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Abstract We investigate a two-level additive Schwarz domain decomposition
preconditioner for a flat-top partition of unity method. We establish condition
number estimates for the biharmonic problem and present numerical results that
confirm our analysis.

1 Introduction

Let � be a polygonal domain in R
2 and f 2 L2.�/. Consider the following model

problem: Find u 2 H2
0.�/ such that

a.u; v/ D .f ; v/ for all v in H2
0.�/ (1)

where

a.w; v/ D
Z
�

.D2w W D2v/dx D
2X

i;jD1

Z
�

@2w

@xi@xj

@2v

@xi@xj
dx (2)

and .f ; v/ D
Z
�

fv dx.
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Let Vh be a finite dimensional subspace of H2
0.�/. The Ritz-Galerkin method

for (1) is to find uh 2 Vh such that

a.uh; v/ D .f ; v/ 8 v 2 Vh: (3)

In this paper we will investigate a two-level additive Schwarz domain preconditioner
[8, 30] for the discrete problem (3), where Vh is constructed by a flat-top partition
of unity method.

The conditioning of partition of unity methods is an important topic that has
recently received some attention. Stable generalized finite element methods whose
condition numbers are comparable to standard finite element methods are discussed
in [1, 22, 23, 29, 33]. Preconditioners for extended finite element methods have
also been investigated. (See [4, 24, 31] and references therein for a non-exhaustive
list.) The focus of the aforementioned work is on the ill-conditioning of the discrete
problem due to the choice of the enrichment functions. As far as we know, there is
only one paper [14] in the literature where an additive Schwarz preconditioner for
partition of unity methods is treated, and the preconditioner considered there is a
hierarchical multilevel preconditioner.

One of the important features of the partition of unity method is its ability to
generate a smooth approximation space with ease, making it a good candidate
for higher order problems. While there is a substantial literature on domain
decomposition preconditioners for finite element methods for fourth order problems
[6, 7, 9, 10, 18, 19, 25, 26, 32], to our knowledge domain decomposition precondi-
tioners for the partition of unity method have not been studied. Our goal is to fill
this gap.

The rest of the paper is organized as follows. We present the flat-top partition
of unity method and the additive Schwarz preconditioner in Sects. 2 and 3. The
condition number estimates are carried out in Sect. 4, followed by numerical results
in Sect. 5. The paper ends with some concluding remarks in Sect. 6.

2 A Flat-Top Partition of Unity Method

In this section we describe the construction of Vh using a flat-top partition of unity.

2.1 Partition of Unity

First we recall the definition of a W21 partition of unity.

Definition 1 Letƒ D f�igniD1 be an open cover of N� satisfying a pointwise overlap
condition

9M 2 N such that cardfijx 2 �ig � M 8 x 2 �:
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Let f'igniD1 be a family of functions in W21.R2/ satisfying

supp 'i � N�i 1 � i � n;
nX

iD1
'i � 1 on �;

j'ijWm
1.R2/ � Cm

.diam �i/m
0 � m � 2; 1 � i � n;

where Cm are constants. We will refer to f'igniD1 as a W21 partition of unity
subordinate to the coverƒ and the covering sets �i 2 ƒ as patches.

We will use a variant of the partition of unity in [11–13, 16, 28] and we
refer the interested reader to these articles for a more thorough description of the
construction. Below we briefly describe our approach for a rectangular domain.
Other domains can be treated in a similar fashion.

We begin by choosing two small positive parameters �1 and �2, and construct the
domain �� by enlarging � by a distance of �j in the ˙xj directions for j D 1 and
2. We then subdivide�� into congruent rectangles Ri for 1 � i � n. The lengths of
the sides of these rectangles are denoted by h1 and h2, which are proportional to �1
and �2 respectively. The mesh parameter h is the maximum of h1 and h2.

The patches �i are formed by enlarging the rectangles Ri by a distance of �j
in the ˙xj directions for j D 1 and 2. There is a rectangular region in the center
of each �i denoted by �flat

i . The partition of unity function 'i is a C1 piecewise
polynomial function such that 'i D 1 on �flat

i and smoothly decreases to 0 on @�i.
The construction of the flat-top partition of unity is illustrated in Fig. 1.

Fig. 1 The construction of the flat-top partition of unity:� is expand to�� (left);�� is subdivided
into congruent rectangles (middle); �flat

i are the dark shaded regions (right)
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2.2 Generalized Finite Element Space

Let Vi be a subspace of the tensor product Lagrange finite element space Q2 defined
on �i whose members satisfy the homogeneous Dirichlet conditions on @�. The
interpolation nodes for Vi are placed inside the flat-top region�flat

i . The generalized
finite element space Vh � V is given by

Vh D
nX

iD1
'iVi:

The interpolation operator…h W C. N�/ ! Vh is defined by

…hv D
nX

iD1
.…iv/'i; (4)

where…i is the local nodal interpolation operator forVi. The following interpolation
error estimate can be established by combining standard interpolation error esti-
mates for the Q2 finite element and the estimates for the partition of unity functions
'1; : : : ; 'n (cf. [27, 28] for details):

2X
mD0

hmjv �…hvjHm.�/ � ChsjvjHs.�/ 8 v 2 Hs.�/ and 2 � s � 3: (5)

2.3 Discretization Error Estimate and Conditioning

According to elliptic regularity theory [5, 15, 21] for polygonal domains, we know
that u 2 H2C˛.�/, where the index of elliptic regularity ˛ depends only on the
angles at the corners of �. If � is convex, we can take ˛ to be 1, otherwise ˛
belongs to .1=2; 1/. It follows from (5) that

ju � uhjH2.�/ D inf
v2Vh

ju � vjH2.�/ � ju �…hujH2.�/ � Ch˛jujH2C˛.�/: (6)

Let V 0h be the dual of Vh, h�; �i be the canonical bilinear form on V 0h � Vh, and the
linear operator Ah W Vh ! V 0h be defined by

hAhw; vi D a.w; v/ 8 w; v 2 Vh: (7)

We can then rewrite (3) as

Ahx D fh; (8)
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where fh 2 V 0h is defined by

hfh; vi D
Z
�

fv dx 8 v 2 Vh:

It can be shown that the condition number of Ah satisfies

�.Ah/ � O.h�4/; (9)

which is similar to the condition number for standard finite element methods.

3 A Two-Level Additive Schwarz Preconditioner

The two-level additive Schwarz preconditioner was introduced by Dryja and
Widlund in [17]. It involves a coarse problem and local problems.

3.1 Coarse Problem

Let V0 � V be the generalized finite element space associated with a coarse mesh
with mesh parameter H. We assume there are J coarse patches �j;H (1 � j � J/ in
the construction of V0.

The coarse space V0 is connected to Vh by the operator I0 W V0 �! Vh, which is
the restriction of the interpolation operator …h to V0. The operator A0 W V0 �! V 00
is then given by

hA0w; vi D a.I0w; I0v/ 8w; v 2 V0: (10)

3.2 Local Problems

The overlapping subdomains Q�j of � are obtained by enlarging the coarse patch
�j;H (1 � j � J) by the amount of ıj.	 0/ in the ˙xj directions for j D 1 and 2. This
means that the overlap of the subdomains is given by ı D maxfı1C�1;H ; ı2C�2;Hg.
By adjusting ıj and �j;H , we can align @ Q�j with the boundaries of the patches for Vh

and also control the overlap among the subdomains.
The local space Vi � Vh is taken to be

Vj D fv 2 Vh W v D 0 on �n Q�jg

and it is connected to Vh by the natural injection Ij W Vj �! Vh.
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The operator Aj W Vj �! V 0j is given by

hAjw; vi D a.w; v/ 8w; v 2 Vj: (11)

3.3 The Preconditioner

The two-level additive Schwarz preconditioner is defined by

BTL D
JX

jD0
IjA
�1
j ITj ;

where the transpose operator ITj W V 0h �! V 0j is given by

hITj �; vi D h�; Ijvi 8� 2 V 0h; v 2 Vj:

Since Vh D PJ
jD0 IjVj, the operator BTL is symmetric positive definite and we

have the following characterizations of the maximum and minimum eigenvalues of
BTLAh (cf. [8, Theorem 7.1.20]).

�max.BTLAh/ D max
v2Vh
v¤0

hAhv; vi
min

vDPJ
jD0 Ijvj

vj2Vj

PJ
jD0hAjvj; vji

(12)

�min.BTLAh/ D min
v2Vh
v¤0

hAhv; vi
min

vDPJ
jD0 Ijvj

vj2Vj

PJ
jD0hAjvj; vji

(13)

4 Condition Number Estimates

To avoid the proliferation of constants, we will use the notation A . B (or B & A) to
represent the inequality A � .constant)B, where the positive constant is independent
of h, H, ı and J. The notation A � B is equivalent to A . B and A & B.

4.1 Estimate for �max.BTLAh/

The following lemma will lead to an upper bound for �max.BTLAh/.
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Lemma 1 Let vj 2 Vj for 0 � j � J and v D PJ
jD0 Ijvj. Then the following

estimate holds W

hAhv; vi .
JX

jD0
hAjvj; vji: (14)

Proof Since Ij for 1 � j � J are natural injections, we derive from (2), (7) and (10)

hAhv; vi D
Z
�

D2
 

JX
jD0

Ijvj

!
W D2

 
JX

kD0
Ikvk

!
dx

� 2

Z
�

jD2I0v0j2 dx C 2

Z
�

D2
 

JX
jD1

Ijvj

!
W D2

 
JX

kD1
Ikvk

!
dx

D 2hA0v0; v0i C 2

JX
j;kD1

Z
�

D2vj W D2vk dx: (15)

Let the constant cj;k .1 � j; k � J/ be defined by

cj;k D
(
1 if Q�j \ Q�k ¤ ;;
0 otherwise:

Note that cj;k D ck;j.
Let N be the maximum number of subdomains that can have nonempty intersec-

tion with a subdomain. Then we have

JX
kD1

cj;k � N for 1 � j � J

and hence, in view of (11),

JX
j;kD1

Z
�

.D2vj W D2vk/ dx D
JX

j;kD1
cj;k

Z
�

.D2vj W D2vk/ dx

D
JX

j;kD1
cj;kjvjjH2.�/jvkjH2.�/

�
� JX

j;kD1
cj;kjvjj2H2.�/

� 1
2
� JX

j;kD1
cj;kjvkj2H2.�/

� 1
2
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D
JX

jD1
jvjj2H2.�/

JX
kD1

cj;k

� N
JX

jD1
jvjj2H2.�/ D N

JX
jD1

hAjvj; vji: (16)

The estimate (14) follows by combining (15) and (16). ut
Combining (12) and (14), we have an upper bound for the eigenvalues of BTLAh W

�max.BTLAh/ . 1: (17)

4.2 Estimate for �min.BTLAh/

The following lemma will lead to a lower bound for �min.BTLAh/.

Lemma 2 Given any v 2 Vh; there exists a decomposition

v D
JX

jD0
Ijvj (18)

where vj 2 Vj for 1 � j � J and

JX
jD0

hAjvj; vji .
"
1C

�
H

ı

�3#
hAhv; vi: (19)

Proof It follows from (5) (with s D 2) that

1X
kD0

hkjv �…hvjHk.�/ C h2j…hvjH2.�/ . h2jvjH2.�/ 8 v 2 H2.�/: (20)

Similarly, we have

1X
kD0

Hkjv �…HvjHk.�/ C H2j…HvjH2.�/ . H2jvjH2.�/ 8 v 2 H2.�/; (21)

where…H is the analog of …h for VH.
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Let v0 D …Hv 2 V0; w D v�I0v0 D v�…hv0 and vj D …h.�jw/, where f�jgJjD1
is a W21 partition of unity subordinate to the overlapping subdomains Q�j such that

j�jjWk
1
.R2/ . ı�k for 0 � k � 2: (22)

It is easy to check that vj 2 Vj for 0 � j � J and (18) holds.
In view of (2), (7), (10), (20) and (21), we have

hA0v0; v0i D jI0v0j2H2.�/ D j…hv0j2H2.�/
. jv0j2H2.�/ (23)

D j…Hvj2H2.�/ . jvj2H2.�/ D hAhv; vi:

Next we consider

hAjvj; vji D jvjj2H2. Q�/ D j…h.�jw/j2H2.�/
for 1 � j � J. In view of (20), we have

hAjvj; vji . j�jwj2H2.�/
.
Z
Q�j

.w/2jD2�jj2 dx C
Z
Q�j

jD�jj2jDwj2 dx (24)

C
Z
Q�j

.�j/
2jD2wj2 dx

and it only remains to estimate the three terms on the right-hand side of (24).
Observe that (20) and (21) imply

kwkL2.�/ D kv �…hv0kL2.�/
� kv �…hvkL2.�/ C kv �…HvkL2.�/

C k.v �…Hv/ �…h.v �…Hv/kL2.�/ (25)

. h2jvjH2.�/ C H2jvjH2.�/ C h2jv �…HvjH2.�/

. H2jvjH2.�/;

and similarly

jwjH1.�/ . HjvjH2.�/; (26)

jwjH2.�/ . jvjH2.�/: (27)
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It follows from (22) that

Z
Q�j

jD�jj2jDwj2 dx . ı�2jwj2
H1. Q�j/

; (28)

Z
Q�j

.�j/
2jD2wj2 dx . jwj2

H2. Q�j/
: (29)

Note that D2�j vanishes except on a strip near @ Q�j with width � ı. Therefore it
follows from (22) and [6, Lemma 8.1] that

Z
Q�j

.w/2jD2�jj2 dx .
�
1

ı3H

�
kwk2

L2. Q�j/
C
�
H

ı

�3
jwj2

H2. Q�j/
: (30)

Combining (2), (7), (24), (25) and (28)–(30), we find

JX
jD1

hAjvj; vji .
�
1

ı3H

� JX
jD1

kwk2
L2. Q�j/

C
�
1

ı2

� JX
jD1

jwj2
H1. Q�j/

C
"
1C

�
H

ı

�3# JX
jD1

jwj2
H2. Q�j/

.
�
1

ı3H

�
kwk2L2.�/ C

�
1

ı2

�
jwj2H1.�/ C

"
1C

�
H

ı

�3#
jwj2H2.�/

.
"
1C

�
H

ı

�3#
jvj2H2.�/ D

"
1C

�
H

ı

�3#
hAhv; vi: (31)

The estimate (19) follows from (23) and (31) ut
Combining (13) and (19), we have a lower bound for the eigenvalues of BTLAh W

�min.BTLAh/ &
"
1C

�
H

ı

�3#�1
: (32)

4.3 Estimate for �.BTLAh/

Putting (17) and (32) together, we have the following result on the condition number
of the preconditioned system.
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Theorem 1 There exists a constant C independent of h, H, ı and J such that

�.BTLAh/ D �max.BTLAh/

�min.BTLAh/
� C

"
1C

�
H

ı

�3#
:

5 Numerical Results

We have applied the two-level Schwarz preconditioner to the model problem on
the unit square and an L-shaped domain. The numerical results presented here
were obtained using PETSc [2, 3] and Supermike II, one of the high performance
supercomputers at the Louisiana State University.

Throughout these numerical examples we will use the following notation:

– �; the estimated condition number of the preconditioned system
– its, the number of iterations until the relative residual falls below 10�6
– tsolve; amount of (wall) time, in seconds, required to solve the preconditioned

system
– H; the maximum width of the coarse mesh
– ı; the amount of overlap among the overlapping subdomains
– h; the maximum width of the fine mesh
– kehkenergy; the error in energy norm given by juh � �hujH2.�/

We run two numerical experiments for each domain to observe the scalability.
The first experiment, the case of small overlap, measures strong scalability. This is
carried out by keeping the amount of overlap among the subdomains fixed and small,
and then refining the coarse mesh. The second experiment, the case of generous
overlap, measures weak scalability. This is carried out by keeping the quantity H=ı
bounded, and then refining the fine mesh.

The local and coarse problems are solved by using a Cholesky factorization (on
their own processors) and the global problem is solved using the preconditioned
conjugate gradient method.

5.1 Results for the Unit Square

Let � be the unit square .�0:5; 0:5/2. We take the exact solution to be

u.x/ D 35

2
.x21 � 0:25/2.x22 � 0:25/2:

The generalized finite element space Vh is constructed through a flat-top partition
unity with a background uniform mesh. An example of a fine mesh, a coarse mesh,
and typical overlapping subdomains are shown in Fig. 2.
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Fig. 2 A coarse mesh (left), a fine mesh (middle) and overlapping subdomains (right) for the unit
square

Table 1 Small overlap results for the unit square

nsub H � Rate Its tsolve

4 6.0000�10�1 9.1306�10C6 – 1498 3.8989�10C3

16 2.7273�10�1 6.5953�10C5 3.33 1409 5.5002�10C2

64 1.3043�10�1 7.4148�10C4 2.96 400 4.2519�10C1

256 6.3830�10�2 1.0755�10C4 2.70 165 7.5584�10C0

1024 3.1579�10�2 1.4248�10C3 2.87 63 4.2420�10C0

5.1.1 Small Overlap

In the case of small overlap, the number of fine elements is fixed so that h �
3:9113 � 10�3: The amount of overlap among the subdomains is also fixed so that
ı � 6:5189 � 10�4.

The numerical results are presented in Table 1. We observe that

�.BTLAh/ � .H=ı/rate

where the rate is roughly 3, which agrees with Theorem 1. The scalability of the
algorithm is also evidenced by the data in the last column.

5.1.2 Generous Overlap

In the case of generous overlap, the total number of subdomains is kept fixed (nsub D
64) so that H D 1:3043 � 10�1. The fine mesh is then refined in such a way that
H=ı � 3.

The numerical results are presented in Table 2. We observe that �.BTLAh/

is uniformly bounded, which agrees with Theorem 1. We also observe O.h/
convergence in the energy error, which agrees with the estimate (6).
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Table 2 Generous overlap results for the unit square

h � Its tsolve kehkenergy Rate

3.1579�10�2 3.6247�10C1 23 4.6185�10�1 5.6660�10�2 –

1.5707�10�2 3.1383�10C1 23 9.2236�10�1 2.6070�10�2 1.11

7.8329�10�3 2.7025�10C1 21 5.8779�10C0 1.2454�10�2 1.06

3.9113�10�3 2.5732�10C1 21 7.6505�10C1 6.0795�10�3 1.03

1.9544�10�3 2.4748�10C1 21 1.1662�10C3 3.0027�10�3 1.01

5.2 An L-Shaped Domain

Let � be the L-shaped domain .�0:5; 0:5/2 n Œ0; 0:5	2. The exact solution u of the
biharmonic problem is given by

u D .r2 cos2.�/ � 0:25/2.r2 sin2.�/ � 0:25/2r1C˛g.�/;

where the polar coordinate system .r; �/ is centered at the origin so that � D 0

corresponds to the positive y�axis and � D 3�=2 corresponds to the positive
x�axis, and the function g (cf. [20, pp. 107–108]) is given by

g.�/ D Œcos..˛ � 1/!/� cos..˛ C 1/!/	

� Œ.˛ C 1/ sin..˛ � 1/�/� .˛ � 1/ sin.˛ C 1/�/	

� Œcos..˛ � 1/�/ � cos..˛ C 1/�/	

� Œ.˛ C 1/ sin..˛ � 1/!/� .˛ � 1/ sin.˛ C 1/!/	 :

Here ! D 3�=2 is the angle of the reentrant corner and

˛ � 0:544483736782464 (33)

is the index of elliptic regularity.
The generalized finite element space Vh is constructed using a background mesh

of quasi-uniform rectangles such that the reentrant corner is inside one of the
rectangles. An example of a fine mesh, a coarse mesh, and typical overlapping
subdomains are shown in Fig. 3.

5.2.1 Small Overlap

In the case of small overlap, the number of fine elements is fixed so that h �
3:9164 � 10�3: The amount of overlap between the subdomains is also fixed so
that ı � 6:5104� 10�4:
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Fig. 3 A coarse mesh (left), a fine mesh (middle) and overlapping subdomains (right) for the
L-shaped domain

Table 3 Small overlap results for the L-shaped domain

nsub H � Rate Its tsolve

3 6.6667�10�1 8.8975�10C6 – 1974 4.5449�10C3

12 2.9167�10�1 5.5286�10C6 0.58 4816 1.5500�10C3

48 1.3542�10�1 1.0507�10C6 2.16 1587 1.3981�10C2

192 6.5104�10�2 1.3655�10C5 2.79 529 1.8855�10C1

768 3.1901�10�2 1.4414�10C4 3.15 199 9.8830�10C0

Table 4 Generous overlap results for the L-shaped domain

h � Its tsolve kehkenergy Rate

3.1901�10�2 9.5077�10C1 46 6.4991�10�1 3.1239�10�3 –

1.5788�10�2 1.1376�10C2 47 1.2841�10C0 2.0686�10�3 0.59

7.8532�10�3 1.2383�10C2 41 6.8940�10C0 1.3966�10�3 0.56

3.9164�10�3 1.2052�10C2 37 8.0453�10C1 9.5070�10�4 0.55

1.9557�10�3 1.2187�10C2 37 1.1779�10C3 6.4955�10�4 0.55

The numerical results are presented in Table 3. Again we observe that

�.BTLAh/ � .H=ı/3:

The scalability of the algorithm is also supported by the data in the last column.

5.2.2 Generous Overlap

In the case of generous overlap, the total number of subdomains is kept fixed (nsub D
48) so that H D 1:3542 � 10�1: The fine mesh is then refined in such a way that
H=ı � 3:

The numerical results in Table 4 show that �.BTLAh/ is uniformly bounded as
predicted by Theorem 1, and that the energy error is O.h0:55/ as predicted by (6)
and (33).
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6 Concluding Remarks

We have extended the classical results for two-level additive Schwarz precondition-
ers to a flat-top partition of unity method for the biharmonic problem.

In the case of nonconvex domains, optimal convergence for the partition of
unity method can be restored by including known corner singularities in the local
approximation spaces. The preconditioner developed in this paper is also relevant
for such methods.

The extension of the results in this paper to partition of unity methods for
variational inequalities [11–13] and to partition of unity methods for sixth order
problems are ongoing projects.
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