
Primary Decompositions

with Sections on Macaulay2 and Networks

Irena Swanson and Eduardo Sáenz-de-Cabezón

Abstract This chapter contains three major sections, each one roughly correspond-
ing to a lecture. The first section is on computing primary decompositions, the
second one is more specifically on binomial ideals, and the last one is on some
primary decomposition questions in algebraic statistics and networks.

1 Computation of Primary Decompositions

In a polynomial ring in one variable, say R D QŒx�; it is easy to compute the primary
decomposition say of .x4 � 1/:

.x4 � 1/ D .x2 C 1/\ .x � 1/\ .x C 1/:

The reason that this computation is easy is that we readily found the irreducible
factors of the polynomial x4�1: In general, finding irreducible factors is a necessary
prerequisite for the computation of primary decompositions. In these notes we make
the STANDING ASSUMPTION that for any field k that arises as a finite field
extension of Q or of a finite field, and for any variable x over k; one can compute all
irreducible factors of any polynomial in kŒx�: The reader interested in more details
about polynomial factorization should consult [116] or [69, p. 38].

Throughout all rings are Noetherian and commutative with identity.
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1.1 Introduction to Primary Ideals and Primary
Decompositions

Definition 1 An ideal I in a ring R is primary if I ¤ R and every zerodivisor in
R=I is nilpotent.

Facts

1. Any prime ideal is primary.
2. If I is a primary ideal, then

p
I D fr 2 R W rl 2 I for some l 2 Ng is a prime

ideal. Furthermore, if P D p
I; then I is also called P-primary.

3. If I is P-primary, there exists a positive integer n such that Pn � I:
4. The intersection of any two P-primary ideals is P-primary.
5. If

p
I is a prime ideal, it need not be the case that I is primary, nor is it the case

that the square of a prime ideal is primary. For example, let P be the kernel of
the ring homomorphism kŒX;Y;Z� ! kŒt� taking X to t3;Y to t4; and Z to t5:
Then P D .x3 � yz; y2 � xz; z2 � x2y/ is a prime ideal, the radical of P2 is
P; x5 C xy3 � 3x2yz C z3 … P2 by an easy degree count, x … P; but

x.x5 C xy3 � 3x2yz C z3/ D .x3 � yz/2 � . y2 � xz/.z2 � x2y/;

which proves that P2 is not primary.
6. Suppose that I is an ideal such that

p
I is a maximal ideal. Then I is a primary

ideal. Namely, if r 2 R is a zerodivisor modulo I; then as R=I is Artinian with
only one maximal ideal, necessarily the image of r is in this maximal ideal. But
then a power of r lies in I:

7. Let P be a prime ideal and I a P-primary ideal. Then for any r 2 R;

I W r D

8
ˆ̂
<

ˆ̂
:

I; if r … P

R; if r 2 I

a P � primary ideal strictly containing I; if r 2 P n I:

Moreover, there exists r 2 R such that I W r D P:
8. Let R ! S be a ring homomorphism, and I a primary ideal in S: Then I \ R is

primary to
p

I \ R:
9. Let U be a multiplicatively closed subset of R: There is a one-to-one correspon-

dence between prime (resp. primary) ideals in R disjoint from U and prime
(resp. primary) ideals in U�1R given by I 7! IU�1R for I an ideal in R; and
J 7! J \ R for J an ideal in U�1R:

10. If I is P-primary and x is a variable over R; then IRŒx� is PRŒx�-primary.

Definition 3 Let I be an ideal in a ring R:A decomposition I D \s
iD1qi is a primary

decomposition of I if q1; : : : ; qs are primary ideals.
If in addition all

p
qi are distinct and for all i;\j¤iqj › qi; then the decomposi-

tion is called irredundant or minimal.
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By Facts 2, the following is immediate:

Proposition 4 If I D \s
iD1qi is a (minimal) primary decomposition, then for any

multiplicatively closed set U such that U�1I ¤ U�1R;

U�1I D
\

qi\UD;
U�1qi

is a minimal primary decomposition. �

Emmy Noether proved the existence of primary decompositions:

Theorem 5 Every proper ideal I in a Noetherian ring R has a (minimal) primary
decomposition.

Proof Once existence of a primary decomposition is established, existence of a
minimal one is straightforward: if the radicals of two components are identical,
we replace the two components with one component, namely their intersection, and
if one component contains the intersection of the others, then that one component
is redundant and is omitted. So it suffices to prove the existence of any primary
decomposition.

If I is primary, the decomposition consists of I only. In particular, if I is a maximal
ideal, it has a primary decomposition. So assume that I is not primary. Then by
definition there exist a; b 2 R such that ab 2 I; a … I and b … p

I: As R is
Noetherian, the chain I � I W b � I W b2 � � � � terminates. Choose n such that
I W bl D I W blC1 D � � � : It is straightforward to prove that I D .I W bl/ \ .I C .bl//:

By assumption a 2 .I W bl/ n I and bl 2 .I C .bl// n I: Thus both I W bl and
I C .bl/ properly contain I: By Noetherian induction, these two larger ideals have
a primary decomposition, and the intersection of the two decompositions gives a
possibly redundant primary decomposition of I: �

Observe that the proof above is rather non-constructive: how does one decide
whether an ideal is primary, and even if somehow one knows that an ideal is not
primary, how can one determine the elements a and b? Nevertheless, this is a crucial
step in the algorithm for computing primary decompositions in polynomial rings
that we present. An important point for algorithmic computing is also that the
ascending chain I � I W b � I W b2 � � � � is special: as soon as we have one
equality I W bl D I W blC1; then for all m � l; I W bl D I W bm: (General ascending
chains do not have this property.)

Example 6 For monomial ideals it is straightforward to decide when they are
primary: a monomial ideal I in R D kŒX1; : : : ;Xn� is primary if and only if
whenever a variable Xj divides some minimal monomial generator of I; then a
power of Xj is contained in I: This fact at the same time makes the existence of
primary decompositions of monomial ideals, as outlined in the proof of Theorem 5,
constructive. Namely, it is easy to check if each factor of each minimal monomial
generator has a power in I: If yes, the ideal is primary, otherwise there exists a
monomial generator a with variable b D Xj dividing a and b … p

I: We then repeat
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the construction as in the proof of Theorem 5 to obtain two strictly larger monomial
ideals, and use Noetherian induction. In particular, we apply this to I D .x2; xy; xz/:
With b D y and a D x we get that I W y D I W y2 and so that

I D .I W y/\ .I C . y// D .x/ \ .x2; y; xz/:

Now .x/ is already primary (even prime), but .x2; y; xz/ is not. We apply the proof of
Theorem 5 with b D z; a D x to get that .x2; y; xz/ D ..x2; y; xz/ W z/\ ..x2; y; xz/C
.z// D .x; y/ \ .x2; y; z/; so that

I D .x/ \ .x; y/ \ .x2; y; z/:

Clearly .x; y/ is redundant, so that finally we get the minimal primary decomposition

I D .x/ \ .x2; y; z/:

But this is not the only possible primary decomposition. Namely, in the last step
we could have used .x2; y; xz/ D ..x2; y; xz/ W z2/ \ ..x2; y; xz/ C .z2// D .x; y/ \
.x2; y; xz; z2/; to get that

I D .x/\ .x; y/\ .x2; y; xz; z2/ D .x/\ .x2; y; xz; z2/;

which gives a different primary decomposition.

This gives an example of non-uniqueness of primary decompositions. However,
certain uniqueness does hold:

Theorem 7 If I D q1 \ � � � \ qs is a minimal primary decomposition, then
f p

q1; : : : ;
p

qsg equals the set of all prime ideals of the form I W f as f varies
over elements of R: In particular, the set f p

q1; : : : ;
p

qsg is uniquely determined.
If

p
qi is minimal (under inclusion) in this set, then qi is uniquely determined as

I p
qi \ R:

More generally, for each i; there exists li 2 N such that
p

qi
li � qi: Then

I D
s\

iD1

�
.
p

qi
li C I/p

qi \ R
�

is also a primary decomposition.

Proof By minimality of the primary decomposition, for each i there exists r 2
\j¤iqj n qi: Then I W r D .q1 W r/ \ � � � \ .qs W r/ D qi W r is primary to

p
qi;

and by Facts 2, there exists r0 2 R such that qi W .rr0/ D .qi W r/ W r0 equals
p

qi:

Conversely, suppose that I W f is a prime ideal. This means that .q1 W f /\� � �\.qs W f /
is a prime ideal, so necessarily this prime ideal equals some qi W f : But by Facts 2,
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necessarily this prime ideal equals
p

qi: This proves the first two statements of the
theorem.

The third statement follows from Facts 2 and Proposition 4, and the fourth one
from Facts 2. For the last statement, observe that .

p
qi

li C I/p
qi is primary to the

maximal ideal and contained in the localization of qi; so that .
p

qi
li C I/p

qi \ R isp
qi-primary and contained in qi: Since it also contains I; it follows that

I �
s\

iD1

�p
qi

li C I/p
qi \ R

�
�

s\

iD1
qi D I;

so that equality holds throughout. �

The primes appearing in this theorem are called associated primes, and their set
is denoted as Ass.R=I/: When the li are taken to be minimal possible, the resulting
primary decomposition is called canonical (see works by Ortiz [90], Ojeda and
Piedra-Sánchez [88, 89] and Ojeda [87]).

Yao proved that the (non-unique) primary components can be mixed and matched
more generally than in the last statement in the theorem:

Theorem 8 (“Mix-and-match”, Yao [118]) Let fP1; : : : ;Psg D Ass.R=I/, and
assume that for j D 1; : : : ; s,

I D
s\

iD1
qji;

is a primary decomposition of I with
p

qji D Pi for all i; j: Then I D Ts
iD1 qii is

also a primary decomposition.

The following appeared in the proof of Theorem 5: for any element b 2 R and
any ideal I of R; I � I W b � I W b2 � � � � : By Noetherian assumption, there exists l
such that I W bl D I W blC1; and hence I D .I W bl/\.IC.bl//: Thus straightforwardly

Ass

�
R

I W bl

�

� Ass

�
R

I

�

� Ass

�
R

I W bl

�[
Ass

�
R

I C .bl/

�

:

Incidentally, the stable value of I W bn is also often written as I W b1:
It is left as an exercise that

Ass

�
R

I W b

�

� Ass

�
R

I

�

� Ass

�
R

I W b

�[
Ass

�
R

I C .b/

�

even when I ¤ .I W b/\ .I C .b//: This latter fact can be very helpful for example if
b is a variable, so that a primary decomposition of I C .b/ is essentially done in the
polynomial ring in fewer variables and can thus possibly be handled by induction
on the dimension of the polynomial ring.
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By Noetherian induction we know all the associated primes of I W b, I W bl, I C.b/
and I C .bl/. By the two set inclusions displayed above, all the associated primes of
I W b and I W bl are associated to I. In general, not all associated primes of I C .b/ and
I C.bl/ are associated to I. Thus the two displays above generate sets of prime ideals
that include all the possible associated primes of I, but with possible redundancies.
The following result can help resolve the redundancies:

Proposition 9 A prime ideal P is associated to an ideal I if and only if P is minimal
over I W .I W P1/.

Proof Both parts are preserved under localization at P, so we may assume that the
ring is local with P being the maximal ideal. Then I W P1 is the intersection of all
primary components of I that are not P-primary, so that I W .I W P1/ is either the
ring if P is not associated, and is a P-primary ideal otherwise. �

We also leave as an exercise the useful fact that if I is homogeneous in a Z
d-

graded ring, then so are all of the associated primes of I; and there exists a primary
decomposition of I all of whose components are homogeneous. This has to do with
zerodivisors in graded rings.

1.2 Computing Radicals and Primary Decompositions

In this section we present the Gianni-Trager-Zacharias algorithm [60]. We use
Gröbner bases and induction on the number of variables. By the STANDING
ASSUMPTION we can compute radicals and primary decompositions in
kŒX1; : : : ;Xn� if n � 1: Now suppose that n > 1:

Alternate algorithms for computing primary decompositions can be found in the
paper [52] by Eisenbud et al. and in the paper [102] by Shimoyama and Yokoyama.
A survey with clear exposition on algorithms and the current state of computation
is in the paper [42] by Decker et al.

Reduction Step 1

Proposition 10 Let A D kŒX1; : : : ;Xd� � R D kŒX1; : : : ;Xn� where k is a field.
Then for any ideal I in R; IAn.X1/ \ R is computable.

Proof The proof shows how to compute it.

We impose the lexicographic order Xn > � � � > X1 on R: Any term t in R can be
written as aMt; where a is a term in A and Mt is a monomial in kŒXdC1; : : : ;Xn�: For
each f 2 R; letef be the sum of all those terms t in f for which Mt D Mltf : Write
ef D af X

ef

1 Mltf for some non-negative integer ef and some af 2 A n .X1/: We also
write Mf for Mltf :

Let G be a Gröbner basis of I:

Claim If f 2 IAn.X1/ \ R then there exist g 2 G and r 2 A n .X1/ such that ref 2eg R:
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Proof of the claim Let f 2 IAn.X1/ \ R: Then for some c 2 A n .X1/; cf 2 I; so
that lt.cf / is a multiple of ltg for some g 2 G: Write lt.cf / D aXe

1M.ltg/ for some
a 2 A n .X1/; e 2 N; and some monomial M in kŒXdC1; : : : ;Xn�: We will prove
that it is possible to find g such that ecf � e C eg: Suppose that ecf < e C eg:

Then there exists a term in cf that is a kŒX2; : : : ;Xd�-multiple of X
ecf

1 Mcf and that is
not cancelled in cf � aXe

1Mg: Thus cf � aXe
1Mg has a term t with Mt D Mcf and

et D ecf < e C eg: Suppose that we have a1; : : : ; as�1 2 A n .X1/;M1; : : : ;Ms�1
monomials in kŒXdC1; : : : ;Xn�; and non-negative integers e1; : : : ; es�1 such that for
all j D 1; : : : ; s � 1; lt.cf � Pj�1

iD1 aiX
ei
1 Migi/ D lt.ajX

ej

1 Mjgj/; and ecf < egj C ej:

Set h D cf � Ps�1
iD1 aiX

ei
1 Migi: By the last conditions, Mh D Mcf D MjMgj for all

j: As h is in I; we have that the initial term of h is asX
es
1 Ms.ltgs/ for some gs 2

G; as 2 A n .X1/; es 2 N; and some monomial Ms in kŒXdC1; : : : ;Xn�: Since the
monomial ordering is a well-ordering, this cannot go on forever, so that for some
g 2 G; ecf � eg C e: But then agcef D agecf D af X

ecf �eg

1 Meg: This proves the claim.
Set b D Q

g2G ag: Certainly Ib \ R � IAn.X1/ \ R: Now let f 2 IAn.X1/ \ R: To
prove that f 2 Ib \ R; it suffices to assume that among all f in .IAn.X1/ \ R/ n Ib; the
term Mf is smallest. By the claim, there exist g 2 G; r 2 A n .X1/ and h 2 R such
that ref D heg D hagX

eg

1 Mg: Let u D gcd.r; h/: Then r
u
ef D h

u agX
eg

1 Mg: Since R is a
UFD, necessarily r

u 2 A n .X1/ is a factor of ag; hence of b: Write b D v r
u : Then

bef D v r
u
ef D v h

u agX
eg

1 Mg: Set h D bf � v h
u g: By construction, Mh < Mbf D Mf : If

Mf D 1; then h D 0; and in general, h 2 IAn. p/ \ R: By induction on Mh; h 2 Ib \ R;
so that bf D hCv h

u g 2 Ib\R;whence f 2 Ib\R: This proves that Ib\R D IAn. p/\R:
Finally, Ib \ R D I W b1 is computable because I W b1 is the first stabilization in

the inclusions I � I W b � I W b2 � I W b3 � � � � . �

Reduction Step 2 To compute a primary decomposition, we reduce to the case
where I \ A is primary for all subrings A of R generated over k by a proper subset
of the variables X1; : : : ;Xn:

Proof Fix one such A: Let J D I \ A: By induction we can compute a minimal
primary decomposition J D q1 \ � � � \ qs: If s D 1; we are done, so we suppose that
s > 1: We want to identify i such that

p
qi is a minimal associated prime ideal.

We want to accomplish this with minimal computing effort. We could certainly
compute all the radical ideals and compare them, but computing radicals can be
time-consuming, so the radical is not a goal in itself, we avoid its computation.
Instead, we compute some colon ideals. If q1 W qi ¤ q1 for some i > 1; then

p
q1 is

definitely not a minimal prime, so we can eliminate q1 from further pairwise tests.
If instead q1 W qi D q1 for all i D 2; : : : ; s; then

p
qi is a minimal prime ideal. With

such cloning, in finitely many steps we identify i such that
p

qi is a minimal prime
ideal. Say i D 1:

Now we want r 2 q2 \ � � � \ qs n p
q1: Certainly we can find an element r 2

q2\� � �\qs but avoiding q1 as follows: one of the generators of q2\� � �\qs is not in
q1; and this can be tested. By prime avoidance, it is even true that a random/generic
element r of q2 \ � � � \ qs is not in

p
q1: Ask the computer to give you a random

element r of q2 \ � � � \ qs; and then r … p
q1 if and only if q1 W r D q1: Thus while
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random generation may not reliably produce an element of q2 \ � � � \ qs n p
q1; we

do have a computable method via colon of checking for this property. In practice,
one would probably ask for one random r; test it, and if the test fails, ask for a new
random element, and if necessary repeat a small finite number of times. A reader
uncomfortable with the randomness of this procedure, should instead compute

p
q1;

and then test successively for a generator of q2 \ � � � \ qs to not be in
p

q1:
So suppose that we have r 2 q2 \ � � � \ qs n p

q1: As on page 45, there exists a
positive integer l such that I W rl D I W rlC1: This ideal is strictly larger than I as it
contains q1R: Furthermore, I C .rl/ is strictly larger than I since r … p

q1 and hence
r … p

I: If we can obtain a primary decomposition of the strictly larger ideals I W rl

and I C .rl/; then we get one also for I D .I W rl/ \ .I C .rl//: Thus by replacing
I by the strictly larger ideals I W rl and I C .rl/; we get strictly larger intersections
with A; and we continue this until the intersections are primary.

We repeat this procedure with all the possible A:While working on a new I \ A0;
the intersections I \ A with the old A can only get larger, but by the Noetherian
property of A it can get larger only finitely many times. Since there are only finitely
many possible A this procedure has to stop.

Reduction Step 2 To compute a primary decomposition, we reduce to the case
where I \ kŒXi� is non-zero for all i:

Suppose that I \ kŒX1� D .0/: This is a principal prime ideal, so that by Proposi-
tion 10, there is a computable non-zero b 2 kŒX1� such that Ik.X1/ŒX2; : : : ;Xn�\R D
I W b1: Let l be a (computable) positive integer such that I W b1 D I W bl: The ideal
I C .bl/ has the desired property that its intersection with kŒX1� is not zero. Since
I D .I W bl/\ .I C .bl//; it suffices to find a primary decomposition of I W bl:

By induction on the number of variables, we can compute a minimal primary
decomposition Ik.X1/ŒX2; : : : ;Xn� D q1 \ � � � \ qs: If s D 1; then by the one-to-
one correspondence between primary ideals before and after localization, I W bl is
primary, and we are done. So we may assume that s > 1: Then as in the proof
of Reduction step 1 we can compute r 2 k.X1/ŒX2; : : : ;Xn� that is a non-nilpotent
zerodivisor modulo Ik.X1/ŒX2; : : : ;Xn�: We can write r D r1

r2
for some r1 2 R; r2 2

A n .X1/; and by ignoring the unit r2 we may assume that r D r1 2 R: Then I is
the intersection of strictly larger ideals I W rl and I C .rl/ in R; and we proceed by
Noetherian induction on ideals in R:

We repeat this with I \ kŒXi� for all i > 1:

Reduction Step 3 To compute a primary decomposition, we reduce to the case
where I \ kŒXi� is non-zero for all i and I \ A is primary for all subrings A of R
generated over k by a proper subset of the variables X1; : : : ;Xn:

For this repeat the first two reduction steps. Again by Noetherian induction in
each of the finitely many rings this step terminates in finitely many steps.

Reduction Step 4 To compute the radical, we reduce to the case where I \ kŒXi� is
non-zero for all i and I \ A is primary for all subrings A of R generated over k by a
proper subset of the variables X1; : : : ;Xn:
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Note that Reduction step 1 for the computation of primary decompositions
successively replaces I by strictly larger ideals J1; : : : ; Js such that I D J1 \ � � � \ Js

and such that Ji \ A is primary for all A and all i: Since
p

I D p
J1 \ � � � \ p

Js; it
suffices to compute

p
Ji for all i:

If I \ kŒX1� D .0/; by induction on the number of variables we can compute the
radical of Ik.X1/ŒX2; : : : ;Xn�: Let g1; : : : ; gt be a generating set of this radical. By
possibly clearing denominators, we may assume that g1; : : : ; gt 2 R: Then the radi-
cal of Ik.X1/ŒX2; : : :Xn� intersected with R equals J D .g1; : : : ; gt/k.X1/ŒX2; : : :Xn�\
R: This is a radical ideal, and it is computable by Proposition 10. Certainly

p
I � J:

More precisely by Proposition 10, there exists non-zero b 2 kŒX1� such that
.g1; : : : ; gt/k.X1/ŒX2; : : :Xn� \ R D .g1; : : : ; gt/ W b1: Then I W b1 D I W bl for
some l; I D .I W bl/\ .I C .bl//; and the radical of I is J \ p

I C .bl/; so it suffices
to compute the radical of the strictly larger ideal I C .bl/: So we may assume that
I \ kŒX1� ¤ .0/; and more generally that I \ kŒXi� ¤ .0/ for all i:

Repetition of this and Noetherian induction bring to a successful reduction in this
step.

Theorem 11 The radical and the primary decomposition of an ideal I in R are
computable.

Proof We have reduced to the case where I \ kŒX1� D . f1/; : : : ; I \ kŒXn� D . fn/;
and I \ kŒX1; : : : ;Xn�1� are primary.

By our STANDING ASSUMPTION, . pi/ D p
. fi/ is computable. In character-

istic zero, this computation is easier: pi D fi
gcd. fi;f

0

i /
:

By induction on the number of variables we can compute the radical of I \
kŒX1; : : : ;Xn�1�: Since we assumed that I \ kŒX1; : : : ;Xn�1� is primary, it follows
that its radical is a maximal ideal; call it M: (In characteristic zero, as in [70], M D
I \ kŒX1; : : : ;Xn�1� C . p1; : : : ; pn�1/ because kŒX1; : : : ;Xn�1�=. p1; : : : ; pn�1/ D
.kŒX1�=. p1// ˝k � � � ˝k .kŒXn�1�=. pn�1// is a tensor product of finitely generated
field extensions of k; and is thus reduced, semisimple, so that any ideal in this ring
is radical.)

Since I \ kŒXn� ¤ .0/; necessarily I is not a subset of MR: We can compute
g 2 I n MR: Even more, since R=MR D kŒX1;:::;Xn�1�

M ŒXn� is a principal ideal domain,
we can compute g 2 I such that g.R=MR/ D I.R=MR/: By the STANDING
ASSUMPTION, there exists g1; : : : ; gs 2 R such that the gi.R=MR/ are pairwise
non-associated and irreducible, and such that g.R=MR/ D ga1

1 � � � gas
s .R=MR/ for

some positive integers a1; : : : ; as:

Then I � \i.MR C giR/ D MR C .g1 � � � gs/R � p
I; the associated primes of

I are MR C giR; i D 1; : : : ; s;
p

I D \i.MR C giR/; and the .MR C giR/-primary
component of I is I W .Qj¤i gj/

1: All of these are computable. �

Example 12 Let I D .x2 C yz; xz � y2; x2 � z2/ in QŒx; y; z�: We roughly follow the
outline of the algorithm, with some human ingenuity to skip computational steps.
Clearly yz C z2 2 I \ kŒ y; z� and it appears unlikely that a power of z is contained
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in I \ kŒ y; z�: (We could use elimination and Gröbner bases to compute precisely
I\kŒ y; z� D . yzCz2; y3Cz3/:) Thus z is a non-nilpotent zerodivisor modulo I:By the
algorithm we compute I W z D . yCz; xz�z2; x2�z2/; I W z2 D . yCz; x�z/ D I W z3;
which is clearly prime and hence primary. Furthermore, IC.z2/ D .x2; yz; xz�y2; z2/
has radical .x; y; z/; which is a maximal ideal, so that I C .z2/ is primary. Thus
I D .I W z2/ \ .I C .z2// D . y C z; x � z/ \ .x2; yz; xz � y2; z2/ is a primary
decomposition, and clearly it is an irredundant one.

1.3 Computer Experiments: Using Macaulay2 to Obtain
Primary Decompositions

The computer algebra system Macaulay2 [62] has in-built functions to deal with
primary decompositions. There is a package, included with the system, that is
devoted to this topic. In this section we encourage the reader to turn on the computer,
start a Macaulay2 session and experiment with the software.

To see the capabilities of Macaulay2 with respect to primary decompositions,
one can first read the help pages for the package. One can do this in two ways:
typing help PrimaryDecomposition in the command line interface, or
reading the html version in a browser (by typing viewHelp in the command
line interface. We rapidly review the main functions Macaulay2 offers to compute
primary decompositions.

The first thing to do is of course typing your favourite ideal and using the in-built
function primaryDecomposition:

i1 : R=QQ[x,y,z];

i2 : I=ideal(x^2,x*y,x*z);

o2 : Ideal of R

i3 : primaryDecomposition I

2
o3 = {ideal(x), ideal (x , y, z)}

We can immediately obtain the associated primes of I (in the order correspond-
ing to the primary components):

i4 : associatedPrimes I

o4 = {ideal(x), ideal (x, y, z)}
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This is because when computing the primary decomposition, Macaulay2 caches
the information it obtains, which can be accessed at any time, without further
computations:

i1 : R=QQ[x,y,z];

i2 : I=ideal(x^3,x*y,x*z);

o2 : Ideal of R

i3 : peek I.cache

o3 = CacheTable{}

i4 : primaryDecomposition I

3
o4 = {ideal(x), ideal (x , y, z)}

i6 : peek I.cache

o6 = CacheTable{AssociatedPrimes => {ideal(x), ideal (x, y, z)}
module => image | x3 xy xz |

flattenRing => OptionTable{CoefficientRing => null}
3

=> (ideal (x , x*y, x*z), map(R,R,{x, y, z}))
Result =>(Thing, RingMap)

Macaulay2 is able to use different algorithms to compute primary decomposi-
tions; they are called strategies in the system. They are sensitive to the input ideal:

i1 : R=QQ[x,y,z];

i2 : I=ideal(x^3+y+1,y^3+z+1,z^3+x+1);

o2 : Ideal of R

i3 : J=I^2;

o3 : Ideal of R

i4 : K=I^2;

o4 : Ideal of R

i5 : L=I^2;

o5 : Ideal of R

i6 : time primaryDecomposition J;
-- used 1.27953 seconds



52 I. Swanson and E. Sáenz-de-Cabezón

i7 : time primaryDecomposition (K, Strategy=>
EisenbudHunekeVasconcelos);
-- used 49.3968 seconds

i8 : time primaryDecomposition (L, Strategy=>
new Hybrid from (1,2));
-- used 41.828 seconds

i9 : peek J.cache

i10: peek K.cache

i11: peek L.cache

Note that the output of lines i9, i10 and i11 is too long to be printed
here. We encourage the reader to check it in her/his own computer. The cached
information makes a difference when obtaining further information about the ideal.
The algorithms available for computing primary decompositions are Shimoyama
and Yokoyama [102], Eisenbud et al. [52], a hybrid of these two algorithms, and
Gianni et al. [60]. The default algorithm in Macaulay2 is Shimoyama-Yokoyama.
Macaulay2 has also special strategies for monomial and binomial ideals.

2 Expanded Lectures on Binomial Ideals

In these pages I present the commutative algebra gist of the Eisenbud–Sturmfels
paper [51]. The paper employs lattice and character theory, but this presentation,
inspired by Melvin Hochster’s, avoids that machinery.

The main results are that the associated primes, the primary components, and
the radical of a binomial ideal in a polynomial ring are binomial if the base ring is
algebraically closed.

Kahle wrote a program [68] that computes binomial decompositions extremely
fast: the input fields do not have to be algebraically closed, but the program adds the
necessary roots of numbers.

Throughout, R D kŒX1; : : : ;Xn�; where k is a field and X1; : : : ;Xn are variables
over k: A monomial is an element of the form Xa for some a 2 N

n
0; and a term

is a scalar multiple of a monomial. The words “monomial” and “term” are often
confused, and in particular, a binomial is defined as the difference of two terms. (In
my opinion, we should switch the meanings of “monomial” and “term”.) An ideal
is binomial if it is generated by binomials.

Here are some easy facts:

1. Every monomial is a binomial, hence every monomial ideal is a binomial ideal.
2. The sum of two binomial ideals is a binomial ideal.
3. The intersection of binomial ideals need not be binomial: .t � 1/ \ .t � 2/ D

t2 � 3t C 2; which is not binomial in characteristics other than 2 and 3:
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4. Primary components of a binomial ideal need not be binomial: in RŒt�; the
binomial ideal .t3�1/ has exactly two primary components: .t�1/ and .t2CtC1/:

5. The radical of a binomial ideal need not be binomial: Let t;X;Y be variables over
Z=2Z; k D .Z=2Z/.t/;R D kŒX;Y�; and I D .X2 C t;Y2 C t C 1/: Note that I
is binomial (as t C 1 is in k), and

p
I D .X2 C t;X C Y C 1/; and this cannot be

rewritten as a binomial ideal as there is only one generator of degree 1 and it is
not binomial.

Thus, for the announced good properties of binomial ideals, we do need to make
a further assumption, namely, from now on, all fields k are algebraically closed, and
then the counterexamples to primary components and radicals do not occur.

Can the theory be extended to trinomial ideals (with obvious meanings)? The
question is somewhat meaningless, because all ideals are trinomial after adding
variables and a change of variable. Namely, let f D a1 C a2 C � � � C am be a poly-
nomial with m terms. Introduce new variables t3; : : : ; tm: Then kŒX1; : : : ;Xn�=. f / D
kŒX1; : : : ;Xn; t3; : : : ; tm�=.a1 C a2 � t3;�t3 C a3 � t4;�t4 C a4 � t5; : : : ;�tm�2 C
am�2 � tm�1;�tm�1 C am�1 � tm/: In this way an ideal I in a polynomial ring can be
rewritten for some purposes as a trinomial ideal in a strictly larger polynomial ring,
so that essentially every ideal is trinomial in this sense. Then the general primary
decomposition and radical properties follow-after adding more variables.

But binomial ideals are special. By Buchberger’s algorithm, a Gröbner basis of a
binomial ideal is binomial: all S-polynomials and all reductions of binomial ideals
with respect to binomials are binomial. Thus whenever I is a binomial ideal and A is
a polynomial subring generated by some of the variables of R; then I\A is binomial.
In particular, from the commutative algebra fact that I \ J D .tI C .t � 1/J/RŒt�\ R;
where t is a variable over R; whenever I is binomial and J is monomial, then I \ J
is binomial. Similarly, for any monomial j; I \ . j/ and I W j are binomial.

Proposition 13 Let I be a binomial ideal, and let J1; : : : ; Jl be monomial ideals.
Then there exists a monomial ideal J such that .I C J1/\ � � � \ .I C Jl/ D I C J:

Proof We can take a k-basis B of R=I to consist of monomials. By Gröbner bases of
binomial ideals, .I C Jk/=I is a subspace whose basis is a subset of B: Thus \..I C
Jk/=I/ is a subspace whose basis is a subset of B; which proves the proposition. �

Binomial ideals are sensitive to the coefficients appearing in the generators. This
has implications in complexity theory, as well as in practical computations. For
example, if the characteristic of k is not 0 and R is a polynomial ring in m � n
variables Xij; the ideal generated by the 2 � 2-determinants of ŒXij�i; j is a prime
ideal (see for example [30]), whereas the ideal generated by such permanents (both
coefficients C1) generate a prime ideal precisely when m D n D 2; they generate
a radical ideal precisely when minfm; ng � 2; and whenever m; n � 3; the number
of minimal primes is n C m C �n

2

��m
2

�
: (This is due to [73].)
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2.1 Binomial Ideals in
S D kŒX1; : : : ;Xn;X�1

1
; : : : ;X�1

n � D kŒX1; : : : ;Xn�X1���Xn

Any binomial Xa � cXb can be written up to unit in S as Xa�b � c:
Let I be a proper binomial ideal in S: Write I D .Xe � c W e 2 Z

n; ce 2 k�/: (All
ce are non-zero since I is assumed to be proper.)

If e; e0 occur in the definition of I; set e00 D e � e0; e000 D e C e0: Then

Xe � ce D Xe0Ce00 � ce 	 ce0Xe00 � ce mod I;

Xe � ce D Xe000�e0 � ce 	 c�1
e0 Xe000 � ce mod I;

so that e00 is allowed with ce00 D cec�1
e0 ; and e000 is allowed with ce000 D cece0 :

In particular, the set of all allowed e forms a Z-submodule of Z
n: Say that it is

generated by m vectors. Record these vectors into an n � m matrix A: We just
performed some column reductions: neither these nor the rest of the standard column
reductions over Z change the ideal I: But we can also perform column reductions!
Namely, S also equals kŒX1Xm

2 ;X2; : : : ;Xn; .X1Xm
2 /

�1; .X2/�1; : : : ; .Xn/
�1�; and we

can rewrite any monomial Xa as .X1Xm
2 /

a1Xa2�ma1
2 Xa3

3 � � � Xan
n ; which corresponds

to the second row of the matrix becoming the old second row minus m times the
old first row (and other rows remain unchanged). Simultaneously we changed the
variables, but not the ring. So all row reductions are allowed, they do not change the
ideal, but they do change the ideal. We work this out on an example:

Example 14 Let I D .x3y � 7y3z; xy � 4z2/ in kŒx; y; z�; where the characteristic of
k is different from 2 and 7: This yields the 3 � 2 matrix of occurring exponents:

A D
2

4
3 1

�2 1

�1 �2

3

5 :

We will keep track of the coefficients 7 and 4 for the columns like so:

A D
2

4
3 1

�2 1

�1 �2

3

5

7 4

We first perform some elementary column reductions, keeping track of the ce (if all
ce are 1; then there is no reason to keep track of these, they will always be 1):

A !
2

4
1 3

1 �2
�2 �1

3

5 !
2

4
1 0

1 �5
�2 5

3

5

7 4 4 7=43
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We next perform the row reductions, and for these we will keep track of the names
of variables (in the obvious way):

x
y
z

2

4
1 0

1 �5
�2 5

3

5 !
xy
y
z

2

4
1 0

0 �5
�2 5

3

5 !
xyz�2

y
z

2

4
1 0

0 �5
0 5

3

5 !
xyz�2

y
zy�1

2

4
1 0

0 0

0 5

3

5 !
xyz�2
zy�1

y

2

4
1 0

0 5

0 0

3

5 :

In these reductions, the coefficients remained 4 and 7=43:

This was only a special case, but obviously the procedure works for any binomial
ideal in S: the matrix A can be row- and column-reduced, keeping track of the
variables and coefficients. Once we bring the matrix of exponents into standard
form, every proper binomial ideal in S is of the form ..X1/0m1 �c1; : : : ; .Xd/

0md �cd/

for some d � n; some mi 2 N; some ci 2 K�; and some X0
i are products of

positive and negative powers of X1; : : : ;Xn in a way that keeps the ring equality
S D kŒX0

1; : : : ;X
0
n;X

0�1
1 ; : : : ;X0�1

n �:

Now the following are obvious: in characteristic zero,

I D
\

u
mi
i Dci

.X0
1 � u1; : : : ;X

0
d � ud/;

where all the primary components are distinct, binomial, and prime. Thus here all
associated primes, all primary components, and the radical are all binomial ideals,
and moreover all the associated primes have the same height and are thus all minimal
over I:

In positive prime characteristic p; write each mi as pvi ni for some positive vi and
non-negative ni that is not a multiple of p: Then

I D
\

u
mi
i Dci

..X0
1 � u1/

pv1 ; : : : ; .X0
d � ud/

pvd
/:

The listed generators of each component are primary. These primary components are
binomial, as .X0

i � ui/
pvi D X

0pvi
i � u

pvi
i : The radicals of these components are all the

associated primes of I; and they are clearly the binomial ideals .X0
1�u1; : : : ;X0

d�ud/:

All of these prime ideals have the same height, thus they are all minimal over I:
Furthermore,

p
I D

\

u
mi
i Dci

.X0
1 � u1; : : : ;X

0
d � ud/ D .X0n1

1 � un1
1 ; : : : ;X

0nd
d � und

d /;

for any ui with umi
i D ci: The last equality is in fact well-defined as if .u0

i/
mi D ci;

then 0 D ci � ci D umi
i � .u0

i/
mi D .uni

i � .u0
i/

ni/p
vi
; so that uni

i D .u0
i/

ni : In particular,p
I is binomial.
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We summarize this section in the following theorem:

Theorem 15 A proper binomial ideal in S has binomial associated primes, bino-
mial primary components, and binomial radical. All associated primes are minimal.
In characteristic zero, all components are prime ideals, so all binomial ideals in
S are radical. In positive prime characteristic p; a generating set of a primary
component consists of (different) Frobenius powers of the elements in some binomial
generating set of the corresponding prime ideal. �

Example 16 In particular, if we analyze the ideal from Example 14, the already
established row reduction shows that I D .xyz�2 � 4; .zy�1/5 � 7=43/: In character-
istic 5; this is a primary ideal whose radical is I D .xyz�2 � 4; zy�1 � 5

p
7=43/ D

.xyz�2�4; zy�1�3/ D .xy�4z2; z�3y/ D .xy�4 �9y2; z�3y/ D .x�y; z�3y/: In
characteristics other than 2; 5; 7; we get five associated primes .xy � 4z2; z � ˛y/ D
.x � 4˛2y; z � ˛y/ as ˛ varies over the fifth roots of 7=43: All of these prime ideals
are also the primary components of I: (In characteristics 2 and 7; IS D S:)

Theorem 17 Let I be an ideal in R such that IS is binomial. Then IS\R is binomial.
In particular, for any binomial ideal I of R; any associated prime ideal P of I such
that PS ¤ S is binomial, and we may take the P-primary component of I (in R) to
be binomial.

Proof Let Q be a binomial ideal in R such that QS D IS: Then IS \ R D QS \ R D
Q W .X1 � � � Xn/

1 is binomial by the facts at the beginning of this section. �

2.2 Associated Primes of Binomial Ideals Are Binomial

Theorem 18 All associated primes of a binomial ideal are binomial ideals. (Recall
that k is algebraically closed.)

Proof By factorization in polynomial rings in one variable, the theorem holds if
n � 1: So we may assume that n � 2: The theorem is clearly true if the binomial
ideal I is a maximal ideal. Now let I be arbitrary.

Let j 2 Œn� D f1; : : : ; ng: Note that I C .Xj/ D Ij C .Xj/ for some binomial ideal
Ij in kŒX1; : : : ;Xn�1�: By induction on n; all prime ideals in Ass.kŒX1; : : : ;Xn�1�=Ij/

are binomial. But Ass.R=.I C .Xj/// D fP C .Xj/ W P 2 Ass.kŒX1; : : : ;Xn�1�=Ij/g;
so that all prime ideals in Ass.R=.I C .Xj/// are binomial. By the basic facts from
the beginning of this section, I W Xj is binomial. If Xj is a zerodivisor modulo I;
then I W Xj is strictly larger than I; so that by Noetherian induction, Ass.R=.I W Xj//

contains only binomial ideals. By facts on page 45, Ass.R=I/ � Ass.R=.I C.Xj///[
Ass.R=.I W Xj//;whence also by induction on the number of variables, all associated
primes of I are binomial as long as some variable is a zerodivisor modulo I:

Now assume that all variables are non-zerodivisors modulo I: Let P 2
Ass.R=I/: Since X1 � � � Xn is a non-zerodivisor modulo I; it follows that PX1���Xn 2
Ass..R=I/X1���Xn/ D Ass.S=IS/: Then P is binomial by Theorem 17. �
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We have already seen in Example 6 that for monomial ideals all associated primes
are monomial (hence binomial).

Example 19 (Continuation of Examples 14 and 16) Let I D .x3y � 7y3z; xy � 4z2/
in kŒx; y; z�: We have already determined all associated prime ideals of I that do not
contain any variables. So it suffices to find the associated primes of IC.xm/; IC. ym/

and of I C .zm/; for large m: If the characteristic of k is 2; then the decomposition is

I D .x3y � y3z; xy/I D . y3z; xy/ D . y/\ . y3; x/ \ .z; x/;

If the characteristic of k is 7; then the decomposition is

I D .x3y; xy � 4z2/ D . y; z2/ \ .x3; xy � 4z2/:

(The reader may apply methods of the previous section to verify that the latter ideal
is primary.) Now we assume that the characteristic of k is different from 2 and 7:
Any prime ideal that contains I and x also contains z; so at least we have that .x; z/ is
minimal over I and thus associated to I: Similarly, . y; z/ is minimal over I and thus
associated to I:Also, any prime ideal that contains I and z contains in addition either
x or y; so that at least we have determined Min.R=I/: Any embedded prime ideal
would have to contain all of the already determined primes. Since I is homogeneous,
all associated primes are homogeneous, and in particular, the only embedded prime
could be .x; y; z/: It turns out that this prime ideal is not associated even if it came up
in our construction, but we won’t get to this until we discuss the theory of primary
decomposition of binomial ideals in the next section.

2.3 Primary Decomposition of Binomial Ideals

The main goal of this section is to prove that every binomial ideal has a binomial
primary decomposition, if the underlying field is algebraically closed (Theorem 23).
We first need a lemma and more terms.

Definition 20 An ideal I in a polynomial ring kŒX1; : : : ;Xn� is cellular if for all
i D 1; : : : ; n;Xi is either a non-zerodivisor or nilpotent modulo I:

All primary monomial and binomial ideals are cellular.

Definition 21 For any binomial g D Xa � cXb and for any non-negative integer d;
define

gŒd� D Xda � cdXdb:
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The following is a crucial lemma:

Lemma 22 Let I be a binomial ideal, let g D Xa � cXb be a non-monomial
binomial in R such that Xa and Xb are non-zerodivisors modulo I: Then there exists
a monomial ideal I0 such that for all large d; I W gŒdŠ� D I W .gŒdŠ�/2 D I C I0:

Proof For all positive integers d and e; gŒd� is a factor of gŒde�; so that I W gŒd� � I W
gŒde�: Thus there exists d such that for all e � d; I W gŒdŠ� D I W gŒeŠ�:

Let f 2 I W gŒdŠ�: Write f D f1 C f2 C � � � C fs for some terms (coefficient times
monomial) f1 > f2 > � � � > fs: Without loss of generality Xa > Xb: We have that

f1X
a C f2X

a C � � � C fsX
a C f1X

b C f2X
b C � � � C fsX

b 2 I:

In the Gröbner basis sense, each fiXa; fiXb reduces to some unique term (coefficient
times monomial) modulo I: Since Xa and is a non-zerodivisor modulo I; fiXa and
fjXa cannot reduce to a scalar multiple of the same monomial, and similarly fiXb

and fjXb cannot reduce to a scalar multiple of the same monomial. Thus for each
j D 1; : : : ; s there exists �. j/ 2 Œs� D f1; : : : ; sg such that fjxdŠa � cdŠf�. j/xdŠb 2 I:
The function � W Œs� ! Œs� is injective. By easy induction, for all i; fj.xdŠa/i �
cdŠif� i. j/.x

dŠb/i 2 I: By elementary group theory, �sŠ. j/ D j; so that for all
j; fjgŒdŠ�ŒsŠ� 2 I: Then fjgŒ..dŠ/.sŠ//Š� 2 I; and by the choice of d; fjgŒdŠ� 2 I: Thus I W gŒdŠ�

contains monomials f1; : : : ; fs: Thus set I0 to be the monomial ideal generated by all
the monomials appearing in the generators of I W gŒdŠ�:

Let f 2 I W .gŒdŠ�/2: We wish to prove that f 2 I W gŒdŠ�: By possibly enlarging
I0 we may assume that I0 contains all monomials in I W gŒdŠ� D I C I0: This in
particular means that any Gröbner basis G of I W gŒdŠ� consists of monomials in I0
and binomial non-monomials in I: Write f D f1 C f2 C � � � C fs for some terms
f1 > f2 > � � � > fs: As in the previous paragraph, for each j; either fjxdŠa 2 I0 or
else fjxdŠa � cdŠf�. j/xdŠb 2 I: If fjxdŠa 2 I0 � I W gŒd�; then by the non-zerodivisor
assumption, fj 2 I W gŒd�; which contradicts the assumption. So necessarily we get
the injective function � W Œs� ! Œs�: As in the previous paragraph we then get that
each fj 2 I W gŒd�: �

Without loss of generality assume that no fi is in I W gŒdŠ�:Note that fgŒdŠ� 2 I W gŒdŠ�:
Consider the case that fjxdŠa 2 I0 and get a contradiction. Now repeat the � argument
as in a previous part to make the conclusion.

Theorem 23 If k is algebraically closed, then any binomial ideal has a binomial
primary decomposition.

Proof Let I be a binomial ideal. For each variable Xj there exists l such that I D .I W
Xl

j/\ .I C .Xj/
l/; so it suffices to find the primary decompositions of the two ideals

I W Xl
j and I C .Xj/

l: These two ideals are binomial, the former by the basic facts
from the beginning of this section. By repeating this splitting for another Xi on each
of the two new ideals, and then repeating for Xk on the four new ideals, et cetera,
with even some j repeated, we may assume that each of the intersectands is cellular.
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Thus it suffices to prove that each cellular binomial ideal has a binomial primary
decomposition.

So let I be cellular and binomial. By possibly reindexing, we may assume that
X1; : : : ;Xd are non-zerodivisors modulo I; and XdC1; : : : ;Xn are nilpotent modulo I:
Let P 2 Ass.R=I/: By Theorem 18, P is a binomial prime ideal. Since I is contained
in P;P must contain XdC1; : : : ;Xn; and since the other variables are non-zerodivisors
modulo I; these are the only variables in P: Thus P D P0 C .XdC1; : : : ;Xn/; where
P0 is a binomial prime ideal whose generators are binomials in kŒX1; : : : ;Xd�; and
X1; : : : ;Xd are non-zerodivisors modulo I:

So far we have I “cellular with respect to variables”. (For example, we could have
I D .X3.X21 � X22/;X

2
3/ and P D .X1 � X2;X3/:) Now we will make it more “cellular

with respect to binomials in the subring”. Namely, let g be a non-zero binomial in
P0: (In the parenthetical example, we could have g D X1 � X2:) By Lemma 22,
there exists d 2 N such that I W gŒd� D I W .gŒd�/2 D I C (monomial ideal):
This in particular implies that P is not associated to I W gŒd�; and so necessarily P
is associated to I C .gŒd�/: Furthermore, the P-primary component of I is the P-
primary component of the binomial ideal I C .gŒd�/: We replace the old I by the
larger binomial ideal I C .gŒd�/: We repeat this to each g a binomial generator of
P0; so that we may assume that P is minimal over I: (In the parenthetical example
above, we would now say with d D 6 that I D .X61 � X62 ;X3.X

2
1 � X22/;X

2
3/:) Now

XdC1; : : : ;Xn are still nilpotent modulo I: The P-primary component of I is the same
as the P-primary component of binomial ideal I W .X1 � � � Xd/

1; so by replacing I
with I W .X1 � � � Xd/

1 we may assume that I is still cellular.
If Ass.R=I/ D fPg; then I is P-primary, and we are done. So we may assume that

there exists an associated prime ideal Q of I different from P: Since P is minimal
over I and different from Q; necessarily there exists an irreducible binomial g D
Xa � cXb 2 Q n P: Necessarily g … .XdC1; : : : ;Xn/R: Thus Lemma 22 applies, so
there exists d 2 N such that I W gŒd� D I W .gŒd�/2 D I C (monomial ideal): Note
that Q is not associated to this ideal but Q is associated to I; so that the binomial
ideal I W gŒd� is strictly larger than I: If gŒd� … P; then the P-primary component of
I equals the P-primary component of I W gŒd�; and so by Noetherian induction (if
we have proved it for all larger ideals, we can then prove it for one of the smaller
ideals) we have that the P-primary component of I is binomial. So without loss of
generality we may assume that gŒd� 2 P: Then gŒd� contains a factor in P of the form
g0 D Xa � c0Xb for some c0 2 k: If the characteristic of R is p; gpm

0 is a binomial for

all m; we choose the largest m such that pm divides d; and set h D gŒd�=g0; b D gpm

0 :

In characteristic zero, we set h D gŒd�=g0 and b D g0: In either case, b is a binomial,
b 2 I W h and h … P: Thus the P-primary component of I is the same as the P-
primary component of I W h; and in particular, since I � I C .b/ � I W h; it follows
that the P-primary component of I is the same as the P-primary component of the
binomial ideal I C .b/: If b 2 Q; then g0 D Xa � c0Xb and g D Xa � cXb are
both in Q: Necessarily c ¤ c0; so that Xa;Xb 2 Q; and since g … .XdC1; : : : ;Xn/R;
it follows that Q contains one of the variables X1; : : : ;Xd: But these variables are
non-zerodivisor modulo I; so that Q cannot be associated to I; which proves that
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b … Q: But then I is strictly contained in I C .b/; and by Noetherian induction, the
P-primary component is binomial. �

2.4 The Radical of a Binomial Ideal Is Binomial

Here is general commutative algebra fact: for any Noetherian commutative ring R;
any ideal I; and any X1; : : : ;Xn in R;

p
I D p

I C .X1/\ � � � \ p
I C .Xn/\ p

I W .X1 � � � Xn/1

D
p

I C .X1/\ � � � \
p

I C .Xn/\
p

I W X1 � � � Xn:

Theorem 24 The radical of any binomial ideal in a polynomial ring over an
algebraically closed field is binomial.

Proof This is clear if n D 0: So assume that n > 0: By the fact above,

p
I D p

I C .X1/ \ � � � \ p
I C .Xn/\ p

I W .X1 � � � Xn/1:

Let I0 D p
I W .X1 � � � Xn/1:We have established in Theorem 15 that

p
I0S D p

IS
is binomial in S: By Theorem 17,

p
I0 is binomial.

Let I1 D I \ kŒX2; : : : ;Xn�: We know that I1 is binomial. By induction on n; the
radical of I1 is binomial. This radical is contained in

p
I; so that

p
I D

pp
I1 C I:

Thus without loss of generality we may assume that
p

I1 � I: Hence we may also
assume that

p
I1 D I1:

Let P be a prime ideal minimal over I C .X1/: Suppose that there exists a
binomial g in I that involves X1 but is not in .X1/: Write g D X1m0 C m for some
monomial terms m;m0; with X1 not appearing in m: Since P is a prime ideal, there
exists a variable dividing m that is in P: Say this variable is X2: Then P is a prime
ideal minimal over I C .X1;X2/: By continuing this we get that, after reindexing,
P is a prime ideal minimal over I C .X1;X2; : : : ;Xd/ and that any binomial in I is
either in .X1; : : : ;Xd/ or in kŒXdC1; : : : ;Xd�: By Gröbner bases rewriting,

I C .X1; : : : ;Xd/ D ..I C .X1; : : : ;Xd//\ kŒXdC1; : : : ;Xn�C .X1; : : : ;Xd//R

D .I1 \ kŒXdC1; : : : ;Xn�C .X1; : : : ;Xd//R;

and this is a radical ideal since I1 is. This proves that the intersection of all
the prime ideals minimal over I C .X1/ equals the intersection of ideals of the
form I C (some variables): Hence by Proposition 13,

p
I C .X1/ D I C J1 for

some monomial ideal J1: Similarly,
p

I C .Xi/ D I C Ji for some monomial
ideals J1; : : : ; Jn: By the first paragraph in this section and by Proposition 13 thenp

I D .I C J/\ I0 for some monomial ideal J: But I � I0; so that
p

I D I C J \ I0;
and this is a binomial ideal because J is monomial and I0 is binomial (see p. 53). �



Primary Decompositions 61

3 Primary Decomposition in Algebraic Statistics

Algebraic statistics is a relatively new field. The first systematic work is due to
Studený [109] from an axiomatic point of view, and several works after that used
the axiomatic approach. A first more concrete connection between statistics and
commutative algebra is due to the paper of Diaconis and Sturmfels [46], which
introduced the notion of a Markov basis. The book by Pistone et al. [92], published
in 2001, is a book on commutative algebra and Gröbner bases for statisticians.
Not all parts of statistics can be algebraicized, of course. Some of the current
research topics in algebraic statistics are: design of experiments, graphical models,
phylogenetic invariants, parametric inference, maximum likelihood estimation,
applications in biology, et cetera. This section is about (conditional) independence.

3.1 Conditional Independence

Definition 25 A random variable, as used in probability and statistics, is not a
variable in the algebra sense; it is a variable or function whose value is subject to
variations due to chance. I cannot give a proper definition of “chance”, but let us
just say that examples of random variables are outcomes of flips of coins or rolls of
dice. (If you are Persi Diaconis, a flip of a coin has a predetermined outcome, but
not if I flip it.)

A discrete random variable is a random variable that can take on at most finitely
many values (such as the flip of a coin or the roll of a die).

Throughout we will be using the standard notation P.i/ to stand for the
probability that condition i is satisfied, and P.i j j/ to stand for the (conditional)
probability that condition i is satisfied given that condition j holds. Whenever
P. j/ ¤ 0; then

P.i j j/ D P.i; j/

P. j/
:

Definition 26 Random variables Y1;Y2 are independent for all possible values i of
Y1 and all possible values j of Y2;P.Y1 D i j Y2 D j/ D P.Y1 D i/; or in other
words, if

P.Y1 D i;Y2 D j/ D P.Y1 D i/P.Y2 D j/:

If this is satisfied, we write Y1 ?? Y2:

Let pij D P.Y1 D i;Y2 D j/: Then
P

j pij D P.Y1 D i/ and
P

i pij D P.Y2 D j/:
(In statistics, these sums are shortened to piC and pCj; respectively.) For discrete
random variables Y1;Y2; with Y1 taking on all values in Œm� and Y2 taking on all
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values in Œn�, independence is equivalent to the following matrix equality:

2

6
4

p11 � � � p1n
:::

:::

pm1 � � � pmn

3

7
5 D

2

6
4

P.Y1 D 1/

P.Y1 D 2/
:::

3

7
5

�
P.Y2 D 1/ � � � P.Y2 D n/

	
:

Since the sum of the pij is 1; it follows that the rank of the matrix Œpij� is 1; and so
I2.Œpij�/ D 0: Conversely, if I2.Œpij�/ D 0; since some pij is non-zero, necessarily Œpij�

has rank 1: Then we can write

2

6
4

p11 � � � p1n
:::

:::

pm1 � � � pmn

3

7
5 D

2

6
6
6
4

a1
a2
:::

am

3

7
7
7
5

�
b1 � � � b2 � � � bm

	

for some real numbers ai; bj: Since some pij is a positive real number, by possibly
multiplying all ai and bj by �1 we may assume that all ai; bj are non-negative real
numbers. Let a D P

i ai; b D P
j bj: Then

ab D
X

i; j

aibj D
X

i; j

pij D 1;

whence we also have

2

6
4

p11 � � � p1n
:::

:::

pm1 � � � pmn

3

7
5 D

2

6
4

a1b
:::

amb

3

7
5

�
ab1 � � � ab2 � � � abm

	
:

All the entries of the two matrices on above are non-negative, aib D P
j aibj DP

j pij D P.Y1 D i/ and abj D P
i aibj D P

i pij D P.Y2 D j/; which yields the
factorization of Œpij� as in the rephrasing of independence. Thus Y1 ?? Y2 if and only
if I2.Œpij�i; j/ D 0:

How does one decide independence in practice? Say a poll counts people
according to their hair length and whether they watch soccer as follows:

Watches soccer Does not watch soccer

Has short hair 400 200

Has long hair 40 460

Thus watching soccer and the hair length in this group appear to not be independent:
it seems that the hair length fairly determines whether one watches soccer. Even if
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the polling has a 10% error in representing the population, it still seems that the hair
length fairly determines whether one watches soccer. However, the poll break-down
among genders shows the following:

Men Watching Not

Short hair 400 100

Long hair 40 10

Women Watching Not

Short hair 0 100

Long hair 0 450

Now, given the gender, the probability that one watches soccer is independent of
hair length (odds for watching is 4/5 for men, 0 for women).

This brings up an issue: in general one does not find such clean numbers with
determinant precisely 0; and so one has to do further manipulations of the data to
decide whether it is statistically likely that there is an independence of data.

Here I continue with the obvious needed definition arising from the previous
example:

Definition 27 Random variables Y1 and Y2 are independent given the random
variable Y3; if for every value i of Y1; j of Y2 and k of Y3;

P.Y1 D i j Y2 D j;Y3 D k/ D P.Y1 D i j Y3 D k/:

If P.Y3 D k/ > 0; this is equivalent to saying that P.Y1 D i;Y2 D j;Y3 D k/P.Y3 D
k/ D P.Y1 D i/P.Y2 D j/: We write such independence as Y1 ?? Y2 j Y3:

Let M be the 3-dimensional hypermatrix whose .i; j; k/ entry is P.Y1 D i;Y2 D
j;Y3 D k/;Y1 ?? Y2 j Y3: Then Y1 ?? Y2 j Y3 means that on each k-level of M; the
ideal generated by the 2 � 2-minors of the matrix on that level is 0:

Here are the axioms of conditional independence:

1. Triviality: X ?? ; j Z: (Algebraically this says that the ideal generated by the
2 � 2-minors of an empty matrix is 0:)

2. Symmetry: X ?? Y j Z implies Y ?? X j Z: (Algebraically this follows as the ideal
of minors of a matrix as the same as the ideal of the transpose of that matrix.)

3. Weak union: X ?? fY1;Y2g j Z implies X ?? Y1 j fY2;Zg: Here we point out
that if U and V is a (discrete) random variable, so is fU;Vg; whose values are
pairs of values of U and V; of course. (Algebraically this says the following: let
pijkl D P.X D i;Y1 D j;Y2 D k;Z D l/: The assumption says that for all values
l of Z; the ideal generated by the 2 � 2-minors of the matrix Œpijkl�i;. j;k/ is 0: But
then for fixed l and a fixed value k of Y2; the ideal generated by the 2 � 2-minors
of the submatrix Œpijkl�i; j is 0 as well, which is the conclusion.)

4. Decomposition: X ?? fY1;Y2g j Z implies X ?? Y1 j Z: (Algebraically this says
that if for each l; I2.Œpijkl�i;. j;k// D 0 then I2.ŒpijCl�i; j/ D 0; where C means that
the corresponding entry is the sum

P
k pijkl:)
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5. Contraction: X ?? Y j fZ1;Z2g and X ?? Z2 j Z1 implies X ?? fY;Z2g j Z1:
(Algebraically this says that if for each k; l; I2.Œpijkl�i; j/ D 0 and for each
k; I2.ŒpiCkl�i;l/ D 0; then for each k; I2.Œpijkl�i;. j;l// D 0:)

6. Intersection axiom: Under the assumption that all P.X D i;Y D j;Z D k/ are
positive, X ?? Y j Z and X ?? Z j Y implies X ?? fY;Zg:
The last axiom is the focus of the next section.

3.2 Intersection Axiom

Algebraically the intersection axiom says that if all pijk are positive, if for each
k; I2.Œpijk�i; j/ D 0; and if for each j; I2.Œpijk�i;k// D 0; then I2.Œpijk�i;. j;k// D 0:

Example 28 Here we show that the assumption on the pijk being positive is
necessary. Let M be the 2 � 2 � 2-hypermatrix whose .i; j; k/ entry is

pijk D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

1=8; if i D j D k D 1I
3=8; if i D 2; j D k D 1I
3=8; if i D 1; j D k D 2I
1=8; if i D j D k D 2I
0; otherwise:

We can view this in a 2�2�2-hypermatrix, with the third axis going up, the second
axis going to the right, and the first axis coming out of the page:

Then

Œpij1�i; j D


1=8 0

3=8 0

�

; Œpij2�i; j D


0 3=8

0 1=8

�

;

Œpi1k�i;k D


1=8 3=8

0 0

�

; Œpi2k�i;k D


0 0

3=8 1=8

�

;
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and all have zero determinants. However,

Œpijk�i;. j;k/ D


1=8 0 0 3=8

3=8 0 0 1=8

�

in which one 2 � 2-minor is not zero. Note that the last matrix is the flattening of
the hypermatrix—squish into the x � y plane, without any overlaps.

The intersection axiom says that if all pijk are non-zero, the conditions on the
vanishing on the minors along each k and along each j-level are enough to make the
“slanted” 2 � 2-minors zero as well.

We parse the intersection axiom further. Now let Xijk stand for a variable
(algebraic, not random, variable). The axiom says that the simultaneous zero ˛ of
I2.ŒXijk�i; j/ for each k and of I2.ŒXijk�i;k/ for each j is also a zero of I2.ŒXijk�i;. j;k// if
all entries in ˛ are positive. Via Hilbert’s Nullstellensatz this says that

I2.ŒXijk�i;. j;k// �
sX

k

I2.ŒXijk�i; j/C
X

j

I2.ŒXijk�i;k/ W .
Y

i;j;k

Xijk/
1:

Certainly

X

k

I2.ŒXijk�i; j/C
X

j

I2.ŒXijk�i;k/ � I2.ŒXijk�i;. j;k//:

Statisticians have known that
�P

k I2.ŒXijk�i; j/CP
j I2.ŒXijk�i;k/

�
W .Qi;j;k Xijk/

1 D
I2.ŒXijk�i;. j;k//; and they have also known that the latter ideal is a prime ideal not
containing any variables; see a proof in Theorem 29. Thus

I2.ŒXijk�i;. j;k// D
0

@
X

k

I2.ŒXijk�i; j/C
X

j

I2.ŒXijk�i;k/

1

A W .
Y

i;j;k

Xijk/
1;

so that the intersection axiom says that one of the associated primes and even
primary components of

P
k I2.ŒXijk�i; j/CPj I2.ŒXijk�i;k/ is I2.ŒXijk�i;. j;k//: Fink in [54]

determined all other associated prime ideals of
P

k I2.ŒXijk�i; j/ C P
j I2.ŒXijk�i;k/;

proving the conjecture of Cartwright and Engström (conjecture is stated in [47,
p. 146]).

The papers [8] and [111] algebraically generalize the intersection axiom to the
following: if all for all possible values ij of Yj;P.Y1 D i1; : : : ;Yn D in/ > 0; and if
Y1 ?? Yi j .fY2; : : : ;Yng n fYig/ for all i D 2 : : : ; n; then Y1 ?? fY2; : : : ;Yng:
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3.3 A Version of the Hammersley-Clifford Theorem

For completeness I give in this section the most algebraic proof I can think of of the
Hammersley-Clifford Theorem. A different proof can be found in [74, p. 36], and
there is more discussion in [47, p. 80].

Let G be an undirected graph on the set of vertices Œn�: Let Y1; : : : ;Yn be
discrete random variables. Associated to this graph is a collection of conditional
independence statements:

fYi ?? Yj j �fY1; : : : ;Yng n fYi;Yjg
� W i ¤ j; .i; j/ is not an edge in Gg:

(Such a graphical model of conditional independence statements is said to satisfy the
pairwise Markov property.) If Yi takes on ri distinct values, then we need r1 � � � rn

variables Xa; and we denote by IG the ideal generated by all the 2 � 2-minors of all
the matrices obtained from all the conditional independence statements (over some
understood field F).

For example, if n D 3 and the only edge in the graph is .2; 3/; the associated
conditional independences are

Y1 ?? Y2 j Y3 and Y1 ?? Y3 j Y2;

which are precisely the hypotheses of the intersection axiom. Fink [54] analyzed
the corresponding ideal. Swanson and Taylor [111] analyzed the ideals for arbitrary
n and t 2 Œn� with the graph being the complete graph on vertices t C 1; : : : ; n; Ay
and Rauh [8] analyzed the case for arbitrary n and t D 1:

Theorem 29 (Hammersley and Clifford) Let n;G; IG be as above. Then IG W
.
Q

a Xa/
1 is a binomial prime ideal which does not contain any variables. In

particular, IG W .
Q

a Xa/
1 is a minimal prime ideal over IG; and its primary

component is the prime ideal.

Furthermore, the variety of the prime ideal in this theorem has a monomial
parametrization, which is explicit in the proof below.

Proof Suppose that Yi takes on ri distinct values. Without loss of generality these
values are in the set Œri�: If any ri equals 0 or 1; the conditional independence
statements can be rephrased without using that Yi: So we may assume that all ri

are strictly bigger than 1:
If G is a complete graph on Œn�; then IG D 0; so that IG D 0 D IG W .Qa Xa/

1 is a
binomial prime ideal which does not contain any variables. In the sequel we assume
that G is not a complete graph, so that IG is a non-zero (binomial) ideal.

Fix a pair of distinct i; j in Œn� such that .i; j/ is not an edge in G: Fix ˛ D
.˛1; : : : ; ˛n/; with ˛k varying over the possible values of the random variable Yk:

Let M˛ be the ri � rj generic matrix whose .k; l/-entry is Xa with ai D k; aj D
l; and all other components in a identical to the corresponding components in ˛:
(Obviously ˛i and ˛j are not needed to specify M˛:) The ideal Iij expressing the
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conditional independence statement Yi ?? Yj j �fY1; : : : ;Yng n fYi;Yjg
�

is generated
by all I2.M˛/ as ˛ varies.

By definition IG D P
i; j Iij; as i; j vary over distinct elements of Œn� such that .i; j/

is not an edge (and without loss of generality i < j).
A clique in G is a subset of its vertices any two of which are connected by an

edge. For any maximal clique L of G and for each cL 2 Q
i2LŒri�; let TL;cL be a

variable over the underlying field F: Let ' W FŒXa W a� ! FŒTL;cL W L; cL� be the F-
algebra homomorphism such that '.Xa/ D Q

L TL;a.L/; as L varies over the maximal
cliques of G; and where a.L/ is the jLj-tuple consisting only of the L-components
of a: Let P be the kernel of ':

Warning: Whereas IG is the sum of the Iij where .i; j/ is not an edge, the variables
TL;cL and thus the map ' instead use (cliques of) edges and isolated vertices.

We prove that IG � P: It suffices to prove that Iij � P; where .i; j/ is not an edge.
For simplicity, suppose that .1; 2/ is not an edge in G: By reindexing it suffices to
prove that X.1;1;:::;1/X.2;2;1;:::;1/ � X.1;2;1;:::;1/X.2;1;1;:::;1/ 2 P: To simplify notation, we
treat below TL;c.L/ as 1 if L is not a clique of G: Note that no clique contains both 1
and 2: Then ' maps X.1;1;:::;1/ to

Y

12L

TL;.1;:::;1/

Y

22L

TL;.1;:::;1/

Y

1;2…L

TL;.1;:::;1/;

X.2;2;1;:::;1/ to

Y

12L

TL;.2;1;:::;1/

Y

22L

TL;.2;1;:::;1/

Y

1;2…L

TL;.2;:::;1/;

X.1;2;1;:::;1/ to

Y

12L

TL;.1;:::;1/

Y

22L

TL;.2;1:::;1/

Y

1;2…L

TL;.1;:::;1/;

and X.2;1;1;:::;1/ to

Y

12L

TL;.2;1;:::;1/

Y

22L

TL;.1;:::;1/

Y

1;2…L

TL;.2;:::;1/;

so that X.1;1;:::;1/X.2;2;1;:::;1/ � X.1;2;1;:::;1/X.2;1;1;:::;1/ is mapped by ' to 0: Thus IG � P:
As ' is a homogeneous monomial map of positive degree, P is generated by

binomials and does not contain any variables. It follows that IG W .Qa Xa/
1 � P:

Now let f 2 P: The proof below that f 2 IG W .Qa Xa/
1 is fairly elementary, only

long in notation. Since P is the kernel of a homogeneous monomial map, we may
assume that f D Xa1 � � � Xam � Xb1 � � � Xbm for some n-tuples a1; : : : ; am; b1; : : : ; bm:

To show that f 2 IG W .Qa Xa/
1; it suffices to prove that any monomial multiple

of f is in IG W .Qa Xa/
1: Fix a non-edge .i; j/: Suppose that in ak neither the ith
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nor the jth component is 1: Let ck be the n-tuple whose ith and jth components
are 1 and whose other components agree with the components of ak: Both Xak and
Xck lie in the same submatrix of ŒXa�a that gives Iij; so that Xak Xck reduces modulo
Iij and hence modulo IG to Xa0

k
Xc0

k
where a0

k and c0
k each have entry 1 either in the

ith or the jth components. Let U be the product of all such Xck : Then modulo IG;

Thus Uf reduces with respect to IG to a binomial in which the subscripts of all the
variables appearing in the first monomial have at least one of i; j components equal
to 1; and in the second monomial the number of non-1ith and jth components in the
subscripts does not increase. By repeating this for the second monomial as well, we
may assume that for each variable appearing in f ; the ith or the jth component in the
subscript is 1: If we next similarly clean positions i0; j0 in this way, we do not at the
same time lose the cleaned property of positions i and j: as factors of the multipliers
U keep the clean .i; j/ property. By repeating this cleaning, in finitely many rounds
we get a binomial f in P such that for each non-edge .i; j/ and for each variable
appearing in f ; the ith or the jth component of the subscript of that variable is 1:

With the assumption that for each non-edge .i; j/; the ith or the jth component
of ak and of bk is 1; we claim that f D 0 2 IG: If ai D bj for some i; j 2 Œm�; then the
binomial f=Xai has the same property of many components being 1; and it suffices
to prove that f=Xai D 0 2 IG: Thus without loss of generality we may assume that
m > 0 and that ai ¤ bj for all i; j 2 Œm�: Let Kj (resp. Lj) be the set of all i 2 Œn�
such that the ith component in aj (resp. bj) is not 1: By possibly reindexing we may
assume that K1 is maximal among all such sets. By the assumption on the 1-entries,
necessarily K1 is contained in a maximal clique L of G; and for all i 2 Œn� n L; the
ith component in a1 is 1: Since f 2 P; the variable TL;a1.L/ must also divide '.Xbk/

for some k 2 Œm�: This means that a1 and bk agree in the L-components, and in
particular, K1 � Lk: By maximality of K1; necessarily K1 D Lk; whence a1 D bk;

which is a contradiction.
This proves that P D IG W .Qa Xa/

1 is a binomial prime ideal containing no
variables. Thus IG W .Qa Xa/

1 is contained in the P-primary component of IG; and
since IG W .Qa Xa/

1 is primary (even prime) and contains IG; necessarily it is the
P-primary component. �

In particular, if n D 3 and the only edge in G is .2; 3/; then IG is the ideal of
the intersection axiom, which fills in the details in the discussion on page 65. Even
more simply, if n D 2 and G contains no edges, then IG D IG W .Qa Xa/

1 is the
ideal generated by the 2 � 2-minors of the generic matrix.

Remark 30 To any monomial parametrization ' W FŒXc W c� ! FŒTd W d� we can
associate a 0�1matrix A whose .c; d/-entry equals 1 if Td is a factor of '.Xc/; and is
0 otherwise. In the theorem above the indices c were n-tuples; here we assume that
these are ordered in some way, so that for any monomial

Q
c Xec

c we can talk about
the exponent vector .ec W c/: For any binomial

Q
c Xec

c �Q
c Xfc

c in the kernel of ';
the corresponding vector .ec W c/� . fc W c/ is in the kernel of A: Conversely, for any
integer vector .ec W c/ in the kernel of A; the binomial

Q
ec>0

Xec
c �Q

ec<0
X�ec

c is a
binomial in the kernel of ': Thus finding a set the kernel of ' is the same as finding
the kernel of A as a Z-submodule of the set of all integer vectors. The generating
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set of the latter kernel is a Markov basis for A; and its connections to algebraic
statistics were first explored by Diaconis and Sturmfels in [46].

3.4 Summary/Unification of Some Recent Papers

This is a partial summary of the papers Fink [54], Herzog et al. [64], Ohtani [86],
Ay-Rauh [8], Swanson and Taylor [111]: there are some similarities in the methods
and results of these papers, but there does not seem to be one all-encompassing
theorem. I present these results using as much of the common language as I can, but
the four papers have further details and results.

Let r1; r2; : : : ; rn be positive integers, and let N D Œr1�� Œr2��� � �� Œrn� (where for
any positive integer r; Œr� D f1; 2; : : : ; rg). Let R be the polynomial ring in variables
Xa over a field, where a varies over elements in N:We will often refer to the generic
hypermatrix ŒXa W a 2 N�; so we give it a name, say M:

A generalized two-by-two determinant of M; for given a; b 2 N and K � Œn�; is

fK;a;b D XaXb � Xs.K;a;b/Xs.K;b;a/;

where s.K; a; b/ is an element of N with

s.K; a; b/j D
(

bj; if j 2 KI
aj; if j … K:

If K D fig; we also write s.i; a; b/ for s.fig; a; b/ and fi;a;b for ffig;a;b: When a
and b differ only in positions i and j; then fi;a;b is precisely a standard two-by-two
determinant of the submatrix of M obtained by keeping the entries that agree with a
and b in the positions k ¤ i; j:

Let t 2 Œn�: For each i 2 Œt� let Gi be a simple graph on Œr1�� � � � �cŒri�� � � � � Œrn�:

(These graphs play a very different role from the ones in Sect. 3.3.) Define

Ihti.G1; : : : ;Gt/ D
. fi;a;b W i � t; f.a1; : : : ;bai; : : : ; an/; .b1; : : : ;bbi; : : : ; bn/g is an edge in Gi/:

These ideals have been studied as follows:

1. Fink [54]: n D 3; t D 1; and G1 is the grid graph on Œr2� � Œr3�; namely G1 D�[j2Œr2�;k1;k22Œr3�f. j; k1/; . j; k2/g
�[ �[k2Œr3�;j1;j22Œr2�f. j1; k/; . j2; k/g

�
:

2. Herzog et al. [64] and independently Ohtani [86]: n D 2; r1 D 2; t D 1:

3. Ay and Rauh [8]: t D 1:

4. Swanson and Taylor [111]: for each i;Gi is the grid graph on Œr1��� � ��cŒri��� � ��
Œrn�; i.e., the edges consist of those pairs of .n � 1/-tuples that differ in precisely
one component.
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Throughout t 2 Œn�: For each i 2 Œt�; let Ni D Œr1� � � � � � cŒri� � � � � � Œrn�; and let
Gi be a graph on Ni:We write G for fG1; : : : ;Gtg:We use the Hamming distance on
N: d.a; b/ D #fi 2 Œn� W ai ¤ big; and D.a; b/ D fi 2 Œn� W ai ¤ big:
Definition 31 We say that a; b 2 N are directly connected relative to Gi if
f.a1; : : : ;bai; : : : ; an/; .b1; : : : ;bbi; : : : ; bn/g is an edge in Gi:

We say that a; b 2 N are connected relative to Gi if there exist c1; c2; : : : ; ck�1 2
N such that with c0 D a and ck D b; for each j D 1; : : : ; k; cj�1 and cj are directly
connected relative to Gi: We call a D c0; c1; : : : ; ck�1; ck D b a path from a to b
relative to Gi:

We say that a; b 2 N are connected relative to G if there exist c1; c2; : : : ; ck�1 2
N such that with c0 D a and ck D b; for each j D 1; : : : ; k; there exists
i 2 Œt� such that cj�1 and cj are directly connected relative to Gi: We call a D
c0; c1; : : : ; ck�1; ck D b a path from a to b relative to G:

Lemma 32 Let i 2 Œt� and let c0; : : : ; ck be a path relative to Gi: Then

0

@
k�1Y

jD1
Xcj

1

A � fi;c0;ck 2 Ihti.Gi/:

Proof (Similar Versions of This Are Proved in [8] and [111].) If the ith components
in c0 and ck are identical then fi;c0;ck D 0: If c0; ck without the ith components form
an edge in Gi; then fi;c0;ck 2 Ihti.Gi/: In particular, the lemma holds if k � 1: Now let
k � 2: Then modulo Ihti.Gi/; with U an abbreviation for Xc1 � � � Xck�2 ;

Xc0UXck�1Xck 	 Xs.i;c0;ck�1/UXs.i;ck�1;c0/Xck (by induction on k/

	 Xs.i;c0;ck�1/UXs.i;s.i;ck�1;c0/;ck/Xs.i;ck;s.i;ck�1;c0/

(since s.i; ck�1; c0/; ck is a path relative to Gi/

D Xs.i;c0;ck�1/UXs.i;ck�1;ck/Xs.i;ck;c0/

	 Xs.i;s.i;c0;ck�1/;s.i;ck�1;ck//UXs.i;s.i;ck�1;ck/;s.i;c0;ck�1//Xs.i;ck;c0/

(by induction on k; since

s.i; c0; ck�1/; c1; : : : ; ck�2; s.i; ck�1; ck/ is a path relative to Gi/

D Xs.i;c0;ck/UXck�1Xs.i;ck;c0/;

which proves the lemma. �

Remark 33 Note how the ith entry in the path is not important! But if we want to
mix Gi and Gj; the ith entries make a difference (and it is not clear how to control for
that fully, in fact, the ideals in [111] have embedded primes whose characterization
is not complete).
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Lemma 34 Let i 2 Œt�: Let H be the set of all elements of the form
�Qk�1

jD1 Xcj

�
�fi;c0;ck

as c0; : : : ; ck vary over paths relative to Gi: Then H is a (redundant) Gröbner basis
in the lexicographic order.

Proof Let f D
�Qk�1

jD1 Xcj

�
� fi;c0;ck and g D

�Ql�1
jD1 Xdj

�
� fi;d0;dl : We want

to show that the S-polynomial of f and g reduces to 0 with respect to H:
In the lexicographic order, the leading monomial of fi;c0;ck is either Xc0Xck or
Xs.i;c0;ck/Xs.i;ck ;c0/: In the latter case, since fi;c0;ck D �fi;s.i;c0;ck/;s.i;ck;c0/ and since
s.i; c0; ck/; c1; : : : ; ck�1; s.i; ck; c0/ is a path relative to Gi; by possibly replacing
c0 and ck with their switches we may assume that the leading term of f is
Xc0Xck : Similarly we may assume that the leading term of g is Xd0Xdl : By standard
Gröbner bases, if fc0; ckg and fd0; dlg are disjoint, then the S-polynomial of f and
g reduces to 0: If c0 D d0 and ck D dl; then S. f ; g/ D m.Xs.i;d0;dl/Xs.i;dl;d0/ �
Xs.i;c0;ck/Xs.i;ck ;c0//; where m D lcm.Xc1 � � � Xck ;Xd1 � � � Xdl/ is the product of all the
variables in a path from s.i; d0; dl/ D s.i; c0; ck/ to s.i; dl; d0/ D s.i; ck; c0/: so
that this S-polynomial is in H: It remains to consider the case c0 D d0 and
ck ¤ dl: Then S. f ; g/ D m.Xck Xs.i;d0;dl/Xs.i;dl;d0/ � XdlXs.i;c0;ck/Xs.i;ck;c0//; where
m D lcm.Xc1 � � � Xck ;Xd1 � � � Xdl/: Consider the term Xck Xs.i;d0;dl/: if it is bigger in
the lexicographic order than Xs.i;ck;dl/Xs.i;d0;ck/; then since m is a product of the right
variables in the right path, we can reduce S. f ; g/ further. Any further reductions of
the two degree-three terms in the binomial part can be reduced similarly because m
has enough variables, until S. f ; g/ reduces to 0: �

Papers [54, 64, 86], and [8] go further and determine minimal Gröbner bases,
via further restrictions on admissible paths.

3.5 A Related Game

One would understand the primary components of IG in the previous section much
better if one understood the following:

Problem 35 Let a1; : : : ; am; b1; : : : ; bm be n-tuples (2m of them) such that
Xa1 � � � Xam � Xb1 � � � Xbm 2 Ihni.G/: (For ideals in [111], an equivalent and more
elementary check for ideal membership is that for each i D 1; : : : ; n; the ith
components of a1; : : : ; am are up to order the same as the ith components of
b1; : : : ; bm:) Carry out the successive rewriting of Xa1 � � � Xam with respect to the
generators of Ihni.G/ to get to Xb1 � � � Xbm :

Since this is a hard problem, I would like instead somebody to make it a computer
game or an app:

Game The computer serves you two lists of n-tuples of positive integers: a1; : : : ; am

and b1; : : : ; bm: (In one version of the game, Xa1 � � � Xam � Xb1 � � � Xbm 2 Ihni.G/; in
another version whether this is so is determined by chance.) The following move is
allowed on the list a1; : : : ; am: if ai and aj differ in exactly two components, say k
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and l; replace the list a1; : : : ; am with the list c1; : : : ; cm where ci D s.k; ai; aj/ D
s.l; aj; ai/; cj D s.k; aj; ai/ D s.l; ai; aj/; and for all s ¤ i; j; cs D as: Repeat the
moves on the new list c1; : : : ; cm until you get the list b1; : : : ; bm: You get bonus
points for accomplishing the task in few moves.

I envision users all over the world solving (playing with) instances of this while
waiting for a bus or in coffee shops, and they could be competing for the shortest
number of moves, with possibly short answers being transmitted to some central
station.

3.6 Binomial Edge Ideals with Macaulay2

Let us make now a short review of some of the preceding results with the computer
algebra system Macaulay2 at hand.

First, we will make use of the packageBinomials so we load it into the system:

i1 : needsPackage "Binomials"

Consider now a simple graph G on n vertices and a polynomial ring in 2n
variables, for each edge .i; j/ we consider the binomial f .i; j/ D xiyj �xjyi: The ideal
generated by such binomials is the binomial edge ideal of G; JG: We construct it
with the following simple Macaulay2 function:

i2 : graphminorsedge = (n,LL) -> (
HHR = QQ[x_1..x_n, y_1..y_n];
ideal apply(LL, k-> x_(k_0) * y_(k_1) - x_(k_1) * y_(k_0))

)

Observe that this is a generalization of the ideal of 2-minors of a 2n-matrix of
indeterminates (which corresponds to the binomial edge ideal of the complete n-
graph).

We say that the graph G is closed with respect to the labelling if for all .i; j/; .k; l/
such that i < j and k < l we have another edge . j; l/ if i D k and .i; k/ if j D l: With
the help of Macaulay2 the reader can try some examples of ideals of closed graphs
and some ideals of non-closed graphs to see how Theorem 1 in [64] works.

A nice exercise is to experiment with closed bipartite graphs to find their
Gröbner bases.

In general, if the graph is not closed, the Gröbner basis does not coincide with the
binomials given by the edges, but can we find the basis in the graph? Let us define
admissible paths i1; : : : ; ir as follows:

1. ik ¤ il81 � k ¤ l � r.
2. For each k D 1; : : : ; r � 1 either ik < i or ik > j.
3. For any proper subset f j1; : : : ; jsg of fi1; : : : ; ir�1g the sequence i; j1; : : : ; js; j is

not a path.

One can write a function to construct all admissible paths and use it to find all
the admissible paths in a closed graph. Now, for each admissible path p construct
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the monomial up D Q
.ik>i/.xik/

Q
.il<i/. yil/: The Gröbner basis is then given byS

i<jfup fi; jjp is an admissible path from i to jg:
We can follow [86] that describes operations on graphs that lead to a primary

decomposition of JG: First, define complete vertices as those such that all their
neighbours are connected among them. We perform the following operations on
any vertex v that is not complete:

1. Delete v and all the edges incident to v
2. Add all edges that connect vertices in the neighbourhood of v:

From each of these operations we obtain a graph, G0 and G00 respectively, each of one
has less non-complete vertices. These graph operations yield algebraic operations:

1. JG0 C .xv; yv/
2. IG00 C I2.NG.v// where NG.v/ is given by the binomials involving v:

Taking as base case the complete graph, whose ideal is prime, this decomposition
leads to an alternative algorithm for primary decompositions. We encourage the
reader to use Macaulay2 to write a program that implements Ohtani’s procedure
and compare the results with the in-built primary decomposition algorithms.

3.7 A Short Excursion Into Networks Using Monomial
Primary Decompositions

To finish this chapter, let us enter into the world of networks, bringing primary
decompositions with us. We will use primary decompositions of monomial ideals
here. The monomial case, simpler than the general polynomial case has however
multiple applications. We include this section to add yet another view of the use
of primary decompositions. Networks are ubiquitous and there are many different
approaches to them. A beautiful survey on the topic is [84]. One can see networks
as graphs, where we call vertices to the nodes and edges to the connections. Graphs
have been extensively studied using commutative algebra, cf. for example [80, 115].
We will in this section introduce the reader to the use of primary decompositions to
study the problem of network resilience, in particular the design of attack strategies
to break a connected network into disconnected pieces.

Consider a connected network (graph) N: We want to remove nodes (and
all the incident connections) so that the network becomes disconnected as soon
as possible. What is a good strategy to choose which nodes to delete first? A
simple intuitive strategy is to delete first the nodes with biggest degree (i.e. with
most connections incident to it). Other strategies are based on different data like
betweenness centrality, etc. The approach we are using in this section is to attack
the network based on its vertex covers.

A vertex cover of a graph (we see now networks as graphs) is a set C of vertices
such that each edge of the graph is incident to at least one vertex of C:C is a minimal
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vertex cover if no subset of C is a vertex cover. C is a minimum vertex cover if it
is a vertex cover of minimal cardinality. Minimal and minimum vertex covers are
not unique in general. Given a graph G we denote by mvc.G/ the set of minimal
vertex covers of G and by MVC.G/ the set of minimum vertex covers of G: We
furthermore denote as �.G/ cardinality of any minimum vertex cover of G; �.G/ is
called the covering number of G: For any vertex v we define the covering degree
and covering index of a vertex n as follows

Definition 36 The covering degree of v; denoted cd.v/ is the number of minimal
vertex covers that contain v;

cd.v/ WD #fV 0 2 mcv.G/ such that v 2 V 0g:

The covering index of v; denoted ci.v/ is computed as the number of minimum
vertex covers that contain v plus the ratio of the number of minimal vertex covers
that contain v to the total number of minimal vertex covers of G;

ci.v/ WD #fV 0 2 MCV.G/ such that v 2 V 0g C cd.v/

jmcv.G/j
Two strategies to break up our graph (network) G consist in deleting first the node

with highest covering degree or to delete first the vertex with highest covering index,
and then proceed downwards. These strategies have been proven to be efficient in
several network models [100].

To use these strategies we need to compute all minimal and/or minimum vertex
covers, which is a difficult problem in general (it is an example of an NP-hard
problem). Here is were computational commutative algebra can help. To every
graph G one can associate its edge ideal IG [115], which is a monomial ideal.
Every primary component (equivalently every generator of its Alexander dual)
corresponds to a minimal vertex cover of G: One can see that the covering number
of G is exactly the codimension of IG: With these correspondences at hand one can
then use a computer algebra system to compute covering degree and covering index
of every vertex of G and employ the described strategies.

Example 37 Let G be a line graph with three nodes x; y; z and two edges
.x; y/; . y; z/: It is clear that G has four vertex covers fx; yg; fx; zg; fy; zg and fyg
but only two of them are minimal, fx; zg and fyg; and only the last one is a minimum
vertex cover.

We will use the Macaulay2 package EdgeIdeals and compute the algebraic
equivalent to the above description:

i1 : loadPackage "EdgeIdeals";

i2 : R=QQ[x,y,z];

i3 : G=graph {{x,y},{y,z}};

i4 : I=edgeIdeal G;
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i5 : primaryDecomposition I

o5 = {monomialIdeal(y), monomialIdeal (x, z)}

i6 : codim I

o6 = 1

i7 : dual(I)

o7 = monomialIdeal (y, x*z)

As the number of vertices in the graph grows, the number of minimal vertex
coverings grows exponentially, to say it algebraically, as the number n of variables
grows, the number of primary components a monomial ideal in n variables (i.e.
the number of generators of it Alexander dual) grows exponentially. A known
(achievable) higher bound is 3

n
3 : So computing covering degree and index is

expensive in general. Is there any advantage in using the strategies based on covering
index and degree instead of using just vertex degree for example? As example 37
shows, it might happen that vertex degree and covering degree or index are
correlated and the result of using vertex degree is similar, while the computational
effort is much smaller. Experiments show, however, see [100] that vertex degree
or betweenness centrality are not correlated to covering degree and index in several
types of network models. Furthermore, the attacks based on covering degree and
index are far more efficient that those based on vertex degree or betweenness
centrality.

We propose the reader to experiment with the primary decompositions of edge
ideals of some structured graphs, like the wheel n-graph or with random network
models, such as Erdös-Renyi, Watts-Strogatz or Albert-Barabasi.



Combinatorics and Algebra of Geometric
Subdivision Operations

Fatemeh Mohammadi and Volkmar Welker

1 Introduction

In the subsequent sections we survey results from combinatorics, discrete geometry
and commutative algebra concerning invariants and properties of subdivisions of
simplicial complexes. For most of the time we are interested in deriving results
that hold for specific subdivision operations that are motivated from combinatorics,
geometry and algebra. In particular, we study barycentric, edgewise and interval
subdivisions (see Sect. 3 for the respective definitions). Even though we mention
some suspicion that part of the results we present may only be a glimpse of what is
true for general subdivision operations we do not focus on this aspect. In particular,
we are quite sure that some asymptotic results and some convergence results from
Sect. 9 are just instances of more general phenomena. Overall, retriangulations
are subtle geometric operations and we refer the reader to the book [40] for a
comprehensive introduction. Since our focus lies on specific constructions we make
only little use of the theory from [40]. Nevertheless, we are convinced that if one
wants to go beyond specific subdivision operations it will become inevitable to dig
deeper into the theory of triangulations.

We start in Sect. 2 with a quick introduction on abstract and geometric simplicial
complexes. For most of the paper we work with abstract simplicial complexes
but for some definitions and perspectives the geometric viewpoint turns out to be
advantageous. In Sect. 3 we introduce the concept of a subdivision and the three
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guiding examples which are considered in our text. We define barycentric, edgewise
and interval subdivision, the latter being a special case of a subdivision operation
studied in differential geometry. In Sect. 4 we introduce the algebraic side of the
picture. This side centers around the Stanley-Reisner ring of a simplicial complex
�. We also introduce the basic enumerative invariants of a simplicial complex
relevant for this manuscript—the f - and the h-vector of a simplicial complex and
their relation to the Hilbert-series of the Stanley-Reisner ring. With this preparation
in Sect. 5 we can provide the known results on the effect of three subdivision
operations on the f - and h-vector of a simplicial complex. The following Sect. 6
lists combinatorial and algebraic invariants and properties of simplicial complexes,
and describes when they are invariant under subdivisions. Then in Sect. 7 properties
of the h-vector that arise after a few subdivisions are studied. This is shown to
relate to algebraic properties of Veronese algebras and the analytic behavior of the
h-polynomial. In particular, polynomials with real roots are in the spotlight: we
explain how they are tied to Koszul algebras and the Charney-Davis conjecture.
In Sect. 8 we approach the behavior of f - and h-vectors after a few subdivisions
from the point of view of Lefschetz properties of quotients of the Stanley-Reisner
ring by a regular sequence of linear forms. Besides exhibiting results we speculate
about connections of consequences of the Lefschetz property and real rootedness.
Then in Sect. 9 we study the behavior of h- and f - vectors when the number of
subdivisions goes to infinity. In addition we present results on the limiting behavior
of graded Betti numbers of the Stanley-Reisner ring under subdivisions. Finally,
in Sect. 10 we study how subdivisions can be used to define free resolutions of
monomial ideals. We show that in this context arrangements of hyperplanes appear
as a natural object that induce subdivisions which support resolutions. Therefore, the
section also contains an introduction to cellular resolutions and some basics about
arrangements of hyperplanes.

We complement our text by a list of problems, whose difficulty reaches from
simple to serious research level. We add some Macaulay2 [62] sessions whenever
explicit computations are feasible. We assume little background knowledge and
refer the reader to the survey article [19] for f - and h-vector theory of simplicial
complexes, to [29] and [91] for background on commutative algebra and to [81]
for background in algebraic topology.

We do not cover Stanley’s theory of local h-vectors. This is an important theory
and may relate to many aspects of subdivisions we discuss here. There is an
excellent recent survey of old and recent developments in this field by Athanasiadis
and we refer the reader to [7] and [6]. Also there are interesting non-simplicial
subdivision operations. In particular, cubical subdivision operations appear to be
well structured and interesting objects. First results in the spirit of this survey can
be found in [101].
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2 Abstract and Geometric Simplicial Complexes

An abstract simplicial complex� over the ground set ˝ is a subset � � 2˝ of the
powerset of ˝ such that A � B 2 � implies A 2 �. All simplicial complexes
that are of interest in this text are over finite ground set ˝ and therefore from
now on we will always implicitly assume that a simplicial complex is over a finite
ground set and hence finite itself. The elements F 2 � are called the faces of �
and the inclusionwise maximal faces are called facets. The dimension of a face F is
dim F WD #F � 1 and the dimension dim� of � is maxF2� dim F.

Besides this combinatorial aspect of simplicial complexes there is also a geomet-
ric aspect. For this recall that a geometric .d � 1/-dimensional simplex in R

n is the
convex hull

convfv1; : : : ; vdg WD f
dX

iD1
�ivi W �1; : : : ; �d � 0

�1 C � � � C �d D 1
g

of d affinely independent vectors v1; : : : ; vd. A face of convfv1; : : : ; vdg is the
convex hull of a subset of fv1; : : : ; vdg. In particular, any face of convfv1; : : : ; vdg is
again a geometric simplex. Here we consider the empty set as the convex hull of the
empty set and the empty set as a face of a geometric simplex. The 0-dimensional
vertices are the singletons fvig for 1 � i � d and the vi are called the vertices of the
geometric simplex. A geometric simplicial complex � is a collection of geometric
simplices in some Rd such that

1. if � 2 � and � is a face of � then � 2 � .
2. if �; � 2 � then � \ � is a face of both � and � .

Analogous to the case of abstract simplicial complexes, we call the elements of
a geometric simplicial complex � the faces of � . The vertex set of a geometric
simplicial complex � is the collection of all vertices of faces of � .

The vertex scheme �.� / of � is the collection of all vertex sets of simplices
� 2 � . It is immediate from the above definitions that�.� / is a simplicial complex.
If � is an abstract simplicial complex and � a geometric simplicial complex such
that after a suitable relabeling of the vertices we have that �.� / D � then we say
that � is a geometric realization of �. We consider the union

S
�2� � � R

d as a
topological space with the subspace topology inherited from the Euclidean topology
on R

d. It is a well known basic fact from topology that every simplicial complex has
a geometric realization and that any two geometric realizations are homeomorphic.
Therefore, it is unambiguous to write j�j to denote any geometric realization of �.
In the sequel we will write �d�1 for an abstract .d � 1/-simplex, i.e., the power set
of a d-element set, and �d�1 for the standard geometric .d � 1/-simplex, i.e., the
convex hull conv.e1; : : : ; ed/ of the d unit vectors e1; : : : ; ed in R

d.
Given two simplicial complexes�.1/ and�.2/ such that their geometric realiza-

tions j�.1/j and j�.2/j are homeomorphic, the relation between the combinatorial
and the algebraic invariants of�.1/ and�.2/ is subtle and complicated. We will be
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interested in the situation when �.1/ is a refinement of �.2/. Given two geometric
simplicial complexes � .1/; � .2/ in R

d, we say that � .1/ is a subdivision of � .2/
if
S
�2� .1/ � D S

�2� .2/ � and every simplex � 2 � .2/ is a union of simplices in
� .1/. Now we say that an abstract simplicial complex �.1/ is a subdivision of the
abstract simplicial complex �.2/ if there are geometric realizations � .1/ of �.1/
and � .2/ of�.2/ such that � .1/ is a subdivision of � .2/. Note that even though our
definition of subdivision is the most common definition in the topology literature,
there are more general concepts of subdivision (see e.g. [105]).

3 Subdivisions of Simplicial Complexes

In this section we list a few well known subdivision operations on simplicial
complexes. Clearly, this list is not exhaustive and for sure there are many more
such operations lurking in the literature. Rather, we concentrate on three subdivision
operations. Two of them have been shown to exhibit particularly nice properties in
our context and the third is still mostly unexplored (Fig. 1).

1
13

3

2312

2

123

(a)

[3, 3]
[3, 13][13, 13][1, 13]

[1, 1]

[1, 12]

[12, 12]

[2, 12]

[2, 2]

[2, 23]

[23, 23]

[3, 23]

[2, 123]

[123, 123]

[12, 123] [23, 123]

[1, 123]

[13, 123]

[3, 123]

(c)

(3,0,0) (2,0,1) (1,0,2) (0,0,3)

(0,3,0)

(1,2,0)

(2,1,0) (1,1,1)

(0,2,1)

(0,1,2)
(b)

Fig. 1 Barycentric (a), 3rd edgewise (b), interval (c) subdivision of a 2-simplex
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3.1 Barycentric Subdivision

The barycentric subdivision of a geometric simplicial complex can be described as
follows. Let v1; : : : ; vd 2 R

n be affinely independent. For ; ¤ A � fv1; : : : ; vdg let

bA D 1

#A

X

v2A

v

be the barycenter of the simplex conv.A/. Then for any chain ; � A1 � � � � � Al

of subsets of fv1; : : : ; vdg let �A1�����Al be the convex hull conv.bA1 ; : : : ; bAl/. For
a geometric simplicial complex � with vertex scheme �.� / the set of simplices
�A1�����Al for chains of subsets ; � A1 � � � � � Al from�.� / defines a subdivision
of � which is called the barycentric subdivision of � . We write sd.� / for the
barycentric subdivision of � . If � is an abstract simplicial complex then define its
barycentric subdivision as the simplicial complex sd.�/ over the ground set�nf;g
whose simplices are the subsets fA1; : : : ;Alg of � n f;g for which with a suitable
numbering A1 � � � � � Al. It is easy to verify that V.sd.� //, the vertex scheme of the
barycentric subdivision of a geometric simplicial complex � , is (up to relabelling
the vertices) the barycentric subdivision of the vertex scheme of � , sd.�.� //.
Barycentric subdivision is a classical subdivision operation from topology. Some
of its many applications can be found in texts on algebraic topology such as [81].

3.2 Edgewise Subdivision

Barycentric subdivision is easily described but has some geometric flaws. In
particular, the volumes of the .d � 1/-simplices in a barycentrically subdivided
geometric .d � 1/-simplex differ. A subdivision that does not have this problem
is the edgewise subdivision. It is best explained for geometric .d � 1/-simplices.
The general case then follows after one has checked that it is possible to patch the
subdivided simplices. Edgewise subdivisions exist for all natural numbers r � 1.
Let r � 1 then the rth edgewise subdivision of the .d � 1/-simplex �d�1 is defined
as follows. Consider the rth dilation r�d�1 of the .d � 1/ simplex with vertices the
unit basis vectors in R

d. The integer points in r�d�1 are the d-tuples .i1; : : : ; id/
of non-negative integers such that i1 C � � � C id D r. We write ˝d;r for this set.
Now we make a change of coordinates and map .i1; : : : ; id/ to 	.i1; : : : ; id/ D
.i1; i1 C i2; : : : ; i1 C � � � C id/. We subdivide r�d�1 by simplices conv.A/ where
A � ˝d;r and either 	.v�v0/ 2 f0; 1gd or �	.v�v0/ 2 f0; 1gd for all v; v0 2 A. Now
the rth edgewise subdivision of �d�1 is obtained from this subdivision of r�d�1 by
dilating with factor 1r . In general, the rth edgewise subdivision� hri is obtained from
� by applying it to every simplex in � . The geometric rth edgewise subdivision
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clearly induces a subdivision on the vertex scheme of � . This way we can speak of
the rth edgewise subdivision�hri of an abstract simplicial complex�. The term rth
edgewise subdivision is motivated by the fact that edges of � are subdivided into r
equal pieces in � hri. Edgewise subdivision first appeared in a paper by Freudenthal
[55] but has found numerous applications in discrete geometry [48], K-theory [61]
or commutative algebra [27]. We explain the latter in more detail later in the text.

3.3 Interval Subdivision

This subdivision operation is easiest described starting with an abstract simplicial
complex�. First, we consider�nf;g as a partially ordered set ordered by inclusion.
Let ˝ be the set of formal symbols ŒA;B� for any inclusion A � B in � n f;g. Note
A D B is permitted. Now we consider the partial order on the intervals induced
by containment and define Int.�/ to be the simplicial complex of all chains of
intervals in this order. By Walker [117, Theorem 6.1. (a)] we obtain that Int.�/
is a subdivision of�. Indeed this subdivision also appears as the special case N D 1

of the subdivision from [32, Fig. 1.2].

Problem 1 Prove that Int.�/ coincides with the subdivision from [33, Fig. 1.2] if
one sets N D 1 in [33].

4 The Stanley-Reisner Ring

The algebraic object usually associated to a simplicial complex � is the face or
Stanley-Reisner ring KŒ�� of �. Let � be a simplicial complex over ground set ˝ .
The ring KŒ�� is the quotient of the polynomial ring KŒx! W ! 2 ˝� over the field
K and the Stanley-Reisner ideal I� generated by the xN WD Q

i2N xi for minimal
non-faces N of �. Note that a subset N � ˝ is a minimal non-face of � if N … �

and all proper subsets of N are in �.
Since we will have to deal with monomials and ideals generated by mono-

mials more often in this text, we introduce some notation here. A monomial in
KŒx! W ! 2 ˝� is a product

Q
!2˝ x˛!! for some non-negative integers ˛! . We

also write x˛ for
Q
!2˝ x˛!! where ˛ D .˛!/!2˝ . In this notation we have for the

squarefree monomials xN introduced above the identity xN D x˛ for ˛ D P
!2N e!

for the unit basis vectors .e!/!2˝ of R˝ . The support supp.x˛/ of a monomial x˛

is the set f! W ˛! ¤ 0g. An ideal I in KŒx! W ! 2 ˝� is called a monomial ideal if
it is generated by monomials. The Stanley-Reisner ideals are exactly the monomial
ideals generated by squarefree monomials xN for some collection of subsets N � ˝ .
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