Chapter 2
Glowworm Swarm Optimization: Algorithm
Development

In this chapter, the development of the glowworm swarm optimization (GSO)
algorithm is presented. Initially, the basic working principle of GSO is introduced,
which is followed by a description of the phases that constitute each cycle of the algo-
rithm. GSO, in its present form, has evolved out of several significant modifications
incorporated into the earlier versions of the algorithm. Many ideas were considered
in the development process before converging upon the current GSO version. Some
of the important steps in this evolution are briefly discussed. Next, some convergence
proofs related to the luciferin update rule of GSO are provided. Later, simulations
are used to illustrate the basic working of GSO. Finally, some comparisons of GSO
with ACO and PSO are provided based on their underlying principles, algorithmic
aspects, and applications. Experimental comparisons of GSO with a variant of PSO
are deferred to Chap. 4.

2.1 The Glowworm Swarm Optimization (GSO) Algorithm

GSO starts by distributing a swarm of agents randomly in the search space. Agents are
modeled after glowworms and, hereafter, they will be called glowworms. Further,
they are endowed with other behavioral mechanisms that are not found in their
natural counterparts. Accordingly, the basic working of the algorithm is the result of
an interplay between the following three mechanisms:

1. Fitness broadcast: Glowworms carry a luminescent pigment called luciferin,
whose quantity encodes the fitness of their locations in the objective space. This
allows them to glow at an intensity that is proportional to the function value being

© Springer International Publishing AG 2017 21
K.N. Kaipa and D. Ghose, Glowworm Swarm Optimization,
Studies in Computational Intelligence 698, DOI 10.1007/978-3-319-51595-3_2

http://dx.doi.org/10.1007/978-3-319-51595-3_4

22 2 Glowworm Swarm Optimization: Algorithm Development

P local-decision range

(b)

1/ glowworm

radial sensor range

of agent ;agcgﬁlt iensor range of

Fig. 2.1 ars <d(i,k)=d(,j) < rj < rsk < rsj. Agentiis in the sensor range of (and is equidis-

tant to) both j and k. But, they have different decision-domains. Hence, only j uses the information of
i. b Emergence of a directed graph based on the relative luciferin level of each agent and availability
of only local information. Agents are ranked according to the increasing order of their luciferin
values. For instance, the agent a whose luciferin value is highest is ranked ‘1’ in the figure

optimized. It is assumed that the luciferin level of a glowworm as sensed by its
neighbor does not reduce due to distance.'

2. Positive taxis: Each glowworm is attracted by, and moves toward, a single neigh-
bor whose glow is brighter than that of itself; when surrounded by multiple such
neighbors, it uses a probabilistic mechanism (described in Sect.2.1.1) to select
one of them.

3. Adaptive neighborhood: Each glowworm uses an adaptive neighborhood to
identify neighbors; it is defined by a local-decision domain that has a variable
range r; bounded by a hard-limited sensor range r; (0 < r} <ry). A suitable
heuristic is used to modulate r(’; (described in Sect.2.1.1). A glowworm i considers
another glowworm j as its neighbor if j is within the neighborhood range of i
and the luciferin level of j is higher than that of i.

Note that the glowworms depend only on information available in the local-
decision domain to decide their movements. For instance, in Fig.2.1a, glowworm i
is in the sensor range of (and is equidistant to) both j and k. However, j and k have
different neighborhood sizes, and only j uses the information of i. Figure 2.1b shows
the formation of a directed graph based on the relative luciferin level of each agent
and on the availability of only local information. Each glowworm selects, using a
probabilistic mechanism, a neighbor that has a luciferin value higher than its own
and moves toward it. These movements, that are based only on local information
and selective neighbor interactions, enable the swarm of glowworms to partition

'In natural glowworms, the brightness of a glowworm’s glow as perceived by its neighbor reduces
with increase in the distance between the two glowworms.

2.1 The Glowworm Swarm Optimization (GSO) Algorithm 23

into disjoint subgroups that steer toward, and meet at, multiple optima of a given
multimodal function.

The significant difference between GSO and most earlier approaches to multi-
modal function optimization problems is the adaptive local-decision domain, which
is used effectively to locate multiple peaks.

2.1.1 Algorithm Description

The exposition of the algorithm is presented for maximization problems. However,
the algorithm can be easily modified and used to find multiple minima of multimodal
functions. GSO starts by placing a population of n glowworms randomly in the search
space so that they are well dispersed. Initially, all the glowworms contain an equal
quantity of luciferin £y. Each cycle of the algorithm consists of a luciferin update
phase, a movement phase, and a neighborhood range update phase (Fig.2.2). The
GSO algorithm is given in Fig.2.3.

Luciferin update phase: The luciferin update depends on the function value at the
glowworm position. During the luciferin-update phase, each glowworm adds, to its
previous luciferin level, a luciferin quantity proportional to the fitness of its current
location in the objective function space. Also, a fraction of the luciferin value is
subtracted to simulate the decay in luciferin with time. The luciferin update rule is
given by:

G+ 1) =1 =p)li(0) +9J(xi(t + 1)) 2.1)

where, ¢;(t) represents the luciferin level associated with glowworm i at time #, p
is the luciferin decay constant (0 < p < 1), 7y is the luciferin enhancement constant

Fig. 2.2 The phases that
constitute each cycle of the INITIALIZATION
GSO algorithm —

o

NEIGHBORHOOD RANGE UPDATE

24

2 Glowworm Swarm Optimization: Algorithm Development

GLOWWORM SWARM OPTIMIZATION (GSO) ALGORITHM

Set number of dimensions = m

Set number of glowworms = n

Let s be the step size

Let z;(t) be the location of glowworm ¢ at time ¢
deploy_agents_randomly;

for i =1 ton do £;(0) = £y

i) —
ra(0) = 1o

set maximum iteration number = iter_max;
set t = 1;

while (¢t <iter_max) do:

{

for each glowworm i do: % Luciferin-update phase
ti(t) = (L=p)li(t = 1) +~J(zi(t)); % See Eq. (2.1)

for each glowworm 4 do: % Movement-phase

{
Ni(t) = {3« dij(t) < rg(0); Gi(t) < £;(1)};
for each glowworm j € N;(t) do:

B —4i(t)
pij(t) = DR AGEAGE ;% See Eq. (2.2)

j = select glowworm(ﬁ)

it + 1) = (t) + s (%) % See Eq. (2.3)

ri(t + 1) = min{ry, max{0, ri(t) + B(n: — [Ni(8))}}: % See Eq.
(2.4)
}
t

— t+1;

Fig. 2.3 The GSO algorithm

and J (x;(¢)) represents the value of the objective function at glowworm i’s location
at time ¢.

Movement phase: During the movement phase, each glowworm decides, using a
probabilistic mechanism, to move toward a neighbor that has a luciferin value higher
than its own. That is, glowworms are attracted to neighbors that glow brighter.
Figure 2.1b shows the directed graph among a set of six glowworms based on their
relative luciferin levels and availability of only local information. For instance, there
are four glowworms (a, b, ¢, and d) that have relatively higher luciferin level than
glowworm e. Since e is located in the sensor-overlap region of ¢ and d, it has only two
possible directions of movement. For each glowworm i, the probability of moving

2.1 The Glowworm Swarm Optimization (GSO) Algorithm 25

toward a neighbor j is given by:

£i@) —4i(0)
ZkeN,(t) gk(t) - Ei(t)

pij(t) = (2.2)

where,j € N;(t), N;(t) = {j : d;;(t) < ré(t); £;(t) < £;(1)}is the set of neighbors of
glowworm i at time ¢, d;; (¢) represents the Euclidean distance between glowworms i
and j at time ¢, and ré (t) represents the variable neighborhood range associated with
glowworm i at time ¢. Let glowworm i select a glowworm j € N;(¢) with p;;(t)
given by (2.2). Then, the discrete-time model of the glowworm movements can be
stated as:

(2.3)

xi(t+l):xi(t)+s(xj(t)_xi(t))

llxj () = xi (D)l

where, x;(t) € R™ is the location of glowworm i, at time ¢, in the m-dimensional
real space R™, | - || represents the Euclidean norm operator, and s (>0) is the step
size.
Neighborhood range update phase: Each agent i is associated with a neighborhood
whose radial range rail is dynamic in nature (0 < ré <r,). The fact that a fixed
neighborhood range is not used needs some justification. When the glowworms
depend only on local information to decide their movements, it is expected that the
number of peaks captured would be a function of the radial sensor range. In fact, if
the sensor range of each agent covers the entire search space, all the agents move
to the global optimum and the local optima are ignored. Since we assume that a
priori information about the objective function (e.g., number of peaks and inter-peak
distances) is not available, it is difficult to fix the neighborhood range at a value that
works well for different function landscapes. For instance, a chosen neighborhood
range r; would work relatively better on objective functions where the minimum
inter-peak distance is more than r; rather than on those where it is less than ry.
Therefore, GSO uses an adaptive neighborhood range in order to detect the presence
of multiple peaks in a multimodal function landscape.

Letry be the initial neighborhood range of each glowworm (thatis, 5 (0) = roVi).
To adaptively update the neighborhood range of each glowworm, the following rule
is applied:

rg(t +1) = min{ry, max{0, ry (1) + B(n, — IN:(1)])}} 2.4

where, 3 is a constant parameter and n; is a parameter used to control the number of
neighbors.

The quantities p, 7, s, 3, n;, and ¢, are algorithm parameters for which appropriate
values have been determined based on extensive numerical experiments and are kept
fixed in this book (Table 2.1). The quantity r(is made equal to r, in all the experiments.
Thus, n and r; are the only parameters that influence the algorithm behavior (in terms
of the total number of peaks captured) and need to be selected.

26 2 Glowworm Swarm Optimization: Algorithm Development

Table 2.1 Values of algorithmic parameters that are kept fixed for all the experiments
p v &) ny s Lo
0.4 0.6 0.08 5 0.03 5

The following example is used to demonstrate the variable nature of the neighbor-
hood. For the purpose of simplicity, a static placement of glowworms is considered
and it is observed how the neighborhood range of the glowworm at (0, 0) varies
according to (2.4). In Figs.2.4 and 2.5, notice that the neighborhood range gets
adjusted until the glowworm acquires the number of neighbors that is specified by
the parameter n, (=3). Figure 2.4a shows an initial placement where the glowworm
at (0, 0) is isolated. It increases its neighborhood range (Fig.2.4b) until it either
acquires a set of three neighbors or reaches the maximum range. In Fig.2.5a, the
glowworm is crowded by a large number of neighbors (| N;(¢)| > n,) that causes the
neighborhood range to shrink until |N;(¢)| = n,. Figure 2.5b shows the variation of
the neighborhood range as a function of the iteration number.

When a glowworm is located far away from a peak, typically it has only a few
neighbors or it may even be isolated (as in Fig. 2.4a). Rule (2.4) aids a glowworm in
this situation to find neighbors by increasing its neighborhood range at each iteration.
In contrast, when the glowworm is located in the vicinity of multiple peaks, it is
more likely that the glowworm is surrounded by a large number of neighbors (as in
Fig.2.5a). Consequently, rule (2.4) restricts its visibility to a few neighbors so that
its movement is biased toward a nearby peak.

2.1.2 Evolving Graph Architecture of GSO

The constraints of sensor range r; and adaptive decision-range r, that are imposed
on each glowworm, give rise to two different graphs’>—an undirected graph N, and a
directed graph N;—of the same set of glowworms. From the algorithm’s description,
itis clear that agents in GSO do not maintain fixed-neighbors during their movements,
which means that new links may form, and existing links may break, between any two
glowworms. Therefore, the graphs N, and N, are dynamic in nature. The example in
Fig. 2.6 is used to describe the evolving graph architecture of agents in a glowworm
swarm.

A group of 16 glowworms are randomly deployed in a search space that consists
of three sources placed at different locations. Note from Fig. 2.6 that the graph N, is
connected. If the glowworms use a constant local-decision domain whose range is

2LetG(V, E) be a graph with vertex set V = {vy, ..., v,} andedge set E = {(v;, v;) : v;,vj € V}.
If E is a set of unordered pairs, then G is said to be an undirected graph. If E is a set of ordered
pairs, then G is said to be a directed graph. The graph G is said to be connected if it has a path
between each distinct pair of vertices v; and v; where by a path (of length m) is meant a sequence
of distinct edges of G of the form (v;, k1), (k1, k2), ... (ky, vj).

2.1 The Glowworm Swarm Optimization (GSO) Algorithm 27

(@) 1

081

06

041

0.2

(b)
0.8 T T T T T T — T 3
/
/
/
/
/
/
06| S {2
/
= 7 —
e / z
/ 1
/ S rd(t)
04} pomm 41
/ N)]
/
/
/
/
/
0.2 0
1 2 3 4 5 6 7 8 9 10

Number of iterations

Fig. 2.4 a Initial placement where the glowworm at (0, 0) is isolated. b Plot of rt} (t). Values of
rs = 1 and n; = 3 are used

equal to the maximum sensing range ry, all the glowworms converge to the global
peak. This observation is supported by the simulation example presented in Sect. 2.4.
However, note that the graph N, is partitioned into two disjoint weakly connected
components N} and N7, which can be explained in the following way. When the glow-
worms use an adaptive decision-domain whose range is updated according to (2.4),
the glowworms adjust their neighborhood ranges until they acquire a pre-specified
number of neighbors (1, = 2 in the example shown in Fig. 2.6). This property enables

28 2 Glowworm Swarm Optimization: Algorithm Development

(@ 4

0.8

0.6

041

(b)
1 10
1o
;

o

08k 18
. S N
. 1,
06} T N {6
% N s o
. z
\
04t \ 14
\
\
vV s] 3
\ e
N
02f . 12
11
0 0
1 2 3 4 5 6 7 8 9

Number of iterations

Fig. 2.5 a Initial placement where the glowworm at (0, 0) is crowded by a large number of glow-
worms. b Plot of ré (t). Values of ¢ = 1 and n, = 3 are used

2.1 The Glowworm Swarm Optimization (GSO) Algorithm 29

15 T T T T
sensor range r_

(58) < N

Fig. 2.6 Networks resulting from the constraints of sensing range r; and adaptive decision-range
r; that are imposed on the agents in GSO

each glowworm to select its neighbors so that its movements get biased toward the
nearest peak. This individual agent behavior results in a collective behavior of agents
comprising an automatic splitting of the whole group into disjoint subgroups and the
eventual convergence of each subgroup of agents to a nearby peak. In Fig. 2.6, glow-
worms 5, 6, 8, 9, and 10 are within the sensing-range of glowworm 7. However,
glowworm 7 considers only glowworms 8 and 9 as neighbors. Therefore, its move-
ments get biased toward Source 2, while it avoids moving toward glowworm 5, even
though glowworm 5 has a higher luciferin value than that of itself. Accordingly, the
subgroups of glowworms {1, 2, 3,4, 5,6}, {7, 8,9, 10}, and {13, 14, 15, 16} move
toward Source 1, Source 2, and Source 3, respectively. Note that glowworms 11 and
12 may move toward either Source 2 or Source 3. The local-search and convergence
of each subgroup to a nearby source location is achieved by the leapfrogging effect
inherent in GSO, which is explained next.

2.1.3 Leapfrogging Behavior Enables Local Search

According to the basic GSO algorithm, in any given iteration the glowworm with the
maximum luciferin remains stationary. The above property may lead to a dead-lock
situation where all the glowworms in the vicinity of a peak converge to the glowworm

30 2 Glowworm Swarm Optimization: Algorithm Development

that is located closest to the peak. Since the agent movements are restricted to the
interior region of the convex-hull, all the glowworms converge to a glowworm that
attains maximum luciferin value during its movements within the convex-hull. As
a result, all the glowworms are trapped away from the peak. However, the discrete
nature of the movement update rule automatically takes care of this problem. In fact,
during the movement phase, each glowworm moves a distance of finite step size s
toward a neighbor. Hence, when the distance between a glowworm i approaching a
neighbor j is less than s, i leapfrogs over the position of j and becomes a leader to
Jj- In the next iteration, i remains stationary and j overtakes the position of i thus
regaining its leadership. This process of role interchange between i and j repeats,
giving rise to a local-search behavior of the glowworm pair along a single ascent
direction. A group of glowworms uses the same principle to perform an improved
local-search and eventually converge to the peak location. The leapfrogging behavior
of the agents in GSO can be observed in simulations in Sect.2.4 (Fig.2.8d).

2.2 Evolution of GSO

GSO, in its present form, has evolved out of several significant modifications incor-
porated into the earlier versions of the algorithm [103, 105, 107, 109, 112] that led to
improvement in algorithmic performance from one version to the next. Some of the
important steps in this evolution are briefly discussed for the sake of completion and
also to convey the fact that many ideas were considered in the process of developing
the GSO algorithm before converging upon the current version.

The algorithm was first introduced in [105]. The equations that modelled the
luciferin-update, probability distribution used to select a neighbor, movement update,
and local-decision range update are given below:

£;(t + 1) = max{0, (1 — p)€;(t) +~J (x; (¢t + 1))} (2.5)
pi(®) = L -
2kenyn G (@)
| o X0 = xi(0)

xi(t+1) —x’(t)+s(||x/‘(l)—xi(f)||) =
D = a

where,

N;i

is the neighbor-density of agent i at iteration ¢ and (3 is a constant parameter.

2.2 Evolution of GSO 31

The local-decision range update rule (2.8) faces a problem at an instant when a
glowworm i has no neighbors in its current local-decision domain range ré (t) but
has some neighbors within its sensor range r,. In particular, when the glowworm
i is isolated, D;(t) = 0. From (2.8), ”fz(t + 1) = r,. Suppose glowworm i acquires
some neighbors at t + 1, D;(t + 1) # 0. If a large value of 3 is used, (2.8) gives
r;',(t + 2) &~ 0. Therefore, the above kind of neighbor-distribution associated with i
results in an oscillatory behavior of the decision range, with rfi switching between r;
and a value closer to zero. Therefore, all glowworms in a neighborhood situation as
described above move only in alternative iterations slowing down the convergence
of the algorithm approximately by a factor of two.

To solve the above problem, the local-decision update rule in [106] is modified
by forcing a nonzero lower bound on the decision range such that each glowworm
improves its own chances of finding a neighbor at every instant. The modified update
rule for 7/ (¢) is given by:

ry —

D=0t e

(2.10)

where, « represents the lower bound of the decision domain range.

A new update rule is proposed in [104] where an explicit threshold parameter n;, is
used to control the number of neighbors at each iteration. A substantial enhancement
in performance is noticed by using this rule:

ry(®) + BiIN; 0, if [N; ()] <

ry(t) — B2 N;(t)], otherwise (2.11)

rj,(z+1)=[

where, 3; and (3, are constant parameters.

A further improvement in algorithmic performance is observed by using the
present decision-range update rule (2.4), which was introduced in [107]. This can
be attributed to the fact that the second term in (2.4), which either increments or
decrements ré (1), is proportional to the difference between the desired number of
neighbors 7, and the actual number of neighbors |N; (7)].

Since actual values of luciferin (instead of differences in luciferin values as used in
the current version) are used in the probability distribution formula (2.6), the luciferin
cannot take negative values. This is taken care of in the luciferin update formula (2.5),
by forcing a zero lower bound on the luciferin value. However, the algorithm does not
work in regions where the objective function has negative values unless the function
is shifted appropriately. In order to address these problems, actual luciferin values
in the probability distribution formula are replaced by relative luciferin values in
[112]. As a consequence, the luciferin values are allowed to take negative values.
Therefore, the luciferin-update formula was accordingly modified to its current form
given in (2.1) where the constraint of zero lower bound on the luciferin values is
removed [112].

32 2 Glowworm Swarm Optimization: Algorithm Development

2.3 Convergence Results

Some theoretical proofs on the working of the luciferin update rule are derived in
this section. These theoretical results give an insight into how the luciferin levels
of glowworms vary as a function of time during the execution of the algorithm.
First, it is proved that, due to luciferin decay, the maximum luciferin level 7,,,, is
bounded asymptotically. Secondly, it is shown that the luciferin £; of all glowworms
co-located at a peak X; converge to the same value £} .

Theorem 2.1 Assuming that the luciferin update rule in (2.1) is used, the luciferin
level €;(t) for any Glowworm i is bounded above asymptotically as follows:

lim ¢;(¢) < lim £"%(¢) = (Z) Jnax (2.12)
—00 t—00 p

where, Jyqy is the global maximum value of the objective function.

Proof Given that the maximum value of the objective function is J,,, and the
luciferin update rule in (2.1) is used, the maximum possible quantity of luciferin
added to the previous luciferin level at any iteration ¢ is 7y J,,,,. Therefore, at Itera-
tion 1, the maximum luciferin of any Glowworm i is (1 — p)€g + 7y Jax . At Iteration
2,itis (1 — p)2€g 4+ [1 + (1 — p)]yJymax, and so on. Generalizing the process, at any
iteration ¢, the maximum luciferin £"%*(¢) of any Glowworm i is then given by:

t—1

@) =1 =p'o+ D (=) Y ar (2.13)
k=0
Clearly,
;i) <M (1) (2.14)

Since 0 < p < 1, from (2.13) we have that
max ,‘y
ast — 0o, " (t) > | —) Jnax (2.15)
p

Using (2.14) and (2.15), we have the result in (2.12). O

Theorem 2.2 For all glowworms i co-located at peak-locations X ;“ associated with
objective function values J;.k < Jax (Where, j = 1,2, ..., m, with m as the number
of peaks), if the luciferin update rule in (2.1) is used, then £; (t) increases or decreases

monotonically and asymptotically converges to éjf = (:p/ J;‘.

Proof According to (2.1), £;(¢t) > 0 always. The stationary luciferin Zj associated
with peak j satisfies the following condition:

2.3 Convergence Results 33

* * ’y *
C=1—pli+rJf = = (;) J} (2.16)

If¢; (1) < Ejf for Glowworm i co-located at peak-location X;f, then using (2.16) we
have

HOES (g) (0 2.17)
Now,
G +1) = (1=t +J} (2.18)
>«1—pwxn+v(§)am
= G+ 1) > 6@ (2.19)

that is, ¢; () increases monotonically.
Similarly, if ¢; () > £} for Glowworm i co-located at peak-location X7, then using
(2.16) and (2.18), it is easy to show that

G+ 1) < €) (2.20)

that is, £; () decreases monotonically.

Now, the convergence of the sequence ¢;(¢) is proved by showing that the fixed
point Zj of the system in (2.18) is asymptotically stable. From (2.18), the following
relation can be deduced:

‘Zi(t) ~lpl=a-plec-1n-1s 2.21)
p p
= —p? |t -2 - 21}
P
Proceeding in a similar way, we get
(1) — €5 = (1= p) [€:(0) — 7] (2.22)
Therefore,
lim [¢;(1) — €3] = 1lim (1 — p)" [€:(0) — €3]
—00 —00
=0, since0< (1—p) <1 (2.23)

From (2.23), it is clear that the luciferin ¢;(¢t) of Glowworm i, co-located at a
peak-location X7, asymptotically converges to £7. (]

34 2 Glowworm Swarm Optimization: Algorithm Development

5
o ‘ “ \\
o/ :'““ s WS N
J ,,/' % 0“ Sy /’3‘\\1/,/1"0‘0‘\
- 0 O ““‘/[\
-5

Fig. 2.7 Peaks function Jj(x, y) [184] used in simulations to demonstrate the basic working of
GSO. The function has three local maxima located at (0, 1.58), (—0.46, —0.63), and (1.28, 0)

2.4 Simulation Experiments to Illustrate GSO

Simulation experiments® demonstrating the capability of the glowworm algorithm to
capture multiple peaks of a number of benchmark multimodal functions are deferred
to Chap. 4. Here, the basic working of the algorithm is demonstrated using the peaks
function, which is a function of two variables, obtained by translating and scaling
Gaussian distributions [184]:

Ji(x, y) = 3(1 — x)%e WO _ (f —x - ys) e~
’ 5

_ (%) e*[(x+1)2+y2] (2.24)

The peaks function J; (x, y) has multiple peaks and valleys (Fig.2.7). Local maxima
are located at (0, 1.58), (—0.46, —0.63), and (1.28, 0) with different peak func-
tion values. A set of 50 glowworms are randomly deployed in a two-dimensional
workspace of size 6 x 6 square units.

3Movies of some of the simulations presented in this book can be viewed at this link: https://www.
youtube.com/watch?v=_vhSu4xBoFs.

http://dx.doi.org/10.1007/978-3-319-51595-3_4
https://www.youtube.com/watch?v=_vhSu4xBoFs
https://www.youtube.com/watch?v=_vhSu4xBoFs

2.4 Simulation Experiments to Illustrate GSO 35

2.4.1 Simulation Experiment 1: Constant Local-Decision
Domain Range

As a first step, the radial range r; of each glowworm is kept constant, in order to
characterize the sensitivity of the number of peaks detected to the size of the local-
decision domain. As noted earlier, the local-decision range greatly influences the
determination of various peaks. When the decision-range is more than 2, all the
glowworms move to the global maximum. Figure 2.8a—c show the emergence of the
solution, after 200 iterations, when the local-decision range rj of all glowworms is
kept constant at 2 (only one peak is captured), 1.8 (two peaks are captured), and 1.5
(all three peaks are captured), respectively.

(a)

Fig. 2.8 Emergence of solution after 200 iterations for different cases: a The decision range is
kept constant with), = 2 (only one peak is captured). b The decision range is kept constant with
r[’;l = 1.8 (only two peaks are captured). ¢ The decision range is kept constant with r("i = 1.5 (all
three peaks are captured). d Decision range is made adaptive according to (2.4), with ré (0) =3 (all
three peaks are captured)

36 2 Glowworm Swarm Optimization: Algorithm Development

2.4.2 Simulation Experiment 2: Adaptive Local-Decision
Domain Range

Figure 2.8d shows the emergence of the solution when the local-decision domain
range is made to vary according to (2.4) at each iteration ¢. During this simulation,
a value of rf, (0) = 3 is chosen for each glowworm i. Note that all the peaks are
detected within 200 iterations. In particular, 23, 19, and 8 glowworms get co-located
at the maxima of (0, 1.58), (—0.46, —0.63), and (1.28, 0), respectively. Figure 2.9a
shows the luciferin history of each glowworm. Note that after the steady state is
reached, all the glowworms, co-located at a particular location, possess the same
luciferin quantity. According to Theorem 2, the value of £; of all glowworms
J, co-located at a peak-location X7, is given by (%)J,’*~ It was observed that the
value of ¢ at the three peak-locations (0, 1.58), (—0.46, —0.63), and (1.28, 0) are
12.15 (=(0.6/0.4) x 8.1), 5.67 (=(0.6/0.4) x 3.78), and 5.4 (=(0.6/0.4) x 3.6),
respectively. Note that the luciferin values obtained in simulations are in exact agree-
ment with their analytical values given by Theorem 2 (Fig.2.9a).

Figure 2.9b shows the initial placement and co-location of all the glowworms on
the equi-contour plot of the objective function. Figure2.10a, b show the number of
neighbors and the local-decision range of glowworm 12, respectively. Initially, the
value of rt}z(t) decreases as glowworm 12 has more than five neighbors (1, = 5).
Note that between ¢ = 74 and ¢t = 94, the decision-range rises sharply up to the
maximum sensing range ry. The reason is evident from Table 2.2, where the number
of glowworms that are within the decision-range of glowworm 12 is much higher
than n,, but among them, the number of glowworms that have a higher luciferin
value (and hence, the number of neighbors) is less than n,. However, at t = 94, the
decision-range starts shrinking again, as it acquires a set of 13 neighbors.

2.4.3 Simulation Experiment 3: Effect of Presence of
Forbidden Region

GSO has an advantage in situations where presence of forbidden regions in the
workspace lead to loss of gradient information and local-gradient based algorithms
fail to work. Figure 2.11 depicts a situation where the glowworm A is unaware of the
source location because of the occlusion created by the forbidden region O. However,
the inter-agent communication between neighbors makes global information avail-
able locally to the agent, providing the agent with feasible directions to move toward
the source. This situation is simulated by biasing the random initial placement of the
glowworms to ensure that none of the glowworms is deployed in a circular (forbid-
den) region of radius 1 unit centered at (0.6, —0.6). The size of the forbidden region

2.4 Simulation Experiments to Illustrate GSO 37

T/

\ S //t

=

(b)

3.0

-3.0 : ‘ :
-3.0 -24 -1.8 -1.2 -0.6 0

Fig. 2.9 a Luciferin-histories of the glowworms. b The equi-contour plot with the initial placement
(shown by x-marks) and final co-location (shown by the three clusters of dots) of the glowworms
at the peak locations

38 2 Glowworm Swarm Optimization: Algorithm Development

(a) 5

20

15|

IN, (0

150 200

(b) 3

25

0.5

0 50 100 150
®

200

Fig. 2.10 a Plot of |N12(#)| as a function of iteration number 7. b Plot of r}z (t) as a function of
iteration number ¢

2.4 Simulation Experiments to Illustrate GSO 39

Table 2.2 Positions and luciferin levels of glowworms that are within the local-decision range
of glowworm 12 at r = 74, 80, and 94 iterations, respectively. The symbol * on the superscript
of a luciferin value of glowworm j represents that the corresponding glowworm is a neighbor of
glowworm 12 at that instant

Glowworm | X;(74) £;(74) X; (80) £;(80) X;(94) £; (94)
1 (—0.02, 1.60) | 12.059 (=0.02, 1.55) | 12.144 (0.01, 1.58) | 12.156*
3 (—0.03, 1.60) | 12.136* (=0.02, 1.59) | 12.149 (0.00, 1.58) | 12.155*
8 (—0.04, 1.59) | 12.144* (=0.02, 1.58) | 12.144 (0.00,1.58) | 12.154*
12 (—0.02,1.59) | 12.133 (—0.01, 1.56) | 12.152 (=0.02,1.57) | 12.145
16 (0.15, 1.60) | 11.470 (=0.01, 1.57) | 12.070 (=0.02, 1.57) | 12.150*
19 (—0.03, 1.60) | 12.142* (=0.02, 1.58) | 12.155* (—0.02, 1.58) | 12.158*
23 0.10,1.61) | 11.716 (=0.02, 1.58) | 12.119 (0.00, 1.57) | 12.153*
24 (0.13, 1.60) | 11.588 (—0.03, 1.60) | 12.102 (—0.02, 1.57) | 12.155*
26 (0.29,1.56) | 10.551 (0.18,1.58) | 11.575 (0.00, 1.58) | 12.147*
31 (—0.03, 1.60) | 12.131 (=0.02, 1.59) | 12.148 (=001, 1.57) | 12.151*
33 (0.18,0.16) | 11.361 (0.00,1.58) | 12.038 (0.00,1.57) | 12.151%
43 (—0.04, 1.59) | 12.140* (=0.02, 1.59) | 12.146 (0.00, 1.57) | 12.152*
44 (0.037, 1.60) | 11.935 (=001, 1.55) | 12.138 (0.00, 1.58) | 12.153*
45 (—0.03, 1.60) | 12.124 (—0.02, 1.60) | 12.141 (0.01,1.59) | 12.151%

and sensor range are chosen such that a glowworm located on the boundary of the
forbidden region cannot sense another glowworm that is located on the other side of
the region. Also, the forbidden region is placed such that the peak located at (1.28, 0)
lies within the forbidden region. A constant local-decision range (r[", (t) = 1.5,V1)
that is equal to the maximum sensor range is used. The simulation result in Fig.2.12a
shows that, following the biased-random deployment as described above, there is no
instance when a glowworm enters the forbidden region, and since one of the peaks is
obscured by the forbidden region, only two peaks are detected. Figure2.12b shows
the glowworms that lie within the decision-domain of glowworm 26 at iteration
t = 1. Since the region of intersection S (refer to Fig.2.12b) of its decision-domain
and the forbidden region is devoid of any neighbors, glowworm 26 avoids entrance
into the forbidden region. Table 2.3 shows the initial positions and luciferin levels of
glowworm 26 and its neighbors. Since it obtains feasible directions of movement at
every time step, it continues to move by avoiding the forbidden region and finally
gets co-located at the global-maximum.

40 2 Glowworm Swarm Optimization: Algorithm Development

Fig. 2.11 Situation where T
inter-agent communication

helps a glowworm to select a ><
feasible direction toward the

source

2.4.4 Effect of Step-Size on Convergence

In Fig.2.12a, the peak-location (—0.46, —0.63) lies outside the convex-hull C. Due
to the constant step-size, all the glowworms climb the gradient-hill by performing
the leapfrogging behavior as described in Sect. 2.1.3 and get co-located at the peak in
their vicinity. Similar behavior of capturing a peak that lies outside the convex-hull
of a group of glowworms can also be observed in the simulation result of Fig.2.8d. In
order to obtain the solution within the desired tolerance e range, the step size s should
be less than the tolerance value. However, this may lead to a slower convergence of
the algorithm. This issue can be taken care of, by starting the algorithm with a coarse
(large) step-size and progressively reducing the step-size, to a value lesser than e,
toward the convergence phase. For instance, when the step size s(#) was updated as
s(t) = q's(0), with g = 0.96 and 5(0) = 0.2, convergence was achieved within 50
iterations (s(50) = 0.026) as opposed to 200 iterations in the constant step-size case.
However, this experimental result serves only as an illustrative example and various
models for the adaptive step-size have to be explored in order to make it work on a
wide variety of problems.

The step size is also a function of the size of the search space. For relatively large
search spaces, we need to start with a larger step size. However, there is a chance of
missing closely spaced peaks depending on the number of peaks in a given area. In
these cases, an additional search procedure in each local region of a peak captured
with a smaller step size could reveal the presence of more peaks.

2.5 Comparison of GSO with ACO and PSO 41

(b)

-1 0 1 2

Fig. 2.12 a Response of the glowworm algorithm to the presence of a circular forbidden region
of radius 1 unit centered at (0.6, —0.6). Emergence of the solution after 500 iterations; r; = 1.5 b
glowworm 26 has six feasible directions to move at Iteration 1

Table 2.3 Initial positions and luciferin levels of glowworm 26 and its neighbors in Fig.2.12

Glowworm Xi(1) £;i(1)

6 (—0.5171, —2.6962) 2.7226
13 (—0.0405, —2.1075) 0.6371
21 (1,2484, —1.9892) 2.2977
26 (0.5735, —2.0126) 0.6069
32 (0.1413, —2.4149) 1.7583
36 (1.813, —1.5145) 2.9805
42 (—0.0651, —2.8011) 2.6762

2.5 Comparison of GSO with ACO and PSO

The GSO technique is a population-based algorithm and falls under the category of
swarm intelligence methods. The algorithm shares some common features with the
ant-colony optimization (ACO) and particle swarm optimization (PSO) algorithms
butis different in many aspects that help in achieving simultaneous detection of multi-
ple local optima of multimodal functions. This is a problem not directly addressed by
ACO or PSO techniques. Generally, ACO and PSO techniques are used for locating
global optimum. However, our objective is to locate as many of the peaks as pos-
sible. This requirement is the main motivation for formulating the GSO technique.
Since the primary goal of GSO (that of capturing multiple peaks simultaneously) is
different from that of ACO and PSO, comparisons with these techniques should be

42 2 Glowworm Swarm Optimization: Algorithm Development

based on variants of ACO and PSO that are adapted to capture multiple peaks. In the
literature, PSO has been adapted for this purpose for the case of multiple peaks with
equal function values [168]. PSO variants such as Niche-PSO [20] and species-based
PSO [117] have been designed for capturing multiple local optima of multimodal
functions. In this section, the comparisons are restricted mainly with respect to the
underlying principles, algorithmic aspects, and applications. Experimental compar-
isons with Niche-PSO are given in Chap. 4.

2.5.1 ACO and GSO

Generally, ACO techniques are used and found to be effective in a discrete setting
where gradient-based algorithms do not work too well. In this book, GSO is applied
to the continuous domain because gradient-based algorithms do not produce satis-
factory results when multiple peaks are sought.

Traveling salesman problem (TSP) is a typical example of an ACO application
where pheromone update on city routes closely mimics the trail-laying phenom-
enon found in foraging of ants. In general, most conventional ant-algorithms involve
adding a pheromone value on specific routes where the agents visit. The pheromone
level on these visited routes decay with time in order to emulate the evaporation
behavior of actual pheromones. Even though the luciferin update mechanism draws
inspiration from these stigmergic principles followed by ants, there is a significant
modification in its implementation and how the luciferin information is used by the
agents in GSO. The difference mainly arises from the fact that the luminescence does
not stay at places visited by glowworms (unlike pheromones that remain associated
with routes visited by ants), but moves along with them. Therefore, the luciferin level
of a glowworm indicates the net improvement made by it while traversing a path that
emerges from an initial location to its current location. A glowworm whose location
makes relatively more net improvement in the objective function during its move-
ments has a higher luciferin level and attracts more neighbors toward it than others,
thus enabling agents to move toward favorable places of the environment. Clearly,
the number of luminescence sources is equal to the number of glowworms. While
the pheromonal decay in ACO algorithms serves to avoid premature convergence to,
and eventual removal of, suboptimal paths/solutions, the luciferin decay component
in GSO controls the luciferin values of the glowworms and ensures that the luciferin
values are always bounded. Note that, when the solution is reached, the number of
luminescence locations will be approximately equal to the number of maxima of the
objective function as most of the agents settle at one of the multiple peaks.

Now, GSO is compared to a variant of ACO, which was introduced by Bilchev
and Parmee [15] in order to address continuous optimization problems. In this ACO
approach, a finite set of regions are randomly placed in the search space. Each path
between the nest and a region i is associated with a virtual pheromone 7; (¢) at each
iteration ¢. Initially, 7; (+ = 0) = 7 for all agents. The probability that an agent selects
region i is given by:

http://dx.doi.org/10.1007/978-3-319-51595-3_4

2.5 Comparison of GSO with ACO and PSO 43

o (0yn) (1)

=Ny . 5 - (2.25)
S om0

pi(t) =

where, 7); (¢) reflects the local-desirability of a portion of the solution, « and /3 rep-
resent relative weights, and N is the number of regions. The agent then moves to the
selected region’s center, measures the value of the objective function at that point,
moves a short distance in a random direction, shifts the region’s center to the new
point if it finds an improvement in the solution, and then comes back to the nest. The
pheromone update associated with the region is given by

(1= p)7(t) +vAJ, if AJ >0

(I —p)7i(0), Otherwise (2.26)

Ti(f+1)=[

where, AJ is the improvement made in the solution, p is the pheromone evaporation
constant, and + is a proportionality constant.

This process is repeated with a new probability distribution according to (2.25).
With the increase in number of iterations, the pheromone concentration associated
with inferior regions decay (and may disappear eventually) and good regions get
reinforced with time, finally converging to the solution.

The virtual pheromones associated with the various regions in the above variant of
ACO technique can be likened to the luciferin carried by the glowworms in the GSO
technique. However, the crucial difference lies in the manner in which the stigmergic
communication is used by the agents to make decisions. In this ACO variant, each
agent at the nest selects a region based on a probability distribution (2.25) which
is a function of the pheromone levels associated with all the N regions. In con-
trast, each glowworm in GSO broadcasts its own luciferin value to other agents and
uses the luciferin information available only in its neighborhood to probabilistically
select a neighbor with higher luciferin value. While the selected region’s center is
shifted, along a random direction, to a new point in this ACO variant, each glowworm
deterministically moves one step toward the selected neighbor. The main differences
between GSO and ACO are summarized in Table2.4.

2.5.2 PSOand GSO

Particle swarm optimization (PSO) is a population-based stochastic search algorithm
[29, 98]. In PSO, a population of solutions {X; : X; € R",i =1, ..., N}isevolved,
which is modeled by a swarm of particles that start from random positions in the
objective function space and move through it searching for optima; the velocity V; of
each particle i is dynamically adjusted according to the best so far positions visited

44 2 Glowworm Swarm Optimization: Algorithm Development

Table 2.4 Comparison of ACO and GSO

Standard ACO GSO
Effective in discrete setting [48] Applied to continuous domain

2 Global optimum Multiple optima of equal or unequal values

Special variant of ACO [15]

1 Cannot be applied when ants (agents) have | Useful for applications where robots have
limited sensing range limited sensor range

2 Global information used Local information used
Pheromones associated with paths from Luciferin carried by and associated with
nest to regions glowworms

4 Pheromone information used to select Luciferin information used to select
regions neighbors

5 Shifting of selected region’s center in a Deterministic movements toward selected
random direction neighbor

by itself (P;) and the whole swarm (P,). The position and velocity updates of the i’ h
particle are given by:

Vite + 1) = Vi(t) + ciri(Pi(t) = Xi (1)) + cora(Py (1) — X)) (2.27)
Xit+ D =X+ Vit + 1) (2.28)

where, c; and c¢; are positive constants, referred to as the cognitive and social para-
meters, respectively, r; and r, are random numbers that are uniformly distributed
within the interval [0, 1], t = 1, 2, ..., indicates the iteration number. PSO uses a
memory element in the velocity update mechanism of the particles. Differently, the
notion of memory in GSO is incorporated into the incremental update of the luciferin
values that reflect the cumulative goodness of the path followed by the glowworms.

GSO shares a feature with PSO: in both algorithms a group of particles/agents are
initially deployed in the objective function space and each agent selects, and moves
in, a direction based on respective position update formulae. While the directions of a
particle movements in original PSO are adjusted according to its own and global best
previous positions, movement directions are aligned along the line-of-sight between
neighbors in GSO. In PSO, the net improvement in the objective function at the
iteration ¢ is stored in P, (¢). However, in GSO, a glowworm with the highest luciferin
value in a populated neighborhood indicates its potential proximity to an optimum
location.

Figure 2.13a—c illustrate the basic concepts behind PSO and GSO and bring out
the differences between them. Figure 2.13a shows the trajectories of six agents, their
current positions, and the positions at which they encountered their personal best and
the global best. Figure2.13b shows the GSO decision for an agent which has four
neighbors in its dynamic range of which two have higher luciferin value and thus
only two probabilities are calculated. Figure2.13c shows the PSO decision, which

2.5 Comparison of GSO with ACO and PSO 45

(a) P

K@;Q\ ® Current position of an agent

© Location of the personal best of
o an agent

'j Global best of the agent swarm

o Intermediate positions of the agents

(c)

Fig. 2.13 a Trajectories of six agents, their current positions, and the positions at which they
encountered their personal best and the global best. b GSO decision for an agent which has four
neighbors in its dynamic range of which two have higher luciferin value and thus only two proba-
bilities are calculated. ¢ PSO decision which is a random combination between the current velocity
of the agent, the vector to the personal best location, and the vector to the global best location [113]

is a random combination between the current velocity of the agent, the vector to the
personal best location, and the vector to the global best location.

In PSO, the next velocity direction and magnitude is dependent on combination
of the agent’s own current velocity, and randomly weighted global best vector and
personal best vector. While this is implementable in a purely computational plat-
form, implementation of this algorithm in robotics platform or a platform containing
realistic agents would demand large speed fluctuations, presence of memory of the

46 2 Glowworm Swarm Optimization: Algorithm Development

Table 2.5 PSO versus GSO

PSO GSO
1 Net improvement in the objective function | A glowworm with the highest luciferin
at iteration ¢ stored in the global best value in the swarm indicates its potential
position Pg (1) proximity to an optimum
2 Direction of movement based on previous | Agent movement along line-of-sight with a
best positions neighbor
3 Neighborhood range covers the entire Maximum range hard limited by finite
search space sensor range
4 Dynamic neighborhood based on k nearest | Adaptive neighborhood based on varying
neighbors (in a local variant of PSO) range
5 Limited to numerical optimization models | Can be applied to multiple source
localization in addition to numerical
optimization

personal best position of each agent, and knowledge of the global best position which
requires global communication with all other agents. In the local variant of PSO, P,
is replaced by the best previous position encountered by particles in a local neighbor-
hood. In one of the local variants of PSO, the dynamic neighborhood is achieved by
evaluating the first k nearest neighbors. However, such a neighborhood topology is
also limited to computational models only and is not applicable in a realistic scenario
where the neighborhood size is defined by the limited sensor range of the mobile
agents.

In GSO, the next direction of movement of an agent is determined by the position
of the higher luciferin carrying neighbors within a dynamic decision range and the
weights are determined by the actual values of the luciferin level. Thus, in GSO the
implementation is much simpler as the algorithm demands communication only with
a limited number of neighbors and therefore does not require to retain personal best
position information, nor does it require to collect data from all agents to determine
the global best position.

Conceptually, the fact that GSO does not use the global best position or the
personal best position and the fact that it uses information only from a dynamic
neighbor set helps it to detect local maxima, whereas PSO gets easily attracted to the
global maxima.

The above figures and explanation imply that GSO is completely different from
PSO although they have some minor commonalities. The main differences between
GSO and PSO are summarized in Table 2.5.

2.6 Summary 47

2.6 Summary

In this chapter, the development of glowworm swarm optimization (GSO) algorithm
was presented. The underlying ideas behind the GSO technique, the notion of an
adaptive local-decision domain, and the steps involved in the implementation of the
basic GSO algorithm were described. Some theoretical results were presented that
gave an insight into how the luciferin levels of glowworms vary as a function of time.
Later, a simulation example was used to illustrate the basic capability of GSO for
solving multimodal function optimization problems; several aspects of GSO like the
effect of using an adaptive local-decision domain, local search due to leapfrogging
behavior, and the effect of forbidden region on agent behavior were demonstrated.
Finally, some comparisons of GSO with other bio-inspired optimization techniques
were described. In the next chapter, the theoretical performance of a simplified
GSO model and some illustrative simulations to support the theoretical findings are
presented.

2.7 Thought and Computer Exercises

Exercise 2.1 The original GSO algorithm is described for solving maximization
problems. Show that a minor modification to the definition of a neighbor is sufficient
to extend GSO to minimization problems. Can you think of any other method to
achieve the same purpose? (Hint: Consider changing the sign of the terms in the
luciferin update rule given in (2.1)). Support your claims through numerical simula-
tions (Use the MATLAB code provided in the Appendix). For this purpose, first run
the ‘GSO.m’ file and verify that it captures the three maxima of the Peaks function
(2.24), which is specified in the ‘UpdateLuciferin.m’ file. Now, update the code with
each modification and confirm if the algorithm is able to capture the minima of this
multimodal function. Comment on your observations.

Exercise 2.2 The parameter p (luciferin decay constant) in the luciferin update rule
(2.1) simulates the decay of luciferin with time. What value of p results in a mem-
oryless variant of GSO? Run the GSO code on a few multimodal test functions for
different values of p while keeping other parameters constant. Analyze the impact
of p on the emergence of solution in each case via different plots. Does the impact
of p change if the parameter n (number of agents) is varied?

Exercise 2.3 In the movement update of GSO, each glowworm uses a probabilistic
mechanism (2.2) to select a brighter neighbor and moves a small step closer to it (2.3).
A new variant of GSO can be obtained by letting the glowworm to deterministically
select the max-neighbor (refers to the glowworm with the maximum luciferin value
in its neighborhood) instead of moving based on probability. Explain via different
simulation scenarios how the emergence of solutions changes when this GSO variant
is used.

48 2 Glowworm Swarm Optimization: Algorithm Development

Exercise 2.4 The parameter n, sets the desired number of neighbors for each glow-
worm (2.4). Comment on the impact of n, on the connectivity of the agent graph.
For example, what happens when n, = 0? What happens when n, =n — 1? Use
simulation examples to support your arguments.

Exercise 2.5 Consider the multimodal function given below (2.29) in a search space
[—3,3] x [-3,3]:

J(x,y) =3 (e*b[(er%)er,VZ] _ e*b[szryz] + e*b[(xf%)2+y2]) (2.29)

2.5.1 The above function has two peaks at (—‘—1, 0) and (”—l, 0). The variable d con-
trols the distance between the two peaks. The function profile for various
values of d is shown in Fig.2.14. Run the GSO code for d = 1 and b = 10.
Use Table 2.1 to set the values of p, v, 3, n;, s, and £y. Setn = 100 and ry, = 3.
Terminate the run after 1000 iterations (This large value is used only to ensure
proper convergence. A better set of terminal conditions will be described in
Chap.4). Is the algorithm able to capture both the peaks? If yes, compute
the solution error w.r.t. each peak (Hint: Solution error may be given by the
distance between the true peak location and the average location of all the
glowworms co-located at that peak. A more formal definition is deferred to
Chap.4).

2.5.2 Decrease d in steps of 0.1 and repeat the run for each case. Plot the solution
error for each peak as a function of d. Comment on your observations. What
is the minimum value of d for which the algorithm is able to capture both the
peaks within a error tolerance of 0.05?

2.5.3 Setd = 0.1 and repeat the run. What do you observe? Explain why this hap-
pens (Hint: Plot the multimodal function for this value of d).

2.5.4 The parameter b controls how the slope of the function profile changes in
the vicinity of each peak. Set b = 50 and plot the multimodal function again.
Notice the presence of two peaks now. Verify if the algorithm is able to capture
the two peaks in this new regime. Comment on your findings. If the algorithm
fails, can you suggest any changes to the GSO parameters that enable the
algorithm to distinguish between the peaks? (Hint: Keep decreasing n, in
steps of 1 and see what happens).

Exercise 2.6 Consider a modification of the Two-peaks function used in the previous
exercise as shown below:

J(x, y) — 6e—lO[(x—().S)Z-‘r(y—().S)z] _ e—lO[x2+_v2] (230)
+ 46710[(x70.5)2+(y+0.5)2] + 36710[(x+0.5)2+(y+0.5)2]
+ 26710[(x+0.5)2+(y70.5)2|

By inspection of (2.30), it is clear that the above function has four peaks. Identify
these peak locations. Where does the global peak occur? Now, run the GSO code

http://dx.doi.org/10.1007/978-3-319-51595-3_4
http://dx.doi.org/10.1007/978-3-319-51595-3_4

2.7 Thought and Computer Exercises 49

-3 -3

Fig. 2.14 The Two-peaks function for various values of d: ad = 1 (3D plot). bd = 1 (2D plot).
cd =0.6.dd = 0.4. The value of b is fixed at 10 in all three cases

using the nominal GSO parameters used in the previous exercise for the following
two regimes:

1. Adaptive neighborhood case: Run the original GSO with r; = 3 and record the
number of peaks captured.

2. Constant neighborhood case: Modify (2.4) to ré (t + 1) = ry (This change can be
made in ‘Act.m’, line 17) and run the modified GSO for fixed values of r, (=3, 2, 1,
and 0.5). Record the number of peaks captured in each case.

Use your observations to comment on the impact of adaptive neighborhood on
the performance of GSO (Fig.2.15).

Additional Notes

The basic GSO algorithm has been modified by several researchers subsequent to
its first appearance. Some of these works have suggested modifications in the basic
algorithm and some have combined it with other swarm intelligence algorithms to get
improved performance. A good summary of these modifications and hybridizations
has been described by Singh and Deep [197]. Some of these will be discussed in
Chap. 8 with more details.

http://dx.doi.org/10.1007/978-3-319-51595-3_8

50 2 Glowworm Swarm Optimization: Algorithm Development

J(x,y)

Fig. 2.15 The four-peaks function

A few years after the GSO algorithm was introduced, the firefly algorithm (FA)
was proposed by Yang [222], which essentially follows a similar logic as GSO with
some variations. The first important similarity is that the attractiveness of each firefly
is proportional to its brightness. In particular, each firefly gets attracted and moves
toward a relatively brighter firefly. The second similarity lies in the fact that the
brightness of the glow of each firefly is determined by the landscape of the objective
function. The FA algorithm has two variations. In GSO, the attractiveness of each
glowworm is constant within a fixed sensing range r; and zero beyond the range.
However, the attractiveness of each agent in FA exponentially decays with distance.
The second variation is the addition of a small randomization into the movement
update of each firefly.

The key property (adaptive neighborhood) of GSO that enables an explicit splitting
behavior of the swarm is not present in FA. The effect of the exponentially decaying
property of agents’ brightness in FA is that, although farther neighbors have less
influence on the movement-decisions of each agent, it is still fully connected with
all the remaining agents in the swarm, thereby leading to a centralized system. This
makes FA more geared toward global optimization.

Work on GSO that appeared in the recent literature can be primarily classified
into three categories. Some researchers proposed modifications of GSO [3, 4, 50,
75-77, 165, 171, 203, 219, 243, 244], most of which (with the exception of [3,
4]) were geared toward modifying GSO for global optimization problems. Some
used basic GSO in different applications [27, 33, 90, 100, 135, 214], while others
modified GSO and used them in some applications [3, 89, 116, 144, 147, 148, 213,
226, 235, 242].

2.7 Thought and Computer Exercises 51

Although GSO was designed for multimodal optimization, it was used for global
optimization by Chetty and Adewumi [27]. The authors showed that its performance
is comparable to other swarm intelligence algorithms that are specifically designed
for global optimization. They used the effectiveness of employing these algorithms
on an annual crop planning problem as a metric for comparison purposes.

Ouyang et al. [165] proposed BFGS-GSO, a hybrid algorithm of Broyden—
Fletcher—Goldfarb—Shanno (BFGS) algorithm, which is one of the well-known clas-
sical gradient based algorithms, and GSO for global optimization problems. The
authors showed that BFGS-GSO improved on the performance of basic GSO on a
set of eight standard benchmark test functions.

Zhou et al. [243] proposed a GSO variant, in which the swarm was divided into two
sub-populations that co-evolved toward global optima. Agents in one sub-population
executed the basic GSO, while those in the other sub-population executed an algo-
rithm based on Lévy flights. Lévy flights refer to a class of generalized random
walks in which the step lengths during the walk are described by a ‘heavy-tailed’
probability distribution [12].

Du et al. [50] modified GSO for global optimization by omitting the adaptive
neighborhood and probability based neighbor-selection phases and adding an ele-
ment of elitism. The authors showed that the simplified-GSO performed better than
the basic GSO and other swarm intelligence algorithms on a set of nine benchmark
multimodal functions.

Zhouab et al. [244] incorporated principles of artificial fish swarm algorithm
(AFSA) and differential evolution into GSO and applied it to constrained global
optimization problems. A local search strategy based on simulated annealing was
also applied in order to overcome premature convergence. The authors used tests on
several benchmark functions to show that these modifications improved the conver-
gence efficiency and computational precision of GSO.

He et al. [76] proposed a GSO variant by incorporating a two-layer hierarchi-
cal structure into the basic GSO algorithm. The bottom layer consisted of multiple
subswarms of glowworms that separately searched different partitions of the search
space. The optima captured in multiple partitions were used to initialize a new swarm
of glowworms that formed the top layer of the hierarchy. The operators of selection
and crossover were incorporated into the top-level swarm which led to enhancement
in the diversity of the swarm. The authors reported simulation results on several
benchmark functions to show that these modifications improved the speed and accu-
racy of GSO.

Aljarah and Ludwig [3, 5] parallelized GSO by using MapReduce, a popular
programming model developed by Google for processing and generating large data
sets with a parallel, distributed algorithm on a cluster [38]. The authors showed
significant speedup and scalability, while maintaining the optimization quality on
several large scale multimodal functions. The clustering-GSO was also parallelized
by using MapReduce by Al-madi et al. [2] and similar improvements in speed and
scalability were reported.

Huang and Zhou [84] introduced chaotic search strategies in GSO to obtain a more
well-distributed initial solution. Zhou et al. [239] modified GSO by the cloud model

52 2 Glowworm Swarm Optimization: Algorithm Development

of optimization to improve its convergence property. Gu and Wen [69] attempted to
improve the convergence property of GSO by using quantum models which increases
the diversity of the swarms. Singh and Deep [196] proposed several variants of the
original GSO on the basis of step size variations and tested them against standard
benchmark problems. Similarly, Zhang et al. [230] presented an adaptive step size
glowworm swarm optimization algorithm, which is claimed to improve convergence
of the original GSO.

Basic GSO was used by Manimaran and Selladurai [135] to solve nonlinear fixed
charge transportation problem in a single stage supply chain network. The objective
function consists of a fixed cost that is incurred for every route and a variable cost
that is proportional to the amount shipped. Difficulty in solving the problem arises
due to nonlinearities in variable costs and discontinuities caused due to fixed costs.
GSO was formulated to compute a least cost transportation plan that minimizes the
total variable and fixed costs while satisfying the supply and demand requirements of
each plant and customer. The authors showed that GSO performs better than spanning
tree-based genetic algorithm in terms of total distribution cost.

Couceiro et al. [33] conducted swarm robotic experiments to benchmark five
state-of-the-art algorithms for cooperative exploration tasks: (1) Robotic Darwinian
Particle Swarm Optimization (RDPSO) [31, 32], (2) Extended Particle Swarm Opti-
mization (EPSO) [178, 179], (3) Physically-embedded Particle Swarm Optimization
(PPSO) [78], (4) GSO, and (5) Aggregations of Foraging Swarm (AFS) [60, 61]. All
the five algorithms were described as belonging to a class of algorithms originally
designed to solve optimization problems and later adapted to embrace the principles
associated with real robotic tasks. Features like obstacle avoidance, initial deploy-
ment, communication mechanism, parametrization, handling of multiple/dynamic
sources, computational complexity, memory complexity, and communication com-
plexity were used to evaluate the theoretical advantages and disadvantages of the
algorithms. The authors noted that only RDPSO and GSO were suited to handle
multiple and dynamic sources. The authors initially compared the algorithms in a
multi-robot simulation where agents collectively explored a large basement garage
with a large density of obstacles. Metrics like exploration ratio and the associated
area under the curve were used to evaluate each algorithm. The effectiveness of the
top three performers found in simulations (RDPSO, GSO, and AFS) was further
explored in real experiments using a swarm of fourteen e-puck robots [154]. The
task consisted of collectively finding two victims emulated by e-pucks located at
diagonally opposite corners of the workspace. The time taken to rescue each victim
was used as a metric to evaluate each algorithm. The authors showed that RDPSO
performed best and that GSO’s performance closely followed RDPSO. The authors
argued that this was a crucial result as GSO presents itself as a “low cost” alternative
to the RDPSO in terms of computational and memory requirements. They also noted
that although RDPSO performed better than GSO, a similar final outcome would be
achieved by GSO if a larger mission time were available.

Senanayake [191] compared various swarm intelligence algorithms, including
GSO, for the problem of search and tracking by a swarm of robots. This was a fairly
exhaustive comparison.

2.7 Thought and Computer Exercises 53

Zhouetal. [241] used a modified GSO with arandom operator to solve the problem
of scheduling the dispatch of public transport vehicles.

Jiang and Tan [90] applied basic GSO to optimization of polarimetric multiple-
input multiple-output (MIMO) radar systems. The problem involves a distributed
array of transmitters and receivers used to detect a target. The goal is to select the
parameters of the polarization waveforms of the transmitter array that maximize
the probability of detection of the target. The authors formulated the optimization
problem in the framework of GSO by using the formula for probability of detection
in the luciferin update function and allowing the glowworms to search in the space of
polarization parameters. The authors showed that the proposed GSO based algorithm
outperformed other transmit waveform polarization schemes.

Liang et al. [119] applied GSO to solve a combined system identification and
adaptive control problem for a mechanical servo system.

Xing [220] explored the possibility of using various computational intelligence
methods, including GSO, to various robot related activities, such as location identifi-
cation, manipulation, communication, vision, learning, and docking capabilities, in
the context of assisted living for elderly people. The same author also tested compu-
tational intelligence algorithms (including GSO) for their suitability for data mining
problems in the context of assisted living [221].

Kavipriya [96] applied GSO to solve code allocation problems in communication
channels.

Kang et al. [94] applied GSO to solve a problem in X-ray based navigation. The
bispectral feature points of the standard pulsar integrated pulse profile is extracted
by the GSO algorithm and stored in the spacecraft’s database. This information is
now used to compute the X-ray pulsar time delay. The method shows a very good
improvement in terms of computation time and suppression of Gaussian noise.

Pushpalatha and Ananthanarayana [180] proposed a GSO based document clus-
tering algorithm that helps to cluster documents according to topics. The algorithm
was tested through cluster based retrieval of multimedia documents.

Reddy and Rathnam [183] addressed the problem of optimizing power flow by
minimizing the generation cost while keeping the power outputs of generators, bus
voltages, bus shunt reactors/capacitors and transformer tap settings within acceptable
limits. The problem is formulated as a multi-objective optimization problem keeping
the minimization of emission for environmental reasons in mind. Both PSO and
GSO is used to obtain useful results. Mageshvaran and Jayabarathi [129] used GSO
to minimize the amount of load shedding in power systems in order to contain the
deleterious effect of cascaded tripping and blackout. Wang et al. [214] used GSO for
optimizing load allocation between hydropower units. They formulated the problem
as a multi-objective optimization model in accordance with the characteristics and
particularity of each station, with the minimum water rate of the station as the optimal
objective.

Khan and Sahai [100] applied GSO for adaptive usability evaluation of B2C
eCommerce web services.

Tang and Zhou [202] modified GSO by combining it with some aspects of PSO
and applied it to path planning of uninhabited combat air vehicles. They showed the

54 2 Glowworm Swarm Optimization: Algorithm Development

effectiveness of GSO by comparing it with ten other population-based optimization
methods.

Zhao et al. [236] incorporated the Dijkstra’s shortest path algorithm and genetic
operators from GA into GSO to solve shortest path problems. Don et al. [43] used
an adaptive discrete GSO algorithm and compared its performance by extensive
simulations on the Travelling Sales Problem (TSP) with ACO and PSO.

Aljarah and Ludwig [4] modified GSO for data clustering applications. Specif-
ically, the fitness function used to evaluate the goodness of the glowworms was
adjusted to locate multiple optimal centroids. The fitness function was set to maxi-
mize similarity of glowworms within a cluster (by minimizing intra-agent distance)
and minimize similarity of glowworms lying in different clusters (by maximizing
inter-agent distance). The authors used the entropy and purity metrics to evaluate
algorithmic performance. On most of data sets (Iris, Ecoli, Glass, Balance, Seed,
Mouse, and VaryDensity) selected from the UCI database repository,* the authors
showed that their clustering-GSO outperformed other well-known clustering algo-
rithms like K-Means clustering [128], average linkage agglomerative Hierarchical
Clustering (HC) [237], Furthest First (FF) [81], and Learning Vector Quantization
(LVQ) [102].

In the work carried out by Marinaki and Marinakis [137], GSO has been used in
conjunction with other meta-heuristic algorithms to solve a vehicle routing problem
with random demands. This is a case where GSO has been used to solve a combi-
natorial optimization problem. An innovative method, to express the solution as a
combination of two vectors, one in the continuous solution space and the other in
the discrete solution space, is proposed. The former is updated using GSO while the
latter uses a combinatorial neighbourhood topology technique.

Yepes et al. [225] addressed the problem of optimizing cost and CO, emissions
while designing pre-cast, pre-stressed, concrete road bridges. GSO has been used in
a hybrid scheme with simulated annealing (SA), where the local searches are carried
out by SA and the global one by GSO. The problem is defined in a 40 dimensional
decision space.

Cui etal. [35] proposed a modification to GSO in terms of making the weight on the
location update rule vary, followed by a hybrid scheme that uses differential evolution
in conjunction with GSO for solving the problem of time series prediction using single
multiplicative neuron to which feedback and feedforward links are incorporated. The
author claims that this modification improves the performance of GSO by avoiding
locally optimal traps and overcomes the deficiency of not using memory of the search
history.

Liand Huang [118] solved the problem of blind signal separation using a modified
version of GSO based on step-size adjustment. Pubo and Yu [177] also dealt with
blind source separation problem using GSO and its modification by baffle effect.

Jayakumar and Venkatesh [89] proposed two modifications of the original GSO to
solve a multi-objective optimization problem related to environmental economic dis-
patch. In particular, the multiple objectives included minimization of fuel costs and

“http://archive.ics.uci.edu/ml/index.html.

http://archive.ics.uci.edu/ml/index.html

2.7 Thought and Computer Exercises 55

minimization of emissions, respectively. The first modification consisted of using
TOPSIS (Technique for Order Preference Similar to an Ideal Solution), a multi-
criterion decision making method to compute the fitness of each glowworm. For this
purpose, each glowworm is evaluated with respect to all the objective functions and
ranked using the TOPSIS method, which works by assigning a higher rank to agents
that simultaneously have shorter geometric distance from the positive ideal solution
and farther geometric distance from the negative ideal solution. The second modifi-
cation was a time varying step-size as opposed to a fixed step-size in the original GSO
algorithm. The authors showed that the proposed GSO-TOPSIS approach produced
comparable results over other state-of-the-art algorithms, and better results in some
cases.

Meher et al. [144] modified GSO by incorporating stochastic updating of glow-
worm positions and applied it to an optimization problem in power systems. The
objective of the economic load consignment problem was to obtain the most favor-
able active power outputs that minimize the generating cost while gratifying the
running constraints. The authors evaluated the algorithm on a set of fourteen power
generation models and showed it provided better results than those using differen-
tial evolution (DE) found in the literature [133]. Later, the same authors solved the
dynamic load dispatch problem of thermal generating units using GSO [145] where
the objective was to schedule optimal power generation of dedicated thermal units
over a specific time band.

Unit commitment (UC) is a problem in power systems whose objective is to
determine the on/off status of each power unit and the economic dispatch of power
demand in a scheduling period so as to minimize the total system production cost
subject to constraints of the units and the power system. Li et al. [116] developed a
binary version of GSO and applied it to the UC problem. Each glowworm represented
amatrix of on/off status of all the units at every hour, over the entire scheduling period.
The Euclidean distance metric in the original GSO was replaced by the Hamming
distance. The algorithm was shown to be very competitive in solving the UC problem
in comparison to previously reported results by algorithms like quantum-inspired
evolutionary algorithm, improved binary particle swarm optimization, and mixed
integer programming.

Zhou et al. [238] addressed the problem of optimal sensor placement for structural
health monitoring systems. The problem is posed as a multi-objective optimization
of information entropy indices, which provide uncertainty metrics for the identified
structural parameters. The basic GSO with some modifications using binary coding
system is proposed. The application area is structural health monitoring of a long-
span suspension bridge.

Wang et al. [213] modified GSO by incorporating a congestion factor and used it
to optimize the parameters of an echo-state network (ESN)? based soft-sensor model
of flotation processes.

Yu and Yang [226] used GSO with an adaptive step-size for a scheduling problem.
They considered the whole-set orders problem: different customers place orders,

SESN is a recurrent neural network with sparsely connected neurons.

56 2 Glowworm Swarm Optimization: Algorithm Development

where each order consists of multiple workpieces with different processing times
and a different overall completion deadline. The goal is to maximize the number
of weighted wholeset-orders. The authors reported that GSO performed better than
genetic algorithms on this problem.

Menon and Ghose [147] modified GSO to address the problem of localizing the
sources of contaminants spread in an environment, and mapping the boundary of
the affected region. The authors used two types of agents, called the source local-
ization agents (or S-agents) and boundary mapping agents (or B-agents) for this
purpose. They defined new behaviour patterns for the agents based on their terminal
performance as well as interactions between them that help the swarm to split into
subgroups easily and identify contaminant sources as well as spread along the bound-
ary to map its full length. Later the authors extended this GSO model to boundary
mapping of 3-dimensional regions [148].

Zhou et al. [242] proposed a K-means image clustering algorithm based on GSO
and showed its effectiveness in performing image classification on several bench-
mark images. The authors discuss the drawbacks of classical K-means clustering
(sensitivity to initial conditions and getting trapped in local optima) and how GSO
can do well in global searching, by searching for optimal clusters in parallel, thereby
avoiding the impact of initial conditions. The authors reported that GSO performed
better than K-means and fuzzy C-means (FCM) on the chosen benchmark images.

Zhao et al. [235] used a modified version of GSO for optimizing parameters of
a Kaplan turbine (a propeller-type turbine with adjustable blades) with the goal of
decreasing hydraulic losses and maximizing operating efficiency. The authors used
a combination of a Relevance Vector Machine model and GSO to approximate the
relationship between the wicket gate opening and runner blade angle.

Raman and Subramani [181] considered the problem of prioritization and min-
imization of the number of test cases for software testing. The authors proposed a
modified GSO to solve this problem by conceptualizing a definite updating search
field in the movement rule of the original GSO. The objectives were to maximize the
path coverage and fault coverage to obtain optimal prioritized test cases. The authors
claimed that the resulting solution guaranteed an optimal ordering of test cases and
compared the performance of their modified GSO with PSO and artificial bee colony
optimization (BCO).

Mo et al. [152] presented an example from economics and finance where GSO is
used to determine the parameters of the Black—Scholes option pricing model.

2 Springer
http://www.springer.com/978-3-319-51594-6

Glowworm Swarm Optimization

Theory, Algorithms, and Applications
Kaipa, K.M.; Ghose, D,

2017, X000, 248 p. 122 illus., Hardcowver
ISEM: 978-3-319-531394-5

	2 Glowworm Swarm Optimization: Algorithm Development
	2.1 The Glowworm Swarm Optimization (GSO) Algorithm
	2.1.1 Algorithm Description
	2.1.2 Evolving Graph Architecture of GSO
	2.1.3 Leapfrogging Behavior Enables Local Search

	2.2 Evolution of GSO
	2.3 Convergence Results
	2.4 Simulation Experiments to Illustrate GSO
	2.4.1 Simulation Experiment 1: Constant Local-Decision Domain Range
	2.4.2 Simulation Experiment 2: Adaptive Local-Decision Domain Range
	2.4.3 Simulation Experiment 3: Effect of Presence of Forbidden Region
	2.4.4 Effect of Step-Size on Convergence

	2.5 Comparison of GSO with ACO and PSO
	2.5.1 ACO and GSO
	2.5.2 PSO and GSO

	2.6 Summary
	2.7 Thought and Computer Exercises

