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Abstract This paper presents a simple oscillator using a battery and a second order
memristor without the energy storage elements inductor and capacitor. The oscil-
lating mechanism of the proposed circuit has been explained via Hopf bifurcation
theorem, small signal model, local activity principle and edge of chaos theorem.
This paper can be also used as a reference for explaining the intimate relationship
between the super-critical Hopf bifurcation phenomenon and the edge of chaos.
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1 Introduction

An electronic oscillator circuit is generally designed by using one linear capacitor
and one linear inductor, or two linear capacitors, or two linear inductors, along with
a locally-active nonlinear 2-terminal resistor having a negative slope region in the
DC V-I curve (e.g., a tunnel diode), or a locally-passive nonlinear 2-terminal
resistor (e.g., p-n junction diode, zener diode, varistor, etc.), and a locally-active
3-terminal resistor, such as a transistor, in addition to the ubiquitous battery,
required to satisfy the first law of thermodynamics. Examples of tunnel diode
oscillator (Mehta and Mehta 2005) and the well-known Wien-bridge oscillator1 are
shown in Fig. 1a and b respectively.

Figure 1c represents the world’s simplest electronic oscillator containing only
one memristor connected in parallel with a battery.

The memristor in this circuit is a generic (Chua 2014, 2015; Mannan et al. 2016;
Rajamani et al. 2016) 2nd-order locally-active memristor described by the
following state-dependent Ohm’s law and state equations:

1The circuit diagram of the Wien-bridge oscillator can be found from the following link http://
www.circuitstoday.com/wien-bridge-oscillator.
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The parameters chosen in this paper are summarized in Table 1. The 3D cross
section of the surface f1(x1, x2, v) and f2(x1, x2, v) are shown in Fig. 2a and b
respectively at V = 6.4 V. Although (1) can be implemented in hardware by several
methods, all results in this paper are obtained by computer simulations to avoid
ambiguities in modeling the physical devices.

2 Pinched Hysteresis Loop and DC V-I Curve
of the Second-Order-Generic Memristor from Fig. 1c

2.1 Pinched Hysteresis Loops Under Bipolar Periodic
Signal

The memristor exhibits a unique fingerprint called a pinched hysteresis loop under
excitation of any bipolar periodic signal with zero average. To illustrate the
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Fig. 1 a Simplest oscillator using a tunnel diode and an LC tank circuit (Mehta 2005).
b Wien-bridge oscillator using resistors, capacitors and transistors (see footnote 1). c World’s
simplest oscillator using only one memristor. The blue near-sinusoidal waveform is obtained by
computer simulation of (1) with the parameters listed in Table 1, and initial states x1(0) = 300.002
and x2 (0) = 300.004

Table 1 Parameter values of
the second-order generic
memristor

K1 = 103 K2 = 105

β1 = 104 β2 = 107

γ1 = 300 γ2 = 300
α1 = 0.8 α2 = 0.2
δ1 = 0.8 δ2 = 0.1
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Fig. 2 The cross section of the surfaces a f1(x1, x2, V) and b f2(x1, x2, V) at V = 6.4 V
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memristor in (1) exhibits this fingerprints, we apply a sinusoidal voltage signal v
(t) = A sin(2πft) with amplitude A = 12 V, and frequency f = 0.1 Hz across this
memristor. Figure 3a shows the output current i(t), the state variables x1(t), x2(t) and
the memductance G(t) with respect to time t, respectively. Observe from Fig. 3a
that i(t) always passes through the origin whenever v(t) is zero at point 1, and 3.
Observe also the memductance G(t) ≥ 0. The upper figure in Fig. 3b is a
double-valued Lissajous figure plotted on the i versus v plane. Such a multi-valued
Lissajous figure of v(t), i(t), which passes through the origin is called a pinched
hysteresis loop (Chua 2003). This unique feature is the characteristic property of a
memristor that distinguishes it from non-memristive devices. The lower figure in
Fig. 3b shows the variation of memductance with respect to applied voltage v(t).

Fig. 3 a Waveforms of the applied sinusoidal voltage v(t) = A sin(2πft), output current i(t), state
variables x1(t), x2(t), and memductance G(t) of the second-order generic memristor. b Pinched
hysteresis loop plotted on the i versus v plane and memductance hysteresis loop plotted on the
G versus v plane, respectively. The simulations were performed at A = 12 V, f = 0.1 Hz,
x1(0) = 300.002 and x2 (0) = 300.004
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Another characteristic property of the memristor is the dependence of the pin-
ched hysteresis loop on the frequency of the excitation signal. This property asserts
that the pinched hysteresis loops characterized by a memristor shrinks to a
single-value function through origin as the frequency tends to infinity. We illustrate
this property by applying the sinusoidal signal v(t) = A sin(2πft) with A = 12 V
and f = 0.1, 0.5, and 5 Hz to our memristor. Observe from Fig. 4 that the pinched
hysteresis loops shrink as the frequencies increase and tend to a straight line at 5 Hz
(Adhikari et al. 2013; Mannan et al. 2016; Rajamani et al. 2016). All of these
pinched hysteresis loops exhibit the fingerprints of a memristor.

2.2 DC V-I Curve

The DC V-I curve of a generic memristor is equivalent to a nonlinear resistor at the
DC steady state regime (Chua 2014). The DC V-I curve of the second-order generic
memristor defined in (1a)–(1d) is obtained by equating (1c) and (1d) to zero and
solving for the equilibrium point as a function of applied DC voltage v = V, i.e.

x1 = x1̂ðVÞ ð2aÞ

x2 = x2̂ðVÞ ð2bÞ

Substituting (2a) and (2b) in (1b), and solving for the DC current i = I from (1a),
we obtain

12− 6− 0 6 12

350−

175−
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f=0.1 Hz

f=0.5 Hz

f=5 Hz

Fig. 4 Pinched hysteresis
loops of the second-order
generic memristor at
frequencies f = 0.1, 0.5 and
5 Hz. The input is a
sinusoidal signal v(t) = A sin
(2πft), with A = 12 V, and
the initial states are
x1(0) = 300.002 and
x2(0) = 300.004
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I =Gðx1, x2ÞV ð3Þ

Applying (2a), (2b) and (3), for −20 V ≤ V ≤ 20 V, we obtain the red DC
V-I curve of our second-order generic memristor shown in Fig. 5c whereas the state
variables x1 and x2 are shown in Fig. 5a and b, respectively. Note that at steady
state the V-I curve in Fig. 5c is equivalent to the V-I curve of a nonlinear resistor
(Chua 1969). Figure 5d shows the portions of the DC V-I curve which give rise to
two distinct super-critical Hopf bifurcations.

Fig. 5 The DC equilibrium of a state x1, b state x2, and c DC V-I curve in steady state regime, for
−20 V ≤ V ≤ 20 V, d portions of the DC V-I curve which give rise to two distinct super-critical
Hopf bifurcations
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3 Small-Signal Equivalent Circuit

Small-signal equivalent circuit is the linearized circuit used to predict the response
of a memristor to a small-signal input applied at an equilibrium point. Just like
standard electronic circuit theory, the small-signal equivalent circuit is derived
about an equilibrium point (V, I) by using the Taylor series and the Laplace
transform. Let V be the DC voltage at an equilibrium point Q, then the equilibrium
state x1 = X1 and x2 = X2 can be found by solving (1c) and (1d) numerically at the
DC voltage V as follow:

dx1
dt

=
1
α1

δ1 γ1 − x1ð Þ+ K1eβ1 x1 − γ1ð Þ

K1eβ1 x1 − γ1ð Þð Þ+ K2e
β2

1
x2
− 1

γ2

� � ! !2 V
2

2
666664

3
777775=0 ð4aÞ

dx2
dt

=
1
α2

δ2 γ2 − x2ð Þ+ K2e
β2

1
x2
− 1

γ2

� �

K1eβ1 x1 − γ1ð Þð Þ+ K2e
β2

1
x2
− 1

γ2

� � ! !2 V
2

2
666664

3
777775=0 ð4bÞ

The memristanceMðx1, x2Þ≜ 1
Gðx1, x2Þ of the 2nd-order memristor defined in (1b) is

composed of the following two decoupled terms involving only x1 and x2,
respectively:

Mðx1, x2Þ= K1eβ1 x1 − γ1ð Þ
� �

+ K2e
β2

1
x2
− 1

γ2

� � !
ð5Þ

We can synthesize the M(x1, x2) by two first-order memristors connected in
series, as shown in Fig. 6. The memristance of the upper and lower memristors in
Fig. 6 are defined by the first and second terms of Eq. (5) respectively, where the
memductance G1(x1) = 1/R1(x1) and G2(x2) = 1/R2(x2) are defined in (6a) and (6b),
respectively:

G1ðx1Þ= 1
K1eβ1 x1 − γ1ð Þð Þ ð6aÞ

G2ðx2Þ= 1

K2e
β2

1
x2
− 1

γ2

� � ð6bÞ
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Note that i = i1 = i2 and v = v1 + v2 in Fig. 6. Using (6a) and (6b), we have
following relationships:

G1ðx1Þv1 =G2ðx2Þv2 ð7aÞ

v1 + v2 = v ð7bÞ

It follows from (7a) and (7b) that

v=
G1ðx1Þ+G2ðx2Þ

G2ðx2Þ v1 ð7cÞ

=
K1eβ1 x1 − γ1ð Þ +K2e

β2
1
x2
− 1

γ2

� �
K1eβ1 x1 − γ1ð Þ

0
B@

1
CAv1 ð8Þ

From (8) and (1c), we obtain the following state equation of the upper
memristor:

dx1
dt

=
1
α1

δ1 γ1 − x1ð Þ+ 1
K1eβ1 x1 − γ1ð Þ v

2
1

� �
≜ f ðx1, v1Þ ð9Þ

Fig. 6 The second-order
memristor defined in (1) can
be realized by connecting two
“uncoupled” first-order
voltage-controlled memristors
in series. The memductance
G1(x1) of the first memristor is
defined by (6a), and the
memductance G2(x2) of the
second memristor is defined
by (6b). The corresponding
state equation is given by (9)
and (10), respectively
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A similar derivation with respect to v2 gives the following state equation for the
lower memristor:

dx2
dt

=
1
α2

δ2 γ2 − x2ð Þ+ 1

K2e
β2

1
x2
− 1

γ2

� � v22
2
64

3
75≜ f ðx2, v2Þ ð10Þ

Let us derive small-signal equivalent circuit of the upper and lower memristor in
Fig. 6 at their DC equilibrium point v1 = V1 and v2 = V2 where
V1 + V2 = V. Define,

x1 =X1 + δ x1 ð11aÞ

v1 =V1 + δ v1 ð11bÞ

i1 = I1 + δ i1 ð11cÞ

where X1 denotes the equilibrium state x1(Q) of the upper memristor at v1 = V1.
We can expand the current i1 due to the memductance G1(x1) in a Taylor series

about the equilibrium point x1 = X1 as follows:

i1 = I1 + δ i1
= a′00ðQÞ+ a′11ðQÞδ x1 + a′12ðQÞδ v1 + h.o.t

ð12aÞ

where,

I1 = a′00ðQÞ=G1ðX1ÞV1 ð12bÞ

a′11ðQÞ= Ġ1ðx1Þv1
��
Q = − β1 K1eβ1 X1 − γ1ð Þ

� �− 1
V1 ð12cÞ

a′12ðQÞ=G1ðx1ÞjQ = K1eβ1 X1 − γ1ð Þ
� �− 1

ð12dÞ

and h.o.t denotes the higher-order terms in δ x1 and δ v1 . Assuming δ x1j j≪ 1 and
δ v1j j ≪ 1, we can neglect the h.o.t term in (12a) to obtain the following linear
equation,

δ i1 = a′11ðQÞδ x1 + a′12ðQÞδ v1 ð13Þ

Let us expand state equation f ðx1, v1Þ of (9) in Taylor series about the equilib-
rium point (x1(Q), V1 (Q)):
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f ðX1 + δ x1,V1 + δ v1Þ= f ðX1,V1Þ+ b11ðQÞδ x1 + b12ðQÞδ v1 + h.o.t ð14aÞ

where,

b′11ðQÞ=
∂f ðx1, v1Þ

∂x1

����
Q
= −

δ1
α1

+
β1V2

1

α1
K1eβ1ðX1 − γ1Þ
� �− 1

� �
ð14bÞ

b′12ðQÞ=
∂f ðx1, v1Þ

∂v1

����
Q
=

2 K1eβ1ðX1 − γ1Þ
� �− 1

α1
V1 ð14cÞ

Note that f ðX1,V1Þ=0 since ðX1,V1Þ is a point on the DC V1 − I1 curve. Let us
linearize the non-linear state equation x1̇ = f ðx1, v1Þ by neglecting the h.o.t from
(14a) as follows:

dðδ x1Þ
dt

= b′11ðQÞδ x1 + b′12ðQÞδ v1 ð15Þ

Taking the Laplace transform of (13) and (15) (Chua and Kang 1976) we obtain,

ı1̂ðsÞ= a′11ðQÞ x1̂ðsÞ+ a′12ðQÞv1̂ðsÞ ð16Þ

sx ̂1ðsÞ= b′11ðQÞx1̂ðsÞ+ b′12ðQÞv1̂ðsÞ ð17Þ

where the Laplace transform of δ x1ðtÞ, δ i1ðtÞ and δ v1ðtÞ are denoted by x ̂1ðsÞ, ı1̂ðsÞ
and v1̂ðsÞ respectively. From (17), we obtain

x1̂ðsÞ= b′12ðQÞv1̂ðsÞ
s− b′11ðQÞ

ð18Þ

From (16) and (18), the admittance function Y1ðs,QÞ of the upper memristor is

Y1ðs,QÞ≜ ı1̂ðsÞ
v1̂ðsÞ =

a′11ðQÞb′12ðQÞ
s− b′11ðQÞ

+ a′12ðQÞ ð19Þ

Rearranging (19), we obtain

Y1ðs,QÞ= 1

s 1
a′11ðQÞb′12ðQÞ

+ ð− b′11ðQÞÞ
a′11ðQÞb′12ðQÞ

+ a′12ðQÞ ð20Þ

Let us recast (20) into the form
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Y1ðs,QÞ= 1
sL1 +R1

+
1
Ra

ð21Þ

where Y1ðs,QÞ denotes the small-signal admittance of the upper memristor at Q,
whose circuit as shown in Fig. 7a, where the parameters L1, R1 and Ra are defined
by:

L1 =
1

a′11ðQÞb′12ðQÞ
ð22aÞ

R1 =
− b′11ðQÞ

a′11ðQÞb′12ðQÞ
ð22bÞ

Ra =
1

a′12ðQÞ
ð22cÞ

and state variable x1 at Q can be computed numerically by solving the following
equation:

Fig. 7 a Small-signal equivalent circuit of the second-order memristor. b Inductances and
resistances in the small-signal equivalent circuit of the second-order memristor calculated at the
DC voltage V
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dx1
dt

=
1
α1

δ1 γ1 − x1ð Þ+G1ðx1ÞV2
1

	 

=0 ð22dÞ

Similarly, the small-signal admittance of the lower memristor is given by

Y2ðs,QÞ≜ ı2̂ðsÞ
v2̂ðsÞ =

c′11ðQÞd′12ðQÞ
s− d′11ðQÞ

+ c′12ðQÞ ð23Þ

Rearranging (23), we have

Y2ðs,QÞ= 1

s 1
c′11ðQÞd′12ðQÞ

+ ð− d′11ðQÞÞ
c′11ðQÞd′12ðQÞ

+ c′12ðQÞ=
1

sL2 +R2
+

1
Rb

ð24Þ

where Y2ðs,QÞ denotes the small-signal admittance of the lower memristor of the
circuit of Fig. 7a where the parameters L2, R2 and Rb are given by:

L2 =
1

c′11ðQÞd′12ðQÞ
ð25aÞ

R2 =
− d′11ðQÞ

c′11 ðQÞ d′12ðQÞ
ð25bÞ

Rb =
1

c′12ðQÞ
ð25cÞ

The state variable x2 at the equilibrium point Q can be computed numerically by
solving the following equation:

dx2
dt

=
1
α2

δ2 γ2 − x2ð Þ+G2ðx2ÞV2
2

	 

=0 ð25dÞ

For the convenience of readers, the explicit formulas for computing L1, R1, Ra

and L2, R2, Rb as a function of V1 and V2 are given in Table 2 along with the state
equations f ðx1, v1Þ and f ðx2, v2Þ, respectively. The corresponding small-signal
equivalent circuit due to L1, R1, Ra and L2, R2, Rb and plots of inductances and
resistances are shown in Fig. 7a and b, respectively, for the memristor. Observe that
the inductance L1 and resistance R1 are always negative for any DC equilibrium
voltage V. The small-signal equivalent circuit of the second-order generic mem-
ristor with its inductances and resistances calculated at V = 6.4 V is shown in
Fig. 8.
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Table 2 Formulas for calculating L1, R1, Ra and L2, R2, Rb of the second-order memristor
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3.1 Admittance and Pole-Zero Diagram of Second-Order
Memristor

Let Q(VQ, IQ) be any point on the DC V-I curve of a second-order generic memristor
and let ðX1Q ,X2QÞ be the corresponding equilibrium state.

Define,

x1 =X1Q +Δ x1 ð26aÞ

x2 =X2Q +Δ x2 ð26bÞ

v=VQ +Δv ð26cÞ

i= IQ +Δi ð26dÞ

Let us expand the current i = G(x1, x2) v in (1a) using Taylor series at the
equilibrium point ðX1Q ,X2Q ,VQÞ

i= a00 + a11Δx1 + a12Δx2 + a13Δv+ h.o.t. ð27Þ

where,

Fig. 8 Small-signal
equivalent circuit of the
second-order generic
memristor calculated at
V = 6.4 V

A Simple Oscillator Using Memristor 33



a00 =GðX1Q ,X2QÞVQ = IQ ð28aÞ

a11 =VQ
∂Gðx1, x2Þ

∂x1

����
Q

ð28bÞ

a12 =VQ
∂Gðx1, x2Þ

∂x2

����
Q

ð28cÞ

a13 =Gðx1, x2ÞjQ =GðX1Q ,X2QÞ ð28dÞ

The h.o.t. in (27) denotes the higher-order terms of Δx1, Δx2, and Δv1. Assuming
Δx1 << 1, Δx2 << 1 and Δv1 << 1 then the h.o.t. term can be neglected and (27)
reduces to the following linear equation

Δi= a11Δx1 + a12Δx2 + a13Δv ð29Þ

Let us expand f1(x1, x2, v) in (1c) using Taylor series at the equilibrium point
ðX1Q ,X2Q ,VQÞ

f1ðX1Q +Δx1,X2Q +Δx2,VQ +ΔvÞ= f1ðX1Q ,X2Q ,VQÞ+ b11Δx1 + b12Δx2 + b13Δv+ h.o.t.

ð30Þ

where,

b11 =
∂f1ðx1, x2, vÞ

∂x1

����
Q

ð31aÞ

b12 =
∂f1ðx1, x2, vÞ

∂x2

����
Q

ð31bÞ

b13 =
∂f1ðx1, x2, vÞ

∂v

����
Q

ð31cÞ

Since ðX1Q ,X2Q ,VQÞ specifies a point on the DC V-I curve, the term
f1ðX1Q ,X2Q ,VQÞ=0. Neglecting the h.o.t. term in (30), we obtain the following
linear equation:

dðΔx1Þ
dt = b11Δx1 + b12Δx2 + b13Δv ð32Þ

Similarly, let us expand f2(x1, x2, v) in (1d) using Taylor series at the equilibrium
point ðX1Q ,X2Q ,VQÞ
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f2ðX1Q +Δx1,X2Q +Δx2,VQ +ΔvÞ= f2ðX1Q ,X2Q ,VQÞ+ c11Δx1 + c12Δx2 + c13Δv+ h.o.t.

ð33Þ

where,

c11 =
∂f2ðx1, x2, vÞ

∂x1

����
Q

ð34aÞ

c12 =
∂f2ðx1, x2, vÞ

∂x2

����
Q

ð34bÞ

c13 =
∂f2ðx1, x2, vÞ

∂v

����
Q

ð34cÞ

Since ðX1Q ,X2Q ,VQÞ specifies a point on the DC V-I curve, the term
f2ðX1Q ,X2Q ,VQÞ=0. Neglecting the h.o.t. term in (33), we obtain the following
linear equation:

dðΔx2Þ
dt = c11Δx1 + c12Δx2 + c13Δv ð35Þ

Taking Laplace transform of (29), (32) and (35), we obtain

ıð̂sÞ= a11 x1̂ðsÞ+ a12x2̂ðsÞ+ a13v ̂ðsÞ ð36Þ

sx1̂ðsÞ= b11x1̂ðsÞ+ b12x2̂ðsÞ+ b13v ̂ðsÞ ð37Þ

sx2̂ðsÞ= c11x1̂ðsÞ+ c12x2̂ðsÞ+ c13v ̂ðsÞ ð38Þ

where ıð̂sÞ, x1̂ðsÞ, x2̂ðsÞ and v ̂ðsÞ denote the Laplace transform of Δi, Δx1, Δx2, and
Δv, respectively. Solving (37) and (38) for x1̂ðsÞ and x2̂ðsÞ, we obtain

x1̂ðsÞ= b12c13 + b13 s− c12ð Þ½ �
s− b11ð Þ s− c12ð Þ− b12c11½ � v ̂ðsÞ ð39aÞ

x2̂ðsÞ= b13c11 + c13 s− b11ð Þ½ �
s− b11ð Þ s− c12ð Þ− b12c11½ � v ̂ðsÞ ð39bÞ

The explicit formula for computing the parameters in (39a) and (39b) are given
in Table 3. By substituting x1̂ðsÞ and x2̂ðsÞ from (39a, 39b) into (36), we obtain

Yðs; QÞ≜ ıð̂sÞ
v ̂ðsÞ ð40Þ
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Yðs;QÞ= b2s2 + b1s+ b0
a2s2 + a1s+ a0

ð41Þ

Table 3 Explicit formula for computing the parameters in (40)

( )

( )( )

1 1 1

2
2 21 1 1

1 1
11 2

1 1

1 2

X

XX

V K ea

K e K e

β γ
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The expression Y(s; Q) in (41) is called the small-signal admittance of the
second-order memristor about the equilibrium point Q, where a2, a1, a0, b2, b1 and
b0 are given by

a2 = 1
a1 = − b11 + c12ð Þ
a0 = b11c12 − b12c11

9=
; ð42aÞ

b2 = a13
b1 = a11b13 + a12c13 − a13 b11 + c12ð Þ
b0 = a11 b12c13 − b13c12ð Þ+ a12 b13c11 − b11c13ð Þ+ a13 b11c12 − b12c11ð Þ

9=
; ð42bÞ

The pole-zero diagram of the small-signal admittance Y(s; V) is computed by
factorizing the denominator and numerator of (41):

Yðs;VÞ= kðs− z1Þðs− z2Þ
ðs− p1Þðs− p2Þ ð43Þ

where pi and zi denote the poles and zeros of admittance function Y(s; V)
respectively.

The loci of the zeros and poles are shown in the Fig. 9a and b respectively, over
the applied DC voltage −20 V ≤ V ≤ 20 V. In Fig. 9b, the arrowheads indicate
the direction of pole movements in the interval of −20 V ≤ V ≤ 0 V whereas the
direction of pole movements for 0 V ≤ V ≤ 20 V is in reverse direction. Note
that the reverse arrowheads for 0 V ≤ V ≤ 20 V are omitted to avoid the clutter.

Observe from Fig. 9a that Im z1, Im z2 are always zero, and Re z2 is always
negative. The poles diagram in Fig. 9b shows the real part of the poles p1 and p2 are
zero at V = 6.38820157073 V and V = 7.66131678261 V, respectively which are
also called as Hopf-bifurcation points in bifurcation theory. Observe that the real
parts Rep1 and Rep2 of the poles are always positive between the bifurcation points
6.38820157073 V < V < 7.66131678261 V. In the horizontal segment where the
Im p1 and Im p2 are zero, at that point several poles of Rep1 and Rep2 exist due to
different input voltages as shown in Fig. 9b and at V = 0 V, the value of Rep1 and
Rep2 is −0.5 and −1, respectively. As the value of the voltage V increases the value
of the poles of p1 and p2 increases. For V ≤ 6.03481 V and V ≥ 11.1305 V the
Im p1 and Im p2 become zero.

3.2 Frequency Response of Second-Order Generic
Memristor

The frequency response of the second-order generic memristor at an equilibrium
point Q is computed by substituting s = iɷ, for the complex frequency s in (41) at
the equilibrium point Q, where the angular frequency ɷ = 2πf. The corresponding
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Fig. 9 Poles and zeros diagram of the admittance function Yðs;VÞ= kðs− z1Þðs− z2Þ
ðs− p1Þðs− p2Þ for −20 V ≤

V ≤ 20 V. a Zeros Diagram. b Poles Diagram. Arrowheads indicate the direction of pole
movements in the interval of −20 V ≤ V ≤ 0 V. The movements of poles in the interval of
0 V ≤ V ≤ 20 V, which are the reverse direction of −20 V ≤ V ≤ 0 V interval, are omitted to
avoid the clutter. When voltage V is infinitive, the locations of poles p1 and p2 are −0.5 and
−77.4759895, respectively
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Fig. 9 (continued)
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real part ReYðiω;VQÞ and imaginary part ImYðiω;VQÞ obtained from the admittance
function Yðiω;VQÞ are called the small-signal admittance frequency response of the
memristor in basic circuit theory. When the function ReYðiω;VQÞ and ImYðiω;VQÞ
are plotted on the horizontal and vertical axes of the Cartesian co-ordinate system
with the frequency ω as a parameter, the resulting plot is generally known as Nyquist
plot of the admittance functions at the equilibrium point Q.

Substituting s = iɷ in (41), we obtain

Yðiω;VQÞ= ða0 − a2ω2Þðb0 − b2ω2Þ+ a1b1ω2

ða0 − a2ω2Þ2 + a21ω2

" #
+ i

½ða0 − a2ω2Þb1 − a1ðb0 − b2ω2Þ�ω
ða0 − a2ω2Þ2 + a21ω2

" #

ð44Þ

The real and imaginary parts of the small-signal admittance Yðiω;VQÞ at the
equilibrium point VQ ðX1Q ,X2QÞ of a second-order generic memristor are given by:

ReYðiω;VQÞ= ða0 − a2ω2Þðb0 − b2ω2Þ+ a1b1ω2

ða0 − a2ω2Þ2 + a21ω
2

ImYðiω;VQÞ= ½ða0 − a2ω2Þb1 − a1ðb0 − b2ω2Þ�ω
ða0 − a2ω2Þ2 + a21ω

2

ð45Þ

By extensive numerical analysis of DC V-I curve shown in Fig. 5d, we found the
current I = 171.553 µA is the maximum value at V = 6.209 V2 and our calculation
shows that the slope of DC V-I curve is negative when V > 6.209 V. Figure 10a–c
shows the admittance frequency response ReYðiω;VQÞ versus ɷ, ImYðiω;VQÞ
versus ɷ and the Nyquist plot of the second-order memristor at V = 6.209 V,
V = 6.3 V, and V = 7 V, respectively. Observe that the function ReYðiω;VQÞ is
tangent to the ω axis at ω=0 at V = 6.209 V. However, the function ReYðiω;VQÞ
at V = 6.3 V and V = 7 V are negative for − 0.42≤ω≤ 0.42, and
− 0.6908≤ω≤ 0.6908, memristor defined in (1) is locally active when the DC
input voltage V > 6.209 V.

4 Mapping the Poles of the Admittance Function Y(S; V)
with Eigen values of the Jacobian Matrix JðX1,X2;VÞ

Let us represent (1c) and (1d) with DC input voltage V in the following standard
form:

dx1
dt

= f1ðx1, x2,VÞ ð46aÞ

2The DC V-I curve in Fig. 5d for negative voltage ðV ≤ 0Þ is just the reflected (odd-symmetric)
mirror image about the origin V = 0 over the positive input voltage ðV ≥ 0Þ region.
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Fig. 10 Small-signal admittance frequency response Re Y(iω; VQ), Im Y(iω; VQ) and Nyquist plot
of our second-order memristor at a V = 6.209 V, b V = 6.3 V, and c V = 7 V

A Simple Oscillator Using Memristor 41



Fig. 10 (continued)
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Fig. 10 (continued)
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dx2
dt

= f2ðx1, x2,VÞ ð46bÞ

The Eigen values of the second-order memristor are computed from the Jacobian
matrix at the DC equilibrium voltage V obtained by setting the differential
Eqs. (46a) and (46b) to zero. Setting dx1

dt =0 and dx2
dt =0, and solving for

x1 =X1ðVÞ, x2 =X2ðVÞ at V, we obtain the following Jacobian matrix at (X1(V),
X2(V)):

JðX1,X2;VÞ=
∂f1ðx1, x2;VÞ

∂x1

∂f1ðx1, x2;VÞ
∂x2

∂f2ðx1, x2;VÞ
∂x1

∂f2ðx1, x2;VÞ
∂x2

2
664

3
775
ðx1 =X1ðVÞ, x2 =X2ðVÞÞ

ð47Þ

According to the theory developed by Chua et al. (1987, 2012a, b) the Eigen
values of the Jacobian matrix are identical to the poles3 of the admittance functions
Y(s; V). Table 4 illustrates the Eigen values computed from Jacobian matrix (47)
and the poles computed from the denominator of the admittance function Y(s; V) in
(43). Observe from the Table 4 that the locations of the poles obtained from the
admittance function of the second order memristor in Fig. 1c are identical to the
Eigen values computed from the Jacobian matrix evaluated at V. Similarly, Fig. 11a
and b show plots of the loci of poles of the admittance function Y(s; V), and the loci
of Eigen values of the Jacobian matrix as a function of DC equilibrium voltage V in
the interval of −20 V ≤ V ≤ 20 V whereas to avoid clutter, the arrowheads
indicate the movements of poles and the Eigen values only in the interval of
−20 V ≤ V ≤ 0 V. Our numerical simulations show identical results from these
two independent methods, as expected. In both the plots of Fig. 11a and b, as the
voltage increases the poles of admittance function and the Eigen values also
increases. For V = 0 V, the value of p1 and p2 is −0.5 and −1, respectively, in the
pole diagram of admittance function as well as in the Eigen values of the Jacobian
matrix whereas V ≤ 6.03481 V and V ≥ 11.1305 V the Im p1 and Im p2 become
zero.

3We would like to caution the readers that the DC current Iext is the input in Chua et al. (2012a, b),
and the two small-signal equivalent circuits of the potassium ion-channel memristor and the
sodium ion-channel memristor in the HH model are connected parallel. Hence, the Eigen values of

the Jacobian matrix are identical to the poles of the small-signal impedance Zðs, IÞ≜ VðsÞ
IðsÞ = 1

YðsÞ, or
equivalently, the zeros of the admittance Y(s). In the 2nd-order memristor case, the input is a DC
voltage V and the two small-signal circuit components shown in Fig. 8 are connected in series. It
follows that the poles of the admittance function Yðs,VÞ≜ IðsÞ

VðsÞ of the second-order memristor in
Fig. 1c are equivalent to the Eigen values of the Jacobian matrix (47).
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5 Local Activity and Edge of Chaos

The local activity theorem provides the fundamental concept for predicting whether
the nonlinear system can exhibit complexity or not, whereas a small neighborhood
of the edge of chaos in the parameter space of a dynamical system is where complex
phenomena and information processing will most likely emerge (Chua et al. 1987;
Chua 1998; Dogaru and Chua 1998; Vaidyanathan and Volos 2016a, b). Applying

Table 4 Comparison of the poles of the admittance function Y(s; V) and the Eigen values of the
Jacobian matrix JðX1,X2;VÞ
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the above theorem in this paper for the second-order memristor, we found from
Figs. 10a and 5d that the memristor is locally active only when V > 6.209 V, i.e.

ReYðiω;VQÞ<0, for V >6.209V ð48Þ

Observe from Figs. 9b and 11a that the real part of the poles of Yðs;VQÞ van-
ishes at V = 6.38820157073 V, i.e. the poles of the admittance functions Yðs;VÞ
has a pair of complex poles p1 = i0.50372249 and p2 = −i0.50372249 located on
the imaginary axis (Re Pi = 0) at the above applied DC voltage. It follows that the
corresponding equilibrium ðX1ðVÞ,X2ðVÞÞ point is no longer asymptotically stable

Fig. 11 a Loci of the Poles from the admittance function Y(s; V). b Loci of the Eigen values from
the Jacobian matrix JðX1,X2;VÞ. Arrowheads indicate the movements of poles and the Eigen
values in the interval of −20 V ≤ V ≤ 0 V
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at the above parameter value of V, and becomes unstable thereafter. In other words,
the edge of chaos regime which started at V = 6.209 V (resp. I = 171.553 µA)
exists only over the following the tiny interval (see Fig. 5d):

Edge of chaos domain 1:
6.209V<V <6.38820157073V
171.553 μA> I >167.5 μA

ð49Þ

Fig. 11 (continued)
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Fig. 12 a Illustration of the principle of local activity in the second-order memristor at DC input
voltage V = 6.15 V, V = 6.209 V and V = 6.3 V. b The corresponding Nyquist plot for the input
DC voltage V = 6.15 V, V = 6.209 V and V = 6.3 V. c Edge of chaos domain 1 and edge of
chaos domain 2 on the zoom DC V-I curve of our second-order memristor
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The loci of the two complex poles p1 and p2 of Y(s; V) in Fig. 11a reveals the
pole p1 migrated along the red curve in the right-half plane to the left-half plane as
V increases beyond V = 6.38820157073 V and crosses the imaginary axis at
V = 7.66131678261 V (resp. I = 112.582 µA) where the real part of the pole of Y
(s; VQ) vanishes at p1 = −i0.82930627. Any further increase in the voltage
V moves the pole p1 back into the left-half plane. This confirms the existence of a
second edge of chaos regime starting from V = 7.66131678261 V (resp.
112.582 µA), and which extend, over all V > 7.6613 V (see Fig. 5d); namely,

Fig. 12 (continued)
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Fig. 13 Numerical Simulations to confirm super-critical Hopf-bifurcation theorem at the first
Hopf-bifurcation V = 6.38820157073 V and at the second Hopf-bifurcation V = 7.66131678261
V. a Transient waveform converging to DC equilibrium point when the DC voltage V = 6.3 V was
chosen near but just to the left of the first Hopf-bifurcation (b). Transient waveform converging to
stable oscillation, when V = 6.4 V was chosen within the Hopf super-critical region. c Transient
waveform converging to DC equilibrium point when the DC voltage V = 7.7 V was chosen near
but just to the left of the second Hopf-bifurcation (see Fig. 11b)
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Fig. 13 (continued)
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Edge of chaos domain 2:
7.66131678261V<V <∞
112.582 μA> I >0

ð50Þ

To illustrate that local activity in the second-order generic memristor starts from
V = 6.209 V, Fig. 12a and b show the plot of ReYðiω;VQÞ and the corresponding
Nyquist plot for the DC input voltage V = 6.15 V, V = 6.209 V and V = 6.3 V,

Fig. 13 (continued)
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respectively. Observe, the Nyquist plot of the admittance function Yðiω;VQÞ is
tangent to the ω axis at ω=0 for V = 6.209 V. Also, observe that for V = 6.15 V,
the real part of the Nyquist plot of the admittance function is positive, i.e.,
ReYðiω;VQÞ>0, confirming the memristor is not locally active. However, for
V = 6.3 V, the real part of the Nyquist plot of the admittance function Yðiω;VQÞ is
negative confirming that the memristor is locally active. The corresponding Nyquist
plots in ImYðiω ;VQÞ versus ReYðiω ;VQÞ plane is shown in Fig. 12b. Figure 12c
shows the edge of chaos domain 1 and edge of chaos domain 2 on the zoom DC
V-I curve of our second-order memristor. Observe that in both edge of chaos
domain 1 (49), and domain 2 (50), we have ReYðiω ;VQÞ<0, Rep1 < 0, and
Rep2 < 0 (see Figs. 5d and 11a).

6 Hopf Bifurcation

Hopf bifurcation is a local bifurcation generated by non-linear dynamical systems in
which an equilibrium point changes stability at some critical parameter value μ ,
under certain conditions. The bifurcation can be super-critical or sub-critical
resulting in a stable or unstable limit cycle respectively, and is confirmed by the
computation of a Hopf coefficient “a” at the equilibrium point when a pair of eigen
values of the associated Jacobian matrix are purely imaginary. The standard Hopf
coefficient “a” for a second-order ODE is given by:

a=
1
16

fxxx + fxyy + gxxy + gyyy
	 


+
1

16ω0
fxy fxx + fyy
� �

− gxy gxx + gyy
� �

− fxxgxx + fyygyy
	 
 ð51Þ

The plot of Im(λ) versus Re(λ) shown in Fig. 11b shows, the two
Hopf-bifurcation points occur at V = 6.38820157073 V and V =
7.66131678261 V, respectively where the real parts of the Eigen values of Jacobian
matrix at these two points are zero (pure imaginary Eigen values). The eigen values
within these two bifurcation points lie on the right-half plane (Re(λ) > 0), con-
firming the second-order memristor could generate oscillation. To confirm that
these two Hopf-bifurcation points are super-critical, let us compute the Hopf
coefficient “a” at V = 6.38820157073 V, where the functions f1 and f2 in (46a) and
(46b) are denoted by f and g, respectively, in (51).
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a= 1.826 × 103 > 0 for V =6.38820157073V and ω0 = 0.50372249
a= 1.59 × 103 > 0 for V =6.38820157073V and ω0 = − 0.50372249

ð52Þ

The coefficient a > 0 at the first Hopf-bifurcation point (V = 6.38820157073 V)
implies the bifurcation is super-critical because the parameter µ = V enters the
unstable region (Re (λ) > 0) by crossing the imaginary axis from left to right in
Fig. 11a. Similarly, the Hopf coefficient “a” at the second Hopf-bifurcation point at
V = 7.66131678261 V is found to be

a= − 1.155 × 103 < 0 for V =7.66131678261 and ω0 = 0.82930627
a= − 1.239 × 103 < 0 for V =7.66131678261 and ω0 = − 0.82930627

ð53Þ

The coefficient a < 0 at the second Hopf-Bifurcation point
(V = 7.66131678261 V) actually implies the bifurcation is super-critical because
the parameter µ = V returns to the stable region (Re (λ) < 0) by crossing the
imaginary axis from right to left, as the parameter µ = V increases beyond the
bifurcation value V = 7.66131678261 V. The formula given in all standard

Fig. 14 An example illustrating the frequency of oscillation ω is very close to the predicted Hopf
frequency ωHopf at V = 6.39 V
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textbooks (Meiss 2007) for the Hopf coefficient “a” was derived by assuming the
system becomes unstable (Re (λ) > 0) as the parameter µ crosses the imaginary axis
from left to right, as µ increases beyond the Hopf-bifurcation point. It follows from
the super-critical Hopf-bifurcation theorem that there exists a small sinusoidal
oscillation for any value of the DC voltage V chosen sufficiently near but greater
than the right boundary at V = 6.38820157073 V, and the right boundary at
V = 7.66131678261 V where the equilibrium point is unstable. However, any
initial state beyond super-critical region converges to another stable equilibrium
point. We verified this phenomenon in our second-order memristor by choosing
voltage V = 6.3 V, which is near but slightly to the left of the first Hopf-bifurcation
point at V = 6.38820157073 V. Observe from Fig. 13a that the transient waveform
converges to an asymptotically stable equilibrium point. An identical phenomenon
was observed as shown in Fig. 13c, where the DC input voltage V = 7.7 V was
chosen near but to the left of the second Hopf bifurcation point at
V = 7.66131678261 V. However, the transient waveform converges to a stable
limit cycle as shown in Fig. 13b, when V = 6.4 V was chosen within the Hopf
super-critical region.

Numerical simulations are performed within the super-critical Hopf region near
the two bifurcation points to confirm that the frequency of the oscillation is close to

Fig. 15 An example illustrating the frequency of oscillation ω is very close to the predicted Hopf
frequency ωHopf at V = 7.6 V
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the predicted Hopf frequency. Figures 14 and 15 show examples of the waveforms
obtained at V = 6.39 V (near but to the right of the first Hopf-bifurcation point
V = 6.38820157073 V, see Fig. 11b) and at V = 7.6 V (near and to the right of the
second Hopf bifurcation point V = 7.66131678261 V, see Fig. 11b). Observe that
the waveforms corresponding to V = 6.39 V and V = 7.6 V converged to a stable
limit cycle with frequency ω= 0.5024 rad/s, and ω=0.8203 rad/s, respectively,
which are very close to the predicted Hopf frequency ω=0.50372249 rad/s, and
ω=0.82930627 rad/s, respectively.

7 Concluding Remarks

This paper presented a simple electronic oscillator using a second-order memristor
(Chua 2014), and a battery. According to Chua (1969), the simplest mathematical
oscillator circuit must contain a second-order autonomous nonlinear differential
equation. The simulation results of the two differential equations x1(t) and x2(t)
showed almost sinusoidal oscillations and the stability of the oscillation is verified
via phase analysis. Our simulation results showed the edge of chaos regime domain
1 and domain 2 lie between the intervals 6.209 V < V < 6.38820157073 V, and
7.66131678261V<V <∞, respectively in DC V-I curve, whereas the Hopf
super-critical regime lie between the interval 6.38820157073 V < V <
7.66131678261 V. Beyond both ends of the super-critical interval, the circuit
tends to a DC equilibrium point on the DC V-I curve. A small-signal equivalent
circuit was derived by choosing a DC equilibrium point Q and are found to consist
of two identical linear resistor-inductor (RL) sub-circuits (with different resistance
and inductance values) connected in series. The poles of the admittance function Y
(s; V) are shown to be identical to the Eigen values of the Jacobian matrix of this
small-signal equivalent circuit describing the memristor-battery circuit. At
V = 6.38820157073 V and at V = 7.66131678261 V, the loci of the Eigen value
as a function of the DC voltage V crosses the imaginary axis. We found, all the
initial conditions decay to a DC operating point, if we increase the battery voltage
V from V = 0 V to the left boundary of the edge of chaos at V = 6.209 V.
A further increase in V causes the pair of complex-conjugate Eigen values to cross
the imaginary axis, while spawning a small sinusoidal oscillation whose ampli-
tude increases rapidly (like the square root of 2) with increasing battery voltage.
This phenomenon of a super-critical Hopf bifurcation (Meiss 2007) serves as a
textbook example, which we had confirmed analytically by showing the Hopf
bifurcation coefficient “a” is positive. On the other hand, the amplitude of the
oscillation begins to decrease, with further increase in battery voltage V, illustrating
the prediction of the Hopf bifurcation theorem no longer exists.

Similarly, when the battery voltage is decreased from far beyond the right
boundary of the edge of chaos domain 2 at V = 7.66131678261 V, we found once
again all initial conditions converge to a DC operating point at the corresponding
battery voltage. Furthermore, when the battery voltage reaches the left boundary of
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the edge of chaos domain 2 at V = 7.66131678261 V then the pair of
complex-conjugate Eigen values crosses the imaginary axis from right to left while
spawning another small sinusoidal oscillation, whose amplitude increases rapidly
like before, as we continue to decrease the battery voltage. Soon the sinusoidal
waveform merges seamlessly with the earlier sinusoidal waveform spawned from
the right boundary of the edge of chaos domain1!

Indeed, we have also proved that the second-order memristor oscillator could
generate sinusoidal oscillation via a super-critical Hopf bifurcation. In this paper,
the computation of Hopf bifurcation coefficient “a” gives a < 0 in contrast to the
standard Hopf bifurcation condition which satisfies that a > 0. The reason for the
above difference in the sign of “a” is due to the fact that the calculation of Hopf
bifurcation coefficient “a” described in nonlinear dynamics textbooks (Meiss 2007)
is based on the assumption that the pair of complex-conjugate Eigen values crosses
the imaginary axis from left to right as the bifurcation parameter increases.

Finally, we conclude that the memristor-battery oscillator gives rise to two
sinusoidal oscillations originating from either boundary of the edge of chaos
regime of the memristor via super-critical Hopf bifurcation and it also provides
the textbook example for detail understanding of super-critical Hopf bifurcation
phenomenon.4 In this paper, the second order memristor represents the model of a
physical device called Positive Temperature Coefficient (PTC) and Negative Tem-
perature Coefficient (NTC) thermistor connected in series. So, as a future work, it is
possible to generate oscillations in a real circuit by connecting PTC and NTC
thermistors in series across the battery via super-critical Hopf bifurcation
phenomenon.
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