
Chapter 2
Literature Review

Abstract This book identifies techniques that can be used to evaluate the dif-
ferences in consumption-based accounts (CBA) calculated by three multiregional
input–output (MRIO) databases. This literature review chapter gives an overview
of the development of environmentally-extended input–output analysis, followed by
descriptions of how to construct an MRIO database, reviews of the metadata docu-
ments from existing MRIO databases, summaries of studies that aim to understand
uncertainty in both IO andMRIO results and descriptions of research and techniques
that this book will use to understand difference in MRIO databases. The following
chapter on methodology and data then focuses on the specific techniques that are
employed in this study. Any mathematical equations are to be found in the methods
chapter (Chap. 3).

2.1 A Brief Overview of Input–Output Techniques

Input–output analysis uses an analytical framework to describe the economy of a
region, nation or even the entire world (Miller and Blair 2009). The basic framework
is shown in Fig. 2.1. Z is a matrix showing inter-industry transactions; Y is final
demand sales to households, government and capital investments; h is the value
added in compensation of employees, taxes on production and imports less subsidies,
and gross operating surplus; x is the sum of all outputs; and f is extension data such
as for example pollutants, energy use or number of employees by industrial sector.

Figure2.1 shows a symmetric IO table (SIOT),where each industry is the producer
of a single product type. The transaction matrix can take one of two forms: either a
product-by-product (P-by-P) IO table or an industry-by-industry (I-by-I) IO table. A
P-by-P table describes the quantity of product used tomake each product irrespective
of the producing industry, where-as an I-by-I table describes inter-industry relations
(Eurostat 2008). In reality, some industries produce two or more product types. For
example Yamaha produces and sells both motorcycles and pianos! To understand
instances of co-production, sometimes IO tables are constructed in a supply and
use table (SUT) format as shown in Fig. 2.2. Here the Z matrix of inter-industry
transactions is separated into two separate accounts; the supply matrix and the use
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Fig. 2.1 A symmetric
input–output table

Fig. 2.2 A supply and use
input–output table

matrix. In the SUT system, the supply table is transposed to form the make table and
denoted by V. It shows the products that are made by each industry. The use matrix
U, shows the intermediate products that are bought by each industry in order to make
their final products. The greyed out sections contain zeros. In the SUT format final
demand is only recorded for products, and value added and environmental extensions
are only recorded for industries.



2.1 A Brief Overview of Input–Output Techniques 17

In both SIOT and SUT formats, in order to understand the role demand plays
in the production of goods and services, a series of linear equations are formed
that describe how producing a single unit of final demand requires inputs from all
sectors of the economy. Solving this series of equations reveals the production recipe
required to make the product. For details of the equations see Sect. 3.1. It is generally
accepted that the economistWassily Leontief (Bjerkholt and Kurz 2006) was the sole
instigator of this field and the inverse function used to solve the series of equations—
the Leontief inverse—takes his name.

The discipline of input–output analysis has developed significantly since its con-
ception in the 1930s by Leontief. Expanding from Leontief’s (1936) 41 sector model
of the American economy, today’s IO analysts have the choice of several databases
containing time-series data on thousands of sectors, from countries spanning the
globe. The expansion and development of IO analysis has been driven by three
main factors. Firstly, it has become a requirement for many countries to produce
annual consistent systems of national accounts (SNA) to calculate gross domestic
product (GDP). The EU (European Union) member states are required to produce
standardised 60 sector SUTs on an annual basis to comply with the European Sys-
tem of Accounts (ESA) 95, from which a set of SIOTs are generated every five years
(Tukker et al. 2009). Secondly, advances in high performance computing have meant
that working with and storing very large input–output databases has become more
manageable (Wiedmann et al. 2011). Finally, the political concerns of the time have
influenced the type of research question IO analysis is used for. For example, in recent
years, growing concern about harmful concentrations of GHGs in the atmosphere has
prompted renewed interest in using environmentally-extended IO (EEIO) techniques
to understand the role of demand in increases in emissions and the development of
consumption-based accounts (CBA) to complement the existing territorial emissions
inventories (Barrett et al. 2013; Davis and Caldeira 2010; Hertwich and Peters 2009;
Minx et al. 2009a, b; Peters et al. 2011b; Peters 2008; Wiedmann and Barrett 2013).

It is impossible to say which of these three factors has been most influential in
the constantly evolving IO methodology. When taking a chronological approach
to reviewing IO methods and applications, one has to bear in mind the stage each
of the above factors had reached when the research was conducted. For example,
Leontief’s (1936) initial study built a single region IO table of theAmerican economy
to understand the effect of a change in demand on the types of jobs needed after
the American recession. In the 1930s, Leontief would have had to manually solve
the series of simultaneous equations to construct the Leontief inverse used in his
calculations. This time consuming exercise limits the total manageable matrix size.
Leontief’s (1936) IO table from1919 included a columnofAmerican produced goods
that are removed for exports and a row of imports showing inputs to the intermediate
demands of US industry and a total import to final demand. These initial IO studies
tended to have a single country focus and, as described, had relatively simplistic
methods for dealing with traded goods.

Section2.1.2 explains how IO analysis has evolved to take into account imports
from multiple trade regions and to start to map the complex web of transactions that
make up product supply chains. To explain the complexity of global trade systems
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this review uses the example of EEIO analysis—the history of which is described in
Sect. 2.1.1.

2.1.1 Environmentally-Extended Input–Output Analysis

Since the late 1960s researchers have theorised about accounting for externalities
such as waste, production losses, scrap and pollution in production processes (Ayres
and Kneese 1969; Kagawa 2012). As early as 1966, Cumberland (1966) proposed
that IO techniques could be a useful methodology in understanding the consequences
of development processes on the environment. These early investigations involved
the inclusion of a vector of ‘externalities’ whichmeasured tonnes of pollution per unit
of output for each industrial sector. Calculations could then determine how pollution
originating from producing sectors could be reallocated to final users. These early
studies were static, ex-post analyses describing the situation as observed at the end
of the time frame of measurement. Kagawa (2012, p. 4) explains that these types
of analyses can be criticised for not considering “the abatement activities of various
pollutants generated by production activities”.

In 1970, in his paper presented to the International Symposium on Environmental
Disruption in the Modern World, Leontief demonstrates how an IO framework can
be extended further to consider pollution abatement activities by introducing the
concept of an anti-pollution industry into the inter-industry flow matrix (Leontief
1970). These types of analyses were able to estimate both the economic and polluting
effects of a newgovernment spending program.Using generalised IOmethods allows
researchers to optimise one or more objective functions. For example, Miller and
Blair (2009) demonstrate using IO methods to minimise pollution whilst meeting a
set level of final demand. This aspect of environmental IO analysis has fed into the
research areas of general equilibrium modelling and macro-economic techniques.
These dynamic systems are useful for future projections and policy simulations, but
are outside of the scope of this book which concentrates on the comparison of static
databases.

More recently, researchers have returned to focus on the information that can
be gleaned from the static ex-post approach described earlier. Following the 1997
United Nations Climate Change Conference in Kyoto—and the resulting protocol
whereby theworld’s developed nations agreed to greenhouse gas emissions reduction
targets—understanding the cause of carbon emissions has become a research priority.
IO analysis can be used to gain a further understanding of the role consumption has to
play in the generation of emissions (Hertwich and Peters 2009; Peters and Hertwich
2008a, b; Wiedmann et al. 2007). Using IO techniques, analysts can reassign the
CO2 emissions associated with production activities to the final demand of products.
Summing the emissions associated with a nation’s demand for products, along with
the direct emissions from the heating of homes and private transportation,1 calculates

1Known as direct household emissions.
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what has come to be known as a ‘carbon footprint’ (Wiedmann andMinx 2008). The
interest in EEIO further increased when researchers started to calculate and compare
consumption and production emissions at a national level (Hertwich and Peters 2009;
Peters andSolli 2010;Weber andMatthews2007;Wiedmann et al. 2010). These types
of calculations require information on not only the interactions between domestic
industries and their associated environmental impacts, but also on what products are
imported into the country, what their environment impacts are, and what domestic
products leave the country as exports. To undertake this type of calculation, the IO
table must accurately describe trade in some detail.

2.1.2 Understanding Trade in Input–Output Analysis

Adding a geographic extension to the basic IO framework can help understand
impacts associated with trade. To consider the impacts associated with global pro-
duction systems, the IO structure should to take into account impacts of production
elsewhere in the world and understand how goods and services are traded globally.
There are two types of flows of traded goods for which the additional impacts can be
measured. Either a consumer in country A buys an imported finished good as a final
demand product, or an industry in country A imports goods from the rest of the world
as an intermediate demand that is then used to produce its final product. Similarly,
products can leave Country A either as finished goods that are imported to other
countries as final demand or as intermediate demands to other countries industry.

Figure2.3 shows the development of how IO tables have dealt with trade as the
databases themselves have increased in complexity. The single region treats each
country in isolation; bidirectional trade considers how country 1 (C1) imports from
and exports to each other region; and multidirectional trade understands the trade
between, for example, countries 4 and 5 that contributes to products imported by
country 1.

Fig. 2.3 Development of understanding trade in IO analysis (adapted from Lenzen et al. 2004)



20 2 Literature Review

2.1.2.1 Single Region Input–Output Models

In the very first IO analysis Leontief (1936) uses a single region input–output (SRIO)
table. To calculate a country’s CBA it is assumed that products that are imported
to intermediate or final demand are produced with the same production recipe as
domestic goods and services. This is known as the domestic technology assumption
(DTA).

The SRIO framework, as shown in Fig. 2.4, splits final demand into those products
bought by country A’s consumer and those that are exported to other nations. This
allows the analyst to understand the role domestic demand has on production. Sales
to Country A final demand does not distinguish between final demand of domestic or
imported products here. To complete an environmental-impact study using a SRIO
database, the imports row is also used. The analyst adds the impact of intermediate
imports to the account.

Despite criticism of this approach (Andrew et al. 2009; Peters et al. 2011b),
SRIO based analyses were still commonly used for environmental-impact studies as
recently as 2009. In a recent review of consumption-based accounting approaches
using IO methods, Wiedmann (2009) cites 31 such studies published between 2006
and 2009.

Fig. 2.4 SRIO Framework
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2.1.2.2 Bidirectional Trade Input–Output Models

This method uses each region’s SRIO table alongside bilateral trade data (BTD) to
measure the emissions embodied in bilateral trade (EEBT). EEBT uses domestic
technologies to calculate impact of both domestic products consumed domestically
and the impact of those domestic products that are exported abroad both as final
demands and intermediate demands to foreign industry (Peters and Solli 2010). The
impact of imported goods is then calculated as the sum of every other country’s emis-
sions embodied in their exports to the initial country. By starting with the territorial
emissions in a country or region, and subtracting the balance of emissions embod-
ied in trade (BEET), the end result is a calculation of a trade-adjusted emissions
inventory (TAEI) (Peters and Solli 2010).

Figure2.5 shows the TAEI flows for country A. The purple arrows represent final
demand impacts due to country A’s consumption; blue arrows show intermediate
imports to country A’s industry; green arrows show intermediate exports to other
countries’ industry and red arrows show exports to other countries final demand.
Country A’s TAEI is found by taking domestic production emissions and adding the
purple and blue flows that flow in to the boundary and subtracting the green and red
flows that flow out. Note that the boundary, (dashed oval) within which the emissions
are measured, includes both the consumers in country A, and the industries.

The IO structure required for bidirectional trade IO databases is shown in Fig. 2.6.
The greyed-out sections contain zeros. Here, the final demand vector represents final
demand for domestic products. Bilateral trade data (BTD) distinguishes the destina-
tion country of an exporting country’s exports. The exports include both exports to
final and intermediate demand. To calculate country A’s consumption based account,
the ‘country A final demand’ vector and the ‘exports from countries B&C to country
A’ are used.

Zhou and Kojima (2009) state that if exports of intermediate demand are treated
exogenously, as in EEBT approaches, the impacts associated with the use of inter-
mediate commodities by downstream production are not accounted for properly. In
other words, the emissions associated with a textile product from China, which is
bought in the UK, might contain some emissions in the supply chain that were gen-
erated in the UK as part of its production which do not get accounted for. Rather than
dismiss this approach as not handling flows correctly, both Peters and Solli (2010)
and Kanemoto et al. (2012) urge that practitioners need to ensure that the correct
question is being asked of the model and the results are interpreted appropriately.
The EEBT approach produces measures of exports and imports that are consistent
with reported bilateral flows and can reveal the sizes of both final and intermediate
demand. This technique can help provide an answer to the research question ‘what
are the territorial based emissions in country C to produce goods and services which
are imported?’ (Peters and Solli 2010).
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Fig. 2.5 Flows measured to calculate TAEI of country A

2.1.2.3 Multidirectional Trade Input–Output Models

In a multidirectional trade model, rather than linking together separate SRIO tables
using BTD, a multiregional input–output (MRIO) table is constructed. An MRIO
table can be considered as one very large IO table. In the MRIO table, each column
shows the industry requirements from both domestic and foreign sectors to produce
a product from a specific sector in a specific country. This means that if a consumer
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Fig. 2.6 EEBT Framework

in country A, buys a domestically produced product, it takes into account any inter-
mediate flows from countries B and C that are used to make products in country A
that are consumed by country A consumers. Figure2.7 shows this as the arrows with
solid lines. Note that the purple and green solid arrows represent goods purchased
from domestic production in country A but originate from industries in countries B
and C with some processing in A. This effect is shown by the arrow passing through
country A’s industry. Also note that a product imported to final demand from country
B (dotted arrows) can include not only emissions from industry in countries B and
C, but also some domestic territorial emissions from country A.

Here the boundary is drawn around Country A’s consumers and does not include
country A’s industry. If the boundary included industry, the red arrows would be
double counted. The MRIO system can show the consumption account for country
A broken down by the country of final assembly (or the place shown in the final
demand imports) by summing the solid arrows (for country A), the dotted arrows
(for country B), and the dashed arrows (for country C). Or, alternatively, the system
can show the consumption account broken down by source country by summing the
red arrows (for country A), the blue arrows (for country B) and the green arrows (for
country C).

The IO structure required for a multidirectional trade IO database—an MRIO
database—is shown in Fig. 2.8. To calculate country A’s consumption based account,
only the final demand of country A’s consumers is used. If the MRIO framework
(Fig. 2.8) is compared with the EEBT framework (Fig. 2.6) and the SRIO framework
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Fig. 2.7 Flows measure using MRIO analysis to calculate the CBA for country A

(Fig. 2.4), we see that additional information is needed, beyond thatwhich is provided
in each country’s SRIO. BTD informs where exports go by product type, destination
region and whether this is to final or intermediate demand. This means that the final
demand vector in the MRIO can be extended to show Country A’s final demand of
B & C as this is the exports from B & C to country A’s final demand. However,
for the intermediate demand, the framework requires not only the product type and
destination, but the industry that is buying it. This means that the column ‘exports
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Fig. 2.8 MRIO Framework

from Countries B & C to Country A’ in the EEBT framework has to populate the
matrix of ‘imports to country A intermediate demand from countries B & C’. Since
this data is missing from BTDs, MRIO databases often require some estimation in
their content. In Sect. 2.2, the construction estimations are discussed in more detail.

A full MRIO database can isolate, capture and measure each of the explicit flows
from every industry, in every countrymaking up the full supply chain of a product (Su
andAng 2011;Wiedmann et al. 2011;Wiedmann 2009). Tukker et al. (2009, p. 1931)
state MRIO as the “best way of taking trade into account” but again, Peters and Solli
(2010) explain that this is very much dependent on the research question. The EEBT
approach is the only way to count the exact size of the flows that leave a country as
exports (regardless of if they flow back in imported goods). Both EEBT and MRIO
account for the same global emissions but the allocation is different depending on the
level of trade in intermediate products. MRIO endogenises the intermediate demand,
and so the system only calculates using final demand to avoid any double counting
of intermediate consumption. Because EEBT does not consider flows from B to C
in A’s account, a TAEI does not double count intermediate demand either.

2.2 MRIO Construction

An MRIO table for n countries each with m sectors is a matrix of dimensions mn
rows by mn columns and rather than considering a single nation’s economy it treats
the entire global economy as a single system. As Fig. 2.8 shows, the MRIO table is
constructed by placing the SRIO tables from every region along the diagonal of a
large composite matrix and filling in the off diagonal matrices to show the sectoral
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requirements from non-domestic regions in the production of domestic products
(Peters et al. 2011a). Construction assumes that SRIO tables are available for all
nations, that there is a degree of harmonisation in sectors in each SRIO and that trade
linked data can be determined (Tukker et al. 2009). One of the reasons the EEBT
technique has been used to account for emissions from consumption rather than a full
MRIO analysis is the difficulties in obtaining suitable data to construct a MRIO table
(Peters et al. 2011a). Sectors rarely match between different countries’ SNAs and
populating the off diagonal sections is complex, time consuming and can involve a
lot of assumptions. As Dietzenbacher et al. (2013, p. 73) state, “Constructing a large
database [like in the WIOD project] implies that several choices need to be made”.
In Sects. 2.2.1 and 2.2.2 the data requirements and data manipulations needed to
construct an MRIO are discussed in detail.

2.2.1 Data Requirements to Extend IO to Consider Global
Trade

An MRIO database requires a set of SRIO tables for each country in the world
and further additional data to understand the complex web of international trade
interactions that take place between each country. As mentioned in Sect. 2.1, the EU
member states are required to produce standardized 60 sector SUTs on an annual
basis to complywith ESA95, fromwhich a set of SIOTs are generated every five years
(Tukker et al. 2009). Other major nations produce SUTs and SIOTs but there is no
global standardisation to sector classification (Tukker et al. 2009). In the construction
of country level SRIOs a domestic table is produced alongside either an imports row,
or an imports table. An imports table is not broken down by country, so the tables
show the product that is imported and the importing industry, but not the country it
is imported from. An imports row simply shows the spend on imports required by
each industry to produce their product. As explained in Sect. 2.1.2.2 bilateral trade
databases (BTD) provide information on exports and imports of goods, broken down
by trading partner country or region and the economic activity described—whether
the flow is to final or intermediate demandOECD (2014a). BTDs show the amount of
goods by sector that flow to and from every world region. The destination is recorded
as final demand or intermediate demand to a country but for intermediate demand,
it is not specified which sector destination the flow is to.

In addition to information describing the economic interactions in global supply
chains, emissions data by global production sectors is required as an input for an
EE-MRIO. For the EU member states’ 60 sector SUTs and SIOTs, matching sector
emissions data is available from the National Accounting Matrix including Envi-
ronmental Accounts (NAMEA) (de Haan and Keuning 1996). For a global system,
consistently produced emissions data is needed for every country in the database.
Two approaches can be used to assign an environmental impact to each industrial
sector. The International Energy Agency (IEA) produce tables showing energy out-
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put by activity by country and authors such as Shimoda et al. (2008) explain how
emissions are matched to this data. However this ‘top down’ technique is criticised
by Tukker et al. (2009) who remind us that not all countries are signatories of the
IPCC (Intergovernmental Panel on Climate Change) so do not have to report such
statistics. An alternative method involves estimating the CO2 emissions associated
with an industry based on the reported energy use of each sector. To do this, emis-
sion factors are applied to the energy use by industry. However, this ‘bottom up’
technique incurs the problem of global emissions totals not summing to the reported
global totals Tukker et al. (2009).

2.2.2 Preparation of Data for MRIO

Before the SRIO tables and the BTD data can be combined together to produce an
MRIO table, a harmonisation procedure is often required. If there are different sec-
toral classification systems used in the SRIO tables andBTD, a process of aggregation
and disaggregation might be necessary to produce a single common classification
for all nations. In addition, there are a number of conditions that the system needs to
satisfy in order for the allocation functions to work: namely, the inputs to the system
need to be equal to the outputs. In a global trade perspective, this means that reported
imports of commodity x from country A to country B needs to be the same as the
reported exports of commodity x from country A to country B. This phenomenon,
known as a “mirror statistic” rarely hold true andMRIO databases need to go through
balancing procedure.

Even if SRIO tables and BTD are available for each and every global region,
there is still considerable work required in constructing a fully functioning MRIO
table. Inomata et al. (2006), in their papers to accompany the Asian international
input–output table (AIIOT), describe three stages of pre-preparation before data is
subjected to the balancing procedures necessary for MRIO conditions to be met.

2.2.2.1 Adjustment of the Presentation Format

The first phase—adjustment of the presentation format–involves identifying that
each country’s system of national accounts reflects the differing situation within each
country as to how data is collected and what is available (Inomata et al. 2006). An
MRIO table needs to be consistent in the meaning of each category so that the system
is comparable and canwork together as awhole.Most obviously, thismeans that each
SRIO table needs to be in the same currency. Exchange rates can be used to convert
data to one common currency (Bouwmeester and Oosterhaven 2007). Additional
changes that might be required to adjust the presentation of the national SRIO tables
used in an MRIO table include converting data from basic prices to producer prices;
adjusting the import matrices so that they are valued at CIF (cost, insurance and
freight) and that they do not include import duties and commodity taxes; and dealing
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with negative entries, representing government subsidies, by treating the entity as
value added items. For more detail see Inomata et al. (2006). The authors recognise
that there are no hard and fast rules to this procedure and there are trade-offs between
a consistent and uniform system and level of original information and detail (Inomata
et al. 2006).

In addition to adjustment of the economic data, the supplementary data such as
kilotonnes of emissions, thousands of employees or volume of water by industrial
sector must also have the same meaning. In the case of emissions, MRIO data-
base compilers must decide whether the residence or territorial principle is applied.
The residence principle is used in a national accounting framework and states that
emissions activity of a resident unit (i.e. a person or company) are allocated to the ter-
ritory of residence (Genty et al. 2012). This means specifically that when calculating
a national account, activities of tourists are removed and reallocated to the country of
residence of the tourist and any domestic residents activities abroad are added. The
territorial principle allocates emissions to the country where they take place and are
used in national statistics. This decision specifically affects how total global emis-
sions are distributed between industrial emissions (f in Fig. 2.4) and those emissions
directly from households. Emissions associated with transportation industrial sectors
are also affected.

2.2.2.2 Preparation of Sector Concordance and Supplementary Data

Once data in the SRIO tables have the same meaning across all tables, each table
then has to be aggregated or disaggregated to a common set of sectors. Inomata
et al. (2006) call this stage preparation of sector concordance and supplementary
dataĖach national economy has its own unique characteristics and the sector classifi-
cation system used to record data reflects this character. Some economies are heavily
agriculture-based and these countries will often use sector classification systems
that are very detailed in the agriculture sectors, whilst other might be more biased
to industry. An additional consideration is the total number of sectors recorded,
Inomata et al. (2006) aggregated the 517 sectors for Japan to their consistent set of
76 sectors for the AIIOT system. Bouwmeester and Oosterhaven (2007) note that
often it is easier to revert to older classification systems when attempting to produce
a common set of sectors. Summing two or more sectors to a single new sector is a
simple enough procedure. Inomata et al. (2006) note that the difficulties that arise
when a national IO entry needs to be split between two or more sectors in the new
consistent sector system because additional data is needed to do this. Alongside a
consistent set of SRIOs, the BTD and the additional industry supplementary data
must also map to the consistent set of sectors.

Sets of SRIO tables do not cover every county in the world. For an MRIO to
function without losing information, a ‘rest of world’ (RoW) region is often required
to describe the trade flows of countries that have not produced SRIO tables. The
volume of trade by sector and country can be estimated by looking at the differences
between reported global trade flows and the sum of flows by countries whose data
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has been captured. The missing element is a generalised structure of the economy
for the RoW—a RoW SRIO. One approach is to pick a country that is considered
representative of theRoW(Peters 2007a). The selection of this representative country
will depend on which countries there are already data for. For example, some authors
studying specific continents, such as Europemight choose China’s SRIO to represent
the RoW (Peters 2007a). Nakano et al. (2009), when using the OECD SRIO tables
to calculate EEBT, used the emissions factors of Malaysia to represent the RoW.
For their work on the AIIOT MRIO, Su and Ang (2011) argue that the RoW region
behaves similarly to the average Asian economy, noting similarities in the per capita
GDP of the RoW and Asia and the emissions intensities. The authors aggregated
nine Asian economies to simulate the emissions intensities and domestic SRIO table
for the RoW. The final demand structure was also mirrored for RoW final demand
(Su and Ang 2011).

2.2.2.3 Reconciliation of Data and Balancing the Table

The SRIO tables, modified to common currencies and sectors, are then placed in an
MRIO table. The final stage is reconciliation of the data and balancing the table
(Inomata et al. 2006). The first stage in the balancing procedure is setting up the
off-diagonal matrices of the MRIO. Consider a set of n regions and m sectors in an
MRIO system. Region k, will sell to and buy from ‘n − 1’ other regions. This means
that within the column representing who region k’s m industrial sectors buy from, a
stack of ‘n − 1’ additional trade matrices is needed along with region k’s SRIO table.
Import tables reveal how much each industrial sector imports and sometimes they
distinguish which products are imported (Tukker et al. 2009). However, the import
tables do not reveal the country of origin, i.e. which of the n − 1 regions the import
flow is from. These, import tables can be disaggregated to show region of origin
using BTD (Bouwmeester and Oosterhaven 2007). However, BTD gives detail on
the product that is being imported, where it is being imported from, which country
is importing it, but not which industrial sector it is destined to be used for. Clearly
assumptions have to be made to fill in the missing parts of the puzzle and there are a
number of methods that can be used. Sections2.3.1–2.3.3 explain howGTAP,WIOD
and Eora respectively deal with this issue.

Inomata et al. (2006) describe the table, at this stage, as being balanced with
respect to input composition, but that demand and supply for each country are not
consistent. The sum of flows of particular sector from a particular country to all
countries of destination should equal the reported export by that country of origin in
the BTD, however as Tukker et al. (2009), Inomata et al. (2006) and Bouwmeester
and Oosterhaven (2007) note, this is rarely the case. Inconsistencies occur due to
differences in sector classification systems, exports being wrongly assigned to coun-
tries that goods pass through the ports of rather than the actual country of origin and
other reasons that will be discussed fuller (Peters et al. 2011a; Andrew and Peters
2013).
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The table then needs to be balanced, and this is often done using amethodknownas
RAS. TheRAS technique uses an iterative process to alter individual cell values using
the known export columns and import rows of the original IO tables as constraints
(Bouwmeester andOosterhaven 2007). Because the domestic SRIO tables are treated
as known data, before applying the RAS technique to the MRIO, sometimes these
tables are removed and replaced with zeros. One of the consequences of the RAS
procedure is that it will re-price the import matrices from CIF to be in FOB (Free
On Board) matching the export prices.

2.3 Data Sources and Construction of Current MRIO
Systems

The latest audits of themain globalMRIO initiatives (Inomata andOwen2014; Peters
et al. 2011a;Wiedmann et al. 2011), describe sixMRIO databases of which four were
launched in or after 2012 (see Table2.1) although there is concern that some systems
may not be updated regularly due to funding dependencies (Peters et al. 2011a). This
study choses to compare CBA for the year 2007 because, at the time of writing,2

it is the latest year where there are at least three EE-MRIO databases to compare.
The three MRIO databases chosen are Eora, GTAP andWIOD. The literature review
continues by assessing the metadata and construction techniques specific to these
three MRIO databases. The review starts with GTAP since the database has been in
existence for the longest time and the construction method is the simplest. WIOD
is reviewed second and Eora last because this database differs most in construction
methodology. Finally, Sect. 2.3.4 compares the threeMRIO databases chosen for this
study.

2.3.1 GTAP MRIO

The Global Trade Analysis Project is described as “a global network of researchers
and policy makers conducting quantitative analysis of international policy issues”.
GTAP’s goal is to “improve the quality of quantitative analysis of global economic
issues within an economy-wide framework” (GTAP 2014a). GTAP was not ini-
tially designed as an MRIO database and is mainly known for its use in CGE mod-
elling (GTAP 2014b). Since the project provides tables of intermediate demand, final
demand, bilateral trade and an emissions extension, researchers looking to construct
MRIO databases, turned to GTAP. Presenting at the 16th International input–output
Association (IIOA) conference, Peters(2007b) first suggested the suitability of the
GTAP data for use in constructing an MRIO database and later demonstrated how
it could be used for global MRIO studies (Hertwich and Peters 2009; Peters and

2January 2015. EXIOBASE was not freely available at this time.
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Table 2.1 MRIO systems currently available

MRIO Region detail Sector detail Time series Extensions Status (as of
January 2015)

AIIOT 10 76–78 1975, 1985,
1990, 1995,
2000, 2005

Employment
matrix (for
2000)

Updated every
5 years

Eora 188 Vaires by
country,
ranging from
26 to 511

1970–2013 Energy,
emissions,
water and land
footprints,
employment

Released in
2012. Updated
annually

EXIOBASE 44 163 industries
200 products

2000, 2007 Over 100
extensions
including
energy,
emissions,
water and land
footprints,
employment

Released in
2012. Latest
data (2007)
made
available in
2015, Will be
updated with
an annual time
series in the
future

GTAP
(OpenEU)

129 57 1990, 1992,
1995, 1997,
2001, 2004,
2007

Emissions,
employment,
land use

Released in
1990. Updated
every 3 to 4
years

OECD ICIO 57 18 1995, 2000,
2005, 2008,
2009

Economics
only

Released in
2012

WIOD 41 35 1995–2011 Emissions,
employment,
water, land
and resource
use

Released in
2012. Update
status
unknown

Hertwich 2008a). The advantages of using an MRIO, in this case one built from
GTAP v6 data,3 rather than the using the domestic technology assumption (DTA) is
explored by Andrew et al. (2009). In 2011, Peters et al. (2011a) published the full
details of how to construct an MRIO from the GTAP v7 database.4

2.3.1.1 The Original Database

The data in the GTAP database is sourced from voluntary submissions from GTAP
users rather than being data taken directly from national statistical offices (Walmsley

3GTAP version 6 has 87 regions and 57 sectors.
4GTAP version 7 has 113 regions and 57 sectors.
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and Lakatos 2008). The submissions have to meet a set of criteria and checks, such
as having a minimum number of sectors; being balanced; and having an IO structure
similar to an average IO table Walmsley and Lakatos (2008, p. 3). Peters (2007b)
criticises the source data by claiming that it is often not up to date and, in the same
release, data from different years for different countries will be supplied under the
overall claim of being a 2007 dataset. GTAP resolves this issue in the same procedure
it uses for converting to a common currency. The tables are scaled to the 2007 USD
value converted using Market Exchange Rates (MER). Peters (2007b) notes that this
method assumes an equal rate of inflation across all sectors and that in IO databases,
basic prices are preferred (Peters et al. 2011a).

In the version 7.1 GTAP database used in this study, 58 out of the total 113
regions needed some form of disaggregation to convert the tables to the 57 required
product sectors. GTAP tables are in the product-by-product (P-by-P) format. For
every country, the non-agricultural sectors are disaggregated using a representative
table formed from the set of IO tables which have the full sectoral disaggregation
(Narayanan 2014; Walmsley and Lakatos 2008). The agricultural sectors are disag-
gregated using an additional database built partially from FAO (Food andAgriculture
Organisation) data (Peterson 2014; Walmsley and Lakatos 2008). Rather than hav-
ing a single RoW region, GTAP v7.1 contains 20 composite regions such as ‘Rest
of South East Asia’ which are calculated as a linear combination of the known IO
tables for that region and matching the required income level for the area.

One area where GTAP does not rely on user submitted values is in the energy
rows of the IO tables. Here physical data on energy use in Joules is taken from
the International Energy Agency (IEA), converted to monetary values and placed
in the IO tables (Peters et al. 2011a). The same IEA energy data is used to generate
the CO2 emissions extension data but GTAP uses different assumptions compared
to the IEA when converting energy to CO2 (Peters et al. 2012). Emissions from
bunker fuels are dealt with differently to IEA. In addition, the GTAP CO2 emissions
only cover fuel burning emission and do not include process emissions from cement
Lee (2008). GTAP uses the territorial principle for emissions allocation but allocates
international transportation to consumers not producers (Peters et al. 2011a).

The Bilateral Trade Data (BTD) supplied by GTAP is sourced fromUNComtrade
but undergoes a process of reconciliation from its original state. The UN Comtrade
database is a collection of countries reported imports and exports by commodity.
A country reports what products were imported from which countries and what
products were exported to which countries. This means that the same traded good
should be reported twice. For example spend on footwear imported to the UK from
Italy should equal the reported export of Italian footwear to theUK.However there are
discrepancies in the recorded transactions. GTAP resolves this issue bymeasuring the
reliability of each reporting country and calculating whether a nation systematically
over or under reports trade (Gehlhar 2001). When deciding which of the pair of
transaction costs to choose to keep in the BTD, GTAP simply checks the reliability
index of each of the country and chooses the data from the country that scores best
(Gehlhar 2001). This means that the BTD supplied by GTAP is already balanced—
a requirement for use in CGE modelling Peters (2007b). Peters (2007b) has some
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concerns about the level of data manipulation within the GTAP data and highlights
particular examples of nonsensical values that may have arisen as a result of the
calibration process.

2.3.1.2 Converting to an MRIO

Peters et al. (2011a) describe in detail the process for converting the data in GTAP
into an MRIO system. One of the main considerations is that—as described in
Sect. 2.2.2.3—the format of BTD is a vector showing commodity and import country
and for an MRIO, rather than a matrix which would include destination sector. This
vector needs to be stretched across both one of the off-diagonal sections and the
imports to final demand, (shown in Fig. 2.8) so needs the importing sector informa-
tion to provide the horizontal dimension. Peters et al. (2011a) explain how bilateral
exports are distributed according to the import structure in the importing region
which ensures that the output balance is conserved. Peters et al. (2011a) argue that
without the knowledge of any additional information, using the import structure as
a proportional distribution is as good an assumption as any. This means that each
row of the off-diagonal matrices, which represent intermediate imports, has the same
proportional breakdown across destination sectors. Another limitation of this tech-
nique for disaggregating country of origin based on total global averages is that each
industry j in region s buys the same percentage of products from industry i in region r
(Bouwmeester andOosterhaven 2007). In otherwords, if UK industries are importing
steel and Mexico is the country of origin for 60% of all of the steel that is imported
by the UK, then for every industry in the UK, 60% of steel imported to domestic
production will always come from Mexico regardless of the destination industry. In
addition, imports of steel to final demand will have the same proportion—60%—
of steel from Mexico. This assumption is likely to introduce error when assessing
the impacts of product from places whose domestic production is heavily reliant on
imported components.

2.3.2 WIOD MRIO

The World input–output Database (WIOD) was a European Commission sev-
enth framework programme funded project running from May 2009-April 2012
(Dietzenbacher et al. 2013;WIOD 2014). Unlike GTAP,WIODwas always designed
to be used for MRIO analysis and the developers state the following initial aims for
the database: it must be global; cover change over time; include a variety of socio-
economic and environmental indicators; and be presented in a coherent framework
(Dietzenbacher et al. 2013).

WIOD takes published national statistical agencies’ SUTs as its initial data
source because, as Dietzenbacher et al. (2013) argue, the SUT better represents
co-production. These national tables are harmonised to a 59 product, 35 industry
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common classification using a set of concordance matrices developed for the WIOD
project. Sometimes this involved disaggregation of particular industries or products
using common industry or product shares. If there are missing years in a country’s
set of SUTs, national accounts data is used as a constraint to update a previous
years’ SUT using an SUT-RAS method (Dietzenbacher et al. 2013). Supply tables
are already presented in basic prices, but the use tables, which are usually in pur-
chasers prices, have to be converted to basic prices. The tables are also converted to
USD using data from the IMF.

The next stage is to split the use tables into a table of domestic use and a table
of imports, then each cell of the import use table must be split by import region
(Dietzenbacher et al. 2013). To extract the imported use table from the total use table,
total imports by product are taken from the supply table and the portion that is imports
to final demand and and investment is removed (using proportions from BTD). BTD
is taken from UN Comtrade and trade in services is determined using data from the
UN, Eurostat and the OECD, with the UN being the preferred source (Dietzenbacher
et al. 2013). In contrast to GTAP, WIOD treats imports to intermediate demand, final
demand and investments differently and allows each destination to have their own
specific import share from the BTD. When Erumban et al. (2011, p. 11), explaining
the construction of WIOD, state that “each cell of the import use table is split up to
the country of origin where country import shares might differ across use categories,
but not within these categories” by ‘use’ they means the difference between final use
and intermediate use.WIOD suffers the same assumption as GTAPwhereby the steel
bought as intermediate demand by two different sectors have the same proportion
from Mexico regardless of purchasing sector.

In contrast to GTAP, WIOD has a single RoW region. To determine the RoW
imports and exports by product and country, the Global totals are found in the UN
Comtrade database and the sum of the 40 WIOD countries is subtracted from this
total Dietzenbacher et al. (2013). Once all the trade data is collected, RAS is used to
to reconcile it. Dietzenbacher et al. (2013) point out that this procedure adjusts all
the BTD from that collected at source.

The final stage is to convert the SUTs and reconciled BTD5 into a World SIOT.
The means that the supply and use tables have to be compacted together to a single
industry-by-industry table for each country. There are two methods of translating
SUT into SIOTs: the fixed industry sales structure assumption or the fixed product
sales structure assumption. WIOD uses the second method where, regardless of the
industry producing the product, products in the supply table are reallocated according
to the allocation of the industry that theywould be a principle output ofDietzenbacher
et al. (2013), (Eurostat, 2008). This produces an industry-by-industry table (I-by-I).
A RoW intermediate use table and RoW domestic final demand block is constructed
from weighted average shares from the BRICIM6 countries with row and column
totals from UN national accounts.

5See Dietzenbacher et al. (2013) Table1 for an example of this method.
6Brazil, Russia, India, China Indonesia, Mexico.
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In contrast to GTAP, WIOD uses the residence principle for emissions allocation
(Genty et al. 2012). For countries where emissions inventories, such as the UNFCCC
inventory, are available, these datasets were matched to theWIOD sector breakdown
and used as the CO2 emissions data. If inventories were not available, emissions were
estimated from the energy accounts. CO2 emissions data is calculated by “applying
CO2 emission coefficients to emission relevant energy use and then adding process-
based emissions” (Genty et al. 2012, p. 3). The countries that do not need to report
to the UNFCCC, and hence are not included in its inventory but are WIOD countries
are Brazil, China. South Korea, India, Indonesia, Mexico and Taiwan.

2.3.3 Eora MRIO

Eorawas developed by the Integrated Sustainability Analysis (ISA) group, within the
School of Physics at the University of Sydney. Lenzen et al. (2013, p. 13), describe
their aims for their system as having “the maximum possible level of detail”; a time
series back to 1970; minimisation of assumptions; closeness to raw data; estimates
of standard deviations; and for it to be freely available for research and updated in a
timely manner.

With one of Eora’s aims being to be close to raw data, where possible the SRIOs
are sourced fromnational statistical offices. SRIOs are also taken fromEurostat, IDE-
JETRO and the OECD. Lenzen et al. (2013) explain that 74 national SRIOs were
collected in this way. Eora also keeps the original sector classifications of the data,
and maintains the SIOT or SUT format alongside keeping SIOT data in its original I-
by-I or P-by-P format. This means that the Eora MRIO is not in a harmonised sector
format, rather the sectors are heterogeneous and different for different countries.
Thus the first few stages of data adjustment as described by Inomata et al. (2006)
are skipped. For countries where there are no IO tables produced, a proxy IO table
is produced. These tables combine country specific macro-econometric data with a
template based on the average of the Australian, Japanese and United States tables
Lenzen et al. (2012a). Bilateral trade data is sourced from UN Comtrade and UN
Service trade.

The main principle behind Eora’s construction is the development of an initial
estimate and the collection of raw data. An initial estimate is determined for the year
2000 and balanced and reconciled. This table becomes the initial estimate for the
year 2001 and new 2001 raw data is collected and used as constraints to rebalance
this table and generate a new 2001 estimate. This table can then become the starting
point for 2002 and so on Lenzen et al. (2012a). Eora uses a ‘constrained optimisation
algorithm’ to find a solution that best fulfils the constraints. The constraints can
never be completely satisfied because it is often the case that they conflict with each
other. The ISA team have developed a version of RAS called KRAS to deal with
conflicting constraints (Lenzen et al. 2009). The adjustment to a common currency
occurs during the optimisation routine and data from IMF is used to convert all data
to US dollars (Lenzen et al. 2013). Eora is also unique in the fact that it does not
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calculate a RoW region. Eora contains data from 188 countries and assumes that this
covers the global economy sufficiently.

Eora does not correct for the residence principle (Lenzen et al. 2012a) and CO2

data is sourced from the Emissions Database for Global Atmospheric Research
(EDGAR) and is an initial estimate alongside data from multiple other sources such
as the UNFCCC. The optimiser is then used to resolve data conflicts (Lenzen et al.
2012a).

2.3.4 Comparing the Source Data, Structure
and Construction of Eora, GTAP and WIOD

Table2.2 (adapted from Owen et al. 2014) provides summary information about
the source data and construction techniques used in building the Eora, GTAP and
WIOD MRIO databases described in Sects. 2.3.1–2.3.3. It is clear that the models
differ in a number of ways. Different source data is used in both the economic and
environmental extension sections of each database. GTAPuses P-by-P SIOTs,WIOD
I-by-I SIOTs and Eora uses a mixture of SUTs and SIOTs. Even if the data is from
the same source, each system organises it in different ways. Eora keeps the data in
its original format, whereas GTAP andWIOD reorganise tables to 57 and 35 sectors,
respectively. In addition, GTAP realigns energy use by sector to match the spread
of joules reported by the IEA. WIOD uses the residence principle for emissions
allocation whereas GTAP and Eora take the territorial approach.

Assumptions are made when data is missing and each MRIO deals with missing
data in a different way. For example, WIOD constructs a single RoW region with
an ‘average’ production structure, whereas GTAP models several regional RoW
regions. Eora attempts to construct production structures for every national economy
negating the need for a RoW region. Another element where there is missing data
that needs to be constructed is in the off-diagonal trade matrices. GTAP uses a
fairly blunt proportional assumption to turn a vector of import data by source into a
matrix where use is the second dimension. WIOD takes care to distinguish between
whether the use is intermediate or final use but the proportionality assumption remains
within intermediate use sectors. Eora has a different approach recording all data on
intermediate and final imports as constraints andmodelling the off-diagonal matrices
as a solution in the matrix optimisation process.

2.4 The Future of MRIO Databases

Since commencing this study a number of new MRIO systems have been developed
(seeTable2.1). In this section,EXIOBASEand theOECDICIOare briefly introduced
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Table 2.2 Global MRIO databases used for comparisons in this study and their features

Eora

Source data Availability and updates 1970–2013 (economic data)

1990–2012 (extension data)

Yearly updates with a 2 year lag

National IO tables 74 IO tables from national statistical
offices

Other countries data taken from the
UN National Accounts

Main Aggregates Database and
applied to a general template
averaged from Australia, Japan and
the US

Bilateral trade data Trade in goods from UN Comtrade
database

Trade in services from UN Service
trade database

Environmental accounts EDGAR, UNFCCC, IEA

Territorial principle

This study uses the ‘Carbon
emissions from fuel burning’
account supplied by Eora

Value added data National IO tables

UN National Accounts Main
Aggregates Database

UN National Accounts Official Data

System structure Region detail 188 countries

Sector detail Varies by country; ranges from 26 to
511 sectors

Structure of IO tables Heterogeneous table structure. Mix
of SUT and SIOTs. SIOTs can be
I-by-I or P-by-P

System construction Harmonisation of sectors Uses original classification from
national accounts

Harmonisation of prices and
currency

Converts national currencies into
current US$ using exchanges rates
from IMF

Off-diagonal trade data
calculations,balancing and
constraints

All data subject to large-scale
KRAS optimisation of an initial
MRIO estimate with numerous
constraints

(continued)
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Table 2.2 (continued)

GTAP v7.1

Source data Availability and updates 2001, 2004, 2007

Updated on a 3 year interval with a
4 year lag

National IO tables Tables submitted by GTAP
consortium members

Bilateral trade data Trade in goods from UN Comtrade
database

Trade in services from UN Service
trade database

Environmental accounts CO2 derived from IEA energy data

Territorial principle with
reallocation of international
transportation to consumers

This study uses the data supplied by
GTAP v7.1 which includes CO2
from fossil fuel burning only (Lee,
2008)

Value added data Tables submitted by GTAP
consortium members

System structure Region detail 129 regions (81 for 2001)

Sector detail 57 homogeneous P-by-P sector
tables (2001, 2004, 2007)

Structure of IO tables Homogenous SIOT table structure

System construction Harmonisation of sectors To disaggregate a countrys
non-agricultural sectors, the
structure from other IO tables
within regional groupings is used.
For agricultural sectors data from
the FAO is employed

Harmonisation of prices and
currency

IO tables scaled to US$ using GDP
data from the World Bank

Off-diagonal trade data calculations,
balancing and constraints

BTD from UN’s COMTRADE
database is harmonised, off
diagonals are estimated by applying
imports share across each row. No
balancing required

(continued)
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Table 2.2 (continued)

WIOD

Source data Availability and updates 1995–2011 (economic)

1995–2009 Environmental

Funding dependent

National IO tables SUTs from National Accounts

Bilateral trade data Trade in goods from UN Comtrade
database

Trade in services from UN, Eurostat
and OECD

Environmental accounts Residence principle

Emissions from NAMEA or
estimated from energy

This study uses the CO2 emissions
by industry provided

Value added data SUTs from National Accounts

System structure Region detail 40 countries and a rest of the world
region

Sector detail 35 homogeneous I-by-I sector tables

Structure of IO tables Homogenous SIOT table structure

System construction Harmonisation of sectors Developed concordance tables
between national classifications and
the 35 sectors used in WIOD

Harmonisation of prices and
currency

Supply table (from SUT) in basic
prices. Use table in purchases prices.

Transform the Use table to basic
prices

Convert all data to current US$
using exchange rate from IMF

Off diagonal trade data calculations,
balancing and constraints

BTD finds import proportions for
intermediate and final use by
product. Proportions applied to
import use table to split each cell by
import region. International SUTs
merged to a World SUT then
transformed to a WIOT using the
fixed product sales structure
assumption
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in Sects. 2.4.1 and 2.4.2, respectively. Section2.4.3 gives an overview of the future
of MRIO development.

2.4.1 EXIOBASE

EXIOBASE takes the harmonised EU SUTs as a starting point and includes more
regions,7 disaggregates to 163 industrial sectors and 200 products, and combines
with an extension data base containing 80 resources and 40 emissions types (Tukker
et al. 2013). EXIOBASE differs to GTAP andWIOD with the resulting MRIO being
SUT based rather than SIOT.8 Eora, of course, is a hybrid of SIOT and SUT. After
separating the imports use from the total use tables, as described in the WIOD
methods (Sect. 2.3.2), and disaggregating all SUT to 129 sectors, EXIOBASE uses
a nonlinear programming approach to ensure that the row and column total balance.
Emissions data in EXIOBASE differs from WIOD and Eora by uses a bottom up
approach by calculating from the energy using sectors. EXIOBASE calculates off
diagonal trade in much the same way that WIOD does, using trade shares from UN
Comtrade and UN Service data and “assuming that each industry and each final
demand category imports the same share of a given product from the exporting
country” (Tukker et al. 2013, p. 58). Like WIOD, EXIOBASE takes the residence
principle to emissions allocation.

2.4.2 OECD ICIO

The OECD Inter-Country input–output (OECD ICIO) database is anMRIO based on
national statistical agency SIOTs and SUTs. With 56 regions and 37 sectors (OECD-
WTO 2012). National authorities provide data to the OECD, preferably in basic
prices with both domestic and imported use tables. If this split is not provided, the
OECD separates out the imports. In a joint OECD-WTO (2012) note, the issue with
the proportionality assumption is highlighted. The OECD ICIO plans to explore the
way imports are allocated to users but it is not yet clear how this particular MRIO has
improved upon the assumption. The OECD is in the process however of developing
a bilateral trade database by industry and end use category which will help improve
the accuracy of the off diagonal matrices considerably. At present9 there are no
environmental extensions in the OCED ICIO database but it is understood that this
is something that will be considered for future development.

7A total of 43 countries plus a RoW region.
8Both I-by-I and P-by-P SIOTs are available, produced frm the SUT.
9January 2015.
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2.4.3 Further Considerations

In their 2011 paper on the future directions of MRIO, Wiedmann et al. (2011) call
for a number of developments within the field of MRIO research. These include
hybridisation with life cycle assessment (LCA) to further improve sector disag-
gregation; avoiding information loss through aggregation; greater country cover-
age; better extension data that is relevant for sustainability research; more timely
updates; historical time series; improvements in automation; transparency and test-
ing of assumptions; and a better understanding of uncertainty. Peters et al. (2011a,
p. 150) also call for “a structured comparison of the datasets to determine the nec-
essary level of detail, accuracy and resources needed for the long-term development
of environmental MRIO modelling”.

There clearly is a distinct requirement for work to carried out which understands
the differences between MRIO databases and that attempts to relate the differences
in outcome to the variation in source data used and the assumptions made in the
database construction.

2.5 Differences in MRIO Outcomes

At the IIOA conference in Japan in 2013, a special session was arranged dedicated to
exploring difference inMRIO databases. As a result of this session, a special issue of
Economics Systems Research (ESR) was published in September 2014, guest edited
by Anne Owen and Satoshi Inomata and included the paper which part of Chap. 5 of
this book is based on (Owen et al. (2014)).While this particular paper is not discussed
in the literature review, many of the examples in the following sections draw from
the other studies that made up the special edition.

2.5.1 Exploring the Effect of Data and Build Choices
on MRIO Outcomes

As Sects. 2.2 and 2.3 explain, there are a myriad of choices that can be made in
constructing an MRIO database. Dietzenbacher et al. (2013, p. 73) explain that

these choices are often directed by the particular applications the constructors have in mind
when designing the database and its underlying fundamental principles. Uncovering these
is important in order to understand the differences between various alternative databases.

There have been a number of studies investigating the effect that different choices
have on the outcomes produced by an MRIO and how variations in the data affect
final CBAs.

http://dx.doi.org/10.1007/978-3-319-51556-4_5
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2.5.1.1 Alternate Choice of Source Data

Peters et al. (2012) investigate how model outcomes change when different CO2

emissions data are used with the GTAP MRIO. The authors investigate the effect
on CBAs when emissions datasets from Carbon Dioxide Information Analysis Cen-
ter (CDIAC), the UNFCCC, EDGAR, GTAP and an updated version of the GTAP
data—GTAP-NAMEAareused in conjunctionwith theGTAPeconomicdata.GTAP-
NAMEA includes process emissions and redistributes the emissions according to the
residence principle rather than the territorial technique described in Sect. 2.3.1. The
study compares the average range in both production and consumption emissions for
each country in the dataset and discovers that for production the average range is 30%
and for consumption, 16%. Peters et al. (2012) suggest that this is because the coun-
tries that are large trade partners have lower differences in accounts. The authors also
conclude that much of the difference in model outcomes “are not a reflection of the
uncertainty in consumption-based estimates, but rather these differences result from
the use of different production-based emissions input data and different definitions
for allocating emissions to international trade” Peters et al. (2012, p. 3247).

In addition to considering the emissions data, several attempts have been made to
quantify standard errors of each of the input to MRIO databases, but often these data
are underreported or unavailable. For example, Lenzen et al. (2010) collect standard
deviations (SD) associated with the underlying source data used to make the UK IO
accounts and then regress the standard deviations across the values in the supply and
use tables. This work is further explained in Sect. 2.5.1.3.

2.5.1.2 Alternate Choice of Construction Method

One method for understanding the effect of build assumptions is to build several ver-
sions of the MRIO each with different build techniques and observe the effect on the
output. The types of build assumptions that can be investigated include MRIO struc-
ture and harmonisation, techniques for dealing with missing data and techniques for
system balancing. Peters and Solli (2010), for example, investigate the implications
of different numbers of sectors by quantifying the difference in Nordic footprints
using the GTAP data first with eight aggregated sectors and then the full 57 sectors
and find that the difference in CBA was relatively small. The authors state that for a
“national level carbon footprint, the [MRIO database] probably does not need a high
level of sector detail” (Peters and Solli 2010, p. 49). Andrew et al. (2009) perform a
similar analysis on the number of countries and regions required for accurate CBA.
The study finds that results can be generated that are close to those calculated using
the full 113 region, but use fewer regions. However, the choice of trade regionsmakes
a difference to the accuracy of the results.

Steen-Olsen et al. (2014) consider the sectoral breakdown in each of Eora,
EXIOBASE, GTAP and WIOD and develop a common classification (CC)10 of 17

10This classification is the one used later in this book. See Sect. 3.6 for detrails.
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sectors which each of the MRIO databases can be mapped to. One of the features of
the CC is that each sector is a one-to-one mapping with an identical sector in at least
one of the full MRIO databases. Steen-Olsen et al. (2014) are then able to comment
on the effect of using an aggregated multiplier because they can compare full ver-
sions of the MRIO system with its aggregated version. Interestingly, the study points
out that sector aggregation does not just affect the multipliers of sectors that have
been aggregated. In each of the MRIO databases, the construction sector remained a
single sector in the CC but its multiplier was affected significantly by the aggregation
of other sectors.

The choice of method to convert to a common currency was investigated by
Weber and Matthews (2007) who show that this decision can greatly affect the size
of emissions embedded in imports from certain developing countries to the USA.
The authors show that choosing Purchasing Price Parity,11 over Market Exchange
rates increases flow sizes by a factor of two for Mexico and four for China.

Stadler et al. (2014) focus on the method of constructing a Rest of World (RoW)
region for MRIO databases. The authors experiment with estimating the economic
structure of the RoW using every country’s SUT from the EXIOBASE database and
use other various methods to determine RoW final demand resulting in 186 different
RoW tables. Stadler et al. (2014) find that model runs using Switzerland and Sweden
as representative RoW structures produce outlier results. Another interesting finding
is that different types of CBA are affected more by the different RoW structures. For
example, emissions accounts are more robust and show less variation than the land
use accounts.

As described in Sect. 2.3.3, Eora’s optimisation routine for determining the off-
diagonal sections of theMRIO is quite different to the approaches used byEXIOPOL,
GTAP andWIOD. Geschke et al. (2014) experiment with taking the source data used
for EXIOPOL and thematching constraint data used to build EXIOPOLs off diagonal
trade blocks but use the Eora constraint optimisation technique (Geschke et al. 2014)
to populate the off diagonal blocks. Matrix difference statistics are used to compare
the original EXIOPOL table with the new version and show that there is a good
correlation.

Finally, Wiebe and Lenzen (2016) explore the effect that RAS balancing tech-
niques have on output production matrices. The Global Resource Accounting Model
(GRAM) is based on OECD IO and BTD and instead of using RAS balancing tech-
niques as a final stage in the MRIO database construction, any difference in row and
column sums is removed from the associated value added figure. Thus, the original
data is changed as little as possible. The authors use matrix difference statistics to
identify the variation between the RASed and non RASed versions of the database.
Findings suggest high correlation between the balanced and unbalanced versions of
the economic matrices and lower when emissions results matrices are calculated.

11Purchasing Price Parity adjusts the prices of goods and services to represent the same volume
of goods regardless of the country of purchase. It allows the relative value of currencies to be
determined.
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2.5.1.3 Monte Carlo Techniques

Monte Carlo methods involve propagating repeated random input variables through
a calculation and observing the effect on the output. They have proved to be useful
in estimating the SD of MRIO multipliers and work by the generation of thousands
of versions of the MRIO table being created which contain random, normally or
log-normally distributed adjustments to the cells of the original matrix. A matrix
representing the difference between the original matrix and each of the randomly
generated adjustments (MRIO − MRIO′) has a mean of zero and the total relative SD
of the combined input variables. Each of the thousands of newly generated tables is
then subjected to thematrix calculation and the change inmultipliers can be observed.
Recently,Monte Carlo techniques have been used to estimate an 89% probability that
the UK’s carbon footprint increased between 1994 and 2004 (Lenzen et al. 2010)
and to show that while uncertainties around the total Dutch carbon footprint are
low, lower tiered impacts attributed at the regional and sector level contained higher
uncertainty (Wilting 2012).

Moran and Wood (2014) use Monte Carlo methods to perturb each cell of the
emissions vector; interactions matrix and matrix of final demand in each of Eora,
EXIOPOL, GTAP and WIOD by up to 10% to investigate whether there is conver-
gence in the CBA of the databases. The authors also repeat the process using the
same emissions databases with each model. This is described as harmonising the
satellite account. The study assesses whether the range of CBA outcomes for each
country for each model overlap the multi-model mean. Moran andWood (2014) find
that even after harmonising the emissions vector for many countries, the difference
between model results is larger than one standard deviation.

2.5.2 Calculated Differences in CBA of Eora, GTAP
and WIOD

The techniques described in Sect. 2.5.1 concentrate on taking a singleMRIOdatabase
and quantifying the effect of a change in either the source data or construction on
the resulting CBA. None of the techniques described above quantify how differences
between the CBA calculated by different databases can be related to the differences
in their construction. This book exploits this research gap by identifying techniques
to understand difference and attempt to trace difference back to the MRIO source
data and construction metadata as described in Sects. 2.3.1–2.3.3.

Table2.3 shows the CBA in MtCO2 as calculated by Eora, GTAP and WIOD for
the year 2007. The CBA calculated here includes the emissions associated with a
country’s demand for products and the direct domestic household emissions from
home heating and private transportation. Each account is compared to the mean
account and the percentage difference is shown. There is clearly considerable vari-
ation in the outcomes with Luxembourg in particular having a very wide variation
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Table 2.3 Consumption-based accounts (CBA) for 2007 in MtCO2 as calculated by Eora, GTAP
and WIOD and deviation from the mean. Here the CBA includes direct emissions from households

Eora (%) GTAP (%) WIOD (%) Mean

Australia 434 4.9 347 −15.7 456 10.8 411

Austria 105 5.2 92 −7.8 102 2.5 100

Belgium 116 −17.1 157 11.9 148 5.2 140

Bulgaria 44 5.2 40 −4.1 41 −1.1 42

Brazil 425 12.9 338 −10.1 366 −2.8 376

Canada 543 −1.5 531 −3.6 580 5.1 551

China 4,840 6.9 4,174 −7.8 4,572 1.0 4,529

Cyprus 14 7.4 14 4.4 12 −11.8 13

Czech Republic 114 7.4 93 −12.1 111 4.7 106

Germany 948 −2.0 896 −7.4 1,059 9.4 968

Denmark 77 −3.6 84 6.5 77 −2.9 79

Spain 472 3.6 415 −8.9 479 5.2 456

Estonia 21 7.9 19 −2.1 18 −5.8 20

Finland 81 3.1 74 −5.4 80 2.3 78

France 610 5.2 542 −6.6 588 1.4 580

Great Britain 830 5.0 751 −4.9 789 −0.1 790

Greece 162 0.6 168 4.4 153 −5.1 161

Hungary 70 4.1 60 −10.4 71 6.3 67

Indonesia 352 1.4 336 −3.3 354 2.0 348

India 1,286 −1.3 1,252 −3.9 1,370 5.2 1,303

Ireland 61 −4.9 59 −7.4 72 12.3 64

Italy 611 2.9 549 −7.4 620 4.5 593

Japan 1,482 8.9 1,232 −10.3 1,405 2.3 1,373

Korea 595 10.1 474 −12.2 551 2.1 540

Lithuania 27 9.4 19 −20.9 27 11.5 24

Luxembourg 19 24.6 17 12.5 10 −37.1 15

Latvia 14 −6.1 17 7.5 15 −1.4 16

Mexico 450 3.1 416 −10.1 495 7.0 463

Malta 5 10.3 4 −1.2 4 −9.1 4

Netherlands 184 0.9 191 −6.8 218 5.9 205

Poland 309 9.5 282 −9.5 312 0.1 312

Portugal 83 8.7 72 −8.7 79 0.0 79

Romania 108 6.4 91 −16.3 119 9.8 109

Russia 1,246 5.6 1,236 −4.9 1,289 −0.8 1,299

Slovakia 60 37.1 37 −19.6 38 −17.6 47

Slovenia 20 4.8 19 −9.1 21 4.3 21

Sweden 94 4.8 82 −10.2 97 5.4 92

Turkey 321 6.0 306 −10.5 357 4.6 342

Taiwan 162 −15.1 189 −3.7 234 18.8 197

United States 6,662 8.5 6,089 −7.2 6,467 −1.4 6,558

All industry emissions 28,237 11.1 22,800 −10.3 25,218 −0.8 25,418

All direct household emissions 2,194 −33.3 3,724 13.1 3,957 20.2 3,292

TOTAL 30.431 6.0 26,524 −7.6 29,218 1.6 28,710
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in estimates. This finding is also identified by Moran and Wood (2014). Eora tends
to give estimates of CO2 CBA that are larger than the mean and GTAP underes-
timates when compared to the mean. There is also considerable difference in the
emissions designated to industries and those for households with Eora’s household
estimate nearly 2,000 MtCO2 lower than that of GTAP and Eora. As described in
Sect. 2.3, Eora takes the territorial principle to emissions allocation. The emissions
for industries therefore show greater difference than the global total difference. The
techniques used in this book will focus mainly on the differences in the MRIO data-
bases, meaning that the industrial emissions are of particular interest.

Figure2.9 displays the differences in CBA graphically. The CBA is converted to
tonnes CO2 per capita figures for ease of display. In Fig. 2.9 the values are split by
direct household emissions and emissions allocated to products. Direct household
emissions are shown by the darker parts of each bar. Figure2.9 clearly shows that
for each country Eora has a lower estimate of direct household emissions.

While results were being compiled for this book, and also the Owen et al. (2014)
submission to the ESR special edition onMRIO comparisons, Arto et al. (2014) inde-
pendently produced a study comparing GTAP and WIOD. Their research compares
the data sources used by both databases and gives some detail of the construction
technique. A weighted relative percentage difference is calculated for a common
classification versions of the GTAP and WIOD intermediate interaction matrices,
final demand matrices and emissions vectors to assess the similarity between the
building blocks of each database. Arto et al. (2014) also use decomposition methods
(see Sect. 2.8), as this study does (see Owen et al. 2014), to attribute the difference
in CBA as calculated by GTAP and WIOD to the final demand vector, interactions
matrix, emissions vector and total output vector. The findings of this similar study
will be addressed in Chap. 5 of this book, but it should be noted that this study com-
pares just two databases and there is little attempt to relate the differences back to
the accompanying metadata or to comment on how these differences might affect
the use of model outcomes in policy.

As Dietzenbacher et al. (2013, p. 73) state, “one database should not be seen as
‘better’ than another database” and it will not be the intention of this book to declare
one database the most accurate. Rather, the intension is to explore techniques to
help identify and quantify the differences and the reason for the differences shown
in Table2.3 and Fig. 2.9. Where Dietzenbacher et al. (2013, p. 73) embrace the
difference in MRIO databases and their construction because one might “be better
(or more appropriate) for answering some questions but not for other questions”,
Moran and Wood (2014, p. 246) suggest that with “continued improvements in
modelling [the databases will converge] towards the underlying correct statistical
account and that convergence of results is better than divergence”. Such viewpoints
will be explored in the discussion and conclusion sections of this book.

http://dx.doi.org/10.1007/978-3-319-51556-4_5
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Fig. 2.9 Differences in per capita CO2 CBA for the 40 common countries in Eora, GTAP and
WIOD. Bars split by embodied product emissions (lighter) and direct household emissions (darker)
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2.6 Policy Applications, Level of Detail and Uncertainty

The results fromMRIOdatabases can be used at a variety of scales fromnational level
CBA, to sector level footprints down to identifying the contribution of a particular
sector, from a particular country in a good’s production chain (Peters 2010). The
confidence associated with results generally reduces as the scale gets finer and more
detailed. This is because, as described above, the creation of the off-diagonal trade
portions of MRIO tables requires some level of estimation meaning that values at the
cell-by-cell level are uncertain. Rather than review the use of MRIO outcomes for
all policy applications, this section of the literature review approaches the question
from the concept of scale and comments on the reliability of evidence that could be
potentially be used for policy.

2.6.1 National CBAs

The calculation of a national CBA requires the sum of a national level results matrix
and it has been shown that regardless of sector and region aggregation, national level
footprint remain fairly stable (Andrew et al. 2009; Peters and Solli 2010) thus, this
calculation is the most robust of those discussed in this section. There are numerous
examples of MRIOs being used for CBA measures including: the carbon footprint
of nations (Hertwich and Peters 2009) and the water footprint of nations (Feng et al.
2011), both calculated using GTAP; and the material footprint of nations (Wiedmann
et al. 2015) and the employment footprint of nations (Alsamawi et al. 2014), both
calculated using Eora. See Wiedmann (2016) for an overview. Barrett et al. (2013)
and Wiedmann and Barrett (2013), use the UK as a case study and explain the role
national CBAs could have in policy by being an alternative indicator to be reported
alongside territorial emissions. Barrett et al. (2013) demonstrate that Eora, GTAP
and the UKMRIO report different CBA for the period 1990–2009 but the underlying
trend in the consumption-based CO2 emissions trajectory is similar. Before adopting
the CBA as an indicator, the UK government requested an investigation into the
robustness of the results, which led to the Monte Carlo analysis described previously
(Barrett et al. 2013; Lenzen et al. 2010).

If CBA are reported over a time series, investigation of the year-on-year drivers of
change can be a useful policy application. For example, Baiocchi and Minx (2010)
demonstrate that the UK government’s Sustainable Development Strategy, which
aims to improve the emissions efficiency of production, may not be enough to curb
emissions in the face of increasing rises in the demand for goods. To decompose CBA
results into drivers usually requires the exclusion of the effect of prices. WIOD is the
only MRIO database thus far to report tables in previous years prices allowing the
price effect to be eliminated (see Sect. 2.8 for further discussion of decomposition).
Brizga et al. (2014) use WIOD to show that final demand is the dominant driver of
the increase in the emissions CBA in three Baltic states from 1995–2009.
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2.6.2 Identifying the Imported Component of CBA

Splitting the CBA into those emissions where the source is domestic and those which
are imported from abroad requires a further level of detail. Understanding the role
of trade in global emissions has great policy relevance when considering producer
versus consumer responsibility in GHG emissions reduction targets (Lenzen et al.
2007). However, Barrett et al. (2013) warn that CBA are not the solution to climate
policy and should be seen as providing complementary and alternate information to
the producer/territorial account.

Davis and Caldeira (2010) were the first to assign a figure to the proportion of
global CO2 emissions that were traded. Using the GTAP MRIO from 2004, they
find that in wealthy nations more than 30% of the CBA is made up of imported
emissions. Peters et al. (2011a) also use the GTAP MRIO to calculate the portion of
Global CO2 emissions that were associated with trade and to show that this portion
grew between 1990 and 2008. However, the authors include considerable discussion
of the uncertainties inherent in their calculation in the supporting information accom-
panying the manuscript. Since GTAP is not available as a continuous time series (see
Table2.2), data from 1997 was used as the trade balance for the time period 1990–
1999, 2001 for 2000–2002 and 2004 for 2003–2008. Finding the sum of domestic
and imported emissions requires summing across the rows of the national results
table. This calculation should be fairly robust since, looking back to the construction
methods explained in Sects. 2.2–2.3, the domestic and imports split is a fundamental
element of the base building block—the SRIO table.

Manyof the ‘footprint of nations’ studies have also commented on the role of trade.
For example, using Eora, Wiedmann et al. (2015), when investigating the material
footprint of nations, find that the material impact of imported goods is around three
times the size of the physical quantity of the good itself. Similarly, Simas et al. (2014)
use EXIOBASE to determine the labour impacts embedded in trade.

2.6.3 Impact by Source Nation and/or Product Destination

A further level of detail is to break down a nation’s CBA either to show the source
nation and industry of the emissions or to show the final product footprint.Wiedmann
et al. (2011) explain that product footprints may become policy relevant if eco-
labelling becomes a requirement of product sustainability standards. Breaking the
CBA down to show source nation and industry requires summing the relevant rows
of a national results table. The BTD was used to break down imports by industry and
country so this summation should be reasonably accurate. On the other hand, product
footprints require column sums. As Sects. 2.2 and 2.3 explain, BTD is disaggregated
across the off-diagonal matrices because the destination (or rather end product) is not
recorded in the BTD statistics. This means that product footprints should be treated
with less certainty than source footprints.
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As early as 2010, Davis and Caldeira (2010) reported the breakdown of CBAs
by product using GTAP 2004. More recently, Alsamawi et al. (2014) have analysed
the employment footprint in traded goods and shown ranked lists of each countries’
imports by commodity and place of origin. The authors propose that developing
countries have a largeworkforce involved in the production of electronics, agriculture
and chemicals that that support the lifestyles of richer nations.

2.6.4 Supply Chain Analysis

Finally, the identification of an individual cell in a region’s CBA result table can
reveal for each product, the proportion of product footprint that is sourced from each
sector by import region. This level of detail has high uncertainty attached to it since
the value is generated as the product of a number of assumptions. Nevertheless,
Lenzen et al. (2012b) when analysing the land use impact associated with imported
goods to understand the biodiversity impacts of trade, use the proportion of the
land footprint of German coffee that is from Mexican agriculture to estimate how
Germany’s coffee consumption can be linked to the threatened the habitat of the
Mexican spider monkey.

As explained in Sect. 2.4.2, the OECD is in the process of developing a more
comprehensive bilateral trade database which may improve the accuracy of the off-
diagonal matrices. This means that the OECD ICIO can start to instigate projects
investigating global value chains, such as Rouzet and Miroudot (2013) and the
OECD-WTOs TiVA (Trade in Value Added) initiative. TiVA aims to calculate “the
value added by each country in the production of goods and services that are con-
sumed worldwide” (OECD 2014b).

It is clear that there is considerable work to do in assessing the difference between
MRIO databases; identifying the cause of difference and commenting on how this
uncertainty might have implications for the use of MRIO outcomes in policy. Sec-
tions2.7–2.10 of the literature review are dedicated to reviewing techniques that can
be used to understand difference.

2.7 Matrix Difference Statistics

Matrix difference statistics can be used to measure how different two matrices are
from each other. Knudsen and Fotheringham (1986) identify three types of matrix
difference statistics: distance statistics; goodness-of-fit; and information-based statis-
tics. Distance statistics measure the cell-by-cell deviations between the two matrixes
and then calculate a single value as a description of the overall difference. Goodness-
of-fit calculations measure how well the two matrices correlate to each other. And
finally, information-based statistics compare the probability distributions of the result
matrices. Information theory is concerned with the quantification of information
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Knudsen and Fotheringham (1986). Each type of statistic measures a different facet
of how two matrices could be described as being similar to each other, therefore to
gain a full understanding of how close two matrices are, several statistical measures
should be used. In fact, Butterfield and Mules (1980, p. 293) state that “there exists
no single statistical test for assessing the accuracy with which a matrix corresponds
to another” and there are numerous examples in the literature of authors using, a suite
of matrix comparison statistics in their work (Gallego and Lenzen 2006; Günlük-
Senesen and Bates 1988; Harrigan et al. 1980; Knudsen and Fotheringham 1986).
More detail on the specific matrix difference statistics chosen for this study is given
in Sect. 3.2 along with justification for their selection.

In the years before readily available IO tables, analysts often estimated data tables
for year t1 based on year t0 tables. With limited new data available, for certain
elements of the table, RAS balancing techniques were applied to update missing
values and ensure a balanced table. Once the tables for t1 had been released, analysts
could use matrix difference statistics to explore the accuracy of the observed and
estimated tables (McMenamin and Haring 1974). Similarly, analysts have estimated
sub-regional IO tables from national tables and then used difference statistics to
examine the reliability of their estimates (Harrigan et al. 1980; Jackson and Comer
1993; Morrison and Smith 1974). Finally, matrix difference statistics have been used
to measure the variation between pre and post RAS transaction matrices to further
understand the effect of balancing techniques (Gallego and Lenzen 2006; Geschke
et al. 2014; Wiebe and Lenzen 2016). Beyond the field of input–output analysis,
Knudsen and Fotheringham (1986) employ comparison statistics when investigating
a model that predicts flows. The actual and predicted flow matrices are compared
and the difference evaluated using a number of comparison statistics.

As described above, there are many examples of matrix difference statistics being
used with IO databases. The statistics are used to compare estimated and actual
tables and to look at the effect of construction techniques, such as RAS balancing.
These examples exclusively consider the difference between two tables from the
same database. There are no examples of matrix difference statistics being used to
understand the variation between different MRIO databases—a gap in this field of
research.

2.8 Structural Decomposition Analysis

Decomposition analyses are used to understand changes in economic, environmental
and other socio-economic indicators over time (Hoekstra and van der Bergh 2003).
To decompose change at the sector level, two techniques are commonly employed:
structural decomposition analysis (SDA) and index decomposition analysis (IDA).
Hoekstra and van der Bergh (2003) explain that SDA uses the IO framework,
whereas IDA calculates change using aggregated sector information. This means
that SDA is able to identify the effects of a change in the technical requirements
matrix and also to understand the effects of alterations in final demand—both of

http://dx.doi.org/10.1007/978-3-319-51556-4_3
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which are not possible using IDA techniques. This study will use SDA techniques
to determine the difference between MRIO databases because the differences due to
demand and the technical requirement matrix may be significant in this type analysis.
Thus, the remainder of this section draws mainly from the SDA literature.

Structural decomposition analysis (SDA) is an “analysis of economic change
by means of a set of comparative static changes in key parameters in an input–
output table” (Rose and Chen 1991, p. 3). SDA takes the component parts of the
fundamental Leontief equation and calculates the effect each term (or determinant)
has on the change in consumption-based account For example, an SDA can isolate
and estimate the effect of technological change, the technology mix and level of
demand on a year-on-year change in a CBA (Rose and Casler 1996). In some cases,
when the total effects of all the determinants do not equal the total observed change,
a residual has to be calculated. There are two types of decomposition calculations:
additive andmultiplicative (Rose andCasler 1996). The additive type decomposes the
difference between time t and time t + 1 into several determinant effects, whereas the
multiplicative type decomposes the relative growth into determinant effects Hoekstra
and van der Bergh (2003). Hoekstra and van der Bergh (2003, p. 43) state that “the
reason to choose the additive or multiplicative decomposition is generally a matter
of presentation” and that “non-experts interpret additive decompositions relatively
easily”. This book chooses to explore additive SDA for two reasons: firstly, because
of its ease of interpretation and secondly because the concept of ‘growth’ makes
little sense when comparing two databases. The following text therefore concentrates
exclusively on additive SDA techniques and applications.

There are several different methods that can be used to calculate additive SDA.
One of the main reasons that there are so many techniques is that the calculation
assigns indexes (or weights) to each determinant and there is no single way of deter-
mining what those weights should be (Hoekstra and van der Bergh (2003)). Ang
(2004) distinguishes two methods for assigning indices: by percentage change and
by logarithmic change. Methods of assigning weight to determinants that are based
on Laspeyres decomposition use percentage change; whereas other Divisia rooted
techniques use logarithmic changes. Again, ease of interpretation is one of the rea-
sons why analysts prefer one technique over another and the percentage change is
easier to understand (Ang 2004). However, Divisia rooted methods are described by
Ang (2004, p. 1133) as “beingmore scientific”. This is because if a change of 20 to 40
is observed between times t0 and t1, this can either be described as a 100% increase
from t0 to t1 or a 50% decrease from t1 to t0 (Ang 2004). A log percent change records
the changes in both directions as 69.3% but this is more complicated to relate back to
the original numbers.12 When deciding which of the additive SDA techniques to use
in this study, Hoekstra and van der Bergh’s (2003) classification of the properties of
indices is useful. The authors describe three properties of a decomposition technique:

12ln 20
10 = 0.693 and ln 10

20 = −0.693.



2.8 Structural Decomposition Analysis 53

Table 2.4 Features of themain additive SDA techniques (adapted fromHoekstra and van der Bergh
2003)

Technique Percent weights
or logarithmic
weights

Completeness Time reveral Zero value
robustness

Laspeyres Percent No No Yes

Marshall-
Edgeworth

Percent Only in 2
determinant case

Yes Yes

Paasche Percent No No Yes

Conventional
Divisia

Percent Yes Yes No

Log-Mean
Divisia

Logarithmic Yes Yes Yes if small
number replaces
zeros

Adaptive
Weighting Divisia

Logarithmic No No No

Shapely-Sun Percent Yes Yes Yes

Dietzenbacher
and Los

Percent Yes Yes Yes

• Completeness—the decomposition has a residual of zero
• Time reversal—if the order is reversed is the same result calculated
• Zero value robustness—if logarithms are involved in the calculations, this causes
an issue when there are zeros in the dataset

For comparison of two different MRIO tables rather than the same MRIO for two
years, the time reversal property becomes very important. The same result should be
calculated when comparing GTAP to WIOD as found comparing WIOD to GTAP.
Table2.4 compares additive SDA techniques.

Hoekstra and van der Bergh (2003) explain that the Laspeyres, Marshall-
Edgeworth, Paasche, Conventional Divisa and Adaptive Weighting Divisia decom-
position techniques fail on at least one of these properties. This leaves the Log-Mean
Divisia Index13 (LMDI) (Ang and Choi 1997), the Shapely-Sun14 (S-S) (Sun 1998)
and the Dietzenbacher and Los (D&L) (Dietzenbacher and Los 1998) techniques. In
the following section we shall explore each of these approaches.

13Known as the ‘Refined Divisis’ technique in Ang and Choi (1997) and Hoekstra and van der
Bergh (2003).
14Known as the ‘Sun’ technique in Hoekstra and van der Bergh (2003).
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2.8.1 Log-Mean Divisia Index

LMDI tends to be used for IDA rather than SDA and was first proposed by Ang and
Choi (1997) as a ‘refined divisia’ method. Where other techniques use arithmetic
mean weights and require a residual in the calculations, the LMDI method uses a
logarithmicmeanweight and decomposes perfectly. The authors also show that if any
zeros in the dataset are replaced by near zero values, the decomposition converges
to a result. Ang (2004) goes as far as to recommend that the LMDI technique is the
most appropriate decomposition method for policy making in energy.

2.8.2 Shapely-Sun

Sun (1998) proposed a refined Laspreyes decomposition technique that removed
the need for a residual term. In Laspreyes decompositions, the residual term can be
described to be the effect of the interaction of a number of determinants. Sun (1998)
demonstrates how this interaction effect can be reassigned and equally split among
the main residual effects (Ang 2004; Hoekstra and van der Bergh 2003). The Sun
(1998) technique was shown to be identical to a method proposed by Shapley15 and
so this method is now referred to as the Shapley-Sun (S-S) technique (Ang et al.
2003; Ang 2004).

2.8.3 Dietzenbacher and Los

TheD&L decomposition technique does not calculate a single index but rather devel-
ops a range of indices with no residual term (Dietzenbacher and Los 1998; Hoekstra
and van der Bergh 2003). For example, if the environmentally extended Leontief
equation is the product of three terms there are a total of six, (3! = 6), decomposition
equations that can be formulated to describe the change in CBA (see Sect. 3.3.1 for
further details). This means that there is no unique solution and each of the decom-
position forms is equally valid (Dietzenbacher and Los 1998). The mean of each of
the decomposition solutions is often taken as an indication of the influence of each
determinant but Dietzenbacher and Los (1998) note that the maximum, minimum
and standard deviation of each determinant can and should be reported.

Hoekstra and van der Bergh (2003) suggest that the mean effect of all of the D&L
indices is the same result as the indices calculated for S-S decomposition. This is
later proved by de Boer (2009).

15For details of the Shapley method see Albrecht et al. (2002).

http://dx.doi.org/10.1007/978-3-319-51556-4_3
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2.8.4 Applications of Structural Decomposition Analysis

The use of additive SDA to understand the drivers of emissions change over time is
well documented. Studies investigating the causes of a nation’s increase in carbon
CBAs include Baiocchi and Minx (2010), Guan et al. (2008, 2009), Minx et al.
(2011), Peters et al. (2007), Tian et al. (2014). Interestingly each of these studies
employs additive D&L methods. Both Baiocchi and Minx (2010) and Minx et al.
(2011) report the calculated ranges in the effect of each determinant as suggested by
Dietzenbacher and Los (1998). However, comment on the minimum, maximum, and
or variance of the effect of each term is not commonly found in the SDA literature.
LMDI techniques seem to bemore popular in studies decomposing changes in energy
(see for example Wachsmann et al. 2009).

Ang and Zhang (2000) show that there are very few examples of SDA being used
for anything other than an assessment of the drivers of change over time; their survey
of 124 decomposition studies find just three that do this. Jakob and Marschinski
(2013), however, demonstrate how the S-S technique can be used to understand
trade balances. Rather than finding the difference in emissions between t0 and t1, the
authors decompose the difference between a country’s exports and imports.

Dietzenbacher and Los (2000) warn that analyses that decompose a term such
as total value added need to be treated with care due to the dependency problem.
A decomposition equation containing three terms assumes each are independent of
each other. The authors point out that “changes in intermediate input coefficient and
in value added coefficient affect each other” (Dietzenbacher and Los 2000, p. 4).
SDA applied to measures of consumption-based emissions require the calculation of
the emissions per unit of output and this dependency issue will need to be consid-
ered. It is not appropriate to assume that a change in emissions efficiency can occur
independently of the technology matrix used to calculate the Leontief inverse. A
solution to the dependency problem is suggested by Dietzenbacher and Los (2000)
but most SDA studies do not address it. In fact, few, with the exception of Hoekstra
and van der Bergh (2002) and Minx et al. (2011), mention the issue.

This study is concerned with understanding the difference between the carbon
CBAs as calculated by different MRIO databases. SDA provides a useful technique
for considering the effect that each component of the environmentally-extended
Leontief equation has on the difference in CBA. It is clear that there is a gap in
the research for SDA to be used for this type of investigation. An understanding
of the certainty of the effect of each component could prove very interesting. For
example, if the effect of the difference in GTAP andWIOD’s final demand vectors is
large but the variance in the size of this effect, as calculated by the D&L technique, is
small, then there is a greater certainty that the difference in the CBA could be due to
the final demand vector. If the variance is large, then the certainty of the importance
of the effect is lessened. This study will therefore use the D&L method to calculate
decompositions of CBA. Further details of the SDA equations themselves can be
found in Sect. 3.3.

http://dx.doi.org/10.1007/978-3-319-51556-4_3
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2.9 Structural Path Analysis

Structural path analysis (SPA) is a technique that decomposes a consumption-based
account to the sum of an infinite number of production chains—sometimes called
paths. Wood and Lenzen (2003, p. 371) describe this process “unravelling the
Leontief inverse using its series expansion”. The SPA technique was first described
by Defourny and Thorbeck (1984) and Crama et al. (1984). SPA can be used to
find those production chains that contribute most to a particular CBA. Paths are cat-
egorised according to their length. For example, a zeroth order path represents an
industry’s direct on-site emissions arising from final demand of the product produced
by that particular industry. This could be the emissions from steel production used
to make a steel final demand product. A first order path has one further step in the
supply chain: for example the emissions from steel production that are used to make
cars for final demand. Most SPA studies rank these production chains or paths in
order of their importance. Because there are an infinite number of paths of decreas-
ing importance that sum to the total CBA, most authors will display the top 20 or so
chains.

Writing in 2006, Peters and Hertwich (2006) state that there are very few IO stud-
ies that apply SPA and that hybrid life cycle assessment (LCA) techniques have been
a more popular method employed to consider production chains. By 2015, this is
still the case—SPA methods remain relatively unpopular. Wood and Lenzen (2003)
use SPA and a 1995 SRIO database for Australia to compare the land use CBA16

of two Australian research institutions. Their analysis reveals a large proportion of
the two institutions’ land use impacts occurring upstream in first or second order
paths. Using the same database, Lenzen (2003) furthers this work to analyse the
Australian economy as a whole and considers CBAs calculated using energy, land,
water, GHG, Nitrous Oxide (NOX) and Sulphur Dioxide (SO2) emissions as envi-
ronmental extensions. Lenzen (2003) demonstrates that when considering energy
and emissions rather than land use, the zeroth order paths dominate the rankings.
The reason for this is that direct land use only applies to a few industrial sectors.
A production chain has to start with one of these sectors to show as having signif-
icant impact. This means that product chains will often have to be at least a first
order chain to link to the land using sectors. There is significant direct energy and
emissions use for a wider proportion of industrial sectors meaning that many zeroth
order paths will be significant. The advantage of an emissions-based study is that
the largest paths will be relatively short and quick to find during the SPA procee-
dure. Both Lenzen (2003) and Peters and Hertwich’s (2006) analyses of Australia
and Norway, respectively find that zeroth order paths involving electricity, metals,
chemicals and transport services are significant.

Rather than look at all the production chains making up the entire emissions CBA,
Acquaye et al. (2011) consider the upstream paths that contribute to the production of
biofuels using a UK focused two-region MRIO database. The authors discuss how

16This is more commonly known as the ‘Ecological Footprint’ (see Wackernagel and Rees 1996).
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SPA has been used in this case to identify carbon hot spots, or rather the highest
carbon intensity path of the upstream supply chain or biodiesel.

It is clear that SPA is an underused technique in MRIO database analyses and as
yet, there have been no SPA research published using Eora, GTAP and WIOD. In
Sect. 2.10, a technique that uses SPA to compare year-on-year differences is discussed
since it is the difference between the databases that is covered by this book.

2.10 Structural Path Decomposition

Structural Path Decomposition (SPD) was developed by Wood and Lenzen (2009)
as a combination of SDA and SPA. Wood and Lenzen (2009) use SPD to understand
changes in a production chain between two points in time. Where SDA assigns
proportions of the difference in CBA to elements in the environmentally-extended
Leontief input–output equation, SPD assigns difference proportions to elements in
a product’s supply chain. For example, the largest difference in a production chain
between t0 and t1 could occur in a zeroth order path such as the emissions involved
in air travel as a result of the purchase of a plane ticket or a first order path, such as
the emissions from livestock that are used to make food products for final demand.
In addition to identifying the chains that contribute most to the difference, SPD can
identifies which part of the chain has the highest difference associated with it. For
example, in the first order path representing the livestock emissions associated with
final demand for food, the difference between this path in t0 and t1 can be shared
between the three parts of the chain: the emissions intensity of livestock production;
the amount of livestock needed to make a food product; and the amount of food
product bought by final demand consumers.

Wood and Lenzen (2009) use the LMDI calculated SDA technique for the SPD
methodology and apply it to Australian SRIO tables for 1995 and 2005. There are
no examples of other SDA methods—such as the D&L or S-S technique—used for
SPD. The authors find that between 1995 and 2005, the largest changes in emissions
production paths involved livestock and electricity. The element of the paths, which
Wood and Lenzen (2009) name ‘the differential’ tends to be either a change in level
of domestic final demand or a change in level of demand for export.

Since Wood and Lenzen’s (2009) initial paper, there have been very few applica-
tions of the technique in the literature. Oshita (2012) uses SPD to look at changes
in CO2 emissions in Japanese supply chains between 1990 and 2000 and Gui et al.
(2014) consider changes in CO2 emissions in Chinese supply chains between 1992
and 2007. Both examples use SPD to explain a change in emissions over time but
rather than use the LMDI SDA technique, both Oshita (2012) and Gui et al. (2014)
opt for polar decompositions.

Clearly, there is an opportunity for SPD techniques to be applied to different
MRIO systems rather than different time frames. The work presented in this book
may present the first application of SPD for this use. In addition there is also an



58 2 Literature Review

option to explore using the D&L or S-S SDA technique within the SPD calculations,
which is considered more accurate than polar decompositions (de Boer 2009).

The equations used for SPA and SPD are presented in Sects. 3.4 and 3.5 respec-
tively.
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