”‘)), (32)
i=1
- n
n1/2{(»ozc(m+1))2 _ (72} — §c_2( -1 Zv(m)) n=1/2 Hz(eg _ 55202)";? (33)
i=1

n
(Z & x’Nv(m)) (Z N’x,-xl(Nv;"Z,)) (z N'x;e; v(m))
i=1

We express the weight v(m) in (9) as

(m) _ 1 _ ] “(m) b(m) ¢
Vie = My—xB1<6"e) = H(le—x), b |<octn 112G e) = =i ’

where b = N=' (B — B) and @™ = n'/2(G™ — o) are the m step estimation
errors for f and 0.

Since |3£’”)| + [@™| = Op(1) and by Assumption 1(ia, ii), then Lemma 5 and
Remark 2 with k = 0, n = 1/4 show asymptotic expansions for product moments.
Substitute these expansions into (32), (33) to first get

-~ 2cf(c
pm D = ( )b(’") + Yy ZNx,s,lqgl‘q,c) +Ry@™, 5™, ),

w i=1

where the remainder Rg(a, b, ¢) vanishes uniformly incp < ¢ < oo and |a|, |b| < B.

A key to this is that ¢ is bounded away from zero and that X is positive definite by

Assumption 1(iia) so that the denominator ¥, 1 X' is bounded away from zero.
Secondly, we get an expression for & "+1. By Taylor expansion, first note that

~ 1 ~ ~
n1/2(0,§m+1) _ (7) — £n1/2{(o_c(m+l))2 _ 0_2} + n*l/Zo[n{(Uﬁm+1))2 _ 0,2}2].

Then apply arguments as above to get

520 ) (e 1<00)

n
~n+1) _ c(c® = 62 )f(C)Aon) L p 2
a; = + ol Z(8i

+R, @™ B ),

where the remainder R, (a, b, ¢) also vanishes uniformly. O

To prove the tightness and fixed point result, let | - | refer to the usual Euclidean
vector norm, while ||M| = max{eigen(M'M)}'/? is the spectral norm for any matrix
M. Note that the norms are compatible so that |Mx| < ||M|||x| for any vector x.

Proof (Theorem 2) Due to Assumption 1 (ia, ii), Theorem 1 shows

" = ra™ + K. + R,@™, o), (34)
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where the remainder term satisfies sup,, <. -, SUp|,<p [Ru(ut, ¢)| = op(1) and

-~ _ " 2cf(e) 7.
~m) __ bim) _ N I(B\(C ) — ,3) I — 7 Idlmx 0 (35)
= lam ) T e —o [ T 0w

3
12

n

! 0 N'x;g;
K. = [ W 0) Qo) ] Z { n—l/z(gizx_g c20?) ] Liei<o0)- (36)

i=1
Apply the difference Eq. (34) recursively to obtain the representation
ﬁgm-l—l) — I‘vcm-l-l’ligo) + Z FCI{KC +Ru(ﬁ£m_l), C)} (37)
=0

Use the triangle inequality and |[Mx| < |M|||x]| to get
m
~(m+1) +1175(0) e !
@O < WD)+ (1K + max (R, o)) l§0 .

Assumption 1(ia) shows SUP,<c<oo max{|2¢f(c) /], |c(c* — gf)f(c)/rzcl} < 1, see
[16, Theorem 3.5], so SUP, <00 el < 1. Gelfand’s formula in [24, Theorem 3.4]
gives lim,,_, o |[M™|'/" = max |eigen(M)|. Therefore for some @ satisfying that
SUP, <c<o0 I el < @ < 1 there exists my > 0 so for all m > my

sup ||[IV"]| < @™ < 1. (38)

cop<c<00

Also note (Igimx+1 — r'= Z;’io I'.. This in turn implies for some 1 < By < 0o

o0

sup  sup I <Bo. sup [[(gmasr — T <D sup [Tl < Bo.

0<m<o0 cp<c<00 co<c<00 =0 co<c<o0
(39)
Therefore, (39) shows for all m € [0, c0)
@] < Bo{[a®] + |K,| + max IR,@P, )|} (40)
<i<m

For any ¢ € [cg, 00), Assumption 1(iii) with n = 1/4 guarantees tightness of %,
while the kernel K, is tight by [17, Theorem 4.4] using Assumption 1(ia, iib, iic).
Thus, for all &, § > 0 there exist ng, Uy > 0 so that the set

oy =1{By sup (00| +|K.|]) <Uy/3,By sup sup |R,(u,c)| <8/2} (41)

cp<c<oo cp=<c<00 |u|<U

has probability larger than 1 — ¢ for all n > ny.
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Mathematical induction over m is used to Show supy_,, oo SUP ¢, <c <00 [ < U
on the set <7, For m =0 as induction starts, sup, _._.. [@| < By'Uo/3 < Uy
holds since By > 1. The induction assumption is that sup);,, SUP. <c<co [
< Up. This implies By maxo<i<, |R, (@, ¢)| < §/2, and then the bound in (40)
becomes Sup,., -, oo [0 V| < 2Up/3 + 8/2 < Up S0 SUPy<j<ps1 SUPy<c<oo U | <
Uy. [l

sive Eq.(34). Then, Theorem 2 shows SUp_,, -, SUP,, <.<o0 [#0"| = Op(1), so the
remainder term in (34) is op(1). Thus, for m, n — oo the fixed point should satisfy
u; = Iu; + K, so that

@ = (lgimer1 — )7 'Ke. (42)
Substitute (35), (36) of u¥, I'. and K, into (42) to obtain

1 —1 n
B Toaa Y et Nxigil e <00

[Nl(ﬁé‘ - ]
= 1 —1/2 2_ 2.2 .
2o (5 —c@ =D "t YL = 20D e=o0

n'2(Gr — o)

Replace (37) and (42) into the deviation A”+D = 7("+D) _7* and then apply
Z;n:() FCI = (Idimx-H - ch+1)(1dimx+1 - Fc)71 to attain

m
AP = IO — (gimeys — T) 7K} + D TR, 0.
=0

To bound AAE’”“), use the triangle inequality and |Mx| < ||M|||x]| to get

AT < IS+ I aimer = T ™ KN + max [Ru@D, )] 31T
== =0
By Assumption 1(ia) and Gelfand’s formula, (38) and the second inequality in (39)
imply for m > my

|A7HD) < 0" (| + BolKel) + By max [R,@" c)].

On the set @7, as in (41), since SUP) ., o0 SUPy<c<oo [™| < Uy by Theorem 2, we
then have sup, _._., |A”D| < 0™ (By'Uy/3 + Up/3) +8/2 < "' Uy + 8/2.
As 0 < w < 1, ™! declines exponentially so m can be chosen sufficiently large
that for all m > mq then "+ Uy < 8/2. Thus P(sup,, _o, |A™*V| < 8) > 1 —¢
for all m > mg and n > ny. [l

Proof (Theorem 4) Assumption 1(ia) implies E|e; /o |' < oo for some [ > 4. Apply
(15) and the Chebyshev inequality to get A/n = P(|¢;| > o¢,) < Ele;/o|'c;’. Thus
¢y < (Elei/o DY A=1n/ so that the divergence rate of ¢, is O(n'/!) = o(n'/*).
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Theorems 2 and 3 show that ,Bgn) (a(”’))2 are tight. Assumpt10n l(lzb) glves
maxi<j<, |Xi,| = Op(n*~'/2) = op(n~'/*) for some 0 < k < 1/4.Thus, foralle > 0
there exists a large constant Ag so that the set

By =1{ sup (B |+ [@™]) + n'/* max x| < Ao}

0<m<oo

has the probability larger than 1 — ¢ for all n. Note that Bgm) =N"! (,4/3\0(:”) — B) and
’dgm) - nl/Z(G(m) —0).
2. Bound the indicator. Define the random quantity,

s =6"¢c, — yi +xB™ 4 e =0c,+n" V2@ e, + x| B

Si \Cn Cn in“cy

On the set %, and as ¢, = o(n'/#), we have for some A; > 0

(M)

[ sCn

s > e, —nAge, —n VA2 > o (e, — VA,

lL,, —_

IA

oc, + n_l/ZAoc,, + n_1/4A(2) <o(c, + n_1/4A]),

Since the sets (y; — x; ,3(’”) >5."c,) and (¢; > s ) are equal, we find
Lieijo>cpan-144y) < 1 — PS5, =< Lgijo>co—n-114,)-
A similar argument shows
Leijo<—c,n1ita)) = Ly _wpm o5y < Leijo<—cotn1itay)-
Thus, we get the lower and upper bound for indicators uniformly in iteration m so
Lejor>crtn1ar) = 1y g ssme,) < Lie/ol>c,—n14a))- 43)
3. Expectation of indicator bounds. The aim is to prove
nEL e /o=crtn14ay = Ay BElqe/oisco—n-10a,) = Ao (44)
Since nE1 (/o |>c,) = A by (15), it suffices to show
& = nE{1(e/o1>c,—n14a1) = L(eifol>c,tnttan} = 0.

Note |¢;/o| ~ g, Gand g = 2f, G = 2F — 1. By this and (15), 2{1 — F(c,)} = A/n.
Write &, as integral, apply the mean value theorem and use the above identity to get

26(u)du = 4nn~V*Af(©) =

/Cn+l1'/4A1 _ 5 drn4Af(E)
& =n 2(1 — F(c,)}
cn—n~ 44 21 = Flew)
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where |¢ — ¢,| < n~'/*A;. Then, we find

f(c) flcn — n_1/4A1) f(cn) —1/4
flcn — n71/4Al) f(cn) cn{l = F(en)}

én = 2M0A,

ne

Since ¢, —n~!/#A| < ¢ and f has the decreasing tail by Assumption 1(ia), the first
ratio is bounded by 1. Since ¢, = o(n'/*), Assumption 1(ib, ic) shows the second
and third ratio are bounded. Then use n~'/4¢c, = o(1) to get &, = o(1).

4. Poisson approximation. On the set %, apply (43) to obtain

n n n
> ejolscntiay < D L e B |55,y < > Verjolc,—ntiia)-
i=1 i=1 i=1

Using (44), the Poisson limit theorem shows that the lower and upper bound

have the Poisson limit with mean A. By (16), ny " 2 Poisson(}) for all 0 < m
< 0. (Il

References

1. Bercu, B., Touati, A.: Exponential inequalities for self-normalized martingales with applica-
tions. Ann. Appl. Probab. 18, 1848-1869 (2008)

2. Bickel, P.J.: One-step Huber estimates in the linear model. J. Am. Stat. Assoc. 70, 428-434
(1975)

3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

4. Cavaliere, G., Georgiev, I.: Exploiting infinite variance through dummy variables in nonsta-
tionary autoregression. Econom. Theory 29, 1162-1195 (2013)

5. Dollinger, M.B., Staudte, R.G.: Influence functions of iteratively re-weighted least squares
estimators. J. Am. Stat. Assoc. 86, 709-716 (1991)

6. Doornik, J.A.: Autometrics. In Castle, J.L., Shephard, N.: (eds.) The Methodology and Practice
of Econometrics: A Festschrift in Honor of David F. Hendry, pp. 88—121. Oxford University
Press, Oxford (2009)

7. Freedman, D.A.: On tail probabilities for martingales. Ann. Probab. 3, 100-118 (1975)

8. Hampel, ER., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics. Wiley, New
York (1986)

9. Hendry, D.F.: An econometric analysis of US food expenditure, 1931-1989. In: Magnus, J.R.,
Morgan, M.S. (eds.) Methodology and Tacit Knowledge: Two Experiments in Econometrics,
pp. 341-361. Wiley, New York (1999)

10. Hendry, D.F., Doornik, J.A.: Empirical Model Discovery and Theory Evaluation. MIT Press,
Cambridge MA (2014)

11. Hendry, D.F., Johansen, S., Santos, C.: Automatic selection of indicators in a fully saturated
regression. Comput. Stat. 23, 317-335 (2008). Erratum 337-339

12. Hendry, D.F,, Santos, C.: An automatic test of super exogeneity. In Bollerslev, T., Russell, J.R.,
Watson, M.W. (eds.) Volatility and Time Series Econometrics: Essays in Honor of Robert F.
Engle, pp. 164—-193. Oxford University Press, Oxford (2010)

13. Hoover, K.D., Perez, S.J.: Data mining reconsidered: encompassing and the general-to-specific
approach to specification search. Econom. J. 2, 167-191 (1999)

14. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73-101 (1964)



52

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

X. Jiao and B. Nielsen

Johansen, S., Nielsen, B.: An analysis of the indicator saturation estimator as a robust regression
estimator. In Castle, J.L., Shephard, N. (eds.) The Methodology and Practice of Econometrics:
A Festschrift in Honor of David F. Hendry, pp. 1-36. Oxford University Press, Oxford (2009)
Johansen, S., Nielsen, B.: Asymptotic theory for iterated one-step Huber-skip estimators.
Econometrics 1, 53-70 (2013)

Johansen, S., Nielsen, B.: Analysis of the Forward Search using some new results for martin-
gales and empirical processes. Bernoulli 22, 1131-1183 (2016)

Johansen, S., Nielsen, B.: Asymptotic theory of outlier detection algorithms for linear time
series regression models (with discussion). Scand. J. Stat. 43, 321-381 (2016)

Jureckovd, J., Sen, PK., Picek, J.: Methodology in Robust and Nonparametric Statistics. CRC
Press, Boca Raton (2013)

Koul, H.L.: Weighted Empirical Processes in Dynamic Nonlinear Models, 2nd edn. Springer,
New York (2002)

Koul, H.L., Ling, S.: Fitting an error distribution in some heteroscedastic time series models.
Ann. Stat. 34, 994-1012 (2006)

Koul, H.L., Ossiander, M.: Weak convergence of randomly weighted dependent residual empir-
icals with applications to autoregression. Ann. Stat. 22, 540-562 (1994)

Ruppert, D., Carroll, R.J.: Trimmed least squares estimation in the linear model. J. Am. Stat.
Assoc. 75, 828-838 (1980)

Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000)

Welsh, A.H., Ronchetti, E.: A journey in single steps: robust one-step M-estimation in linear
regression. J. Stat. Plan. Inference 103, 287-310 (2002)



2 Springer
http://www.springer.com/978-3-319-51312-6

Analytical Methods in Statistics

AMISTAT, Prague, November 2015

antoch, . Jureékova, )., Maciak, M.; Pesta, M, (Eds.)
2017, X, 207 p. 12 illus., 4 illus. in color., Hardcowver
ISBMN: 978-3-319-51312-6



	Asymptotic Analysis of Iterated 1-Step Huber-Skip M-Estimators with Varying Cut-Offs
	1 Introduction
	2 Model and Outlier Detection Algorithms
	2.1 Model
	2.2 The Iterated 1-Step Huber-Skip M-Estimator Algorithm

	3 The Main Results
	3.1 Assumptions
	3.2 Properties of the Iterated Estimators
	3.3 Properties of the Gauge

	4 Weighted and Marked Empirical Process
	4.1 The Case of Estimated Scale and Known Regression Parameter
	4.2 The Case of Estimated Scale and Regression Parameter
	4.3 A Result for the Two-Sided Empirical Process

	5 Discussion
	Appendix 1A metric on R and some inequalities
	Appendix 2 Proofs of empirical process results concerning scale
	Appendix 3 Proofs of empirical process results
	Appendix 4 Proofs of the main results
	References


