Chapter 2
Two-Body Interactions Between

Li and Cs Atoms

In this chapter we investigate the binary scattering properties of an ultracold Li-Cs
mixture and develop the theoretical and experimental framework, on which the fur-
ther exploration of few-body effects that are discussed throughout this thesis will be
based. We start by establishing the basic theoretical structure that is used to describe
ultracold scattering in Sect.2.2. We introduce the s-wave scattering length and show
its intrinsic connection to the internal structure of the colliding atoms. This gives
rise to magnetically tunable Feshbach resonances, and the weakly bound universal
dimer, which is also known as the two-body quantum halo. We continue by presenting
the typical experimental approach for producing an ultracold mixture of Li and Cs
atomic gases in a single, predetermined scattering channel in Sect. 2.3. It is followed
by the description of the two most crucial experimental techniques that are employed
throughout this thesis for controlling and probing interactions, namely, homogenous
magnetic field generation, and radio-frequency and microwave-frequency pulses.
Finally, we explain the measurements of weakly bound LiCs Feshbach dimers and
the procedure for obtaining the LiCs singlet and triplet molecular potential curves of
the electronic ground state manifold with the help of coupled-channels calculation
in Sect.2.4. It yields, up to date, the most precise parametrization of Li-Cs scattering
properties in the explored magnetic field range. This knowledge will be critical for
appropriate analysis of three-body physics that is explored in Chaps. 3 and 4.

2.1 Interactions in Ultracold Mixtures of Li and Cs Atoms

The tunability of interactions between two ultracold, colliding particles is one of
the most important capabilities of modern quantum gas experiments. The tuning
is achieved by magnetic field dependent interparticle scattering resonances, called
Feshbach resonances (FR), at which a two-body bound state crosses the scattering
threshold. These resonances are routinely employed to tune the interaction strength
between the colliding particles [1] and to produce weakly bound dimers by ramping
up or down the external magnetic field [2]. They can be used to create strongly
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correlated many-body systems [3], quasiparticles [4], and explore intriguing topics
in few-body physics [5, 6]. However, the ability to study any of these fascinating
systems, as well as the underlying principles, on which the behavior of such systems
is based, relies on precise knowledge of the properties of the particular FR.

The central quantity that governs an ultracold collision process, and therefore most
of the physics at such temperatures, is the two-body s-wave scattering length a. The
inelastic three-body scattering rate near a FR scales as a*, resulting in magnetic field
dependent atom losses that can be used to map out how a depends on the external
field [9-11].

During the last decade such atom loss spectroscopy in combination with theoret-
ical models has become a standard tool for the determination of specific interpar-
ticle interaction properties [1]. These methods yield an excellent representation of
the overall FR spectrum. An example of such extensive atom-loss spectroscopy for
Li-Cs Feshbach resonances [7, 12, 13] is shown in Fig. 2.1. In these measurements a
total of 19 interspecies scattering resonances could be detected for the two energeti-
cally lowest spin states in the magnetic field range between 500 and 1000 G (only 7
of them are shown in the figure). The explanation of these atom-loss spectra relied on
precise models of magnetic field-dependent scattering length. Excellent agreement
was obtained by several numerical methods, including coupled-channels (cc) calcu-
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Fig. 2.1 Li-Cs s-wave Feshbach resonances for the two energetically lowest scattering channels
[7]. a Scattering length dependence on the magnetic field for the two energetically lowest Li-Cs scat-
tering channels. b and c trap loss spectra and Gaussian profile fits to the loss data for Li|1/2, —1/2)
and Li|1/2, 1/2) spin states. Each feature in the loss spectra corresponds to a Feshbach resonance
in the scattering length. The additional loss features correspond to Feshbach resonances due to
different Cs spin states that are not shown here. Figure adapted from [8]
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lation, asymptotic bound-state model (ABM), or multichannel quantum defect theory
(MQDT) [8, 14]. All of the approaches describe the FRs with a sub-Gauss accuracy,
thus the particular choice of the applied method depends on the required degree of
precision for the final result and computational complexity. In this work we will
exclusively use the cc approach, as it incorporates the least amount of assumptions
out of the three models, and allows a straightforward calculation of the molecular
energies required for FR pole determination (see Sect.2.4).

Not all of the observed atom losses can be unambiguously attributed to an increas-
ing two-body scattering length. Especially when a becomes large, not only immediate
loss of three atoms from the trap, but also other processes, for example, weakly-bound
dimer formation and subsequent secondary losses may occur. This can lead to shifts
and asymmetric broadening of the loss signals [ 15-20] thus weakening the relation to
the functional dependence of the scattering length alone. A precursor to such under-
lying dynamics can already be seen in the asymmetric loss profiles of the broad Li-Cs
Feshbach resonances in Fig.2.1.

More accurate mapping between the magnetic field and scattering length can
be obtained by going further than a simple atom loss spectrum. The most precise
scattering length measurements so far are delivered by direct radio-frequency (rf)
[21-28] and magnetic field modulation [17, 29-36] spectroscopy of the least-bound
molecular states. Since a FR intrinsically originates from the coupling of the scat-
tering channel with such a molecular state, its energy E in the vicinity of the FR
can be connected to the scattering length through the relation E o< a~2 [37, 38].
By mapping the magnetic field dependence of the binding energy of this state, it is
possible to study exclusively the two-body problem, and the extraction of a is less
prone to systematic effects. For the specific case of Li-Cs, we employ rf spectroscopy
throughout this thesis, and in this way reduce the uncertainty of the Li-Cs Feshbach
scattering length parametrization by almost a factor of 20 for the broad Feshbach
resonances [39] in comparison to the initial atom-loss experiments [7, 13].

2.2 Low-Energy Scattering in Ultracold Quantum Gases

The elementary interaction mechanism of two neutral particles is a two-body collision
in a potential that depends on the relative distance between them. In this section
we shortly review the basic formalism of the scattering theory that is necessary to
describe such process in the ultracold temperature regime where the dynamics are
dominated by quantum threshold laws and single partial wave scattering. We start
by recalling the concept of scattering length and collision cross section and their
dependence on the quantum statistics in Sect.2.2.1. It is followed by a discussion
how the internal structure of the colliding particles leads to the emergence of Feshbach
resonances that can be employed to control the interaction between the scattering
partners in Sects.2.2.2 and 2.2.3.



20 2 Two-Body Interactions Between Li and Cs Atoms

2.2.1 Basic Physics of Two-Body Scattering at Ultracold
Temperatures

There exists many textbooks and lecture notes that treat the ultracold two-body
scattering rigorously, see, for example, [40—45]. Here we give a short summary of
the most important concepts that are required to understand the interaction between
two colliding particles.

The Schrédinger equation in center-of-mass reference frame for two particles with
mass m and m, that interact through a potential U (r) reads

2k2

h? R
[m—W+Ua4w®= Y (r), 2.1)

21 21
where r denotes the interparticle separation, k = /2uE/h is the wavevector of the
relative motion for positive collisional energy E, and p = mm,/ (m + my,) is the
two body reduced mass. In general, the short-range part of the interaction potential
U (r) can take on any form. However we request that at large interparticle separation
the potential vanishes, which corresponds to setting U (r) = O for |r| > r(, where rg
is a length scale that characterizes the short-range extent of the scattering potential.
Then the wavefunction v (r) in this region can be expressed by its asymptotic form

eikr

¥ () =e* + £(0,k) (2.2)

r

consisting of an incoming plane wave and an outgoing spherical wave with an angle
# and k dependent scattering amplitude f (6, k).

With these basic constituents we can now introduce the partial wave expansion.
Due to symmetry arguments for radial potentials U (r) the scattering amplitude
depends only on the angle 6 between the colliding particle normal vectors, and the
wavefunction can be expanded in the basis of spherical harmonics ¥;" (0, ¢) as
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where uy ; , () is the radial wavefunction that depends on k, the quantum number /
that characterizes the angular momentum of the colliding particles and its projection
m. Inserting this ansatz into the Schrodinger equation (2.1) one obtains

= i
£0,k) = Tk;(m D% — 1) Pi(cos(0)), (2.4)

where P, denotes the Legendre polynomial, and we have introduced a phase shift ¢;
between the incoming and outgoing wave. In the asymptotic region it quantifies the
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effect of the short-range interaction potential on the scattering wavefunction and can
be characterized by the Wigner threshold law §; K2+ [46].

The quantum statistics of the particles plays a crucial role for the differential
scattering cross section do/dS2 and total scattering cross section o. The scatter-
ing wavefunction has to be properly symmetrized or antisymmetrized if the two
colliding particles are identical bosons or identical fermions, respectively. This
can be achieved by noting that f(0,k) = —cf(mr — 0,k) where ¢ = +1 for
bosons and ¢ = —1 for fermions. By integrating the differential cross section
do/d2 = |f(0,k) +¢ef(m—0,k)|* over the solid angle £2 one can express the
partial scattering cross section through

iy .
(k) = k_z(ZI + 1) sin” &y, (2.5)

from which the total cross section follows as o (k) = >_;°, 0;. Due to the imposed
symmetry on the scattering wavefunction, o; = 0 if [ is odd or even for identical
bosons or identical fermions, respectively.

For scattering processes presented in this thesis, though, only scattering in the
lowest partial wave [ = 0, and consequently oy, are relevant, since the experimen-
tally employed temperatures are well below the centrifugal barriers originating from
higher partial waves with [ > 0 (see discussion in Sect.2.2.2). Thus one introduces
the s-wave scattering length a through the expression

L an [Gk)]
a=lm T 20

as the only parameter characterizing an ultracold collision. Employing this definition
one finally arrives at the following scattering cross section

% for distinguishable particles,
ok)=10 for identical fermions, 2.7)
li’;—’iiz for identical bosons.

This result already demonstrates one of the most fundamental consequences of quan-
tum statistics on ultracold scattering, namely, that identical fermions do not interact
with each other through s-wave collisions. It will become important later in the
analysis of the three-body recombination spectra in Sect. 3.4.

Inultracold gas experiments with neutral atoms the interaction potential U (r) typ-
ically corresponds to the Born-Oppenheimer molecular potential, which is a spher-
ically isotropic short-range potential. An interesting exclusion is the dipole-dipole
interaction that gives rise to anisotropic potentials, and scattering that involves more
partial waves than just the s-wave (I = 0). See, for example [47-51].
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2.2.2 Scattering in External Magnetic Field

The ability to control the s-wave scattering length in ultracold neutral atomic and
molecular gases that are subjected to external magnetic fields originates from the
internal structure of the colliding particles. It gives rise to scattering resonances,
called Fano-Feshbach resonances, in honor to Herman Feshbach and Ugo Fano who
introduced the concept of energy dependent resonances due to coupling between a
bound state and a continuum scattering state of two particles in nuclear physics [52]
and atomic physics [53], respectively. The modification of this coupling by the exter-
nally applied magnetic field results in a change of the value of the scattering length
and consequently interaction strength. A thorough review of Feshbach resonances
in ultracold gases and the control of the scattering length is given in [1, 2]. Here we
summarize the main results.

Consider the Schrodinger equation (2.1) and its Hamiltonian, which we now
extend with an interaction term H;,, = H,s + Hz + Hy, to describe a binary
collision in the presence of an external magnetic field [54]:

H=T+U+ Hin. 2.8)

In addition to the kinetic energy term T = —h?>V?2/(2) and potential U the Hamil-
tonian now contains the hyperfine energy operator

Hyy = Y a)) ®)s¢ i (2.9)
¢=A.B

with the electronic and nuclear spin operators s¢ and i¢, where the index £ and the
two terms in the sum correspond to the two atoms A and B. Here we consider
the electronic ground state for alkali atoms 28 2 with [ = 0 and s¢ = 1/2, as
appropriate for the experiments presented in this thesis, and hence j¢ = s¢. The
separation dependent hyperfine constants a,(% (r) account for electronic distortions
of one atom by the other at small separations [55], and asymptotically approach the

atomic hyperfine constant Ai ¢s for r — o00. The Zeeman interaction is given by

W .
Hy =" g;B (81.c5¢ + g1, + g1.le) - B, (2.10)

where the magnetic field B couples to the electron spin, electron orbital, and nuclear
magnetic dipole moments that are quantified with g ¢, g;.¢, and g; ¢ gyromagnetic
ratios, respectively. In general, the interaction Hamiltonian contains also magnetic
dipole-dipole couplings between the different spin operators that are described by
the term Hy,;. These contributions, however, are small and present only in p-wave
resonances, since an anisotropic interaction potential is required to generate exper-
imentally observable energy shifts [56]. The work presented in this thesis deals
exclusively with s-wave resonances, therefore, from here on, we neglect the H,y,
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Fig. 2.2 Atomic energy levels of 133Cs (left panel) and °Li (right panel) atoms as a function of the
applied magnetic field in the electronic ground state. f denotes the total angular momentum of the
atom and m s, m j, and m; are the magnetic total, electron spin, and nuclear spin quantum numbers,
respectively

term in the interaction Hamiltonian. Its effective form and explicit application for
the Li-Cs system can be found elsewhere [8].

Figure 2.2 shows the calculated atomic hyperfine energy levels as a function of the
applied magnetic field for ground state '**Cs and °Li atoms that corresponds to the
eigenenergies of H;,, (see Eq.(2.8)). The hyperfine energy levels are labeled by their
total angular momentum f = |j + i| and its projection m s on the quantization axis.
For high magnetic field strengths the Zeeman energy becomes large in comparison to
the hyperfine splitting, and consequently f is not a good quantum number anymore,
while m ; is still a good one due to rotational symmetry around the magnetic field
axis that we choose as the quantization axis. The individual quantum numbers allows
one to define a scattering channel with the quantum number My = m 7,4 +m 7 p that
is characterized by the state |() = A |fA, mf,A) ®B |f3, mf,g), also called scattering
channel, and asymptotically corresponds to two noninteracting atoms in free space
described by the combination f¢, m s ¢ for each atom. The scattering channels can be
separated into two groups. A channel is called open (closed) if the initial energy E of
the colliding atoms is larger (smaller) than its asymptotic energy, which corresponds
to the sum of the internal energies of two atoms in the limit » — oo.

In this work we experimentally employ the energetically lowest Cs spin state
with f = 43 and m; = +3, and the two energetically lowest Li spin states with
f=+1/2and my = +1/2; —1/2 (see Fig.2.2). For these energy levels we define
the appropriate scattering channels by

11
lo) = Li 5,+§>eacs|3, +3),
R @2.11)
=Li|=, —= ) ®Cs|3, +3).
13) i3 2>69 s13,4+3)
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Fig. 2.3 Born-Oppenheimer molecular potentials of the LiCs electronic ground state. a Full singlet
(black) and triplet (blue) potentials as calculated from a coupled channels calculation. b Long range
van der Waals potentials with [ = 0 (black), | = 1 (blue), and [ = 2 (red) centrifugal terms. The
dash-dotted lines illustrate the rotational barrier; see Eq. (2.12). Figure adapted from [8]

The projections My for channels |«) and |(3) yields values M,(v“) = 7/2 and

pr’@) = 5/2, respectively. The kinetic energy in the experiments presented here
is on the order of ~10kHz! and the typical energy separation between consecutive
scattering channels is on the order of tens of MHz. Thus, if the system is prepared
in |a) or |3) channel, there is one or two open channels, respectively.

The scattering channels with different My are diagonal in the interaction Hamil-
tonian H;,, representation. Once additional terms are introduced in the Hamiltonian,
the scattering channels can be coupled. The interatomic potential U (r) is an impor-
tant example, since exactly this coupling is responsible for the existence of Feshbach
resonances (see Sect.2.2.3). However, the scattering channels can be coupled also
through other mechanisms, for which oscillating magnetic fields is an prime exam-
ple. This will become important for the discussion of the radio-frequency association
of Feshbach dimers in Sect.2.4.

Now we turn our attention to the interatomic potential U (r), specifically, we con-
sider spherically isotropic potentials, which allows one to drop the vector notion.
For interactions between two alkali atoms it corresponds to the Born-Oppenheimer
molecular potentials, which are shown in the Fig. 2.3a for the LiCs dimer ground elec-
tronic state. The two potential curves differ by the orientation of the valence electron
spins, as they can arrange themselves in either singlet (S = 0) or triplet (S = 1)
configuration, where the total electron spin S = s4 + sp. This leads to a significant
difference between the molecular binding energies for the two arrangements, and the
total potential U (r) = PyUy + P, U, has to be constructed as a superposition of the
singlet and triplet contributions by projection operators Py and P, respectively.

By transforming the Schrodinger equation (2.1) into the spherical coordinate
system an effective rotational potential barrier emerges, which adds to the radial

'Tf expressed in the appropriate units 1 LK is equivalent to 20.8 kHz.
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potential energy seen by the atoms (see Fig. 2.3b). Its amplitude U, ,; can be expressed

as 3
1 (h21(1+ 1))‘/
«/2C6 3#

that depends on the particular partial wave /, in which the two particles are collid-
ing. The amplitude of the potential barrier is on the order of 2 and 11 mK for Li-Cs
p-wave (I = 1) and d-wave (I = 2) collisions, respectively. The experimentally
employed temperatures range from 1 WK down to a couple of tens of nK, thus effec-
tively screening the particles colliding in higher partial waves from exploring the
short internuclear distances where the interspecies potential U () is significant. This
estimation confirms that the use of the s-wave scattering length a, as introduced in
Sect.2.2.1, is well suited for the description of the entire scattering process.

Uor = (2 12)

2.2.3 Interactions and Weakly-Bound Dimers Close to a
Feshbach Resonance

A Feshbach resonance emerges if the energy of an atom pair that is scattering in
the entrance scattering channel matches the one of a bound state that is supported
by a closed channel, and a coupling exists between them. If the magnetic moments
of the involved channels are different, the energy difference can be controlled via
an external magnetic field. This gives rise to magnetic field dependent coupling
and, consequently, scattering length. Scattering theory provides an elegant way of
calculating the transition amplitudes between the involved channels. In order to
illustrate the basic concepts we shortly recapture the two-channel scenario that was
first introduced in [57] and further elaborated in [2, 38, 58, 59].

The starting point is the Schrédinger equation and Hamiltonian from Eq. (2.8),
which we project onto the open and closed channel subspaces via the projection
operators Pand O, respectively. One obtains a set of coupled equations

(E — Hpp)Wp = Hpp¥p (2.13)
(E — Hyp)Wp = HopWp, (2.14)

where the projection onto the respective open and closed subspaces is denoted by
subscripts P and Q. Here H;; = iH j, and ¥; = i¥ and the total scattering wave-
function

w=>"ym)(), (2.15)
¢

which is expanded over the basis of the scattering channels |() and » dependent
coefficients ¢ (r). Equation(2.14) can be formally solved by Green’s operator
1/(E — Hgg + i0), which yields
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1

Wp=—
T E—Hyo +i0

HppWp. (2.16)

Substitution of this solution back into Eq. (2.13) gives an effective expression for the
scattering process in the open channel that reads

1
(HPP+HPQWHQP) WPZEWP (217)

This Schrodinger equation illustrates the basic mechanism behind a Feshbach reso-
nance. The second term in the effective Hamiltonian can be interpreted as a transition
from open P-subspace to closed Q-subspace, followed by propagation in Q-subspace,
and completed by re-emission back into P-subspace. The phase shift acquired by the
wavefunction during this propagation is reflected in the modification of the scatter-
ing length a, which was introduced in Eq. (2.6). The first term Hpp is present also
if no closed channels exist, and hence it corresponds to a pure scattering process
in the open channel subspace P, where its primary role is to give rise to the back-
ground scattering length a,,. The couplings Hpp and Hgpp are determined by the
Coulomb interaction, to which the main contribution arises from electron exchange
that is proportional to the energy difference between the singlet and triplet molecular
potentials.

The object that characterizes the collision process in a multichannel system is the
unitary scattering matrix S. Matrix elements S;; quantify the transition amplitudes
from an incoming channel i into an outgoing channel j. For a single channel the

S-matrix element is related to the scattering phase shift §(k) via relation S(k) =
2

¢*9® and the elastic cross section can be expressed as o¢ = gem/k* |1 — Se
where g, characterizes the quantum statistics of the colliding particles [1].

Let us investigate the behavior of the matrix element S;; in case when the total
energy E is close to a discrete bound state energy €p and there is only one open
channel. This is known as the single resonance, two-channel approach [2, 57-59]
and requires an energy spacing between the discrete energy levels of Hy that is
much larger than any of the near-threshold couplings, kinetic and potential energy
distributions. One can easily show that this is the case for typical experiments with
ultracold gases. Particularly, for an ultracold mixture prepared in the energetically
lowest spin states the single energetically allowed outgoing channel is also the incom-
ing channel. Thus, the S matrix reduces to a single element, which can be written as

[57]

S=Sp (1 T(E) (2.18)

— “he E—c5—A(E))’ '

where [' = 27 |(7,ZJB| Hpg |C +>|2 describes the coupling between the corresponding
molecular eigenstate |¢5) and the incoming part of the scattering state, which is
denoted by }C +), and ep denotes the energy of the molecular state (bare energy) in
the closed subspace Q. Sy, describes the scattering in the open P-channel, and <7 (E)
is the complex energy shift that is expressed by
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o (E) = (Yp| Hypp Hpg |9B), (2.19)

E — Hpp +i0

decomposed as o/ (E) = A(E) + i['(E)/2 into a real part A(E) and an imaginary
part I'(E). For energies above the scattering threshold (E > 0), the molecular state
with the bare energy €5 can be interpreted as a quasi-bound state in the Q-subspace
that is shifted by A(E) due to the couplings to the P-subspace, and has a width I' (E).
For negative energies (E < 0) the energy shift <7 (E) is real, and hence it describes
an actual energy shift of the bare molecular state due to coupling to the scattering
channel.

In our experiments, the closed and open scattering channels consist of a pair of
atoms in different hyperfine states, so the two channels exhibit different magnetic
moments. This leads to magnetic field dependent differential energy shifts between
ep, E,and &7 (E). Thus, if a bound state in the closed channel is close enough to the
scattering threshold, one can bring them into degeneracy by changing the external
magnetic field. Therefore, we consider ultracold scattering where only the s-waves
contribute, and the relative collision energy ¢, = E — E;;, ~ k%, where E,, is the
threshold energy. Noting that S = e~ %% and §%¢ = e~%* % the magnetic field
dependence of the scattering length can be expressed as

Thm
a(B) = apg —

I'(B), (2.20)

res

where €., = €5(B) + A(B) in the zero-energy limit. By introducing the explicit
B-dependence of €,.,(B) = (up — f1o)(B — Bpg) on the magnetic moments fip
and j1p of an asymptotically separated pair of atoms in the scattering channel and
the molecular state, respectively, this equation recovers the well-known dispersive
expression for Feshbach resonances

B) = 1 AB 2.21
a()—abg( _B_—BFR)’ (2.21)

which is parametrized by the resonance pole position Brg and width A B, quantifying
the coupling strength between the P and Q subspaces. This behavior is shown in
Fig.2.4 for a generic Feshbach resonance. In general, a;; and AB contains a weak
dependence on B, however for near-resonant scattering close to the pole of a Feshbach
resonance this dependency is negligible in comparison to the resonant behavior.

According to Eq.(2.18), the energy of the molecular state in the vicinity of the
pole of the Feshbach is given by

Ey = ep + A (Ep), (2.22)
which consists of the bare energy €5 of the closed subspace Q that is “dressed” by

the coupling to the scattering channel in the open subspace P. For energies below
the scattering threshold the expression reduces to E, = €5 + A(E}). In the limit
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Fig. 2.4 Structure of a
generic Feshbach resonance.
The upper panel shows the
scattering length given by
Eq.(2.21) with the
zero-crossing located one
resonance width AB away
from the pole position Brg.
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E, — 0and B — Bpg, the real part of the complex energy shift vanishes, i.e.
A(0) — 0, which implies that the properties of the near-resonant molecular state
are solely determined by the properties of the scattering state, and consequently a.
Therefore, this regime and the molecular state are usually referred to as the universal
regime and quantum halo or universal dimer state. A rigorous derivation of this
relation is given in [2, 38], and relies upon an explicit determination of the energy
dependence of the complex energy shift o7 (E}). Here, we give only the final result

(2] ,
1 h B — Brg
Ey(B) = m (a T) , (2.23)

which is also shown in Fig.2.4. In the limit of large scattering lengths a >> a,, and
in combination with Eq.(2.21) it reduces to the well-known universal formula for
the bound-state energy of a weakly bound dimer:

h

= 2.24
2ma? ( )

Ep

2.3 Producing and Probing Ultracold Li-Cs Mixtures

In this section we discuss our approach for the preparation of an ultracold Li-Cs
mixture, which is used to obtain ensembles of ultracold Li and Cs atoms in a single
scattering channel with temperatures ranging from around 500 nK down to approxi-
mately 250 nK. Even lower temperatures can be reached in this experimental setting
for single species, evidenced by the observation of Bose-Einstein condensation of
Cs atoms and Li, molecules during this thesis. Details on the relevant experimental
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procedures can be found in [8, 12, 60]. In this chapter we exemplify our experi-
mental sequences by discussing the mixture preparation at around 400nK, which is
largely unaffected by the gravitational sag. The design of experimental apparatus,
cooling and imaging techniques have been already presented in great detail in [8,
12, 60-63]. Therefore, we start by introducing the experimental cooling sequence
that was employed in the experiments with weakly bound LiCs molecules and, in
part, the observation of Li-Cs-Cs Efimov resonances. Since magnetic and radio-
frequency fields play a crucial role not only in the two-body sector, but also for
three-body physics, we shortly describe their most important characteristics, espe-
cially the determination of the systematic errors for homogenous offset and oscillating
(with radio- and micro-wave frequency) magnetic fields.

2.3.1 Experimental Procedure for the Sample Preparation
at 400nK

The overview of our experimental preparation sequence is given in Fig.2.5. We start
by loading a Cs MOT for typically 2s, followed by two degenerate Raman sideband
cooling [64-66] cycles of approximately 15 ms that spin polarize the atoms to about
90% in the energetically lowest Zeeman state Cs | f=3my= +3>. The second
cycle is performed already with the reservoir trap turned on at 35 W. As the atoms in
the wings of the trap are heated due to the conversion of higher potential into kinetic
energy, it is beneficial to apply the second pulse after a short propagation period in the
optical dipole potential, during which more of the atoms have reached the center of

Cs MOT Li MOT Simultaneous Superposing Turn off Atom loss High
Loading Loading Evaporation both traps Reservoir spectroscopy Field
DRSC (2 s) (1.8 s) 35s 1.6 s 2s 0.85s Imaging

|

|
time

Reservoir Trap

Dimple Trap | [N_ 2?)0_11:\7\_/'

Offset Field o ;4; (_; __________________ thoa | 081 G
Reservoir Displé;cgrr;ﬂ;c ______ 1;“:1 _____________________ o

Fig. 2.5 Experimental sequence for the preparation of Li-Cs mixture near the 843 G Feshbach
resonance in the scattering channel |o). This sequence represents the general cooling and mixing
approach of the two atomic species that is used for the characterization of the experimental setup
and for the observation of the Efimov resonances at 450 nK temperatures. The experiments on radio-
frequency association of LiCs dimers follow the same approach with slightly different magnetic
field values for the offset field, which are given in the text. Figure adapted from [8]
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the trap.” In this way an approximate two-fold increase in final phase-space density
in the reservoir trap is achieved. At this point we apply an offset magnetic field of
~4.5 G to preserve the spin polarization by providing a quantization axis.

The sequence is continued by a spatially separated loading of a Li MOT for
1.8-2.5s. After a short compression phase the Li atoms are loaded into the dimple
trap at ~1 mm displacement from the reservoir trap, in which Cs atoms are being
held. At the end of the MOT phase we apply a short optical pumping pulse that
transfers all of the Li atoms into the f = 1/2 hyperfine state. Since we have not
applied any spin polarization techniques so far, Li atoms populate both of the Zeeman
sublevels, namely, Li| f = 1/2,m; = +1/2) and Li| f = 1/2,m; = —1/2).

At this point we set the homogenous offset field to By, ~ 920G to ensure rapid
thermalization of both species, and perform simultaneous forced evaporation with
still spatially separated reservoir and dimple traps. After approximately 3.5s long
evaporation ramp, we superimpose both traps with a piezo-driven mirror within one
fast (600ms) and one slow ramp (1s) to ensure approximately adiabatic merging.
While keeping the power in the dimple trap constant, we turn off the reservoir trap
in a 2 s long ramp, which transfers a part of the Cs atoms into the dimple trap. As the
potential depth decreases the temperature of the gas in the reservoir trap is further
reduced. Because these atoms are still in thermal contact with the ones in the dimple
trap due to collisions, the thermal energy can be exchanged, which leads to cooling
in the dimple trap as well, and equal temperature in both of the traps. Additionally,
the local increase in the trapping frequencies leads to increased phase space density
in the dimple trap, which is often in the literature refereed to as the dimple trick
[67-69].

During the last ramp of the reservoir trap the atom clouds already overlap. The
ramp is performed at B,,;, ~ 875G to minimize three-body losses of Cs atoms
while still ensuring high enough scattering cross section for intra and interspecies
collisions. This value was experimentally found to optimize the remaining number
of atoms in all the three different spin states of both species after the reservoir trap
had been ramped off.

The mixed sample in the dimple trap now consists of Cs atoms in spin state |3, +-3)
and Li atoms in spin states [1/2, +1, 2) and |1/2, —1/2). The final scattering channel
|a) or | B) (see Eq.(2.11) for the definition of the scattering channels) is selected by
shining in a laser light pulse that is resonant with the D2 transition of Li|1/2, —1/2) or
Li|1/2, +1/2) spin states at the given magnetic field, thus removing the unnecessary
spin component. After a slight re-compression of the dimple trap in 500 ms, that
stops the residual evaporation, but increases the final temperature to about 450nK,
we are left with about 4 x10* Li and 4 x 10* Cs atoms in the necessary scattering
channel. At these conditions we measure the secular trapping frequencies f, f,, f-
of 11, 114, 123 Hz (33, 275, 308 Hz) for Cs (Li) atoms, where the external magnetic
field is parallel to the z axis. This procedure is discussed in detail in [8, 12, 61].

2Note that in a harmonic trap the oscillation period is the same, independent at which potential
energy the oscillation is started.
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2.3.2 Homogenous Magnetic Fields

The magnetic fields are of fundamental importance for all of the measurements
performed in this thesis. As explained in Sect.2.2, the use of magnetic Feshbach
resonances allows one to change the magnitude and sign of the scattering length,
which is an essential ingredient for the observation of Efimov physics. Furthermore,
the energy of the weakly bound molecular state that gives rise to the scattering
resonance also tunes with the applied magnetic field (see Sect. 2.2.3). In fact, exactly
this connection allows one to infer the structure of the scattering resonance and its
relation to the magnetic field, as presented in Sect.2.4.

Here we explain the main characteristics of our setup for generating homogenous
magnetic fields, which are used to control and tune the properties of ultracold atomic
samples in all of the measurements that are presented in this work. In the next
paragraphs we highlight two of the most relevant magnetic field properties for the
performed experiments: the long-term stability and the switching speed. We do not
discuss the technical setup, since it has already been described in detail elsewhere
[8, 12].

The stability of magnetic fields that is on the order of a couple of mG is crucial.
To illustrate this let us consider the behavior of scattering length in the vicinity of
a Feshbach resonance, given by Eq. (2.21). As the uncertainty in the magnetic field
increases, the ability to resolve scattering length close to the pole of the resonance
diminishes. The maximum value that can be still resolved can be estimated employing
Gaussian error propagation. The uncertainty of scattering length da, which is caused
by magnetic field uncertainty J B, is given by

abgAB

a= g =B (2.25)

By loosely defining the theoretical resolution limit at the magnetic field value,
for which éa(B) = a(B),Eq.(2.25)yields da, = a, AB/)B,for (B—Brr) < AB.
We can apply this estimation for the case of Li-Cs Feshbach resonances by choos-
ing a hypothetical resonance that approximately mimics Li-Cs ones. Using width
AB = 60G and ap, = 30ap we obtain da, ~ 10° ay for magnetic field uncer-
tainty 6 B = 16 mG, which is the value that is achieved with the experimental setup.
Although da, quantifies the largest scattering length that can be distinguished from
the pole, in practical applications the resolution will be lower, since, instead of the
pole, one is interested in resolving resonant features close to it, for which more than
one point is necessary.

The magnetic field uncertainty for the performed experiments originates from the
following sources:

e Calibration of magnetic fields. The calibration of magnetic fields is typically per-
formed over 5 to 6 uniformly distributed values within the magnetic field range at
which the measurements are taken. The resulting dependence of the magnetic field
values on the control parameter is fitted with a linear function, which is later used
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Fig. 2.6 Long-term stability (left panel) and step response (right panel) of magnetic fields. In
the left panel, each data point is obtained from an independent determination of magnetic field by
rf-spectroscopy of Li (see Sect.2.3.3). The vertical dashed line shows the time when the execution
of the experimental sequence was paused and resumed after several hours. The solid lines depict
fits of an exponential growth equation to the data, with time constants 1.6 and 3.8 ms for 10G (red
circles and line) and 50 G (blue diamonds and line) step size, respectively

to infer the magnetic field value for the given control parameter. This procedure
introduces an magnetic field uncertainty of 9mG. For calibration we use radio-
frequency spectroscopy to drive transitions between Li hyperfine states, which is
described in detail in Sect.2.3.3.

e Long-term stability. The magnetic field calibration is performed once every several
days, during which the absolute value of the field with respect to the control para-
meter may vary. To characterize this variation an extended series of measurements
was taken, which is depicted in the left panel of Fig.2.6. After the experimental
setup has thermalized and reached a steady state, which may take a little bit longer
than a day, if initialized from completely “cold” state (not shown in the figure), the
fluctuations of the absolute value of magnetic field stay within ~10mG. In fact,
the maximum standard deviation from the mean during the course of a 24 h period
is 8 mG, which we use as the uncertainty quantifying the long-term drifts. To
estimate the time that is necessary for the experimental system to reach the steady
state after a short break, we stopped the execution of the experimental sequence
(vertical dashed line in Fig.2.6 (left panel)) and resumed the operation after sev-
eral hours. Within three to four hours of continuous operation the magnetic field
stabilizes to the previous level.

e Experimental sequence length. The steady state conditions may depend on the
length of the experimental sequence. For example, due to the generated ohmic
heat that is deposited in the magnetic field coils their geometry may change, which
would lead to a different absolute value of the applied field. We quantify this
uncertainty by comparing magnetic field calibration immediately after the sample
preparation (see Sect.2.3.1) and after 3000 ms. The difference is 8 mG, which is
included in the total uncertainty.

e Residual magnetic field gradient. Since the magnetic coil setup deviates from an
exact Helmholtz configuration, the final field in which the atoms are located may
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exhibit rest-gradient [8, 12]. The upper limit of this uncertainty is estimated from
the linewidth of the Li electron spin flip transition as described in Sect.2.3.3,
yielding 8 mG.

We assume that these sources are uncorrelated and use simple addition of squares to
extract the total systematic uncertainty, which results in 16 mG.

An important component of any experimental sequence is the switching of mag-
netic fields, especially the time that is necessary for the field to stabilize to the new
value after the control parameter has been changed. Since the performed experiments
rely on extracting different observables as a function of magnetic field, the short term
stability of the field is critical, therefore we optimize the experimental sequence in
such a way that the measurements are taken only after the field has stabilized.

In order to determine the necessary wait time, we recorded the step response of
our magnetic coil setup, which is depicted in the right panel of Fig.2.6. Here, a
sample of Li atoms in |1/2, 4+1/2) spin state was prepared and the magnetic field
was suddenly switched to 870 G. Immediately after setting the new value a 190 s
long m-pulse was applied that, in case of no additional Zeeman shifts, would transfer
all of Li atoms into |1/2, —1/2) spin state, which was being imaged. Depending on
the amplitude of the magnetic field step size, an fit of the exponential growth model
N(t) = Ny + C(1 — e~/ to the data yields time constant 7 = 1.6 ms or 3.8 ms for
10G or 50G step size, respectively. Here, N (#) denotes the time-dependent number
of atoms, Ny stands for the initial number of atoms and C is an amplitude constant.
Typically we start recording data after a wait time of approximately five to ten time
constants.

2.3.3 Radio- and Microwave Frequency Fields

In the context of this thesis, microwave (mw) and radio-frequency (1f) spectroscopy
is used to measure the energy difference between two energy eigenstates of a system
consisting of atoms or molecules that are confined in an external potential. The
system is exposed to a mw or rf pulse that induces population transfer from one
eigenstate into another. Since the experimentally employed samples are very dilute,
this process is well described by a two-level system, which allows one to drive Rabi
oscillations between the eigenstates or perform rapid adiabatic passages in order to
prepare the required scattering channel. Additionally, from the energy of the applied
photon one can infer the energy difference between the two eigenstates of the system.
Since typical linewidths of these transitions are very narrow, these techniques are
well suited for precision measurements of such energy differences in ultracold gas
experiments.

In our measurements three different transitions are employed (for Breit-Rabi
energy level diagrams and corresponding quantum numbers see Fig.2.2):
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(1) Nuclear spin flip transition between Li|1/2, +1/2) and Li|1/2, —1/2) Zeeman
sublevels with Am; = 1 (also referred to as free-free transition in the context
of LiCs dimer association, see Sect.2.4),

(i) Electron spin flip transitions from Li|1/2, +1/2) to Li|3/2,3/2), and from
Li|1/2, —1/2) to Li|3/2, 1/2) Zeeman sublevels with Am ; = 1,
(iii) Nuclear spin flip transitions starting in the Li-Cs scattering channels |«) and | 3)

(see Eq.(2.11)), and the corresponding molecular state ‘wﬁ) and ]wg), respec-
tively, with Am; = 1.

Here, Am; and Am; indicates selection rules of magnetic quantum numbers for
nuclear and electron spin flip transitions, respectively. For type (i) and (iii) transitions
the difference between the energy eigenstates is ~ h x 76 MHz in the magnetic field
range from 800G to 900G, hence they are referred to as rf-transitions. Type (ii)
transitions are referred to as mw-transitions because they require driving fields at
frequencies that are around 2 GHz.

In what follows, we shortly discuss our application of type (i) and (ii) transitions
for the characterization of the magnetic field setup and entrance scattering channel
preparation. Type (iii) transitions in this work are used for weakly bound LiCs dimer
production and their rf-spectroscopy, and are described in more detail in Sect.2.4.

A spectrum of a type (i) transition at 888.535 G magnetic field is shown in the left
panel of Fig. 2.7. We employ the resonance frequency of the transition in conjunction
with the Breit-Rabi formula to calibrate the absolute magnetic field strength, as
described in Sect.2.3.2. In order to do this, we fit the data points with the lineshape
function, given by
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Fig. 2.7 Radio-frequency spectroscopy of Li|l1/2, 4+1/2) to Li|1/2, —1/2) transition. Left panel,
spectra of the transition with an rf-pulse length of 25 ms. The solid line shows the fit of Eq. (2.26)
to the data. The fit yields a resonance frequency of w;;/(2m) = 76.34262 MHz, which corresponds
to a magnetic field of 888.535 G and a Rabi frequency §2¢p = 27 x 0.265Hz. Error bars correspond
to one standard error. Right panel, Rabi oscillations of the same transition at a magnetic field of
841.430G and a Rabi frequency of 27 x 1.6kHz
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2
P(w,t):( $2 )sin2 (Mt) (2.26)
e (W) 2

where £2y denotes the Rabi frequency on the resonance, and Q2 = ,/ Qg + 62 is
the effective Rabi frequency with detuning 6 = w;; — w. Here, w;; stands for the
resonance frequency between the energy levels i and j and w is the frequency of the
driving field. A typical statistical error of the resonance frequency determination for
a single spectrum is around a couple of mHz that corresponds to roughly 1 mG, if
expressed in magnetic field uncertainty. This is at least an order of magnitude better
than our total systematic error.

By recording the remaining number of Li atoms in the Li|1/2, —1/2) spin state
as a function of the applied rf-pulse length, we observe Rabi oscillations, which are
depicted in the right panel of Fig.2.7. During the first 10 ms of the oscillations we
do not observe any significant decay of decoherence, however longer measurements
indicate time constants of around 200 ms, probably limited by dephasing through
magnetic field inhomogeneities. At full power the setup can deliver Rabi frequencies
of up to 27 x 3.8 kHz in the magnetic field region from 800G to 900 G.

We use rf fields not only to perform high-precision spectroscopy, but also to gain
greater control over the initial state preparation. By using 7 or /2 pulses the popu-
lation can be transferred between two states. Although theoretically 100 % transition
efficiency can be achieved, in the experiment it can be limited by small drifts in the
magnetic offset fields. Thus, instead of a coherent pulse, a rapid adiabatic passage can
be realized that consists of sweeping the magnetic field over the resonance for a fixed
rf frequency. The advantage of this approach is its inherent insensitivity of the exact
values of the offset magnetic field at the beginning and end of the sweep. Therefore,
this technique is used for the preparation of Li-Cs spin mixtures at 100nK temper-
atures, which is described in Sect.3.3.2. In principle, these methods could also be
applied to obtain ultracold gas samples in scattering channels that initially are empty,
and cannot be created by removal of impurity atoms, for example, channels involving
Li|3/2, —3/2) or Cs|3, +2) spin states.

For experiments involving type (ii) transitions the final spin state is unpopulated,
therefore the preparation sequence can be simplified, as additional spin cleaning
procedure is not necessary. During the mw pulse a mixture consisting of Li atoms
in three distinguishable spin states is created. As a drawback, fast three-body losses
prevents one from observing coherent Rabi oscillations, since for typical experimen-
tal conditions the three-body recombination rate is much higher than the frequency
of Rabi flopping. Additionally, the excitation of the higher lying Li m; = +1/2
manifold leads to two-body inelastic collisions, since dipolar spin relaxation is now
possible from the excited scattering channel into lower lying ones. A significant
portion of the incoming scattering flux can exit through energetically lower lying
scattering channels with high excess kinetic energy. Such atoms are typically lost
from the trap, because their kinetic energy is larger than the depth of the confining
potential.
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Fig. 2.8 Atom-loss spectrum of the microwave transition between Li|l/2,—1/2) and
Li|3/2, +3/2) spin states at 935.151 G offset magnetic field. Each data point is an average of
at least six independent measurements, and the error bars depict the standard error of the mean.
The solid line shows the fit of a Gaussian profile to the data, yielding a variance of 23 kHz, which
corresponds to 8 mG field uncertainty

Despite the atom losses, we employ type (ii) transitions to calibrate the magnetic
field and determine the upper limit of magnetic field inhomogeneities in our setup.
A typical spectrum for the transition between Li|1/2, —1/2) and Li|3/2, +3/2) spin
states is shown in Fig.2.8. The differential frequency shift of the transition amounts
to ~2.794 GHz/G in this magnetic field range. The transition does not exhibit any
coherent fringes, which is a combined result from a large atom loss rate and fast
dephasing due to magnetic field inhomogeneities. A fit of a Gaussian profile to the
spectrum yields FWHM of 54 kHz and resonance frequency of 2776.834 MHz. The
latter corresponds to 935.151 G offset magnetic field. Since it is a complicated prob-
lem to separate between the contributions of individual line broadening mechanisms,
we attribute the total linewidth to the rest-gradient of our magnetic field setup as a
simplification. In this way we obtain an upper limit of 8 mG for the uncertainty on
the offset magnetic fields due to inhomogeneities.

2.4 Radio-Frequency Association of Weakly-Bound LiCs
Dimers

In the following section we investigate the interspecies scattering properties of ultra-
cold Li-Cs mixtures in the two energetically lowest spin channels (see Eq.(2.11))
in the magnetic field range between 800 and 1000G. The performed experiments
on rf association and atom-loss spectroscopy to precisely measure the positions of
the LiCs s-wave Feshbach resonances are described in Sect.2.4.1. Depending on the
width of the resonance we separate them into two groups and use complementary
approaches to determine their properties. For the broad resonances close to 843 G
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and 889 G we measure magnetic field dependent binding energies of weakly bound
dimers through rf association. For the narrow resonances close to 816 G, 893 G, and
943 G we employ atom loss spectroscopy. Due to their small width the resonance
position can still be detected with high accuracy. We use these measurements as an
input for a coupled-channels (cc) calculation that allows us to construct accurate
Li-Cs molecular potentials, from which scattering length ay jcs, resonance pole posi-
tions and widths are determined. This procedure is explained in Sect.2.4.3. The
obtained parameters agree well with the previous observations [7, 13] and recent
extensive theoretical studies [14].

The determined mapping between ayics and the external magnetic field will be
pivotal for further experiments exploring or involving ultracold scattering between Li
and Cs atoms. Up to now, a precise s-wave FR parameterization existed only for pure
Cs [35] and Li [27, 70] intraspecies scattering resonances, while Li-Cs interspecies
collision properties were only approximately known from atom-loss measurements
[7, 13, 14]. Rf spectroscopy experiments, that are described in the following section,
bridge this gap. They allow to obtain precise FR parametrization also in a close
vicinity of the pole of a Li-Cs scattering resonance. These results represent an order
of magnitude improvement in accuracy over the previous determination. With this
knowledge a complete description of the s-wave scattering properties in various
three-body systems that can be constructed of Li and Cs atoms in the energetically
lowest spin states is possible.

2.4.1 Spectroscopy of LiCs Feshbach dimers

We start our experiments with the sample preparation as described in Sect.2.3.1. By
slightly adjusting the dipole trap power in the last two evaporation ramps we reduce
the temperature to about 400nK. To associate the molecules we create a mixture
in the non-resonant scattering channel at a variable magnetic field close to the FR
in the resonant state (see Fig.2.9). For the measurements close to the 843 G Li-Cs
Feshbach resonance this corresponds to the initial scattering channel | 3), from which
the colliding atom pairs are associated into bound dimers that couple to the scattering
channel |a), as depicted in the left panel of Fig. 2.9. For the 889 G resonance we invert
this sequence and start with the mixture in scattering channel |«) and associate dimers
that couple to channel |(3), as schematically shown in the right panel of Fig.2.9. In
order to create the LiCs Feshbach molecules we drive the system with a rectangular
rf pulse of length 7 and frequency E,r/h that is close to the resonance frequency
Ey/h between the two energetically lowest Li spin states. By tuning the frequency
of the rf photon, we record an atom-loss spectrum, which contains the number of
remaining Li atoms in the non-resonant state as a function of the frequency of the
applied rf field.

Each atom-loss spectrum contains two distinct loss features. At energies Eg the
free-free transition that corresponds to a flip of the Li nuclear spin is populating the
other Li spin state. This creates a mixture of three distinguishable particles that consist
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Fig. 2.9 Radio-frequency association of Li-Cs Feshbach molecules close to the 843 G (left panel)
and 889G (right panel) interspecies Feshbach resonance. The mixture is initially prepared in the
non-resonant scattering channel |3) (|o)) at a magnetic field close to the broad 843 G (889 G)
s-wave Feshbach resonance in the resonant scattering channel |«) (|3)), which couples to the
weakly bound molecular state under study. Depending on the frequency of the rf driving field either
the free-free transition with the energy Eq or the free-bound transition with the energy Eg + E}, or
Eoy — E}, for the 843 G or 889 G FR, respectively, can be studied. The energy ¢, denotes the relative
collision energy of the scattering Li-Cs atom pair, and typically is much smaller than the other
energy scales. The vertical scaling does not correspond to the real energy scale and is modified for
better presentation

of atoms in the following spin states: Cs|3, 4+3), Li|1/2, 1/2), and Li|1/2, —1/2).
Since the scattering lengths at which these experiments are performed are large, rapid
three-body loss can take place leading to a broad loss feature around the rf frequency
Ey/h. The linewidth of this feature (see Fig.2.11) is much larger than a typical
linewidth of a magnetic field calibration line, for example, such as the one depicted
in Fig.2.7. Additionally, its position may be shifted due to residual Cs density, which
may lead to a mean-field shift of the free-free transition energy that is proportional
to apics. Therefore we do not use this transition for neither magnetic field calibration
nor direct extraction of the molecular binding energies.

In a typical measurement procedure, we only record the free-bound spectrum, an
example of which is shown for each of the broad Li-Cs FRs in Fig.2.10. Detuned
from the free-free transition (not shown), which corresponds to a flip of Li nuclear
spin, we observe an additional loss feature that originates from the association of
LiCs Feshbach dimers. During the rf-association pulse a mixture of LiCs Feshbach
molecules and Li and Cs atoms in the initial scattering state is created, which leads
to rapid three-body losses. The asymmetric lineshape originates from the relative
collision energy distribution for the finite temperature of atoms, as explained in the
next section. We also identify a similar loss signal at comparable values of detuning
and amplitude in the remaining number of Cs atoms. To limit saturation effects the
power and length 7 of the association pulse is experimentally optimized such that at
most 30 % of atoms are lost at the end of the rf pulse. The optimized pulse lengths
range from 7 = 0.5 close to the pole of the FR and 7 = 7 s away from it.
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Fig. 2.10 Remaining number of Li atoms after an rf association (free-bound) pulse of LiCs mole-
cules at a magnetic field of 842.04 G (left panel) and 887.599 G (right panel) for the broad s-wave
resonance in |«) and |3) scattering channel, respectively. For these measurements the relative Li-Cs
temperature was 400nK. Each data point is an average of three measurements and the error bars
represent the standard error. The solid line shows the fit to the data. In the left panel the binding
energy is determined from the fit of Eq. (2.27), while for the fit in the right panel appropriate trans-
formation of K é” (E/r) has been made (see text). The vertical dashed line corresponds to the fitted
binding energy

For magnetic field values at which the dimer binding energy is smaller than
< 10kHz the molecule association lineshape starts to overlap with the one of the
broadened free-free transition, therefore complicating extraction of binding energies.
Such situation is depicted in Fig.2.11. The loss feature of the free-free transition
develops a shoulder at frequencies around 76.286 MHz, which indicates the forma-
tion of bound dimers. We extract the corresponding molecular signal by fitting the
free-free spectrum by a Lorentzian profile in the regions far away from this feature
and subtracting the result from the total loss spectrum. While this gives a strong
indication that at these magnetic field values molecule formation is possible, precise
determination of their binding energies is not feasible due to the strong influence of
the free-free transition. The fitted binding energies significantly depend on the exact
parameters of the fitted Lorentzian profile, therefore we exclude the spectra taken
closer than 200 mG from the pole of the FR from the final analysis in Sect.2.4.3.

2.4.2 Model of the association lineshape

We model the observed loss spectrum with the help of rate equations and a two-
body association rate K2 [21, 71] that depends on the dimer binding energy. The
long association pulse lengths and low molecule yield, which is below our detection
limit, indicates that the dimer association rate is much smaller than their loss rate.
Assuming a quasi-stationary state, in which each produced molecule immediately
gets lost through atom-dimer collisions, the time dependent Li atom loss at a given
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Fig. 2.11 LiCs dimer association spectrum at 842.761 G. The free-bound transition is overlapping
with the strongly broadened free-free transition. The blue rectangles depict the remaining number
of Li atoms in the |3) scattering state after a 500 ms long rf pulse, and the blue solid line is a fit
of a Lorentzian profile to the data. The red circles and line show the molecular signal and a fit of
Eq.(2.27) to the data, respectively. The fit yields E;/h = 3.3(2)kHz and v = 2.1(7) kHz. Each
point is an average of at least three independent measurements and the error bars represent the
standard error of mean

magnetic field is governed by K27 and thus can be described through the following
equation
Nij = N0 e oK' (2.27)

where N}, is the initial number of Li atoms in the non-resonant state, ncs denotes the
density of the Cs gas cloud, ¢ is the length of the applied rf pulse and K/ contains
the functional form (see below) of the molecular association rate. Here we neglect
single-body losses and assume constant rn¢s, which is justified by the fact that we are
working in a low saturation limit of the rf transition. By solving the full system of
rate equations we estimate that this approximation, using the simple Eq. (2.27), may
introduce a minor error on the fitted atom loss amplitude, which does not exceed
10 %. Since the number of produced LiCs molecules at any given point through the
experimental cycle is insignificant, we do not include the loss terms associated with
the molecule-molecule recombination.

The rf-association process is equivalent to photoassociation (PA), where an atom
pair in an initial continuum state is associated into an excited vibrational level [72,
73]. One of the major differences is the lifetime of the involved final state, which
is significantly lower in the PA scheme. Whereas in PA it is given by the sponta-
neous decay of the associated level, for rf-associated dimers it is typically limited
by collisions. Since the natural linewidth of the rf-associated molecule is typically
much smaller than the thermal energy scale, the association lineshape at ultracold
temperatures contains information not only about the energy distribution of the initial
scattering channel, but also its energy dependent Franck-Condon overlap with the
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molecular state [71]. For a thermal ensemble that is prepared in the scattering state
|3) the two-body association rate K17 can be expressed as

KM (E.p) =C / W) F (e Ep)Ly(Eyp, Eo+ Ep +e)de,, (2.28)
0

where h(e,) o« e 5/kT is the number density of colliding atom pairs with relative
energy ¢, and temperature 7', and

2
E NG
Fe, Ep) oc|1— |22 Ll R (2.29)
E, ) © +EG +Ep

is the energy normalized Franck-Condon density between the scattering wave func-
tion of a free Li-Cs atom pair and a bound Feshbach dimer with binding energy Ej
[21, 71]. E is defined through the Li-Cs reduced mass 1 and the non-resonant chan-
nel scattering length a’ as E; = h*/(2ua). The convolution of the spectroscopic
line shape with the Lorentzian profile L, (E, s, Eq + Ej + ¢,) of width v accounts
for the strong collisional broadening, yielding an estimated lifetime of LiCs mole-
cules in the mixture of around 30 s. The prefactor C contains all the numerical
factors resulting from the integration of rate equations, and experimental parameters
that affect the molecule production rate, but which are approximately constant for
a given magnetic field, as well as species-dependent atom-dimer inelastic collision
rates.’ It also accounts for uncertainties in the determination of the absolute gas den-
sities, which, under realistic experimental conditions, can vary up to a factor of two
due to systematic errors in measurements of the trap frequencies, temperature and
the exact number of atoms.

The analysis of the atom-loss lineshape for a sample prepared in the scattering
state |av) is identical to the one presented above, with the sole exception that in this
case the rf-photon energy needed for dimer association is smaller than the energy
of the free-free transition (see Fig.2.9, right panel). Consequently, the functional
form of the association rate has to be adapted according to the energy conservation
laws. The final expression for the association lineshape in state |«) is obtained by
the substitution L~ (E, s, Eo+ Ep +¢,) — L(E,s, Eo — E} —¢,), which is used for
the fitting and analysis of dimer association lineshapes corresponding to the 889 G
FR, as shown in the right panel of Fig.2.10.

The binding energy of the Feshbach dimers at a given magnetic field is extracted
by fitting Eq. (2.27) to the loss spectrum of Li atoms (see Fig.2.10). We use Ej;, N,
v, and C as free fitting parameters and seta’ = —28.5 ay [7, 13, 14]. Small variations
in a’ that are of the order of a few of percent affect the fitted binding energies on
a permille level. The temperature of each species is determined in an independent
measurement with identical trapping parameters and is kept fixed during the fit.

3The prefactor C slightly depends on ncs and ny ;. For atom losses, which do not exceed ~30% of
the initial number of atoms, it does not change by more than 5 %.
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Fig. 2.12 Binding energy as 199 T T T T 1
a function of the dipole-trap
laser intensity at 841.5G.
The error bars depict the
uncertainty of fitting
Eq.(2.27) to the data. The
corresponding temperature
of the two limiting trapping
settings is given in the graph
next to the data points
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To exclude systematic effects associated with the precise determination of relative
temperature we verify that by increasing it by a factor of two the value of the fitted
binding energy does not change by more than 1kHz (see Fig.2.12).

The extracted binding energy can be affected by several other systematic effects.
One of them is the mean-field shift, which starts to dominate in the regime where
the scattering length is comparable to the interparticle spacing, i.e. na®> ~ 1. For
our experimental densities of n &~ 10" cm™ such shifts would become relevant at
magnetic field regions with binding energies on the order of E;, ~ 1kHz, which is
sufficiently far away from the region where the experiments were performed. Addi-
tionally, by changing the background Cs atom density we verified that the observed
molecular association line shifts stay within the statistical uncertainties of the fit, and
therefore we do not include the mean-field shift in the analysis.

Another source of systematic resonance shifts is the confining optical dipole
potential. The detuning of the dipole trap laser beam is large in comparison to the
hyperfine splitting of the involved spin states, hence its created light shift is equal for
both of them and can be neglected. However, the confining potential can contribute to
the scattering state energy shift in two other ways. The first one is the confinement-
induced shift of the relative ground state energy for two colliding free atoms. Its
magnitude can be calculated for two interacting particles in a cigar shaped harmonic
trap [74], and for our dipole trap geometry with aspect ratio n &~ 9 it yields 325 Hz.
The second complication is the fact that, in contrast to two identical atoms [75], the
problem of two different atoms in a harmonic trap with unlike trapping frequencies
does not separate into center-of-mass and relative coordinates (see, for example, [76,
77]). The magnitude of the shift of the associated lowest energy state in a Li-Cs
mixture can be estimated for our trapping geometry and mass-ratio, and is on the
order of 50 Hz [76]. Since the order of magnitude of these corrections is much smaller
than the measured binding energies we neglect these effects in the model that we use
to fit the data, however, we include them in the total systematic error budget.
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It has been recently demonstrated in the °Li-*’ K system that the scattering length,
and thus the binding energy of the dimer can be manipulated by the differential light
shift between the molecular and scattering state, leading to shifts in the FR positions
[78]. In our measurements that were preformed in the vicinity of the 843 G Li-Cs
Feshbach resonance, no modification of the binding energies with respect to the
intensity of the trapping light could be observed. The measured binding energy as a
function of the potential depth can be seen in Fig.2.12. The fluctuations of the data
points give an independent estimation of the accuracy with which the binding energy
can be extracted from the association spectra. We include these fluctuations as an
additional statistical error in the total error budget, since the trapping parameters and
temperature may slightly drift from day-to-day.

2.4.3 Li-Cs scattering length and Feshbach resonances

To obtain a complete set of Li-Cs s-wave FR properties we employ two differ-
ent methods. Depending on the width AB of the particular FR either one or the
other method is used to measure its position. Such experimental approach is feasible
because FRs with different widths influence the scattering observables differently.
Typically, the shift of the atom-loss maximum with respect to the true FR pole posi-
tion can reach a couple permill of the resonance width AB (see, for example, the
comparison of the atom-loss data with the binding energy measurement in the left
panel of Fig.2.13). For narrow FRs with a width of 5G this corresponds to a shift
of ~10mG, which is on the order of our experimental uncertainty. For broad FR it
can reach several hundreds of mG, which is significantly larger than our magnetic
field uncertainty, therefore impeding a correct determination of the pole position.
To overcome this, we use rf association to characterize broad FRs, and the simpler
atom-loss measurements to probe narrow FRs.

By performing the measurements and the fitting procedure that were described
in Sect.2.4.2 for different external magnetic fields, we record the binding energy
dependence on the external magnetic field, which is displayed in Fig.2.13 for the
two broadest FRs in the Li-Cs mixture.

We determine the positions of the narrow s-wave resonances in the magnetic
range between 800 and 1000 G by atom-loss measurements, similar to the ones pre-
sented in Fig.2.1. For these measurements we reach roughly an order of magnitude
lower relative kinetic energies than in the previous works [7, 13]. Their experimental
positions B¢ are extracted from a Gaussian profile fit to each of the loss features in
the magnetic field range where the line shape is approximately symmetric, and are
summarized in Table2.1. The improved magnetic field stability and lower temper-
atures allow us to determine them with a roughly five-fold better precision than in
our previous measurement [7].

To obtain an accurate mapping between the scattering length and the magnetic
field that is independent of the employed analytical fitting model [70], the data was
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Fig.2.13 Binding energies of LiCs Feshbach molecules near the 843 G (left panel) and 889 G (right
panel) Feshbach resonance, and corresponding atom-loss spectroscopy. The blue crosses show the
dimer binding energy as extracted from a fit of Eq. (2.27) to the rf association spectrum at the given
magnetic field. The error bars represent one standard deviation of the total error, resulting from
statistical and systematic uncertainties. The blue and red solid lines show the calculated molecular
energies from the coupled-channels model and the universal binding energy from Eq.(2.24) with
the resonance parameters given in Table 2.1. The red shaded region corresponds to the uncertainty
of the resonance parameters. The green squares show the remaining number of Cs atoms, and the
error corresponds to one standard error of the mean. The systematic magnetic field uncertainty for
the atom loss measurements in this figure is 30 mG. The vertical dashed line displays the resonance
pole position and the shaded region corresponds to the uncertainty. The arrow in the left panel shows
the position of the second excited Li-Cs-Cs Efimov resonance with scattering length a?

Table 2.1 Positions of the Li-Cs s-wave Feshbach resonances. Unless specifically noted, the exper-
imentally obtained resonance positions B¢ are extracted by fitting a Gaussian profile to the loss
spectra for the relative collision temperature 7', at which the measurements were made. The num-
bers in the brackets represent the total error that includes uncertainty of the magnetic field, and
statistical and systematic errors of determining the position of the resonance. The results of the
coupled-channels calculation B’ are given as deviations § = B¢ — B’ from the observations and
show excellent agreement with the data. Brgr, AB, and ay, give the fitted resonance pole position,
width, and background scattering length, respectively, for the calculation with kinetic energy of
InK

Entrance channel| B¢ (G) 6 (G) T (nK) Brr (G) | AB(G) |apg (ap)
Li|1/2,—1/2) & | 816.128(20) —0.005 |300 816.113 —-0.37 | -=29.6
Cs |3, +3) 888.595(16)* 0.002 100 888.578 | —57.45 -29.6
943.020(50) —0.033 | 400 943.033 —422 | -=29.6
Li|1/2,+1/2) & | 842.845(16)* —0.000 | 100 842.829 | —58.21 —-294
Cs |3, +3) 892.655(30)° 0.005 100 892.629 —4.55 |-294

2Extrapolated from rf association. The temperature shown is only used for the calculation of the
scattering resonance and selected sufficiently low to reduce its influence to less than 5mG. The
error reflects the uncertainty of the field calibration.

5This measurement was performed in the bichromatic dipole trap with species selective optical
potentials, as described in Sect.3.3.
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analyzed with the full cc calculation* for the Li(2s)+Cs(6s) asymptote as in the pre-
vious work [7, 14]. In short, the determination of the final resonance positions relies
on the creation of accurate LiCs molecular potential curves for the electronic singlet
X'+ and triplet % * ground states. The potentials are constructed as a power
series of the internuclear separation R, as in previous calculations on other alkaline-
metal systems (see, e.g., [55, 79, 80]), adding a short and long range part which
gives the required degree of freedom for modeling the asymptotic binding energies.
All coefficients are obtained by fitting. The correlation between the conventional
long-range parameters Cg, Cg and Cy is still significant, thus they are only taken
as effective parameters. The derived potential model simultaneously reproduces the
binding energies of the Feshbach molecules, the refined s-wave FR positions B¢
from atom loss experiments, and 6498 rovibrational transitions from laser-induced
Fourier-transform spectroscopy [81]. We deduce the theoretical resonance positions
B’ from the maxima of calculated two-body collision rates at the experimental kinetic
energy.

For the binding energies below the 843 G resonance the two data points with the
smallest binding energies are excluded from the fit. Their rf association spectra, due
to experimental limitations, already overlap with the Li free-free transition spectra,
which hinders a reliable extraction of the free-bound spectra for these respective
magnetic field values, as discussed in Sect.2.4.1 and shown in Fig.2.11. Neverthe-
less, the calculated molecular binding energies are consistent with these data points,
indicating that at these magnetic field values a weakly bound dimer state still exists.

The results of the modeling are listed in Table 2.1 as deviation 6 = B¢ — B’ from
the measured positions for the experimentally employed relative collision tempera-
ture T and drawn as solid lines in Fig. 2.13. These results provide almost an order of
magnitude improvement over the previous determination of the FR positions through
the trap-loss measurements [7, 13] and the rf spectroscopy [82], and they are con-
sistent with the recent theoretical analysis [14], if the differences in determining the
resonance positions and experimental accuracy are taken into account.

Finally, we characterize the resonance profiles by calculating the scattering length
dependence on the magnetic field at a kinetic energy of 1nK and fitting this depen-
dence with the conventional functional form

AB

with as many terms as there are resonances in the given channel. The resonance posi-
tion Bpg, its width A B, and background scattering length ay, are used as free fitting
parameters, and they are given in Table 2.1. By including all observed resonances in
a single fit of Eq.(2.30) one removes a possible slope of the effective background
scattering length resulting from neighboring resonances. One could also fit the cal-
culated profiles by a product of resonance functions, given by Eq.(2.21), for each

“We thank E. Tiemann from University of Hannover, Germany for performing these calculations
for us.
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resonance instead of the sum. This would result mainly in different values of AB, but
as long as a consistent set of fitting function an corresponding parameters is used, the
interpretation remains unchanged. The fitted values reproduce the calculated s-wave
scattering length to better than 2 % in the entire magnetic field range between 500
and 1000 G, which we also use for the evaluation of the Efimov resonance positions
in Chap. 3. There is a slight difference between the two theoretically obtained res-
onance pole positions B’ and Brg. We suspect that it originates from the different
types of numerical calculations that were used to extract these parameters, however
further investigation is necessary to find the exact reason behind this difference.
Therefore we estimate the error for the resonance pole positions from the systematic
error from the magnetic field uncertainty and the difference between the theoretical
values, which yields 23 mG.

We use the obtained resonance parameters to plot the universal dimer binding
energy from Eq.(2.24) in Fig.2.13. The Li-Cs characteristic van der Waals energy
scale [1]1is & x 157 MHz, thus the influence of the short-range effects on the measured
binding energies is minimal. This is reflected in the nearly ideal 1/a? scaling of the
measured binding energies in this magnetic field range. Since the Li-Cs background
scattering length a;, ~ —29.5 ay is small and negative, we expect only very minor
influence of the virtual state in this regime. This contributes to the simple situation
where the two LiCs binding energies are well described with the universal relation
and can be treated independently from other neighboring resonances in the same
scattering channels. This is in contrast to more complicated situations, like the one
in Cs atoms where FRs overlap [32, 83].

The determined pole position of the 843 G FR clearly deviates from the previously
observed atom loss maximum [82, 84], as shown in Fig.2.13. It also deviates from
the result Bpg = 842.75(3) G obtained in [84], where exclusively atom loss mea-
surements are used to infer the resonance pole position. This illustrates that the use of
atom loss alone is questionable for a reliable determination of the FR pole position,
especially if the resonance width is much larger than experimental uncertainties, as
it is in the present case. The definition of the resonance pole position is based on
pure two-body scattering. In real systems a number of different loss mechanisms may
contribute to the total loss effect, the most prominent being the three-body collisions.
The situation in the vicinity of the resonance’s pole is complicated furthermore by the
fact that not all of the inelastic three-body collisions result in an immediate loss of the
atoms from the trap. Contribution from other recombination processes, for example,
weakly-bound dimer formation and subsequent atom-dimer recombination, should
be considered, which may lead to increased loss away from the pole of the FR. In this
case the maximum of total atom losses can be shifted with respect to the maximum
in the corresponding three-body loss rate [15, 16, 19]. The specific loss channels
and the exact pathway of this decay in Li-Cs system still remain an open question,
requiring a selective product state determination, which is not available at the present
stage of our experiment. However, we expect that the shifts between the determined
scattering pole positions and experimentally observed loss maxima can be explained
or influenced by similar mechanisms as those discussed for other systems of ultracold
gas mixtures [15-20].
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