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Abstract In this paper the solvability of the direct electromagnetic scattering
problem by an impedance screen in a chiral environment is presented. Time-
harmonic electromagnetic plane waves in a chiral medium are considered as incident
fields. These propagating fields are scattered by an obstacle which is a partially
coated open surface 
 , well known as the “screen". Uniqueness results are proved
using appropriate relations for Beltrami fields, and in addition, existence results are
established by using a variational method in suitable functional space setting.
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Introduction

In this work the scattering problem of plane time-harmonic electromagnetic waves
by a partially coated chiral obstacle embedded in an infinite homogeneous isotropic
chiral medium is studied. From the mathematical point of view, chiral media
satisfy a set of constitutive relations in which the magnetic and electric fields
are coupled. Different expressions exist for the constitutive relations [14]; in this
work the well-known Drude-Born-Fedorov (DBF) constitutive relations are used.
These constitutive relations are chosen because they are symmetric under time
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reversality and duality transformations. Chiral obstacles are characterized by the
so-called chirality (or preferential handedness) and the related electromagnetic
fields are composed of left circularly polarized (LCP) and right circularly polarized
(RCP) components. These fields have independent directions of propagation and
different wave numbers. Chirality is common in a variety of naturally occurring and
man-made objects (e.g. DNA in molecular scale, helices) and has also played an
important role to the study of optical activity. Properties and scattering problems
involving chiral media have been studied by many scientists; for an excellent
source we refer to [15, 16] and [17] (and therein references). Solvability results
concerning direct scattering problems where the obstacle is a perfect conductor or a
dielectric (penetrable scatterer) in chiral media can be found in [5, 6]. In these cases,
Bohren decomposition is used and an equivalent boundary integral formulation to
the scattering problems is considered. Furthermore, boundary integral equations for
electromagnetic scattering by a homogeneous chiral obstacle were studied in [4], by
using a generalization of Müller’s equations for scattering by a non- chiral obstacle.
In [1], existence and uniqueness of the solution to the diffraction problem of a plane
electromagnetic field by a chiral curved layer covering a perfectly conducting object
have been studied. In particular, approximative impedance conditions are given for
thin chiral curved layers and optimal error estimates are obtained (the reader can
also see [2]). We end up with the work studied in [3], where the LCP and the
RCP Beltrami Herglotz functions were defined by an integral representation over
the unit sphere where the corresponding kernels are exactly the Beltrami far-field
patterns. These functions will play an important role for the investigation of the
inverse electromagnetic problem for a mixed-impedance screen in chiral media.
For non-chiral media, mixed boundary value problems which describe model of
scattering by obstacles that are covered by a thin layer of material on part of their
boundaries are studied in [10]. The direct and inverse scattering problem of a time-
harmonic electromagnetic plane wave by a mixed perfectly conducting-impedance
screen is studied in [8, 11] and [9]. Further, we mention that problems with mixed-
impedance boundary conditions in elasticity have been considered in [7].

Setting Up the Problem

We consider a plane time-harmonic electromagnetic wave Einc which is propagated
in an infinite homogeneous isotropic chiral medium. This field is disturbed by a
very thin partially coated chiral obstacle (the scatterer), known as screen, which is
an open, bounded, smooth surface 
 2 R

3 with two sides coated by impedance
material. This surface is also a part of a piecewise smooth surface @D of a bounded
domain D � R

3. The domain D as well as the infinite medium is filled up with
a homogeneous and isotropic chiral medium of chirality measure “. For our case
we assume that “ is a positive constant. We denote On the unit normal vector to 

which coincides with the outward normal vector defined almost everywhere on @D.
The boundary condition on each side of this surface obstacle is described by an
impedance boundary condition.
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For a vector u we use the notation On � uCj
 , On � uCj
 , �CT uj
 for the restriction
to 
 of the traces On � uCj@D, On � uCj@D and�CT uj@D, respectively, from the outside
of the @D, where �CT u WD On � .uC � On/ is the tangential component of uC. Similar
considerations for the traces from the inside of the@D which are notated by On �
u�j
 , On � u�j
 , ��T uj
 also hold. We also use the notation u˙j
 when a relation is
hold for both the restrictions of the vector u on 
 .

The total electric field E is the superposition of the incident electric field Einc and
the scattered electric field Esc, i.e.,

E D Einc C Esc: (1)

The scattering electromagnetic problem by a double impedance screen in chiral
media is to determine the total electric field E that satisfies

r � r � E D 2 �2 ˇr � EC �2E in R
3 n 
; (2)

On � r � E� D i���2

k2
On � E� � OnC �2 ˇ On � E� on
; (3)

On � r � EC D i�C�2

k2
On � EC � OnC �2 ˇ On � EC on
; (4)

Or � r � Esc � ˇ �2 Or � Esc C i �2

k
Esc D o.

1

r
/ r!1; (5)

where �2 D k2=.1�k2ˇ2/, k D !p" � , with! the angular frequency,"; � been the
electric permittivity and magnetic permeability, respectively, and ��; �C 2 L1.
/
with�� ; �C � �0 > 0. The Silver-Müller radiation condition (5) holds uniformly
in all directions Or D r=r where r WD jrj. We note that the electric field E is
divergence-free, that is r � E D 0. In addition, k is not a wave number and its
notation has not any particular physical significance.

In what follows we deal with the uniqueness and existence of the solution of the
scattering problem (2)–(5) in an appropriate space setting . Hence, we define the
following Sobolev spaces:

H.curl;B
 n 
/ WD fu 2
�
L2.B
 n 
/

�3 W curlu 2 �L2.B
 n 
/
�3g; (6)

L2t .
/ WD fu 2 ŒL2.
/�3 W u � On D 0; on
g; (7)

Hloc.curl; R3n
/ WD ˚u 2 H.curl; B
 n 
/ for every B
 such that D � B

	
; (8)
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and

X.curl; R3n
/ WD ˚u 2 Hloc.curl; R3 n 
/ W On � u�j
 ; On � uCj
 2 L2t .
/
	
; (9)

where B
 is a sphere with radius 
 large enough, containing the bounded domain D.
The last space is equipped with the graph norm

k u k2
X.curl;R3n
/ WD k r � u k2

.L2.B
n
//3
C k u k2

.L2.B
n
//3

C k On � u� k2
L2t .
/
C k On � uC k2

L2t .
/
: (10)

Uniqueness Results

In order to prove uniqueness for the scattering problem (2)–(5) we will be based on
the Bohren decomposition of the electric field E and magnetic field H into the QL

(LCP) and QR (RCP) Beltrami fields

E D QL � i�QR; H D 1

i�
QL CQR; (11)

where � D
q

�

"
is the intrinsic impedance of the chiral medium. In view of (11) the

Beltrami fields are expressed as

QL D EC i�H
2

; QR D i��1ECH
2

: (12)

In addition the Beltrami fields satisfy the following equations:

r �QL D �L QL; r �QR D ��R QR; (13)

where �L D k.1� kˇ/�1, �R D k.1C kˇ/�1 are the wave numbers for the Beltrami
fields, QL;QR, respectively.

The scattered Beltrami fields Qsc
L ;Q

sc
R , satisfy the Silver-Müller type radiation

conditions [3, 5]

Or �Qsc
L C i Qsc

L D o.
1

r
/; Or �Qsc

R � i Qsc
R D o.

1

r
/; as r!1; (14)

as well as the asymptotic relations

Qsc
L D O.

1

r
/; Qsc

R D O.
1

r
/; as r!1: (15)
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Relations (14) and (15) are obtained via (12) with the aid of the asymptotic
behaviour of E; H as r ! 1, [12]. In what follows, with the notation QA; A D
L;R, the bar “�" will denote the conjugate vector of QA and with Q�A , QCA we denote
the limit from inside and outside of the boundary @D, respectively. In addition, the
notation QȦ is for both the previous limits. We are now ready to proceed with the
following proposition:

Theorem 2.1 The Beltrami fields QA; A D L;R, with QA 2 X.curl;R3n
/, satisfy
the following relation:

Z

S


Ox � .QA �QA/ ds D
Z




On � .Q�A �Q �A / ds�
Z




On � .QCA �QCA / ds; (16)

where S
 D fx 2 R
3 W jxj D 
g and Ox is the unit normal vector to the spherical

surface S
.

Proof The reader can be found an analogous proposition in [8], and hence the proof
is omitted for brevity. �
Further we have the following result:

Theorem 2.2 The Beltrami fields QL; QR 2 X.curl;R3 n 
/ satisfy the relation

=
�
1

�

Z




On � .QL̇ �Q L̇ / ds� �
Z




On � .QṘ �Q Ṙ / ds

�

D k

�

Z




1

�˙
.jU˙j2 � jOn � U˙j2/ ds; (17)

where U˙ WD Q L̇ C i �Q Ṙ .

Proof The boundary conditions (3) and (4) via the relations (11) and (13) and the
vector identity u D . On � u/ On � On � .u � On/ lead to

QL̇ D i�QṘ C Œ On � .QL̇ � i�QṘ /� On

C ik2

�˙
.ˇ � �L

�2
/ On �QL̇ C

�k2

�˙
.ˇ C �R

�2
/ On �QṘ on 
; (18)

but via

ˇ � 1

�R
D �1

k
and ˇ C 1

�L
D 1

k
(19)

the relation (18) takes the form

QL̇ D i�QṘ C Œ On � .QL̇ � i�QṘ /� On

� ik

�˙
On �QL̇ C

�

�˙
On �QṘ on 
: (20)
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Multiplying (20) by On and then by Q
˙
L we arrive at

On � .QL̇ �Q L̇ / D i� On � .QṘ �Q L̇ /

� ik

�˙
. On �QL̇ /. On �Q L̇ /C

�k

�˙
. On �QṘ /. On �Q L̇ /

C ik

�˙
QL̇ �Q L̇ �

�k

�˙
QṘ �Q L̇ (21)

as well as

On � .QṘ �Q Ṙ / D �
i

�
On � .QL̇ �Q Ṙ /

C ik

�˙
. On �QṘ /. On �Q Ṙ /C

k

��˙
. On �QL̇ /. On �Q Ṙ /

� ik

�˙
QṘ �Q Ṙ �

k

��˙
QL̇ �Q Ṙ : (22)

For the remaining of the proof of (17), we use (21) and (22) in order to evaluate the
quantity

1

�
On � .QL̇ �Q L̇ /� � On � .QṘ �Q Ṙ /: (23)

Taking into account that

i On � .QṘ �Q L̇ /C i On � .QL̇ �Q Ṙ / (24)

is a real number, after some calculations we can arrive at the relations

ik

��˙
QL̇ �Q L̇ �

k

�˙
QṘ �Q L̇ C

k

�˙
QL̇ �Q Ṙ C

i�k

�˙
QṘ �Q Ṙ D

ik

��˙
jU˙j2; (25)

and

� ik

��˙
. On �QL̇ /. On �Q L̇ /C

k

�˙
. On �QṘ /. On �Q L̇ /�

k

�˙
. On �QL̇ /. On �Q Ṙ /

� i�k

�˙
. On �QṘ /. On �Q Ṙ / D �

ik

��˙
j On �U˙j2; (26)

and hence, the assertion of the proposition is proved. �
In the sequel, uniqueness for the boundary value problem (2)–(5) will be established.
We will consider the corresponding homogeneous scattering problem of (2)–(5), i.e.,
incident electric field Einc D 0. Relations (12), (16) and (23) will be used in order
to prove the following uniqueness theorem:
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Theorem 2.3 The electromagnetic scattering problem (2)–(5) in chiral media, for
Einc D 0, has the trivial solution.

Proof By radiation conditions (14) we have

lim

!1

 
1

�

Z

S


j O� �QL C iQLj2dsC �
Z

S


j O� �QR � iQRj2ds

!

D 0: (27)

If Dex D R
3nD, relation (27) with the aid of the divergence theorem in D and

Dex \ B
 for the vectors QA � QA; A D L;R with QA 2 X.curl;R3 n 
/, and due
to (16), yields to

lim

!1

 
1

�

Z

S

j O� �QLj2dsC 1

�

Z

S

jQLj2dsC �

Z

S

j O� �QRj2dsC �

Z

S

jQRj2ds

!

C2=
�
1

�

Z



.QCL �QCL / � On ds � �

Z



.QCR �QCR / � On ds

�

C2=
�
1

�

Z



.Q�L �Q�L / � On ds � �

Z



.Q�R �Q�R / � On ds

�

D 0 (28)

Taking into account (17) and (28), via Rellich’s lemma in chiral media [6], we
arrive at QL D QR D 0, and from (11) the theorem now easily follows. �

Existence of the Solution

In this section we will prove the existence of the solution of the scattering
problem (2)–(5) using a variational method. Having in mind the Sobolev spaces
defined in (6)–(9), we multiply equation (2) by a test function w 2 X.curl; R3 n 
/
and we integrate by parts in D and Dex \ B
 . If we apply the divergence and the
first vector Green’s theorem in D and Dex\B
, in view of the continuity of On�E and
On�r�E across @Dn
 we can obtain the variational form of the scattering problem

Z

D
.r � E/ � .r � w/ duC

Z

Dex\B


.r � E/ � .r � w/ du

�2�2ˇ
Z

D
E � .r � w/ du� 2�2ˇ

Z

Dex \B


E � .r � w/ du

��2
Z

D
E � w du � �2

Z

Dex \B


E � w du
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C i�2

k2

Z




�C �CT E � �CT w ds� i�2

k2

Z




�� ��T E � ��T w ds

��2ˇ
Z




. On � E/ � �CT w dsC �2ˇ
Z




. On � E/ � ��T w ds

C
Z

S


Gkce.Ox � E/ � �Twds

D � i� 2

k2

Z




�C �CT Einc � �CT wdsC i� 2

k2

Z




�� ��T Einc � ��T wds

C�2ˇ
Z




. On � Einc/ � �CT w ds� �2ˇ
Z




. On � Einc/ � ��T w ds

�
Z

S%

Gkce.Ox � Einc/ � �Tw ds ; (29)

where Einc is a given field and Gkce is a Calderon type operator in chiral media
which maps a tangential vector field Ox � E on S
 to an also tangential vector field
Ox � .r � E � 2�2ˇ E/ on the same surface space. These operators for non-chiral
media have been studied in [13] and [18]. The authors of this article will present
Calderon type operators in chiral media, as well as their identities, in a future work.

We are going to prove gradually the existence theorem:

Theorem 3.1 For any given field Einc 2 X.curl; R3 n 
/ the electromagnetic
scattering problem in chiral media (29) has a unique solution E 2 X.curl; R3 n
/.
The scattered field E in (29) also satisfies

r � r � E D 2 �2ˇ r � EC �2E; in R
3 n B
 (30)

Ox � E D �; on S
 (31)

Or � r � E � ˇ �2 Or � EC i�2

k
E D o.

1

r
/; r!1 (32)

where � 2 L2t .S
/. We note that in (29), we have taken into account that for the
incident electric field Einc the equation

r � r � Einc � 2 �2 ˇr � Einc � �2Einc D 0; in R
3 (33)

holds. We now define the space

S WD ˚p 2 H1.B
 n 
/ W p�j
 D c� and pCj
 D cC
	
; (34)

where cC and c� are constant numbers, as well as the space
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X0 WD
n
u 2 X.curl; R3 n 
/ W< Gkce.Ox� u/ ;rS
q > � �2.u ;rq/B
 D 0; for q 2 S

o
: (35)

Then we write (29) in a more compact form

A.u;w/ D B.w/; (36)

where

A.u;w/ D .r � u;r � w/D C .r � u;r � w/Dex \B


�2�2ˇ �.u;r � w/D C .u;r �w/Dex \B


�

��2..u;w/D C .u;w/Dex\B
 /C < Gkce.Ox � u/; �Tw >S


C i�2

k2
< �C�CT u; �CT w >
 � i�2

k2
< ����T u; ��T w >


��2ˇ < On � u; �CT w >
 C�2ˇ < On � u; ��T w >
; (37)

and the right part of equation (36), due to (29), consists of boundary data

B.w/ D i�2

k2
< ����T Einc; ��T w >
 � i�2

k2
< �C�CT Einc;w >


C �2ˇ < On�;Einc�CT w >
 ��2ˇ < On � Einc; ��T w >


� < Gkce.Ox � Einc/; �Tw >S
 : (38)

The first step is to prove the following:

Lemma 3.2 The equation A.r p ;r q/ D B.r q/ has a unique solution for any
q 2 S.

Proof We put u D r p and w D r q so the equation (36) takes the form

��2.r p;r q/L2.B
/C < Gkce.Ox � r p/;rS
q >S
D B.r q/; (39)

since .r p/T D On�r p� On D �Tr p D 0 for p 2 S. Then compactness properties of
the Calderon type operators allow us to apply the usual procedure of the Fredholm
alternative theory to (39) as in [18] in order to complete the proof. �
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We move on with the next step which is the lemma below:

Lemma 3.3 r S is a closed subspace of X.curl; R3 n 
/ and

X.curl; R3 n 
/ D X0 ˚rS: (40)

Proof The spacerS is closed in X.curl; R3n
/ since S is closed in H1.B
 n
/ [11].
Then if u 2 X.curl; R3 n 
/ is a solution of (36), we have A.u;r q/ D B.r q/

for any q 2 S. We consider that u D vC r p 0, where r p 0 is the unique solution
of (39), so it holds A.v ;r q/ D 0 and from the definition (35) we take v 2 X0.
Then it is easy to prove that this expression of u as a sum of elements of r S and X0

is the unique one. �
Then we are going to deal with the equation A.u; v/ D B.v/; for any v 2 X0, which
finally takes the form

A.w; v/ D B.v/� A.r p 0; v/; for any v 2 X0: (41)

We continue our proof with the following result, due to [8].

Lemma 3.4 The space X0 is compactly imbedded in L2.B
/.

Proof We consider a sequence
˚
uex

n

	1
nD1 of solutions of the scattering problem

r � r � uex
n D 2 �2ˇr � uex

n C �2uex
n in R

3 n B
; (42)

Ox � uex
n D Ox � un on S 
; (43)

Or � r � uex
n � ˇ �2 Or � uex

n C
i �2

k
uex

n D o.
1

r
/ r!1; (44)

where fung1nD1 is a given bounded sequence in X0. For the solutions uex
n we can give

series expansions using proper vector wave functions in chiral media analogous to
[18]. The boundary condition (43) and the definition (35) lead to the conclusion that
the vectors uex

n and un have equal normal and tangential components on S
 so each
element of the sequence un can be extended to a function u0n 2 Hloc.curl;B
 n 
/ to
all R3, defined as,

u0n D
8
<

:

un in B
;

uex
n in R

3 n B
:
(45)

Following analogous ideas for chiral media as those in [11], the proof is completed.
�
The above result allows us to define proper compact operators in order to apply
again the Fredholm alternative theory to (41), and with the aid of Lemma 3.4 to
prove that Eq. (41) has a unique solution. This conclusion completes the proof of
Theorem 3.1 for the existence of the solution of (29), and therefore establishes the
existence result for the scattering problem (2)–(5).
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Conclusions

This paper was concerned with the solvability of the direct electromagnetic scatter-
ing problem by a chiral impedance screen in a chiral environment. In particular, the
terms 2�2 ˇr�Einc, �2ˇ On�E in (2)–(4) were the main reason for using the Beltrami
fields in order to prove uniqueness for the electromagnetic problem in chiral media.
We also make the following remarks:

1. If ˇ D 0, i.e., non-chiral environment, the approach for existence and
uniqueness is similar to the case for the mixed scattering problem in [11],
which holds for scattering by a screen in non-chiral media. In addition if
�C D 0 and�� D 0, we can analogous prove that the scattering problem (2)–(5)
has a unique solution.

2. In the case where the chirality measure ˇ is not a constant, our method can also
be applied, since the modifications that occurred can be handled.
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