Primary Decompositions

with Sections on Macaulay2 and Networks

Irena Swanson and Eduardo Saenz-de-Cabezon

Abstract This chapter contains three major sections, each one roughly correspond-
ing to a lecture. The first section is on computing primary decompositions, the
second one is more specifically on binomial ideals, and the last one is on some
primary decomposition questions in algebraic statistics and networks.

1 Computation of Primary Decompositions

In a polynomial ring in one variable, say R = Q|x], it is easy to compute the primary
decomposition say of (x* — 1):

G-D=EP+DHNnEx-DHNEx+1).

The reason that this computation is easy is that we readily found the irreducible
factors of the polynomial x* — 1. In general, finding irreducible factors is a necessary
prerequisite for the computation of primary decompositions. In these notes we make
the STANDING ASSUMPTION that for any field k that arises as a finite field
extension of Q or of a finite field, and for any variable x over k, one can compute all
irreducible factors of any polynomial in k[x]. The reader interested in more details
about polynomial factorization should consult [116] or [69, p. 38].
Throughout all rings are Noetherian and commutative with identity.
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1.1 Introduction to Primary ldeals and Primary
Decompositions

Definition 1 An ideal / in a ring R is primary if / # R and every zerodivisor in
R/I is nilpotent.

Facts

1. Any prime ideal is primary.

2. If I is a primary ideal, then /I = {r € R : i € I for some | € N} is a prime
ideal. Furthermore, if P = /I, then I is also called P-primary.

3. If I is P-primary, there exists a positive integer n such that P* C I.

The intersection of any two P-primary ideals is P-primary.

5. If /1 is a prime ideal, it need not be the case that I is primary, nor is it the case
that the square of a prime ideal is primary. For example, let P be the kernel of
the ring homomorphism k[X,Y,Z] — k[t] taking X to £*,Y to t*, and Z to +.
Then P = (X — yz,¥> — x2, 22 — x%y) is a prime ideal, the radical of P? is
P,x° + xy° — 3x%yz + 22 ¢ P? by an easy degree count, x ¢ P, but

R

x(C +xy® = 3xtyz 4+ 2) = (F —y2)? — ()P — x2)(22 — 1),

which proves that P? is not primary.

6. Suppose that I is an ideal such that /I is a maximal ideal. Then I is a primary
ideal. Namely, if r € R is a zerodivisor modulo I, then as R/I is Artinian with
only one maximal ideal, necessarily the image of r is in this maximal ideal. But
then a power of r lies in I.

7. Let P be a prime ideal and I a P-primary ideal. Then for any r € R,

I, ifr¢pP
I:r= 4R, ifrel
a P — primary ideal strictly containing I, if r € P \ I.

Moreover, there exists r € R such that1 : r = P.

8. Let R — S be a ring homomorphism, and I a primary ideal in S. Then [ N R is
primary to /I N R.

9. Let U be a multiplicatively closed subset of R. There is a one-to-one correspon-
dence between prime (resp. primary) ideals in R disjoint from U and prime
(resp. primary) ideals in UT'R given by I — IUT'R for I an ideal in R, and
J— JNRforJ an ideal in U"'R.

10. If 1 is P-primary and x is a variable over R, then IR[x] is PR[x]-primary.

Definition 3 Let/ be anidealin aring R. A decomposition/ = N;_,q; is a primary
decomposition of / if gy, . .., g, are primary ideals.

If in addition all ,/g; are distinct and for all i, Nj;q; £ g;, then the decomposi-
tion is called irredundant or minimal.
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By Facts 2, the following is immediate:

Proposition4 If I = Ni_,q; is a (minimal) primary decomposition, then for any
multiplicatively closed set U such that U~'1 # U™'R,

vtlr= () U'g
q,-ﬂU=(ZJ

is a minimal primary decomposition. O
Emmy Noether proved the existence of primary decompositions:

Theorem 5 Every proper ideal I in a Noetherian ring R has a (minimal) primary
decomposition.

Proof Once existence of a primary decomposition is established, existence of a
minimal one is straightforward: if the radicals of two components are identical,
we replace the two components with one component, namely their intersection, and
if one component contains the intersection of the others, then that one component
is redundant and is omitted. So it suffices to prove the existence of any primary
decomposition.

If I is primary, the decomposition consists of / only. In particular, if / is a maximal
ideal, it has a primary decomposition. So assume that / is not primary. Then by
definition there exist a,b € R such that ab € I,a ¢ [ and b ¢ V1. As R is
Noetherian, the chain I € I : b € I : b* C --- terminates. Choose n such that
I:b =1:b"" =... Ttis straightforward to prove that I = (I : ') N (I + (b")).
By assumption a € (I : b') \ I and b' € (I + (b')) \ I. Thus both I : b’ and
I + (b') properly contain I. By Noetherian induction, these two larger ideals have
a primary decomposition, and the intersection of the two decompositions gives a
possibly redundant primary decomposition of /. |

Observe that the proof above is rather non-constructive: how does one decide
whether an ideal is primary, and even if somehow one knows that an ideal is not
primary, how can one determine the elements a and b? Nevertheless, this is a crucial
step in the algorithm for computing primary decompositions in polynomial rings
that we present. An important point for algorithmic computing is also that the
ascending chain/ C I : b C [ : b2 C - s special: as soon as we have one
equality I : b' = I : b'™!, then forall m > [,I : b' = I : b". (General ascending
chains do not have this property.)

Example 6 For monomial ideals it is straightforward to decide when they are
primary: a monomial ideal / in R = k[Xj,...,X,] is primary if and only if
whenever a variable X; divides some minimal monomial generator of /, then a
power of X; is contained in /. This fact at the same time makes the existence of
primary decompositions of monomial ideals, as outlined in the proof of Theorem 5,
constructive. Namely, it is easy to check if each factor of each minimal monomial
generator has a power in /. If yes, the ideal is primary, otherwise there exists a
monomial generator a with variable b = X; dividing a and b ¢ V/I. We then repeat
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the construction as in the proof of Theorem 5 to obtain two strictly larger monomial
ideals, and use Noetherian induction. In particular, we apply this to I = (xz, XY, X7).
With b = yand a = x we getthat  : y = I : y? and so that

I=:y) NI+ () =®NE,yx).

Now (x) is already primary (even prime), but (x2, y, xz) is not. We apply the proof of
Theorem 5 with b = z,a = x to get that (x2, y,xz) = (%, y,x2) : ) N ((*, y,x2) +
() = (x,y) N (x2,y,2), so that

I'=@)0Nxy)NE 2.
Clearly (x, y) is redundant, so that finally we get the minimal primary decomposition
I=x)N G5y, 2).

But this is not the only possible primary decomposition. Namely, in the last step
we could have used (x*, y,xz) = ((*,y,x2) : %) N ((P,y,x2) + (27)) = (x,») N
(2, y,xz,7%), to get that

I=xNynN (xz,y,xz, zz) =N (xz,y,xz, 2),

which gives a different primary decomposition.

This gives an example of non-uniqueness of primary decompositions. However,
certain uniqueness does hold:

Theorem7 If I = g, N --- N g, is a minimal primary decomposition, then
{41 - -, \/qs} equals the set of all prime ideals of the form I : f as f varies
over elements of R. In particular, the set { \/qu., ..., \/qs} is uniquely determined.
If \/q; is minimal (under inclusion) in this set, then q; is uniquely determined as

Iy NR.

More generally, for each i, there exists [; € IN such that \/q,-l" C g;. Then

s

1= ((Jq/f +1) mR)

i=1
is also a primary decomposition.

Proof By minimality of the primary decomposition, for each i there exists r €
Nj%igj \ qi. Then I : r = (q1 : ) N ---N(gs : ¥) = gq; : ris primary to ,/qi,
and by Facts 2, there exists ¥’ € R such that ¢; : (1) = (g; : r) : ¥ equals ,/g;.
Conversely, suppose that / : f is a prime ideal. This means that (g, : f)N---N(gs : f)
is a prime ideal, so necessarily this prime ideal equals some g; : f. But by Facts 2,
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necessarily this prime ideal equals ,/g;. This proves the first two statements of the
theorem.

The third statement follows from Facts 2 and Proposition 4, and the fourth one
from Facts 2. For the last statement, observe that ( \/q/" + 1) /4 is primary to the
maximal ideal and contained in the localization of ¢;, so that ( Jq/" + 1) Jai N Ris
»/gi-primary and contained in g;. Since it also contains /, it follows that

Ic ﬂ(\/qili +1) gy mR) c m%’ _1
=1 i=1

so that equality holds throughout. O

The primes appearing in this theorem are called associated primes, and their set
is denoted as Ass(R/I). When the /; are taken to be minimal possible, the resulting
primary decomposition is called canonical (see works by Ortiz [90], Ojeda and
Piedra-Sanchez [88, 89] and Ojeda [87]).

Yao proved that the (non-unique) primary components can be mixed and matched
more generally than in the last statement in the theorem:

Theorem 8 (“Mix-and-match”, Yao [118]) Let {Pi,...,P;} = Ass(R/I), and
assume thatforj =1,...,s,

s
I= ﬂ Gjis
i=1

is a primary decomposition of I with . /q;; = P; for all i,j. Then I = (Miz| qii s
also a primary decomposition.

The following appeared in the proof of Theorem 5: for any element » € R and
anyideal /[of R,ICI:bCI: 2 cC.... By Noetherian assumption, there exists /
suchthat I : b' =1 : b'™! andhencel = (I : b')N(I+ (b')). Thus straightforwardly

R R R R
Ass (I:bl) C ASS(I) C Ass (I:b’) UAss (I+ (bl))‘

Incidentally, the stable value of / : " is also often written as [ : b*°.
It is left as an exercise that

Ass(R)CAss(R)CAss(R)UAss( R )
I1:b) — 1)~ I:b I+ (b)

even when I # (I : b) N (I + (b)). This latter fact can be very helpful for example if
b is a variable, so that a primary decomposition of I + (b) is essentially done in the
polynomial ring in fewer variables and can thus possibly be handled by induction
on the dimension of the polynomial ring.
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By Noetherian induction we know all the associated primes of I : b, I : b, I+ (b)
and I + (b'). By the two set inclusions displayed above, all the associated primes of
I:band ] : b are associated to /. In general, not all associated primes of 1 + (b) and
I+ (') are associated to I. Thus the two displays above generate sets of prime ideals
that include all the possible associated primes of 7, but with possible redundancies.
The following result can help resolve the redundancies:

Proposition 9 A prime ideal P is associated to an ideal I if and only if P is minimal
overl : (I : P™).

Proof Both parts are preserved under localization at P, so we may assume that the
ring is local with P being the maximal ideal. Then 7 : P*° is the intersection of all
primary components of / that are not P-primary, so that I : (I : P*) is either the
ring if P is not associated, and is a P-primary ideal otherwise. |

We also leave as an exercise the useful fact that if / is homogeneous in a Z¢-
graded ring, then so are all of the associated primes of /, and there exists a primary
decomposition of 7 all of whose components are homogeneous. This has to do with
zerodivisors in graded rings.

1.2 Computing Radicals and Primary Decompositions

In this section we present the Gianni-Trager-Zacharias algorithm [60]. We use
Grobner bases and induction on the number of variables. By the STANDING
ASSUMPTION we can compute radicals and primary decompositions in
k[Xy,...,Xn] if n < 1. Now suppose that n > 1.

Alternate algorithms for computing primary decompositions can be found in the
paper [52] by Eisenbud et al. and in the paper [102] by Shimoyama and Yokoyama.
A survey with clear exposition on algorithms and the current state of computation
is in the paper [42] by Decker et al.

Reduction Step 1

Proposition 10 Let A = k[X;,...,X;] € R = k[Xy,...,X,] where k is a field.
Then for any ideal I in R, I4\(x,) N R is computable.

Proof The proof shows how to compute it.

We impose the lexicographic order X,, > --- > X; on R. Any term ¢ in R can be
written as aM,, where a is a term in A and M, is a monomial in k[X;+1, ..., X,]. For
each f € R, letfbe the sum of all those terms ¢ in f for which M; = My;. Write
f = a;X{ My for some non-negative integer e; and some a; € A \ (X;). We also
write My for Myy.

Let G be a Grobner basis of 1.

Claim If f € I4\(x,) N R then there exist g € Gand r € A \ (X)) such that if €ZR.
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Proof of the claim Let f € I4\(x,) N R. Then for some ¢ € A\ (X{),¢f € I, so
that It(cf) is a multiple of ltg for some g € G. Write It(cf) = aX{M(ltg) for some
a € A\ (X1),e € IN, and some monomial M in k[X;+1,...,X,]. We will prove
that it is possible to find g such that ey > e + e,. Suppose that e;s < e + e,.
Then there exists a term in ¢f that is a k[X3, . .., Xy]-multiple of Xfchcf and that is
not cancelled in ¢f — aX{Mg. Thus c¢f — aX{Mg has a term ¢ with M, = M and
e, = ey < e+ e,. Suppose that we have ai,...,a,-1 € A\ (X1).Mi,..., M,
monomials in k[X 41, ..., X,], and non-negative 1ntegers ei,...,es—1 such that for
allj=1,...,s—1 lt(cf Z 1aX ‘Mig) = lt(a;XMg)), and e < eg +ej.
Set h = cf Zl laXe‘M gi- By the last conditions, M), = My = MM, for all
j. As his in I, we have that the initial term of 4 is a; X“My(ltgs) for some g; €
G,a; € A\ (X1),e; € IN, and some monomial M; in k[X;+1,...,X,]. Since the
monomial ordering is a well-ordering, this cannot go on forever, so that for some
g € G,e; > e, + e. But then agcf = agcf = an  M'g. This proves the claim.
Setbh = ]_[geG ag. Certainly I, N R C In\(x;) N R. Now let f € Iy\(x,) N R. To
prove that f € I, N R, it suffices to assume that among all f in (I4\(x,) N R) \ I, the
term My is smallest. By the claim, there exist g € G,r € A \ (Xl) and & € R such
that rf = hg = hagX ‘M,. Let u = gcd(r, h). Then uf = gM Since R is a
UFD, necessarily | € A \ (X1) is a factor of a,, hence of b erte b = v, . Then
1372 v L’f: vZanggMg. Set h = bf — vﬁg. By construction, M, < My = M. If
My = 1, thenh = 0, and in general, i € I4\(p) N R. By induction on My, h € I, N R,
so that bf = h+v’;g € I,NR, whence f € I,NR. This proves that I, NR = I\, NR.
Finally, I, N R = I : b*> is computable because / : b* is the first stabilization in
the inclusions I C1:bCI: b2 CI:H> C---. O

Reduction Step 2 To compute a primary decomposition, we reduce to the case
where I N A is primary for all subrings A of R generated over k by a proper subset
of the variables X1, ..., X,.

Proof Fix one such A. Let / = I N A. By induction we can compute a minimal
primary decompositionJ = g; N---Ng,. If s = 1, we are done, so we suppose that
s > 1. We want to identify i such that ,/g; is a minimal associated prime ideal.
We want to accomplish this with minimal computing effort. We could certainly
compute all the radical ideals and compare them, but computing radicals can be
time-consuming, so the radical is not a goal in itself, we avoid its computation.
Instead, we compute some colon ideals. If g; : ¢; # ¢, for some i > 1, then /g, is
definitely not a minimal prime, so we can eliminate g; from further pairwise tests.
Ifinstead q; : q; = gy foralli =2,...,s, then ,/q; is a minimal prime ideal. With
such cloning, in finitely many steps we identify i such that ,/g; is a minimal prime
ideal. Say i = 1.

Now we want » € g, N --- N g, \ /q. Certainly we can find an element r €
g>N---Ng, but avoiding g; as follows: one of the generators of g N---Ng; is not in
q1, and this can be tested. By prime avoidance, it is even true that a random/generic
element r of g» N --- N gy is not in ,/q;. Ask the computer to give you a random
element r of g, N --- N gy, and then r ¢ /g, if and only if ¢, : » = ¢,. Thus while
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random generation may not reliably produce an element of g N -+~ N g, \ /g1, we
do have a computable method via colon of checking for this property. In practice,
one would probably ask for one random r, test it, and if the test fails, ask for a new
random element, and if necessary repeat a small finite number of times. A reader
uncomfortable with the randomness of this procedure, should instead compute /¢,
and then test successively for a generator of g N -+ N g; to notbe in ,/q;.

So suppose that we have r € g, N --- N g, \ ,/q1. As on page 45, there exists a
positive integer / such that 7 : ' = I : #**1. This ideal is strictly larger than I as it
contains ¢;R. Furthermore, I + () is strictly larger than I since r ¢ /41 and hence
r ¢ +/I.If we can obtain a primary decomposition of the strictly larger ideals / : 7/
and I + ('), then we get one also for I = (I : ') N (I + (+')). Thus by replacing
I by the strictly larger ideals 7 : 7/ and I + ('), we get strictly larger intersections
with A, and we continue this until the intersections are primary.

We repeat this procedure with all the possible A. While working on a new I N A’,
the intersections / N A with the old A can only get larger, but by the Noetherian
property of A it can get larger only finitely many times. Since there are only finitely
many possible A this procedure has to stop.

Reduction Step 2 To compute a primary decomposition, we reduce to the case
where I N k[X;] is non-zero for all i.

Suppose that I N k[X;] = (0). This is a principal prime ideal, so that by Proposi-
tion 10, there is a computable non-zero b € k[X;] such that Ik(X})[Xz, ..., X,]NR =
I : b™®. Let [ be a (computable) positive integer such that I : b> = I : b'. The ideal
I + (b') has the desired property that its intersection with k[X,] is not zero. Since
I = (I:b)N I+ (b)), it suffices to find a primary decomposition of  : b'.

By induction on the number of variables, we can compute a minimal primary
decomposition Tk(X;)[X2,...,Xy] = g1 N --- N gs. If s = 1, then by the one-to-
one correspondence between primary ideals before and after localization, I : b' is
primary, and we are done. So we may assume that s > 1. Then as in the proof
of Reduction step 1 we can compute r € k(X;)[Xa, ..., X,] that is a non-nilpotent
zerodivisor modulo Ik(X;)[Xz, ..., X,]. We can write r = :; for some r; € R,r; €
A\ (X1), and by ignoring the unit r, we may assume that » = r; € R. Then [ is
the intersection of strictly larger ideals  : 7/ and I + (') in R, and we proceed by
Noetherian induction on ideals in R.

We repeat this with 7 N k[X;] for all i > 1.

Reduction Step 3 To compute a primary decomposition, we reduce to the case
where I N k[X;] is non-zero for all i and I N A is primary for all subrings A of R
generated over k by a proper subset of the variables X, ..., X,.

For this repeat the first two reduction steps. Again by Noetherian induction in
each of the finitely many rings this step terminates in finitely many steps.

Reduction Step 4 To compute the radical, we reduce to the case where I N k[X]] is
non-zero for all i and 7 N A is primary for all subrings A of R generated over k by a
proper subset of the variables X, ..., X,.



Primary Decompositions 49

Note that Reduction step 1 for the computation of primary decompositions
successively replaces I by strictly larger ideals Jy, ..., Jysuchthat/ = J; N --- N J;
and such that J; N A is primary for all A and all i. Since /I = /J; N---N /. it
suffices to compute +/J; for all i.

If I N k[X;] = (0), by induction on the number of variables we can compute the
radical of Tk(X1)[Xz,...,X,]. Let g1, ..., g be a generating set of this radical. By
possibly clearing denominators, we may assume that gy, ..., g; € R. Then the radi-
cal of Tk(X1)[Xa, . .. X, ] intersected with Requals J = (g1, ..., g)k(X1)[X2, ... X,]N
R. This is a radical ideal, and it is computable by Proposition 10. Certainly +/I C J.
More precisely by Proposition 10, there exists non-zero b € k[X;] such that
(g1, ., 8)kXD[X2, ... X, ]NR = (g1,...,8) : b>®. ThenI : b*® =1 : b for
some [,] = (I : b') N (I + (b)), and the radical of I is J N \/I + (b, so it suffices
to compute the radical of the strictly larger ideal I + (b). So we may assume that
I N k[X;] # (0), and more generally that I N k[X;] # (0) for all i.

Repetition of this and Noetherian induction bring to a successful reduction in this
step.

Theorem 11 The radical and the primary decomposition of an ideal I in R are
computable.

Proof We have reduced to the case where I N k[X|] = (f1),....I Nk[X,] = (f),
and I N k[X1, ..., X,—1] are primary.

By our STANDING ASSUMPTION, (p;) = \/ (f;) is computable. In character-
istic zero, this computation is easier: p; = ecd( ]‘(‘ o

By induction on the number of variables we can compute the radical of 7 N
k[X1, ..., Xu—1]- Since we assumed that I N k[X,, ..., X,—] is primary, it follows
that its radical is a maximal ideal; call it M. (In characteristic zero, as in [70], M =
I Nk[Xy,....Xu—1] + (p1,...,pu—1) because k[X1,...,Xu1]1/(P1,.. ., Pu—1) =
(k[X11/(p1)) Qk -+ Rk (k[X,—1]/(pu—1)) is a tensor product of finitely generated
field extensions of &, and is thus reduced, semisimple, so that any ideal in this ring
is radical.)

Since I N k[X,] # (0), necessarily I is not a subset of MR. We can compute
g € I\ MR. Even more, since R/MR = k[X"'&X”*‘] [X,] is a principal ideal domain,
we can compute g € [ such that g(R/MR) = I(R/MR). By the STANDING
ASSUMPTION, there exists gj,...,gs € R such that the g;(R/MR) are pairwise
non-associated and irreducible, and such that g(R/MR) = gi'---g%(R/MR) for
some positive integers ay, . . . , d;.

Then I € N;(MR + giR) = MR + (g1---g,)R C /I, the associated primes of
Tare MR+ giR,i = 1,...,s, /I = Ni(MR + gR), and the (MR + g;R)-primary
component of /is I : ([, ;). All of these are computable. O

Example 12 LetI = (x*> + yz,xz — y?, x> — z%) in Q[x, v, z]. We roughly follow the
outline of the algorithm, with some human ingenuity to skip computational steps.
Clearly yz + z2 € I N k[y, z] and it appears unlikely that a power of z is contained
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in I N k[y,z]. (We could use elimination and Grobner bases to compute precisely
INk[y, z] = (yz+z%,y*+2z*).) Thus z is a non-nilpotent zerodivisor modulo 1. By the
algorithm we compute I : z = (y+z,xz—22, x> =22),1 : 22 = (y+z,x—2) =1: 2%,
which is clearly prime and hence primary. Furthermore, I+ (z%) = (x2, yz, x2—y?, %)
has radical (x,y,z), which is a maximal ideal, so that I + (%) is primary. Thus
I=:2DNUT+ @) = (y+zx—2 N & yz,xz — y*,7%) is a primary
decomposition, and clearly it is an irredundant one.

1.3 Computer Experiments: Using Macaulay?2 to Obtain
Primary Decompositions

The computer algebra system Macaulay2 [62] has in-built functions to deal with
primary decompositions. There is a package, included with the system, that is
devoted to this topic. In this section we encourage the reader to turn on the computer,
start a Macaulay?2 session and experiment with the software.

To see the capabilities of Macaulay2 with respect to primary decompositions,
one can first read the help pages for the package. One can do this in two ways:
typing help PrimaryDecomposition in the command line interface, or
reading the html version in a browser (by typing viewHelp in the command
line interface. We rapidly review the main functions Macaulay?2 offers to compute
primary decompositions.

The first thing to do is of course typing your favourite ideal and using the in-built
function primaryDecomposition:

il : R=QQI[x,vy,z];

i2 : I=ideal (x"2,x*y,xX*2);
02 : Ideal of R

i3 : primaryDecomposition I

2
03 = {ideal(x), ideal (x , y, 2z)}

We can immediately obtain the associated primes of I (in the order correspond-
ing to the primary components):

i4 : associatedPrimes I

o4 = {ideal (x), ideal (x, y, z)}
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This is because when computing the primary decomposition, Macaulay2 caches
the information it obtains, which can be accessed at any time, without further
computations:

il : R=QQI[x,y,z];

i2 : I=ideal (x"3,x*y,xX*2);
02 : Ideal of R

i3 : peek I.cache

03 = CacheTable{}

i4 : primaryDecomposition I

3
04 = {ideal(x), ideal (x , y, z)}

i6 : peek I.cache

06 = CacheTable{AssociatedPrimes => {ideal (x), ideal (x, y, z)}
module => image | x3 xy xz |

flattenRing => OptionTable{CoefficientRing => null}
3
=> (ideal (x , x+y, x*z), map(R,R,{x, y, z}))
Result =>(Thing, RingMap)

Macaulay? is able to use different algorithms to compute primary decomposi-
tions; they are called strategies in the system. They are sensitive to the input ideal:

i1 : R=QQI[x,vy,z];

i2 : I=ideal (x"3+y+1,y " 3+z+1,z"3+x+1);
o2 : Ideal of R

i3 : J=I

2;

o3 : Ideal of R

A

i4 : K=I"2;

o4 : Ideal of R

A

i5 : L=I"2;
o5 : Ideal of R

i6 : time primaryDecomposition J;
-- used 1.27953 seconds
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i7 : time primaryDecomposition (K, Strategy=>
EisenbudHunekeVasconcelos) ;
-- used 49.3968 seconds

i8 : time primaryDecomposition (L, Strategy=>
new Hybrid from (1,2));
-- used 41.828 seconds

19 : peek J.cache
110: peek K.cache

i11: peek L.cache

Note that the output of lines i9, 110 and i11 is too long to be printed
here. We encourage the reader to check it in her/his own computer. The cached
information makes a difference when obtaining further information about the ideal.
The algorithms available for computing primary decompositions are Shimoyama
and Yokoyama [102], Eisenbud et al. [52], a hybrid of these two algorithms, and
Gianni et al. [60]. The default algorithm in Macaulay?2 is Shimoyama-Yokoyama.
Macaulay?2 has also special strategies for monomial and binomial ideals.

2 Expanded Lectures on Binomial Ideals

In these pages I present the commutative algebra gist of the Eisenbud—Sturmfels
paper [51]. The paper employs lattice and character theory, but this presentation,
inspired by Melvin Hochster’s, avoids that machinery.

The main results are that the associated primes, the primary components, and
the radical of a binomial ideal in a polynomial ring are binomial if the base ring is
algebraically closed.

Kahle wrote a program [68] that computes binomial decompositions extremely
fast: the input fields do not have to be algebraically closed, but the program adds the
necessary roots of numbers.

Throughout, R = k[Xy,...,X,], where k is a field and X1, ..., X, are variables
over k. A monomial is an element of the form X“ for some a € INj, and a term
is a scalar multiple of a monomial. The words “monomial” and “term” are often
confused, and in particular, a binomial is defined as the difference of two terms. (In
my opinion, we should switch the meanings of “monomial” and “term”.) An ideal
is binomial if it is generated by binomials.

Here are some easy facts:

. Every monomial is a binomial, hence every monomial ideal is a binomial ideal.
. The sum of two binomial ideals is a binomial ideal.

3. The intersection of binomial ideals need not be binomial: (r — 1) N (t — 2) =
> — 31 + 2, which is not binomial in characteristics other than 2 and 3.

N —
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4. Primary components of a binomial ideal need not be binomial: in R[f], the
binomial ideal (#*—1) has exactly two primary components: (r—1) and (2 +1+1).

5. The radical of a binomial ideal need not be binomial: Let ¢, X, Y be variables over
Z/27.k = (Z/2Z)(1),R = k[X,Y],and I = (X*> + ¢, Y?> 4+ t + 1). Note that
is binomial (as ¢ 4+ 1 is in k), and JI = (X2 +t,X + Y + 1), and this cannot be
rewritten as a binomial ideal as there is only one generator of degree 1 and it is
not binomial.

Thus, for the announced good properties of binomial ideals, we do need to make
a further assumption, namely, from now on, all fields k are algebraically closed, and
then the counterexamples to primary components and radicals do not occur.

Can the theory be extended to trinomial ideals (with obvious meanings)? The
question is somewhat meaningless, because all ideals are trinomial after adding
variables and a change of variable. Namely, let f = a; +a> + --- + a,, be a poly-
nomial with m terms. Introduce new variables f3, . . ., t,,. Then k[X1, ..., X,]/(f) =
k[X1,.... X0, 13, sty /(a1 + a2 — t3,—t3 + a3 — t4,—t4 + a4 — t5,...,—ty—2 +
am—3 — ty—1, —tm—1 + @u—1 — t,,). In this way an ideal I in a polynomial ring can be
rewritten for some purposes as a trinomial ideal in a strictly larger polynomial ring,
so that essentially every ideal is trinomial in this sense. Then the general primary
decomposition and radical properties follow-after adding more variables.

But binomial ideals are special. By Buchberger’s algorithm, a Grobner basis of a
binomial ideal is binomial: all S-polynomials and all reductions of binomial ideals
with respect to binomials are binomial. Thus whenever [ is a binomial ideal and A is
a polynomial subring generated by some of the variables of R, then /N A is binomial.
In particular, from the commutative algebra fact that INJ = (¢ + (t—1)J)R[{] N R,
where t is a variable over R, whenever / is binomial and J is monomial, then/ NJ
is binomial. Similarly, for any monomial j, / N (j) and [ : j are binomial.

Proposition 13 Let I be a binomial ideal, and let Jy, ... ,J; be monomial ideals.
Then there exists a monomial ideal J such that (I +J)N---N{I+J) =14+ J.

Proof We can take a k-basis B of R/I to consist of monomials. By Grébner bases of
binomial ideals, (I + Ji)/I is a subspace whose basis is a subset of B. Thus N((/ +
Ji)/I) is a subspace whose basis is a subset of B, which proves the proposition. [

Binomial ideals are sensitive to the coefficients appearing in the generators. This
has implications in complexity theory, as well as in practical computations. For
example, if the characteristic of k is not 0 and R is a polynomial ring in m X n
variables Xj;, the ideal generated by the 2 x 2-determinants of [Xj];; is a prime
ideal (see for example [30]), whereas the ideal generated by such permanents (both
coefficients +1) generate a prime ideal precisely when m = n = 2, they generate
a radical ideal precisely when min{m, n} < 2, and whenever m,n > 3, the number
of minimal primes is n + m + (;) ('5’) (This is due to [73].)
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2.1 Binomial Ideals in

S =k[X1y oy X, X7 oo X7 = KXy -y Xalxgex,

Any binomial X* — ¢X? can be written up to unit in S as X*~> — c.

Let I be a proper binomial ideal in S. Write I = (X —c: e € Z", ¢, € k*). (All
c. are non-zero since [ is assumed to be proper.)

If e, ¢’ occur in the definition of I, set ¢” = e — ¢/, ¢"” = e + ¢’. Then

/ 4 4
X—c,=X"" —¢,=cyX° —c, mod]l,
1 _ 7
X—c, =X "¢ —c, = ce,lX‘" —c¢, mod I,

so that ¢” is allowed with ¢, = cecgl, and ¢” is allowed with c,» = c.co.
In particular, the set of all allowed e forms a Z-submodule of Z". Say that it is
generated by m vectors. Record these vectors into an n x m matrix A. We just
performed some column reductions: neither these nor the rest of the standard column
reductions over Z change the ideal /. But we can also perform column reductions!
Namely, S also equals kK[X; X3, X2, ..., X,, X1 X3~ (X2)7L, ..., (X,) '], and we
can rewrite any monomial X as (X, X;)“X5* "' X3 --- X%, which corresponds
to the second row of the matrix becoming the old second row minus m times the
old first row (and other rows remain unchanged). Simultaneously we changed the
variables, but not the ring. So all row reductions are allowed, they do not change the
ideal, but they do change the ideal. We work this out on an example:

Example 14 LetI = (x3y — 7y’z,xy — 4z%) in k[x, y, 7], where the characteristic of
k is different from 2 and 7. This yields the 3 x 2 matrix of occurring exponents:

3.1
A=]-21
-1 -2

We will keep track of the coefficients 7 and 4 for the columns like so:

3.1
A=]-21
—1-2

7 4

We first perform some elementary column reductions, keeping track of the ¢, (if all
c. are 1, then there is no reason to keep track of these, they will always be 1):

1 3 1 0
A= 1 =2|— 1 -5
-2 -1 -2 5

7 4 4 7/43
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We next perform the row reductions, and for these we will keep track of the names
of variables (in the obvious way):

x[1 0 xw[1l 0 xyz 21 0 xyz 210 xyz 210
yl|1 =5|—=>y|0 5> y |0-5|—> y [00|—> 2! ]05
-2 5 2125 z L0 5 o5 y Loo

In these reductions, the coefficients remained 4 and 7/ 43,

This was only a special case, but obviously the procedure works for any binomial
ideal in S: the matrix A can be row- and column-reduced, keeping track of the
variables and coefficients. Once we bring the matrix of exponents into standard
form, every proper binomial ideal in § is of the form ((X;)"™ —c1, ..., (Xg)™ —cy)
for some d < n, some m; € IN, some ¢; € K*, and some X{ are products of
positive and negative powers of X,...,X, in a way that keeps the ring equality
S=kXy,.... X, X7 X

Now the following are obvious: in characteristic zero,

I= () & —ui.....X)—ug),

u; '=c,-
where all the primary components are distinct, binomial, and prime. Thus here all
associated primes, all primary components, and the radical are all binomial ideals,
and moreover all the associated primes have the same height and are thus all minimal
over /.

In positive prime characteristic p, write each m; as p”n; for some positive v; and

non-negative n; that is not a multiple of p. Then

I= () (X —u)™ .. (X = ua)™™).

u; '=c,-

The listed generators of each component are primary. These primary components are
binomial, as (X] — u;)"i = XZP " uf *". The radicals of these components are all the
associated primes of /, and they are clearly the binomial ideals (X|—ui, . .., X,—ug).
All of these prime ideals have the same height, thus they are all minimal over 1.

Furthermore,

VI = ﬂ (X{—ul,...,X;—ud)z(X;"‘ —u'l”,...,X;""—uZ" ,

m;
u; ' =cj

for any u; with ;" = ¢;. The last equality is in fact well-defined as if )" = ¢,
then 0 = ¢; —c; = ul" — (u)™ = (" — (u})")P", so that u" = (u})". In particular,
/I is binomial.
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We summarize this section in the following theorem:

Theorem 15 A proper binomial ideal in S has binomial associated primes, bino-
mial primary components, and binomial radical. All associated primes are minimal.
In characteristic zero, all components are prime ideals, so all binomial ideals in
S are radical. In positive prime characteristic p, a generating set of a primary
component consists of (different) Frobenius powers of the elements in some binomial
generating set of the corresponding prime ideal. O

Example 16 In particular, if we analyze the ideal from Example 14, the already
established row reduction shows that I = (xyz =2 — 4, (zy~!)* — 7/4%). In character-
istic 5, this is a primary ideal whose radical is I = (xyz 2 — 4,2y~ — /7/4%) =
(yz2—4,zy7' =3) = (xy—42%,2—3y) = (xy—4-9%,z—3y) = (x—y,z—3y).In
characteristics other than 2, 5, 7, we get five associated primes (xy — 42,7 — ay) =
(x — 4a®y, z — ay) as « varies over the fifth roots of 7/4%. All of these prime ideals
are also the primary components of /. (In characteristics 2 and 7, IS = S.)

Theorem 17 Let I be an ideal in R such that IS is binomial. Then ISNR is binomial.
In particular, for any binomial ideal I of R, any associated prime ideal P of I such
that PS # S is binomial, and we may take the P-primary component of I (in R) to
be binomial.

Proof Let Q be a binomial ideal in R such that S = IS. Then ISNR = QSN R =
0O : (X1 ---X,)™ is binomial by the facts at the beginning of this section. |

2.2 Associated Primes of Binomial Ideals Are Binomial

Theorem 18 All associated primes of a binomial ideal are binomial ideals. (Recall
that k is algebraically closed.)

Proof By factorization in polynomial rings in one variable, the theorem holds if
n < 1. So we may assume that n > 2. The theorem is clearly true if the binomial
ideal I is a maximal ideal. Now let / be arbitrary.

Letj € [n] = {1,...,n}. Note that I + (X;) = I; + (X;) for some binomial ideal
Ijin k[X1, ..., X,—1]. By induction on n, all prime ideals in Ass(k[X1, ..., X,—1]/]})
are binomial. But Ass(R/(I + (X;))) = {P + (Xj) : P € Ass(k[X\,....X,—1]/1))},
so that all prime ideals in Ass(R/(I + (X;))) are binomial. By the basic facts from
the beginning of this section, I : X; is binomial. If X; is a zerodivisor modulo /,
then I : X; is strictly larger than /, so that by Noetherian induction, Ass(R/(I : X;))
contains only binomial ideals. By facts on page 45, Ass(R/I) € Ass(R/(I+(X;)))U
Ass(R/(I : X;)), whence also by induction on the number of variables, all associated
primes of / are binomial as long as some variable is a zerodivisor modulo /.

Now assume that all variables are non-zerodivisors modulo /. Let P €
Ass(R/I). Since X --- X, is a non-zerodivisor modulo /, it follows that Px,..x, €
Ass((R/I)x,..x,) = Ass(S/1S). Then P is binomial by Theorem 17. |
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We have already seen in Example 6 that for monomial ideals all associated primes
are monomial (hence binomial).

Example 19 (Continuation of Examples 14 and 16) LetI = (x>y —7y%z, xy — 42%)
in k[x, y, z]. We have already determined all associated prime ideals of  that do not
contain any variables. So it suffices to find the associated primes of 7+ (x™), I+ (y™)
and of I + (™), for large m. If the characteristic of k is 2, then the decomposition is

I=@y =Yzl =z =N0hNE@w.
If the characteristic of k is 7, then the decomposition is
I=(Fy,xy—42) = (y.2) N (2, xy — 42%).

(The reader may apply methods of the previous section to verify that the latter ideal
is primary.) Now we assume that the characteristic of k is different from 2 and 7.
Any prime ideal that contains / and x also contains z, so at least we have that (x, z) is
minimal over / and thus associated to /. Similarly, (y, z) is minimal over / and thus
associated to /. Also, any prime ideal that contains / and z contains in addition either
x or y, so that at least we have determined Min(R/I). Any embedded prime ideal
would have to contain all of the already determined primes. Since / is homogeneous,
all associated primes are homogeneous, and in particular, the only embedded prime
could be (x, y, z). It turns out that this prime ideal is not associated even if it came up
in our construction, but we won’t get to this until we discuss the theory of primary
decomposition of binomial ideals in the next section.

2.3 Primary Decomposition of Binomial Ideals

The main goal of this section is to prove that every binomial ideal has a binomial
primary decomposition, if the underlying field is algebraically closed (Theorem 23).
We first need a lemma and more terms.

Definition 20 An ideal / in a polynomial ring k[X, ..., X,] is cellular if for all
i=1,...,n,X;is either a non-zerodivisor or nilpotent modulo /.

All primary monomial and binomial ideals are cellular.
Definition 21 For any binomial g = X — cX” and for any non-negative integer d,

define

gl = xda _ cdxdb.
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The following is a crucial lemma:

Lemma 22 Let I be a binomial ideal, let g = X — cX? be a non-monomial
binomial in R such that X* and X are non-zerodivisors modulo 1. Then there exists
a monomial ideal Iy such that for all large d, I : g% = I : (g2 =T + I.

Proof For all positive integers d and e, gl is a factor of g%, so that I : gll I :
gl%l. Thus there exists d such that forall e > d,1 : gl =1 : gle.

Letf e I: gl Write f = f; + f» + -+ + f; for some terms (coefficient times
monomial) f; > f> > --- > f,. Without loss of generality X* > X*. We have that

X X4 X+ X+ X+ X e I

In the Grébner basis sense, each f;X“, ;X reduces to some unique term (coefficient
times monomial) modulo /. Since X and is a non-zerodivisor modulo 7, ;X and
fiX? cannot reduce to a scalar multiple of the same monomial, and similarly fix?
and ﬁXb cannot reduce to a scalar multiple of the same monomial. Thus for each
j=1,...,s there exists 7(j) € [s] = {1,...,s} such that fix®* — c¥f,x" € I.
The function 7 : [s] — [s] is injective. By easy induction, for all i, f;(x?")" —
i (™) € I. By elementary group theory, 7*'(j) = j, so that for all
j.£:819"60 € 1. Then f;gl( @6 € [, and by the choice of d,fg!?"! € I. Thus I : gl
contains monomials fi, . . . , f;. Thus set Iy to be the monomial ideal generated by all
the monomials appearing in the generators of I : gl?'l.

Let f € I : (gl1)2. We wish to prove that f € I : gl*l. By possibly enlarging
Iy we may assume that Iy contains all monomials in 7 : g[d” = I + Iy. This in
particular means that any Grobner basis G of I : g4l consists of monomials in Iy
and binomial non-monomials in /. Write f = fj + f, + --- + f; for some terms
fi > f» > -+ > f;. As in the previous paragraph, for each j, either fjxd!“ € Iy or
else fa® — cd'f ¥ € I If fix® € Iy C I : gl9, then by the non-zerodivisor
assumption, f; € I : g1, which contradicts the assumption. So necessarily we get
the injective function 7 : [s] — [s]. As in the previous paragraph we then get that
eachf; € I: gldl. O

Without loss of generality assume thatno f; is in 7 : g, Note that fgl¥'l € I : gl#l.
Consider the case that ﬁxd!“ € Iy and get a contradiction. Now repeat the 7 argument
as in a previous part to make the conclusion.

Theorem 23 If k is algebraically closed, then any binomial ideal has a binomial
primary decomposition.

Proof Let I be a binomial ideal. For each variable X; there exists / such that/ = (I :
X;) N (I + (X)), so it suffices to find the primary decompositions of the two ideals
I: le and I + (Xj)l . These two ideals are binomial, the former by the basic facts
from the beginning of this section. By repeating this splitting for another X; on each
of the two new ideals, and then repeating for X; on the four new ideals, et cetera,
with even some j repeated, we may assume that each of the intersectands is cellular.
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Thus it suffices to prove that each cellular binomial ideal has a binomial primary
decomposition.

So let I be cellular and binomial. By possibly reindexing, we may assume that
Xi, ..., Xy are non-zerodivisors modulo /, and X441, .. ., X,, are nilpotent modulo /.
Let P € Ass(R/I). By Theorem 18, P is a binomial prime ideal. Since / is contained
in P, P must contain X 41, . . . , X,;, and since the other variables are non-zerodivisors
modulo /, these are the only variables in P. Thus P = Py + (Xy+1, - --,X,), where
Py is a binomial prime ideal whose generators are binomials in k[X, ..., X,], and
X1, ..., X, are non-zerodivisors modulo /.

So far we have I “cellular with respect to variables”. (For example, we could have
I = (X3(X} —X3),X?) and P = (X; — X2, X3).) Now we will make it more “cellular
with respect to binomials in the subring”. Namely, let g be a non-zero binomial in
Py. (In the parenthetical example, we could have g = X; — X;.) By Lemma 22,
there exists d € IN such that I : gl = I : (g)?> = I + (monomial ideal).
This in particular implies that P is not associated to 7 : gl¥l, and so necessarily P
is associated to I + (g!¥). Furthermore, the P-primary component of [ is the P-
primary component of the binomial ideal 7 + (gl?!). We replace the old I by the
larger binomial ideal 7 4 (gl¥!). We repeat this to each g a binomial generator of
Py, so that we may assume that P is minimal over /. (In the parenthetical example
above, we would now say with d = 6 that I = (X? — X8, X3(X} — X3),X3).) Now
Xi+1, ..., X, are still nilpotent modulo /. The P-primary component of / is the same
as the P-primary component of binomial ideal 7 : (X; ---X,;)°°, so by replacing /
with I : (X; - - X;)®° we may assume that / is still cellular.

If Ass(R/I) = {P}, then I is P-primary, and we are done. So we may assume that
there exists an associated prime ideal Q of I different from P. Since P is minimal
over I and different from Q, necessarily there exists an irreducible binomial g =
X? —¢X? € Q\ P. Necessarily g ¢ (Xg41....,X,)R. Thus Lemma 22 applies, so
there exists d € IN such that I : gl = I : (g)> = I + (monomial ideal). Note
that Q is not associated to this ideal but Q is associated to I, so that the binomial
ideal I : g9l is strictly larger than 1. If gl¥ ¢ P, then the P-primary component of
I equals the P-primary component of I : gll, and so by Noetherian induction (if
we have proved it for all larger ideals, we can then prove it for one of the smaller
ideals) we have that the P-primary component of / is binomial. So without loss of
generality we may assume that gl € P. Then gl?) contains a factor in P of the form
g0 = X% — ¢’X" for some ¢’ € k. If the characteristic of R is p, gﬁm is a binomial for

mn

all m, we choose the largest m such that p™ divides d, and set h = gl¥l /gy, b = g -
In characteristic zero, we set h = g[d] /go and b = go. In either case, b is a binomial,
bel:handh ¢ P. Thus the P-primary component of / is the same as the P-
primary component of / : k, and in particular, since I C I + (b) C I : h, it follows
that the P-primary component of [ is the same as the P-primary component of the
binomial ideal 7 4+ (b). If b € Q, then gy = X% — ¢’X? and g = X* — cX" are
both in Q. Necessarily ¢ # ¢/, so that X*, X” € Q, and since g ¢ (Xy41,...,Xu)R,
it follows that Q contains one of the variables X1, ..., X,. But these variables are
non-zerodivisor modulo 7, so that Q cannot be associated to I, which proves that
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b ¢ Q. But then [ is strictly contained in / + (b), and by Noetherian induction, the
P-primary component is binomial. O

2.4 The Radical of a Binomial Ideal Is Binomial

Here is general commutative algebra fact: for any Noetherian commutative ring R,
any ideal 7, and any Xj, ..., X, in R,

VIi= JI+X)N---N I+ X)) V(X X,)®

= VI+X) N0 VI+ &) N VXX,

Theorem 24 The radical of any binomial ideal in a polynomial ring over an
algebraically closed field is binomial.

Proof This is clear if n = 0. So assume that n > 0. By the fact above,
VIi= JI+X) N0 I+ X) O V(X X))

Letly = \/I : (X; - -- X,,)®. We have established in Theorem 15 that /IoS = VIS
is binomial in S. By Theorem 17, /1y is binomial.

LetI; = I Nk[X,,...,X,]. We know that /; is binomial. By induction on 7, the
radical of I, is binomial. This radical is contained in /I, so that ~/I = \/ NI,
Thus without loss of generality we may assume that /I; C I. Hence we may also
assume that /I = I,.

Let P be a prime ideal minimal over / 4+ (Xi). Suppose that there exists a
binomial g in I that involves X but is not in (X;). Write g = X;m' + m for some
monomial terms m, m’, with X; not appearing in m. Since P is a prime ideal, there
exists a variable dividing m that is in P. Say this variable is X,. Then P is a prime
ideal minimal over I + (X;, X»). By continuing this we get that, after reindexing,
P is a prime ideal minimal over I + (X1, X>, ..., Xy) and that any binomial in [ is
either in (X1, ..., Xy) orin k[X,+1, . .., X4]. By Grobner bases rewriting,

I+ (X],...,Xd) = ((I+ (Xl,...,Xd)) ﬂk[Xd_H,...,Xn] + (Xl,...,Xd))R
= (I Nk[Xgt1, ..., %] + X1,...,X9))R,

and this is a radical ideal since I; is. This proves that the intersection of all
the prime ideals minimal over I 4+ (X)) equals the intersection of ideals of the
form I + (some variables). Hence by Proposition 13, \/I + X)) =1+ J; for
some monomial ideal J;. Similarly, \/I + (X;) = I + J; for some monomial
ideals Jy, ..., J,. By the first paragraph in this section and by Proposition 13 then
VI = (I + J) N Iy for some monomial ideal J. But I C I, so that JI=T+T0N1,
and this is a binomial ideal because J is monomial and /j is binomial (see p. 53). O



Primary Decompositions 61
3 Primary Decomposition in Algebraic Statistics

Algebraic statistics is a relatively new field. The first systematic work is due to
Studeny [109] from an axiomatic point of view, and several works after that used
the axiomatic approach. A first more concrete connection between statistics and
commutative algebra is due to the paper of Diaconis and Sturmfels [46], which
introduced the notion of a Markov basis. The book by Pistone et al. [92], published
in 2001, is a book on commutative algebra and Grobner bases for statisticians.
Not all parts of statistics can be algebraicized, of course. Some of the current
research topics in algebraic statistics are: design of experiments, graphical models,
phylogenetic invariants, parametric inference, maximum likelihood estimation,
applications in biology, et cetera. This section is about (conditional) independence.

3.1 Conditional Independence

Definition 25 A random variable, as used in probability and statistics, is not a
variable in the algebra sense; it is a variable or function whose value is subject to
variations due to chance. I cannot give a proper definition of “chance”, but let us
just say that examples of random variables are outcomes of flips of coins or rolls of
dice. (If you are Persi Diaconis, a flip of a coin has a predetermined outcome, but
not if I flip it.)

A discrete random variable is a random variable that can take on at most finitely
many values (such as the flip of a coin or the roll of a die).

Throughout we will be using the standard notation P(i) to stand for the
probability that condition i is satisfied, and P(i | j) to stand for the (conditional)
probability that condition i is satisfied given that condition j holds. Whenever
P(j) # 0, then

P(i,))
P())
Definition 26 Random variables Y, Y, are independent for all possible values i of

Y, and all possible values j of Y,,P(Y1 = i | Y, = j) = P(Y; = i), or in other
words, if

P(i]j) =

P(Yy =i,V =j) =P, =iP(Y2 =)).

If this is satisfied, we write Y; 1L Y.

Let pj = P(Yy = i,Y> = j). Then ij,-j =P, =i)and ) ;p; = P(Y> = )).
(In statistics, these sums are shortened to p;1 and p.;, respectively.) For discrete
random variables Yi, Y, with Y taking on all values in [m] and Y, taking on all



62 I. Swanson and E. Séenz-de-Cabezén
values in [n], independence is equivalent to the following matrix equality:

P11 v Pin Py =D [p(r,=1)-- P(Ys = n)].
) _ P =2

ml *** Dmn

Since the sum of the pj; is 1, it follows that the rank of the matrix [p;] is 1, and so
L([pi]) = 0. Conversely, if I,([p;]) = 0, since some p;; is non-zero, necessarily [p;]
has rank 1. Then we can write

a
Pl - Pin a5 [bl"'b2"'bm]
ml *** Dmn a,

for some real numbers a;, b;. Since some p;; is a positive real number, by possibly
multiplying all a; and b; by —1 we may assume that all a;, b; are non-negative real
numbers. Leta =}, a;,b =} ; b;. Then

ab = Zaibj = Zp,j = 1,
ij ij

whence we also have

P11 " Pln alb [ab1~~~ ab2 abm] .

ml *** Pmn amb

All the entries of the two matrices on above are non-negative, a;b = Zi ab; =
Y pij = P(Y1 = i) andab; = Y, aibj = 3, p;j = P(Y> = j), which yields the
factorization of [p;] as in the rephrasing of independence. Thus Y¥; AL Y> if and only
if L ([pyli.;) = 0.

How does one decide independence in practice? Say a poll counts people
according to their hair length and whether they watch soccer as follows:

Watches soccer Does not watch soccer
Has short hair 400 200
Has long hair 40 460

Thus watching soccer and the hair length in this group appear to not be independent:
it seems that the hair length fairly determines whether one watches soccer. Even if
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the polling has a 10% error in representing the population, it still seems that the hair
length fairly determines whether one watches soccer. However, the poll break-down
among genders shows the following:

Men Watching  Not Women Watching Not
Short hair 400 100 Short hair 0 100
Long hair 40 10 Long hair 0 450

Now, given the gender, the probability that one watches soccer is independent of
hair length (odds for watching is 4/5 for men, O for women).

This brings up an issue: in general one does not find such clean numbers with
determinant precisely 0, and so one has to do further manipulations of the data to
decide whether it is statistically likely that there is an independence of data.

Here I continue with the obvious needed definition arising from the previous
example:

Definition 27 Random variables Y; and Y, are independent given the random
variable Y3, if for every value i of Y7,j of ¥> and k of Y3,

PY =i|Y,=jYs=k =P =i|Y:=k).

If P(Y3 = k) > 0, this is equivalent to saying that P(Y; = i,Y, = j, Y3 = k)P(Y3 =
k) = P(Yy = i)P(Y, = j). We write such independence as Y7 L Y5 | V3.

Let M be the 3-dimensional hypermatrix whose (i, j, k) entry is P(Y; = i,Y, =
j, Y5 =k),Yy 1L Y, | Y3. Then Y; AL Y, | Y3 means that on each k-level of M, the
ideal generated by the 2 x 2-minors of the matrix on that level is 0.

Here are the axioms of conditional independence:

1. Triviality: X Il @ | Z. (Algebraically this says that the ideal generated by the
2 x 2-minors of an empty matrix is 0.)

2. Symmetry: X 1L Y | Zimplies Y I X | Z. (Algebraically this follows as the ideal
of minors of a matrix as the same as the ideal of the transpose of that matrix.)

3. Weak union: X 1 {Y;,Y>} | Z implies X 1 Y; | {Y»,Z}. Here we point out
that if U and V is a (discrete) random variable, so is {U, V}, whose values are
pairs of values of U and V, of course. (Algebraically this says the following: let
piju = P(X =1i,Y, =j, Y, = k,Z = ). The assumption says that for all values
I of Z, the ideal generated by the 2 x 2-minors of the matrix [pyu]ijx is 0. But
then for fixed / and a fixed value k of Y>, the ideal generated by the 2 x 2-minors
of the submatrix [pj];, j is 0 as well, which is the conclusion.)

4. Decomposition: X 1 {Y;,Y,>} | Z implies X Il Y; | Z. (Algebraically this says
that if for each I, L([pjulij) = 0 then L([pj+i)i,j) = 0, where + means that
the corresponding entry is the sum ), pjj.)
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5. Contraction: X 1L Y | {Z,,Z,} and X I Z, | Z, implies X 1L {Y,Z,} | Z.
(Algebraically this says that if for each kI, L([pjuli;) = O and for each

k, I2([pi+kl]i,l) = 0, then for each k, IZ([pijkl]i,(j,l)) =0.)
6. Intersection axiom: Under the assumption that all P(X = i,Y = j,Z = k) are
positive, X 1L Y| Zand X Il Z | Y implies X 1L {Y,Z}.

The last axiom is the focus of the next section.

3.2 Intersection Axiom

Algebraically the intersection axiom says that if all p;; are positive, if for each
k, IZ([pijk]i,j) = 0, and if for eachj, I2([pijk]i,k)) = O, then IZ([pijk]i,(j,k)) =0.

Example 28 Here we show that the assumption on the p;; being positive is
necessary. Let M be the 2 x 2 x 2-hypermatrix whose (i, j, k) entry is

1/8, ifi=j=k=1;
3/8, ifi=2j=k=1;
pik = 13/8, ifi=1,j=k=2;
1/8, ifi=j=k=2;

0, otherwise.

We can view this in a 2 X 2 x 2-hypermatrix, with the third axis going up, the second
axis going to the right, and the first axis coming out of the page:

0 3/8

0 1/8

1/8 0

3/8 0

Then

=g s =[]

[pilk]i,k = [1(/)8 3(/)8:| ’ [pi2k]i,k = |:3(/)8 1(/)8i| )
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and all have zero determinants. However,
il i = 1/8003/8
BGH = 3/8001/8

in which one 2 x 2-minor is not zero. Note that the last matrix is the flattening of
the hypermatrix—squish into the x — y plane, without any overlaps.

The intersection axiom says that if all p;; are non-zero, the conditions on the
vanishing on the minors along each k and along each j-level are enough to make the
“slanted” 2 x 2-minors zero as well.

We parse the intersection axiom further. Now let Xj; stand for a variable
(algebraic, not random, variable). The axiom says that the simultaneous zero o of
L ([Xi]i,j) for each k and of I ([X;u]ix) for each j is also a zero of L ([Xjuli jx) if
all entries in « are positive. Via Hilbert’s Nullstellensatz this says that

L([Xilijw) S \/Z LX) + Y LX) - ([ ] X ™
k J

ijk
Certainly

o hXdip) + D h(Xiix) € L(Xiiiijn)-
k J

Statisticians have known that (Zk L([Xli)) + Zj 12([Xijk]i,k)) : (]_[i.j’k Xij)® =
L ([Xiitlijx). and they have also known that the latter ideal is a prime ideal not
containing any variables; see a proof in Theorem 29. Thus

L([Xiilijw) = ZIZ([Xijk]i,j) + ZIZ([Xijk]i,k) : (l_[Xijk)oo,
k J

ij.k

so that the intersection axiom says that one of the associated primes and even
primary components of ) ", I ([Xjili )+ i L([Xijlix) is L([Xilijx)- Fink in [54]
determined all other associated prime ideals of  ; L([Xjlij) + ;L ([Xilix),
proving the conjecture of Cartwright and Engstrom (conjecture is stated in [47,
p. 146]).

The papers [8] and [111] algebraically generalize the intersection axiom to the
following: if all for all possible values j; of Y;, P(Y, = i,..., Y, = i,) > 0, and if
Yi LY | ({Ya,.... Y} \{Y;}) foralli=2...,n,thenY; 1L {Y,...,Y,}.
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3.3 A Version of the Hammersley-Clifford Theorem

For completeness I give in this section the most algebraic proof I can think of of the
Hammersley-Clifford Theorem. A different proof can be found in [74, p. 36], and
there is more discussion in [47, p. 80].

Let G be an undirected graph on the set of vertices [n]. Let Yy,...,Y, be
discrete random variables. Associated to this graph is a collection of conditional
independence statements:

(Y, LY | ({Y1,....Y )\ {Y..Y;}) : i # j. (i.j) is not an edge in G}.

(Such a graphical model of conditional independence statements is said to satisfy the
pairwise Markov property.) If ¥; takes on r; distinct values, then we need r| - - - r,,
variables X,, and we denote by I; the ideal generated by all the 2 x 2-minors of all
the matrices obtained from all the conditional independence statements (over some
understood field F).

For example, if » = 3 and the only edge in the graph is (2, 3), the associated
conditional independences are

YlJ.LY2|Y3andY1J.LY3|Y2,

which are precisely the hypotheses of the intersection axiom. Fink [54] analyzed
the corresponding ideal. Swanson and Taylor [111] analyzed the ideals for arbitrary
n and ¢ € [n] with the graph being the complete graph on vertices 7 + 1,...,n; Ay
and Rauh [8] analyzed the case for arbitrary n and t = 1.

Theorem 29 (Hammersley and Clifford) Let n, G,Ig be as above. Then I :
(I1,X)%° is a binomial prime ideal which does not contain any variables. In
particular, I : ([],X.) is a minimal prime ideal over lg, and its primary
component is the prime ideal.

Furthermore, the variety of the prime ideal in this theorem has a monomial
parametrization, which is explicit in the proof below.

Proof Suppose that Y; takes on r; distinct values. Without loss of generality these
values are in the set [r;]. If any r; equals O or 1, the conditional independence
statements can be rephrased without using that Y;. So we may assume that all r;
are strictly bigger than 1.

If G is a complete graph on [n], then I = 0, sothatIc = 0 = I : ([[, X,) > isa
binomial prime ideal which does not contain any variables. In the sequel we assume
that G is not a complete graph, so that I is a non-zero (binomial) ideal.

Fix a pair of distinct i,j in [n] such that (i,j) is not an edge in G. Fix ¢ =
(aq, ..., ), with a varying over the possible values of the random variable Y;.
Let M, be the r; x r; generic matrix whose (k, [)-entry is X, with a; = k,a; =
[, and all other components in a identical to the corresponding components in «.
(Obviously «; and «; are not needed to specify M,.) The ideal I;; expressing the
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conditional independence statement ¥; 1L Y} | ({Y 1o Yur \ {Y5, Yj}) is generated
by all I,(My) as « varies.

By definition I = Zi’j I;j, as i, j vary over distinct elements of [r] such that (i, /)
is not an edge (and without loss of generality i < j).

A clique in G is a subset of its vertices any two of which are connected by an
edge. For any maximal clique L of G and for each ¢, € [[,c, [r], let Tp,, be a
variable over the underlying field F. Let ¢ : F[X, : a] — F[TL., : L,c.] be the F-
algebra homomorphism such that ¢(X,) = [[, Trq). as L varies over the maximal
cliques of G, and where a(L) is the |L|-tuple consisting only of the L-components
of a. Let P be the kernel of ¢.

Warning: Whereas /¢ is the sum of the /;; where (i, j) is not an edge, the variables
T}, and thus the map ¢ instead use (cliques of) edges and isolated vertices.

We prove that I C P. It suffices to prove that /;; € P, where (i, j) is not an edge.
For simplicity, suppose that (1, 2) is not an edge in G. By reindexing it suffices to
prove that X11,.. 1)X22,1....1) — X(1,2,1....n0X2.1,1,...1) € P. To simplify notation, we
treat below Tp .z as 1 if L is not a clique of G. Note that no clique contains both 1

l_[TL,(l,...,l)l_[TL,(l ..... D l_[ Trq,..1)s

leL 2€eL La¢L
X@2.1...1) to
l—[ ety l_[ TL@i..n l_[ Tr...1),
leL 2€L 1L2¢L
Xa2.1...1) to

l—[TL,(l,...,l)l_[TL,(Z.l...,l) l—[ Trq,..1),

1eL 2€L 1,2¢L

and X(2,1,1,...1) to

l_[ Trou,..1) l_[ Tra,..1 l_[ Tr0...1)

leL 2€L 12¢L

so that X(1,1’“.’1)X(2’2.1,m,1) —X(1,2,1,.“,1)X(2,1,1,___,1) is mapped by @ to 0. Thus I C P.
As ¢ is a homogeneous monomial map of positive degree, P is generated by
binomials and does not contain any variables. It follows that I : ([, X.)* < P.
Now let f € P. The proof below that f € I : (][, X.)® is fairly elementary, only
long in notation. Since P is the kernel of a homogeneous monomial map, we may
assume that f = X, ---X,, — Xp, -+ - Xp,, for some n-tuples ay, ..., am, b1, ..., by.
To show that f € I : ([],X,), it suffices to prove that any monomial multiple
of fisin Ig : (], X.)*°. Fix a non-edge (i, j). Suppose that in a; neither the ith
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nor the jth component is 1. Let ¢; be the n-tuple whose ith and jth components
are 1 and whose other components agree with the components of a;. Both X,,, and
X, lie in the same submatrix of [X,], that gives Ij;, so that X,, X, reduces modulo
I;; and hence modulo /¢ to X/ X,/ where a;, and ¢ each have entry 1 either in the
ith or the jth components. Let U be the product of all such X,,. Then modulo I,
Thus Uf reduces with respect to I to a binomial in which the subscripts of all the
variables appearing in the first monomial have at least one of i, j components equal
to 1, and in the second monomial the number of non-1ith and jth components in the
subscripts does not increase. By repeating this for the second monomial as well, we
may assume that for each variable appearing in f, the ith or the jth component in the
subscript is 1. If we next similarly clean positions ¢, in this way, we do not at the
same time lose the cleaned property of positions i and j: as factors of the multipliers
U keep the clean (i, j) property. By repeating this cleaning, in finitely many rounds
we get a binomial f in P such that for each non-edge (i,j) and for each variable
appearing in f, the ith or the jth component of the subscript of that variable is 1.

With the assumption that for each non-edge (i,j), the ith or the jth component
of ai and of by is 1, we claim that f = 0 € Ig. If a; = b; for some i, j € [m], then the
binomial f/X,, has the same property of many components being 1, and it suffices
to prove that f/X,, = 0 € Is. Thus without loss of generality we may assume that
m > 0 and that a; # b; for all i,j € [m]. Let K; (resp. L;) be the set of all i € [n]
such that the ith component in a; (resp. b;) is not 1. By possibly reindexing we may
assume that K| is maximal among all such sets. By the assumption on the 1-entries,
necessarily K is contained in a maximal clique L of G, and for all i € [n] \ L, the
ith component in a, is 1. Since f € P, the variable Ty 4, ) must also divide ¢(Xp,)
for some k € [m]. This means that a; and b; agree in the L-components, and in
particular, K; € L;. By maximality of K, necessarily K| = L, whence a; = by,
which is a contradiction.

This proves that P = I : ([],X,)® is a binomial prime ideal containing no
variables. Thus I : (], X.)®° is contained in the P-primary component of I, and
since I : (J],X,)® is primary (even prime) and contains /g, necessarily it is the
P-primary component. O

In particular, if n = 3 and the only edge in G is (2, 3), then I; is the ideal of
the intersection axiom, which fills in the details in the discussion on page 65. Even
more simply, if n = 2 and G contains no edges, then I = Ig : (][, X.)* is the
ideal generated by the 2 x 2-minors of the generic matrix.

Remark 30 To any monomial parametrization ¢ : F[X, : ¢] — F[T; : d] we can
associate a 0— 1 matrix A whose (c, d)-entry equals 1 if Ty is a factor of ¢(X.), and is
0 otherwise. In the theorem above the indices ¢ were n-tuples; here we assume that
these are ordered in some way, so that for any monomial [ [, X% we can talk about
the exponent vector (e, : ¢). For any binomial [, X% — [, X’ in the kernel of ¢,
the corresponding vector (e, : ¢) — (f; : ¢) is in the kernel of A. Conversely, for any
integer vector (e, : ¢) in the kernel of A, the binomial [, _, X¢ — [, o X, “ is a
binomial in the kernel of ¢. Thus finding a set the kernel of ¢ is the same as finding
the kernel of A as a Z-submodule of the set of all integer vectors. The generating
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set of the latter kernel is a Markov basis for A, and its connections to algebraic
statistics were first explored by Diaconis and Sturmfels in [46].

3.4 Summary/Unification of Some Recent Papers

This is a partial summary of the papers Fink [54], Herzog et al. [64], Ohtani [86],
Ay-Rauh [8], Swanson and Taylor [111]: there are some similarities in the methods
and results of these papers, but there does not seem to be one all-encompassing
theorem. I present these results using as much of the common language as I can, but
the four papers have further details and results.

Letry, ra, ..., r, be positive integers, and let N = [r] X [rz] X - - - X [r,,] (Where for
any positive integer r, [r] = {1,2,...,r}). Let R be the polynomial ring in variables
X, over a field, where a varies over elements in N. We will often refer to the generic
hypermatrix [X, : a € N], so we give it a name, say M.

A generalized two-by-two determinant of M, for given a,b € N and K C [n], is

Trap = XaXp — Xsk.a.0)Xs(K ba)»

where s(K, a, b) is an element of N with

S(K. a,b); = b;, ifjeKk,
‘ a;, ifj¢K.

If K = {i}, we also write s(i,a,b) for s({i},a,b) and f; ., for fi.,. When a
and b differ only in positions i and j, then f; , 5 is precisely a standard two-by-two
determinant of the submatrix of M obtained by keeping the entries that agree with a
and b in the positions k # i, .

Letz € [n]. Foreach i € [f] let G; be a simple graph on [r}] X - - X [/rl\] X X 1]
(These graphs play a very different role from the ones in Sect. 3.3.) Define

1G,,...,G) =

(frap i < t,{(al,...,Zz\,-,...,a,,),(bl,...,l;;,...,bn)} is an edge in G;).

These ideals have been studied as follows:

1. Fink [54]: n = 3,t = 1, and G, is the grid graph on [r;] X [r3], namely G, =
(UjE[fz],klﬁkze[m]{(j’ k1), (J, kz)}) U (UkE[fs]JlJze[rz]{(jlv k), (j2, k)}) :

2. Herzog et al. [64] and independently Ohtani [86]: n = 2,1} = 2,t = 1.

. Ay and Rauh [8]:r = 1.

4. Swanson and Taylor [111]: for each i, G; is the grid graph on [r;] x- - - X [r;] X+ - - X
[r4], i.e., the edges consist of those pairs of (n — 1)-tuples that differ in precisely
one component.

(O8]

o~
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o~

Throughout ¢ € [n]. Foreachi € [f], let N; = [r1] x --- X [r;] X --+ X [r;], and let
G, be a graph on N;. We write G for {Gy, ..., G;}. We use the Hamming distance on
N:d(a,b) =#{i € [n] : a; # b;}, and D(a,b) = {i € [n] : a; # bi}.

Definition 31 We say that a,b € N are directly connected relative to G; if

-~

{(ai,...,a@,...,ay), (by1,...,bi,...,b,)} s an edge in G;.

We say that a, b € N are connected relative to G; if there exist ¢y, ¢y, ..., cr—1 €
N such that with ¢ = a and ¢; = b, foreachj = 1,...,k,cj—1 and ¢; are directly
connected relative to G;. We call a = ¢y, cy, ..., ck—1,cx = b a path from a to b
relative to G;.

We say that a, b € N are connected relative to G if there exist ¢, ¢y, ..., cr—1 €
N such that with ¢¢ = a and ¢ = b, for each j = 1,...,k, there exists
i € [f] such that ¢;—; and ¢; are directly connected relative to G;. We call a =
€0, Cl,-..,Ci—1,Cr = b apath from a to b relative to G.
Lemma 32 Leti € [t] and let cy, . . ., ¢k be a path relative to G;. Then

k—1
l_[ ch 'ﬁ,co,ck € I(t)(Gl)
Jj=1

Proof (Similar Versions of This Are Proved in [8] and [111].) If the ith components
in ¢o and ¢ are identical then f; ., ., = 0. If co, c¢x without the ith components form
an edgein G;, thenf; ., o, €1 M(Gi). In particular, the lemma holds if £ < 1. Now let
k > 2. Then modulo / M(Gi), with U an abbreviation for X, - - - X,

Ck—27
XeoUXeo 1 Xew = Xsicoren1) UXs(icor,00)X e, (by induction on k)
= XS(i,C(),Ck—l) UXS(iqS(ika—l ,Co),Ck)XS(i,Ck,S(i,Ck—1 .C0)
(since s(i, cx—1, o), ¢k is a path relative to Gy)
= XS(i,C(),Ck—l) UXS(iqu—l ka)XS(iqusC())
= XS(i,S(i,CO,Ck—l),S(i,Ck—l ACk)) UXS(i,S(iqu—l ka)sS(l'sC()qu—l))Xs(iqcksc())
(by induction on k, since
s(i, co, Ck—1), €15 - - - » Ck—2, S(I, cr—1, k) 18 a path relative to G;)

= Xs(i.co.c0) UX e 1 Xs(ier o)

which proves the lemma. O

Remark 33 Note how the ith entry in the path is not important! But if we want to
mix G; and Gj, the ith entries make a difference (and it is not clear how to control for
that fully, in fact, the ideals in [111] have embedded primes whose characterization
is not complete).
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Lemma 34 Leti € [t]. Let H be the set of all elements of the form (]_[k 'X, ) ficocr

as co, . . ., ¢ vary over paths relative to G;. Then H is a (redundant) Grobner basis
in the lexicographic order.

Proof Let f = (]_[k X, ) “ ficoc, and g = (]_[ leJ) + fido.q,- We want
to show that the S-polynomial of f and g reduces to 0 with respect to H.
In the lexicographic order, the leading monomial of f;, . is either X, X, or
Xs(ico.c)Xs(ici,co)- In the latter case, since fico.c, = —fis(ico.cr)sticrn.co) and since
s(i, co, Ck), €1, - - - » Ck—1, (i, Ck, €o) 18 a path relative to G;, by possibly replacing
co and ¢ with their switches we may assume that the leading term of f is
Xy Xc, - Similarly we may assume that the leading term of g is X4, Xy,. By standard
Grobner bases, if {co, cx} and {dy, d;} are disjoint, then the S-polynomial of f and
g reduces to 0. If ¢y = dp and ¢ = d;, then S(f,8) = m(Xs(idy.d)Xs(idy.dy) —
Xs(ico.c0) Xs(icr.co))» Where m = lem(X,, - X, Xg, -+ Xg) is the product of all the
variables in a path from s(i,dy,d;) = s(i,co, cx) to s(i,d;, dy) = s(i,ck,co). so
that this S-polynomial is in H. It remains to consider the case cp = dy and
cx # di. Then S(f.g) = m(Xe,Xsido.dpXstidido) — XaiXs(i.cocr)Xs(icrnc))s Where
m = lem(X,, -+ - X¢, Xg, - - - Xg,). Consider the term X, Xy q4,.4): if it is bigger in
the lexicographic order than Xy ¢, 4;)Xs(i.dy.cx)» then since m is a product of the right
variables in the right path, we can reduce S(f, g) further. Any further reductions of
the two degree-three terms in the binomial part can be reduced similarly because m
has enough variables, until S(f, g) reduces to 0. |

Papers [54, 64, 86], and [8] go further and determine minimal Grobner bases,
via further restrictions on admissible paths.

3.5 A Related Game

One would understand the primary components of I in the previous section much
better if one understood the following:

Problem 35 Let ay,...,an,b1,...,b, be n-tuples (2m of them) such that
Xay - Xa,, — Xp, -+ Xp,, € I(")(G). (For ideals in [111], an equivalent and more
elementary check for ideal membership is that for each i = 1,...,n, the ith
components of aj,...,a, are up to order the same as the ith components of
bi,...,by.) Carry out the successive rewriting of X, ---X,, with respect to the
generators of I”)(G) to get to Xy, -+ - Xp, .

Since this is a hard problem, I would like instead somebody to make it a computer
game or an app:

Game The computer serves you two lists of n-tuples of positive integers: ay, . .., ay
and by, ..., by,. (In one version of the game, X,, ---X,,, — Xp, -+ Xp,, € I(")(G), in
another version whether this is so is determined by chance.) The following move is
allowed on the list ay, ..., ay: if a; and a; differ in exactly two components, say k
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and /, replace the list ay, ..., a, with the list ¢, ..., ¢, where ¢; = s(k,a;,q;)) =
s(l,aj,a;),c; = s(k,aj,a;) = s(l,a;,q;), and for all s # i,j,c; = a,. Repeat the
moves on the new list cy, ..., ¢, until you get the list by, ..., b,. You get bonus

points for accomplishing the task in few moves.

I envision users all over the world solving (playing with) instances of this while
waiting for a bus or in coffee shops, and they could be competing for the shortest
number of moves, with possibly short answers being transmitted to some central
station.

3.6 Binomial Edge Ideals with Macaulay?2

Let us make now a short review of some of the preceding results with the computer
algebra system Macaulay?2 at hand.
First, we will make use of the package Binomials so we load it into the system:

il : needsPackage "Binomials"

Consider now a simple graph G on n vertices and a polynomial ring in 2n
variables, for each edge (i, /) we consider the binomial f(i,j) = x;y; —x;y;. The ideal
generated by such binomials is the binomial edge ideal of G, J;. We construct it
with the following simple Macaulay?2 function:

i2 : graphminorsedge = (n,LL) -> (
HHR = QQ[x 1..x n, y 1..y nl;
ideal apply(LL, k-> x (k 0) = y (k1) - x (k 1) = y (k 0))

Observe that this is a generalization of the ideal of 2-minors of a 2n-matrix of
indeterminates (which corresponds to the binomial edge ideal of the complete n-
graph).

We say that the graph G is closed with respect to the labelling if for all (i, ), (k, )
such that i < j and k < [ we have another edge (j,/) ifi = k and (i, k) if j = . With
the help of Macaulay?2 the reader can try some examples of ideals of closed graphs
and some ideals of non-closed graphs to see how Theorem 1 in [64] works.

A nice exercise is to experiment with closed bipartite graphs to find their
Grobner bases.

In general, if the graph is not closed, the Grobner basis does not coincide with the
binomials given by the edges, but can we find the basis in the graph? Let us define
admissible paths i, . . ., i, as follows:

1. ik#l'ZVlfk?élf}’.

2. Foreachk =1,...,r— 1either iy <iori; > j.

3. For any proper subset {ji,...,js} of {i1,...,i,—1} the sequence i,ji,...,Js,J is
not a path.

One can write a function to construct all admissible paths and use it to find all
the admissible paths in a closed graph. Now, for each admissible path p construct
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the monomial u, = [],.; () [;,<;(i)- The Grobner basis is then given by
U,-<j{”pfi,j |p is an admissible path from i zo j}.

We can follow [86] that describes operations on graphs that lead to a primary
decomposition of Jg. First, define complete vertices as those such that all their
neighbours are connected among them. We perform the following operations on
any vertex v that is not complete:

1. Delete v and all the edges incident to v
2. Add all edges that connect vertices in the neighbourhood of v.

From each of these operations we obtain a graph, G’ and G” respectively, each of one
has less non-complete vertices. These graph operations yield algebraic operations:

1. Jor + (Xvs)’v)
2. Ig» + I (Ng(v)) where Ng(v) is given by the binomials involving v.

Taking as base case the complete graph, whose ideal is prime, this decomposition
leads to an alternative algorithm for primary decompositions. We encourage the
reader to use Macaulay2 to write a program that implements Ohtani’s procedure
and compare the results with the in-built primary decomposition algorithms.

3.7 A Short Excursion Into Networks Using Monomial
Primary Decompositions

To finish this chapter, let us enter into the world of networks, bringing primary
decompositions with us. We will use primary decompositions of monomial ideals
here. The monomial case, simpler than the general polynomial case has however
multiple applications. We include this section to add yet another view of the use
of primary decompositions. Networks are ubiquitous and there are many different
approaches to them. A beautiful survey on the topic is [84]. One can see networks
as graphs, where we call vertices to the nodes and edges to the connections. Graphs
have been extensively studied using commutative algebra, cf. for example [80, 115].
We will in this section introduce the reader to the use of primary decompositions to
study the problem of network resilience, in particular the design of attack strategies
to break a connected network into disconnected pieces.

Consider a connected network (graph) N. We want to remove nodes (and
all the incident connections) so that the network becomes disconnected as soon
as possible. What is a good strategy to choose which nodes to delete first? A
simple intuitive strategy is to delete first the nodes with biggest degree (i.e. with
most connections incident to it). Other strategies are based on different data like
betweenness centrality, etc. The approach we are using in this section is to attack
the network based on its vertex covers.

A vertex cover of a graph (we see now networks as graphs) is a set C of vertices
such that each edge of the graph is incident to at least one vertex of C.C is a minimal
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vertex cover if no subset of C is a vertex cover. C is a minimum vertex cover if it
is a vertex cover of minimal cardinality. Minimal and minimum vertex covers are
not unique in general. Given a graph G we denote by mvc(G) the set of minimal
vertex covers of G and by MVC(G) the set of minimum vertex covers of G. We
furthermore denote as 7(G) cardinality of any minimum vertex cover of G, t(G) is
called the covering number of G. For any vertex v we define the covering degree
and covering index of a vertex n as follows

Definition 36 The covering degree of v, denoted cd(v) is the number of minimal
vertex covers that contain v,

cd(v) := #{V' € mcv(G) such that v € V'}.

The covering index of v, denoted ci(v) is computed as the number of minimum
vertex covers that contain v plus the ratio of the number of minimal vertex covers
that contain v to the total number of minimal vertex covers of G,

ci(v) ;== #{V' € MCV(G) such thatv € V'} + cd(v)
Imcv(G)|

Two strategies to break up our graph (network) G consist in deleting first the node
with highest covering degree or to delete first the vertex with highest covering index,
and then proceed downwards. These strategies have been proven to be efficient in
several network models [100].

To use these strategies we need to compute all minimal and/or minimum vertex
covers, which is a difficult problem in general (it is an example of an NP-hard
problem). Here is were computational commutative algebra can help. To every
graph G one can associate its edge ideal Iz [115], which is a monomial ideal.
Every primary component (equivalently every generator of its Alexander dual)
corresponds to a minimal vertex cover of G. One can see that the covering number
of G is exactly the codimension of /5. With these correspondences at hand one can
then use a computer algebra system to compute covering degree and covering index
of every vertex of G and employ the described strategies.

Example 37 Let G be a line graph with three nodes x,y,z and two edges
(x,¥), (y,2). It is clear that G has four vertex covers {x,y}, {x,z}, {y,z} and {y}
but only two of them are minimal, {x, z} and {y}, and only the last one is a minimum
vertex cover.

We will use the Macaulay?2 package EdgeIdeals and compute the algebraic
equivalent to the above description:

il : loadPackage "EdgeIdeals";
i2 : R=QQI[x,y,z];
i3 : G=graph {{x,v}. {v.z}};

i4 : I=edgeldeal G;
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i5 : primaryDecomposition I

o5 = {monomialIdeal(y), monomialldeal (x, z)}
i6 : codim I
o6 =1

i7 : dual(I)

o7

monomialIdeal (y, x*2z)

As the number of vertices in the graph grows, the number of minimal vertex
coverings grows exponentially, to say it algebraically, as the number # of variables
grows, the number of primary components a monomial ideal in n variables (i.e.
the number of generators of it Alexander dual) grows exponentially. A known
(achievable) higher bound is 33. So computing covering degree and index is
expensive in general. Is there any advantage in using the strategies based on covering
index and degree instead of using just vertex degree for example? As example 37
shows, it might happen that vertex degree and covering degree or index are
correlated and the result of using vertex degree is similar, while the computational
effort is much smaller. Experiments show, however, see [100] that vertex degree
or betweenness centrality are not correlated to covering degree and index in several
types of network models. Furthermore, the attacks based on covering degree and
index are far more efficient that those based on vertex degree or betweenness
centrality.

We propose the reader to experiment with the primary decompositions of edge
ideals of some structured graphs, like the wheel n-graph or with random network
models, such as Erdos-Renyi, Watts-Strogatz or Albert-Barabasi.



Combinatorics and Algebra of Geometric
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Fatemeh Mohammadi and Volkmar Welker

1 Introduction

In the subsequent sections we survey results from combinatorics, discrete geometry
and commutative algebra concerning invariants and properties of subdivisions of
simplicial complexes. For most of the time we are interested in deriving results
that hold for specific subdivision operations that are motivated from combinatorics,
geometry and algebra. In particular, we study barycentric, edgewise and interval
subdivisions (see Sect.3 for the respective definitions). Even though we mention
some suspicion that part of the results we present may only be a glimpse of what is
true for general subdivision operations we do not focus on this aspect. In particular,
we are quite sure that some asymptotic results and some convergence results from
Sect.9 are just instances of more general phenomena. Overall, retriangulations
are subtle geometric operations and we refer the reader to the book [40] for a
comprehensive introduction. Since our focus lies on specific constructions we make
only little use of the theory from [40]. Nevertheless, we are convinced that if one
wants to go beyond specific subdivision operations it will become inevitable to dig
deeper into the theory of triangulations.

We start in Sect. 2 with a quick introduction on abstract and geometric simplicial
complexes. For most of the paper we work with abstract simplicial complexes
but for some definitions and perspectives the geometric viewpoint turns out to be
advantageous. In Sect.3 we introduce the concept of a subdivision and the three
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guiding examples which are considered in our text. We define barycentric, edgewise
and interval subdivision, the latter being a special case of a subdivision operation
studied in differential geometry. In Sect.4 we introduce the algebraic side of the
picture. This side centers around the Stanley-Reisner ring of a simplicial complex
A. We also introduce the basic enumerative invariants of a simplicial complex
relevant for this manuscript—the f- and the A-vector of a simplicial complex and
their relation to the Hilbert-series of the Stanley-Reisner ring. With this preparation
in Sect.5 we can provide the known results on the effect of three subdivision
operations on the f- and h-vector of a simplicial complex. The following Sect. 6
lists combinatorial and algebraic invariants and properties of simplicial complexes,
and describes when they are invariant under subdivisions. Then in Sect. 7 properties
of the h-vector that arise after a few subdivisions are studied. This is shown to
relate to algebraic properties of Veronese algebras and the analytic behavior of the
h-polynomial. In particular, polynomials with real roots are in the spotlight: we
explain how they are tied to Koszul algebras and the Charney-Davis conjecture.
In Sect.8 we approach the behavior of f- and h-vectors after a few subdivisions
from the point of view of Lefschetz properties of quotients of the Stanley-Reisner
ring by a regular sequence of linear forms. Besides exhibiting results we speculate
about connections of consequences of the Lefschetz property and real rootedness.
Then in Sect.9 we study the behavior of h- and f- vectors when the number of
subdivisions goes to infinity. In addition we present results on the limiting behavior
of graded Betti numbers of the Stanley-Reisner ring under subdivisions. Finally,
in Sect. 10 we study how subdivisions can be used to define free resolutions of
monomial ideals. We show that in this context arrangements of hyperplanes appear
as a natural object that induce subdivisions which support resolutions. Therefore, the
section also contains an introduction to cellular resolutions and some basics about
arrangements of hyperplanes.

We complement our text by a list of problems, whose difficulty reaches from
simple to serious research level. We add some Macaulay2 [62] sessions whenever
explicit computations are feasible. We assume little background knowledge and
refer the reader to the survey article [19] for f- and h-vector theory of simplicial
complexes, to [29] and [91] for background on commutative algebra and to [81]
for background in algebraic topology.

We do not cover Stanley’s theory of local h-vectors. This is an important theory
and may relate to many aspects of subdivisions we discuss here. There is an
excellent recent survey of old and recent developments in this field by Athanasiadis
and we refer the reader to [7] and [6]. Also there are interesting non-simplicial
subdivision operations. In particular, cubical subdivision operations appear to be
well structured and interesting objects. First results in the spirit of this survey can
be found in [101].
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2 Abstract and Geometric Simplicial Complexes

An abstract simplicial complex A over the ground set £2 is a subset A C 2% of the
powerset of §2 such that A € B € A implies A € A. All simplicial complexes
that are of interest in this text are over finite ground set §2 and therefore from
now on we will always implicitly assume that a simplicial complex is over a finite
ground set and hence finite itself. The elements F € A are called the faces of A
and the inclusionwise maximal faces are called facets. The dimension of a face F is
dim F := #F — 1 and the dimension dim A of A is maxge dim F.

Besides this combinatorial aspect of simplicial complexes there is also a geomet-
ric aspect. For this recall that a geometric (d — 1)-dimensional simplex in IR” is the
convex hull

d
Moo sAg =0
ey = Ai i ’ ’ -
et = (1
of d affinely independent vectors vy,...,vs. A face of conv{vy,...,vs} is the
convex hull of a subset of {vy, ..., v,}. In particular, any face of conv{vy, ..., vs}is

again a geometric simplex. Here we consider the empty set as the convex hull of the
empty set and the empty set as a face of a geometric simplex. The 0-dimensional
vertices are the singletons {v;} for 1 < i < d and the v; are called the vertices of the
geometric simplex. A geometric simplicial complex I” is a collection of geometric
simplices in some IR’ such that

1. ifcoelandtisafaceof o thent € I'.
2. ifo,t € I' then o N 7 is a face of both o and 7.

Analogous to the case of abstract simplicial complexes, we call the elements of
a geometric simplicial complex I" the faces of I'. The vertex set of a geometric
simplicial complex I" is the collection of all vertices of faces of I".

The vertex scheme A(I") of I" is the collection of all vertex sets of simplices
o € I'.Itis immediate from the above definitions that A(I") is a simplicial complex.
If A is an abstract simplicial complex and I" a geometric simplicial complex such
that after a suitable relabeling of the vertices we have that A(I") = A then we say
that I” is a geometric realization of A. We consider the union | J, .0 € R as a
topological space with the subspace topology inherited from the Euclidean topology
on IR?. It is a well known basic fact from topology that every simplicial complex has
a geometric realization and that any two geometric realizations are homeomorphic.
Therefore, it is unambiguous to write |A| to denote any geometric realization of A.
In the sequel we will write A, for an abstract (d — 1)-simplex, i.e., the power set
of a d-element set, and I';_; for the standard geometric (d — 1)-simplex, i.e., the
convex hull conv(ey, ..., es) of the d unit vectors ey, . .., ey in R4,

Given two simplicial complexes A(1) and A(2) such that their geometric realiza-
tions |A(1)| and |A(2)| are homeomorphic, the relation between the combinatorial
and the algebraic invariants of A(1) and A(2) is subtle and complicated. We will be
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interested in the situation when A(1) is a refinement of A(2). Given two geometric
simplicial complexes I"(1), I'(2) in R, we say that I'(1) is a subdivision of I"(2)
if Uaer(l) o= Uaer(z) o and every simplex o0 € I'(2) is a union of simplices in
I’(1). Now we say that an abstract simplicial complex A(1) is a subdivision of the
abstract simplicial complex A(2) if there are geometric realizations I"(1) of A(1)
and I"(2) of A(2) such that I"(1) is a subdivision of I"(2). Note that even though our
definition of subdivision is the most common definition in the topology literature,
there are more general concepts of subdivision (see e.g. [105]).

3 Subdivisions of Simplicial Complexes

In this section we list a few well known subdivision operations on simplicial
complexes. Clearly, this list is not exhaustive and for sure there are many more
such operations lurking in the literature. Rather, we concentrate on three subdivision
operations. Two of them have been shown to exhibit particularly nice properties in
our context and the third is still mostly unexplored (Fig. 1).

2 (0,3,0)

13 (300) (201 (1,02 (0,0,3)

(1,1] [3,3]

[1,13] 13,13] [3.13]

Fig. 1 Barycentric (a), 3rd edgewise (b), interval (c) subdivision of a 2-simplex
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3.1 Barycentric Subdivision

The barycentric subdivision of a geometric simplicial complex can be described as
follows. Let vy, ..., vy € IR" be affinely independent. For @ # A C {vy,..., vy} let

bA:#;ZU

VEA

be the barycenter of the simplex conv(A). Then for any chain @ C A; C --- C A
of subsets of {vy,...,v4} let 04,c..ca, be the convex hull conv(by,, ..., bs,). For
a geometric simplicial complex I" with vertex scheme A(I") the set of simplices
04, c--ca, for chains of subsets @ C A; C --- C A; from A(I") defines a subdivision
of I which is called the barycentric subdivision of I". We write sd(I") for the
barycentric subdivision of I". If A is an abstract simplicial complex then define its
barycentric subdivision as the simplicial complex sd(A) over the ground set A\ {@}
whose simplices are the subsets {Aj,...,A;} of A\ {@} for which with a suitable
numberingA; C --- C A;. Itis easy to verify that V(sd(I")), the vertex scheme of the
barycentric subdivision of a geometric simplicial complex I, is (up to relabelling
the vertices) the barycentric subdivision of the vertex scheme of I", sd(A(I")).
Barycentric subdivision is a classical subdivision operation from topology. Some
of its many applications can be found in texts on algebraic topology such as [81].

3.2 Edgewise Subdivision

Barycentric subdivision is easily described but has some geometric flaws. In
particular, the volumes of the (d — 1)-simplices in a barycentrically subdivided
geometric (d — 1)-simplex differ. A subdivision that does not have this problem
is the edgewise subdivision. It is best explained for geometric (d — 1)-simplices.
The general case then follows after one has checked that it is possible to patch the
subdivided simplices. Edgewise subdivisions exist for all natural numbers r > 1.
Let r > 1 then the rth edgewise subdivision of the (d — 1)-simplex [_; is defined
as follows. Consider the rth dilation »I'y_; of the (d — 1) simplex with vertices the

unit basis vectors in IR?. The integer points in rAy_; are the d-tuples (i1, ..., ;)
of non-negative integers such that ij + --- + iy = r. We write §2,, for this set.
Now we make a change of coordinates and map (iy,...,is) to t(iy,...,ig) =

(i1, iy + iy ..., 01 + -+ + iy). We subdivide rI;—; by simplices conv(A) where
A C £24, and either t(v—v") € {0, 1}¥ or —(v—0’) € {0, 1} forall v, v’ € A. Now
the rth edgewise subdivision of I';—; is obtained from this subdivision of »I';—| by
dilating with factor i In general, the rth edgewise subdivision I""? is obtained from
I' by applying it to every simplex in I". The geometric rth edgewise subdivision
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clearly induces a subdivision on the vertex scheme of I". This way we can speak of
the rth edgewise subdivision A" of an abstract simplicial complex A. The term rth
edgewise subdivision is motivated by the fact that edges of I" are subdivided into r
equal pieces in I, Edgewise subdivision first appeared in a paper by Freudenthal
[55] but has found numerous applications in discrete geometry [48], K-theory [61]
or commutative algebra [27]. We explain the latter in more detail later in the text.

3.3 Interval Subdivision

This subdivision operation is easiest described starting with an abstract simplicial
complex A. First, we consider A\ {@} as a partially ordered set ordered by inclusion.
Let £2 be the set of formal symbols [A, B] for any inclusion A € Bin A \ {#}. Note
A = B is permitted. Now we consider the partial order on the intervals induced
by containment and define Int(A) to be the simplicial complex of all chains of
intervals in this order. By Walker [117, Theorem 6.1. (a)] we obtain that Int(A)
is a subdivision of A. Indeed this subdivision also appears as the special case N = 1
of the subdivision from [32, Fig. 1.2].

Problem 1 Prove that Int(A) coincides with the subdivision from [33, Fig. 1.2] if
one sets N = 1in [33].

4 The Stanley-Reisner Ring

The algebraic object usually associated to a simplicial complex A is the face or
Stanley-Reisner ring IK[A] of A. Let A be a simplicial complex over ground set £2.
The ring KK[A] is the quotient of the polynomial ring K[x,, : w € £2] over the field
K and the Stanley-Reisner ideal /4 generated by the x, := [[,cyx; for minimal
non-faces N of A. Note that a subset N C §2 is a minimal non-face of A if N ¢ A
and all proper subsets of N are in A.

Since we will have to deal with monomials and ideals generated by mono-
mials more often in this text, we introduce some notation here. A monomial in
Klx, : o € £2]is aproduct [],cox% for some non-negative integers o,. We
also write x* for ]_[we o Xoo where @ = (0w)weg. In this notation we have for the
squarefree monomials x,, introduced above the identity x, = x* fora = ) .y €w
for the unit basis vectors (e, )oece of R. The support supp(x*) of a monomial x*
isthe set {w : oy, # 0}. Anideal / in K[x, : o € £2]is called a monomial ideal if
it is generated by monomials. The Stanley-Reisner ideals are exactly the monomial
ideals generated by squarefree monomials x,, for some collection of subsets N C §2.
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