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Abstract We investigate a two-level additive Schwarz domain decomposition
preconditioner for a flat-top partition of unity method. We establish condition
number estimates for the biharmonic problem and present numerical results that
confirm our analysis.

1 Introduction

Let © be a polygonal domain in R? and f € L,(S2). Consider the following model
problem: Find u € H3(£2) such that

a(u,v) = (f,v) for all v in H(Z)(Q) D
where
) 5 2 P*w 0%
,0) = D*w : Dv)dx = d 2
a(w, v) /s;( w v)dx I;/&; o o0 x 2)

and(f,v):/fvdx.
Q
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Let V}, be a finite dimensional subspace of Hé(Q). The Ritz-Galerkin method
for (1) is to find u;, € V), such that

a(up,v) = (f,v) YvevV,. 3)

In this paper we will investigate a two-level additive Schwarz domain preconditioner
[8, 30] for the discrete problem (3), where V), is constructed by a flat-top partition
of unity method.

The conditioning of partition of unity methods is an important topic that has
recently received some attention. Stable generalized finite element methods whose
condition numbers are comparable to standard finite element methods are discussed
in [1, 22, 23, 29, 33]. Preconditioners for extended finite element methods have
also been investigated. (See [4, 24, 31] and references therein for a non-exhaustive
list.) The focus of the aforementioned work is on the ill-conditioning of the discrete
problem due to the choice of the enrichment functions. As far as we know, there is
only one paper [14] in the literature where an additive Schwarz preconditioner for
partition of unity methods is treated, and the preconditioner considered there is a
hierarchical multilevel preconditioner.

One of the important features of the partition of unity method is its ability to
generate a smooth approximation space with ease, making it a good candidate
for higher order problems. While there is a substantial literature on domain
decomposition preconditioners for finite element methods for fourth order problems
[6,7,9, 10, 18, 19, 25, 26, 32], to our knowledge domain decomposition precondi-
tioners for the partition of unity method have not been studied. Our goal is to fill
this gap.

The rest of the paper is organized as follows. We present the flat-top partition
of unity method and the additive Schwarz preconditioner in Sects.2 and 3. The
condition number estimates are carried out in Sect. 4, followed by numerical results
in Sect. 5. The paper ends with some concluding remarks in Sect. 6.

2 A Flat-Top Partition of Unity Method

In this section we describe the construction of V}, using a flat-top partition of unity.

2.1 Partition of Unity

First we recall the definition of a W2, partition of unity.

Definition 1 Let A = {Q;}/_, be an open cover of Q satisfying a pointwise overlap
condition

dM e N suchthat card{ilxe Q;} <M VxeQ.



A Two-Level Additive Schwarz Preconditioner for a Flat-Top Partition of Unity Method 3

Let {¢;}"_, be a family of functions in W2_(IR?) satisfying

suppg; C Qi 1<i<n,

Zn:gpizl on 2,

i=1

Cu .
lpilwm, w2y < (diam ;)" 0<m=<2,1=<i=<n,

where C,, are constants. We will refer to {¢;}/_, as a Wgo partition of unity
subordinate to the cover A and the covering sets 2; € A as patches.

We will use a variant of the partition of unity in [11-13, 16, 28] and we
refer the interested reader to these articles for a more thorough description of the
construction. Below we briefly describe our approach for a rectangular domain.
Other domains can be treated in a similar fashion.

We begin by choosing two small positive parameters y; and y», and construct the
domain €2, by enlarging Q2 by a distance of y; in the £x; directions for j = 1 and
2. We then subdivide €2, into congruent rectangles R; for 1 < i < n. The lengths of
the sides of these rectangles are denoted by /; and 4,, which are proportional to y;
and y, respectively. The mesh parameter £ is the maximum of 4; and A;.

The patches €2; are formed by enlarging the rectangles R; by a distance of y;
in the +x; directions for j = 1 and 2. There is a rectangular region in the center
of each §2; denoted by M. The partition of unity function ¢; is a C! piecewise
polynomial function such that ¢; = 1 on QM and smoothly decreases to 0 on 9L;.
The construction of the flat-top partition of unity is illustrated in Fig. 1.
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Fig. 1 The construction of the flat-top partition of unity: €2 is expand to £2,, (lef?); €2, is subdivided
into congruent rectangles (middle); Q1 are the dark shaded regions (right)
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2.2 Generalized Finite Element Space

Let V; be a subspace of the tensor product Lagrange finite element space Q, defined
on ; whose members satisfy the homogeneous Dirichlet conditions on d€2. The
interpolation nodes for V; are placed inside the flat-top region Q?at. The generalized
finite element space V), C V is given by

Vi = Z @iVi.
i=1

The interpolation operator IT, : C(Q2) — Vj, is defined by
M =Y (Mg, “)
i=1

where TII; is the local nodal interpolation operator for V;. The following interpolation
error estimate can be established by combining standard interpolation error esti-
mates for the Q, finite element and the estimates for the partition of unity functions
01, ...,y (cf. [27, 28] for details):

2
> K" — ylgng) < Ch'olw@)  Yv e H(Q) and 2<s<3. (5)

m=0

2.3 Discretization Error Estimate and Conditioning

According to elliptic regularity theory [5, 15, 21] for polygonal domains, we know
that u € H?T*(Q), where the index of elliptic regularity o depends only on the
angles at the corners of Q. If Q is convex, we can take o to be 1, otherwise o
belongs to (1/2, 1). It follows from (5) that

| — upl 20y = vig‘f, lu— vl < lu— Ml ) < Ch*|ulpteq).- (6)

Let V;, be the dual of V}, (-, -) be the canonical bilinear form on V,/l X Vj, and the
linear operator A, : Vj, — V; be defined by

(Apw,v) = a(w,v) VY w,v eV, @)
We can then rewrite (3) as

Apx = fp, ®)
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where f;, € V, is defined by

(fh,v):/fvdx Yv eV,
Q

It can be shown that the condition number of A, satisfies
K(Ar) ~ O™, ©9)

which is similar to the condition number for standard finite element methods.

3 A Two-Level Additive Schwarz Preconditioner

The two-level additive Schwarz preconditioner was introduced by Dryja and
Widlund in [17]. It involves a coarse problem and local problems.

3.1 Coarse Problem

Let Vy C V be the generalized finite element space associated with a coarse mesh
with mesh parameter H. We assume there are J coarse patches Q5 (1 < j < J)in
the construction of Vj.

The coarse space Vj is connected to V;, by the operator [y : Vo —> V, which is
the restriction of the interpolation operator IT; to Vj. The operator Ag : Vo — V(/)
is then given by

(Agw, v) = a(lyw, Iyv) Yw,v € V. (10)

3.2 Local Problems

The overlapping subdomains ij of Q2 are obtained by enlarging the coarse patch
Q; (1 <j < J)bythe amount of §;(> 0) in the £x; directions for j = 1 and 2. This
means that the overlap of the subdomains is given by § = max{8; + y1 4,2 + v2.u}-
By adjusting d; and y; i, we can align 852‘; with the boundaries of the patches for V),
and also control the overlap among the subdomains.

The local space V; C V}, is taken to be

ij{vEVh:v:OOHQ\Qj}

and it is connected to V;, by the natural injection [; : V; —> V..
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The operator A; : V; —> Vl/ is given by

(Aw,v) = a(w,v) Yw,v eV, (11

3.3 The Preconditioner

The two-level additive Schwarz preconditioner is defined by

J

Br= 147l
Jj=0

where the transpose operator / IT 2V, — Vz/ is given by

(I]-Tu,v) = (u, Ijv) VYuev,veV,.

Since V, = Zf:o I;V;, the operator By, is symmetric positive definite and we

have the following characterizations of the maximum and minimum eigenvalues of
B Ay, (cf. [8, Theorem 7.1.20]).

Apv, v
Ao By =max ) (12
l:;#g mln'):Z}’:OIj”j Zj=0<Ajvj’ vj)
v;E€V;
. Apv, v
Ain(BriAr) = min Awv. v) (13)

- J
2}67281 min,_y/ > i=o{Ajvj, v;)

=0ljvj
v EV;

4 Condition Number Estimates

To avoid the proliferation of constants, we will use the notation A < B (or B 2 A) to
represent the inequality A < (constant)B, where the positive constant is independent
of h, H, § and J. The notation A ~ B is equivalentto A < Band A > B.

4.1 Estimate for Ayax(BriApR)

The following lemma will lead to an upper bound for A« (BrrAp).
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Lemmal Letv; € V;for0 < j < Jandv = Z{:o Lv;. Then the following
estimate holds : ‘

J
(A, v) £ (A, ). (14)

Jj=0

Proof Since I; for 1 < j < J are natural injections, we derive from (2), (7) and (10)

J J
(Apv,v) = / DZ(ZIJ-UJ-) :DZ(ZIkvk) dx
@ j=0 k=0
J J
< 2/ |D210vo|2dx+2/ Dz(ZIjvj) ;Dz(ZIkvk) dx
Q Q —

j=1

J
= 2(Agvo, vo) + 2 Z / D?v; : D*v; dx. (15)
jk=178

Let the constant ¢jx (1 < j, k < J) be defined by

1 it Q;NQ #9,
C; =
7 0 otherwise.

Note that ¢j; = cy.
Let N be the maximum number of subdomains that can have nonempty intersec-
tion with a subdomain. Then we have

J
YGu<N  for 1<j<J
k=1

and hence, in view of (11),

J J
Z / (Dzvj : D*vy) dx = Z cj,k/ (Dzvj : D*vy) dx
Q Q

jk=1 jk=1
J
= Z CiulVil @)l Vil )
jk=1
J J 1

1
2 2 2 2
= ( > Cfsk|”f|H2<sz>) ( > CMW'HZ(Q))

Jjk=1 Jjk=1
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J J
2
= Iling) D cix
j=1 k=1

J J
SN [vilipg =N (A v). (16)
j=1 j=1
The estimate (14) follows by combining (15) and (16). O

Combining (12) and (14), we have an upper bound for the eigenvalues of By A, :

/\max (BTLAh) S 1. (17)

4.2 Estimate for Ayin(BrrAR)

The following lemma will lead to a lower bound for A, (B7z.Ap).

Lemma 2 Given any v € V), there exists a decomposition

J
v=" Ly (18)
=0
where v; € V; for 1 <j < Jand
J H 3
> Ay S |1+ 5 ) (w0, (19)
=0

Proof 1Tt follows from (5) (with s = 2) that

1
D B = Ml + WMol S Plvleg) Yo e HA(Q).  (20)
k=0

Similarly, we have

1
> Hv — Myvlgg) + HMpvlpeg) S Hvlpg) Vv e HA(Q), @21
k=0

where I1j is the analog of IT, for V.
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Letvy = Myv € Vo, w = v—Iyvg = v—TI1,vg and v; = I1,(6;w), where {6?]-}]1=1
isa Wgo partition of unity subordinate to the overlapping subdomains Q ; such that

0l @2y S8 for 0<k<2. (22)

It is easy to check that v; € V; for 0 < j < J and (18) holds.
In view of (2), (7), (10), (20) and (21), we have

(Aovo, vo) = |1000|12L12(Q) = |HhU0|?.12(Q)
< 1volipcq (23)
= |HHU|§12(Q) < |v|12qz(9) = (Apv,v).
Next we consider
(A, v)) = |vj|§12(ﬁ) = [TL(Gw)l7pq)
for 1 <j < J.In view of (20), we have
2
(Ajvja vj) 5 |9jW|H2(Q)

< / (w)?|D*6;|* dx + / |DO;|*|Dw|* dx (24)
Q; Q2
+ / (6)%|D*w|* dx
Q;

and it only remains to estimate the three terms on the right-hand side of (24).
Observe that (20) and (21) imply

Wllio@ = llv — Havoll, @)
= v = ol + v — Mavllne)
+ (v = Myv) — (v — Opv) [y @) (25)
S Pl + H v ) + 1v — Dgvlpg)
< H2|U|H2(Q),

and similarly

Wl < HV w2 ), (26)

Wl < [vlp2g)- 27
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It follows from (22) that

/ (D6, PIDWI? d 5 57wl g (28)
[ @ Il (29)
J

Note that D?6; vanishes except on a strip near aQ ; with width & §. Therefore it
follows from (22) and [6, Lemma 8.1] that

H 3
[origacs (o, )0, + (5 ) Wi (0)
'J

Combining (2), (7), (24), (25) and (28)—(30), we find

J
ZAUI’UJ (SSH)Z” ”L (Q) (82)Z|W|H1(Q)
j=1

(1 2 1 2 HY |
< (53H)||w||L2<m v (gz)lwlm |4 (5) o
H 3 H 3
< [1 (%) ]wﬁmm : [1 +(%) }(Ahv,v» a1

The estimate (19) follows from (23) and (31) ]

Combining (13) and (19), we have a lower bound for the eigenvalues of By A, :

;-1
Amin(BrLAR) 2 |:1 + (I;) :| . (32)

4.3 Estimate for k (BriAp)

Putting (17) and (32) together, we have the following result on the condition number
of the preconditioned system.
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Theorem 1 There exists a constant C independent of h, H, § and J such that

_ /\max(BTLAh) H :
K(BTLAh) N Amin(BTLAh) S C|:1 * (8) :|

5 Numerical Results

We have applied the two-level Schwarz preconditioner to the model problem on
the unit square and an L-shaped domain. The numerical results presented here
were obtained using PETSc [2, 3] and Supermike II, one of the high performance
supercomputers at the Louisiana State University.

Throughout these numerical examples we will use the following notation:

— k, the estimated condition number of the preconditioned system

— its, the number of iterations until the relative residual falls below 107°

— fsolve, amount of (wall) time, in seconds, required to solve the preconditioned
system

— H, the maximum width of the coarse mesh

— &, the amount of overlap among the overlapping subdomains

— h, the maximum width of the fine mesh

— |len]lenergy, the error in energy norm given by |uj, — mju| ()

We run two numerical experiments for each domain to observe the scalability.
The first experiment, the case of small overlap, measures strong scalability. This is
carried out by keeping the amount of overlap among the subdomains fixed and small,
and then refining the coarse mesh. The second experiment, the case of generous
overlap, measures weak scalability. This is carried out by keeping the quantity H/§
bounded, and then refining the fine mesh.

The local and coarse problems are solved by using a Cholesky factorization (on
their own processors) and the global problem is solved using the preconditioned
conjugate gradient method.

5.1 Results for the Unit Square
Let Q be the unit square (—0.5, 0.5)%. We take the exact solution to be
35 2 5
u(x) = 5 (7 —0.25)%(x3 — 0.25)°.

The generalized finite element space V}, is constructed through a flat-top partition
unity with a background uniform mesh. An example of a fine mesh, a coarse mesh,
and typical overlapping subdomains are shown in Fig. 2.
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Fig. 2 A coarse mesh (left), a fine mesh (middle) and overlapping subdomains (right) for the unit
square

Table 1 Small overlap results for the unit square

Nsub H K Rate Its tsolve
4 6.0000x 107! 9.1306x107° - 1498 3.8989x 1013
16 2.7273%x107! 6.5953%1015 3.33 1409 5.5002x 10712
64 1.3043x10~! 7.4148x10T4 2.96 400 4.2519x101!
256 6.3830%1072 1.0755%x101* 2.70 165 7.5584x1010
1024 3.1579%x 1072 1.4248x10713 2.87 63 4.2420x1010

5.1.1 Small Overlap

In the case of small overlap, the number of fine elements is fixed so that 7 ~
3.9113 x 1073, The amount of overlap among the subdomains is also fixed so that
§ ~ 6.5189 x 1074,

The numerical results are presented in Table 1. We observe that

K (BriAy) ~ (H/8)™

where the rate is roughly 3, which agrees with Theorem 1. The scalability of the
algorithm is also evidenced by the data in the last column.

5.1.2 Generous Overlap

In the case of generous overlap, the total number of subdomains is kept fixed (ngy, =
64) so that H = 1.3043 x 10!, The fine mesh is then refined in such a way that
H/§ <3.

The numerical results are presented in Table 2. We observe that «(B7 Aj)
is uniformly bounded, which agrees with Theorem 1. We also observe O(h)
convergence in the energy error, which agrees with the estimate (6).
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Table 2 Generous overlap results for the unit square

h K Its Isolve ”eh ”energy Rate
3.1579%x1072 3.6247x1071! 23 4.6185x107! 5.6660x102 -

1.5707x102 3.1383x107! 23 9.2236x10~! 2.6070x1072 1.11
7.8329%1073 2.7025x107t! 21 5.8779x101° 1.2454x10™2 1.06
3.9113x1073 2.5732x10%t! 21 7.6505x107F! 6.0795%x1073 1.03
1.9544x1073 2.4748x1071! 21 1.1662x10713 3.0027x1073 1.01

5.2 An L-Shaped Domain

Let Q be the L-shaped domain (—0.5,0.5)% \ [0, 0.5]>. The exact solution u of the
biharmonic problem is given by

u = (r* cos*(0) — 0.25)%(* sin*(0) — 0.25)%r' Tg(8),

where the polar coordinate system (r, 8) is centered at the origin so that 6 = 0
corresponds to the positive y—axis and § = 3m/2 corresponds to the positive
x—axis, and the function g (cf. [20, pp. 107-108]) is given by
8(0) = [cos((@ — Dw) — cos((a + Dw)]
X [(@ + 1) sin((a — 1)0) — (@ — 1) sin(« + 1)6)]
— [cos((@ — 1)8) — cos((ax + 1)6)]
X [(@ + 1) sin((a — 1)w) — (@ — 1) sin(x + 1)w)] .

Here w = 37 /2 is the angle of the reentrant corner and
o A 0.544483736782464 (33)

is the index of elliptic regularity.

The generalized finite element space V), is constructed using a background mesh
of quasi-uniform rectangles such that the reentrant corner is inside one of the
rectangles. An example of a fine mesh, a coarse mesh, and typical overlapping
subdomains are shown in Fig. 3.

5.2.1 Small Overlap

In the case of small overlap, the number of fine elements is fixed so that 7 ~
3.9164 x 1073, The amount of overlap between the subdomains is also fixed so
that § ~ 6.5104 x 107*.
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Fig. 3 A coarse mesh (left), a fine mesh (middle) and overlapping subdomains (right) for the
L-shaped domain

Table 3 Small overlap results for the L-shaped domain

Nsup H K Rate Its tsolve
3 6.6667x10~! 8.8975x10%° - 1974 4.5449%1013
12 2.9167x10~! 5.5286x1076 0.58 4816 1.5500%x 1013
48 1.3542x10~! 1.0507x101¢ 2.16 1587 1.3981x 10712
192 6.5104x1072 1.3655x101 2.79 529 1.8855x1071!
768 3.1901x1072 1.4414x101 3.15 199 9.8830x 1010

Table 4 Generous overlap results for the L-shaped domain

h K Its Lsolve llen llenerey Rate
3.1901x1072 9.5077x107! 46 6.4991x107! 3.1239x1073 -

1.5788x10~2 1.1376x1012 47 1.2841x1010 2.0686x1073 0.59
7.8532x1073 1.2383x10712 41 6.8940x 1010 1.3966x1073 0.56
3.9164x1073 1.2052x10712 37 8.0453x107! 9.5070x10~* 0.55
1.9557x1073 1.2187x10712 37 1.1779x10713 6.4955x10~4 0.55

The numerical results are presented in Table 3. Again we observe that
K (BriAy) ~ (H/8).

The scalability of the algorithm is also supported by the data in the last column.

5.2.2 Generous Overlap

In the case of generous overlap, the total number of subdomains is kept fixed (g, =
48) so that H = 1.3542 x 10~". The fine mesh is then refined in such a way that
H/§ < 3.

The numerical results in Table 4 show that k(B A;) is uniformly bounded as
predicted by Theorem 1, and that the energy error is O(h">) as predicted by (6)
and (33).
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6 Concluding Remarks

We have extended the classical results for two-level additive Schwarz precondition-
ers to a flat-top partition of unity method for the biharmonic problem.

In the case of nonconvex domains, optimal convergence for the partition of
unity method can be restored by including known corner singularities in the local
approximation spaces. The preconditioner developed in this paper is also relevant
for such methods.

The extension of the results in this paper to partition of unity methods for
variational inequalities [11-13] and to partition of unity methods for sixth order
problems are ongoing projects.

Acknowledgements The work of the first and third authors was supported in part by the National
Science Foundation under Grant No. DMS-13-19172. Portions of this research were conducted
with high performance computing resources provided by Louisiana State University (http://www.
hpc.lsu.edu).

References

1. I. Babuska, U. Banerjee, Stable generalized finite element method (SGFEM). Comput.
Methods Appl. Mech. Eng. 201-204, 91-111 (2012)

2. S. Balay, W.D. Gropp, L.C. Mclnnes, B.F. Smith, Efficient management of parallelism in
object-oriented numerical software libraries, in Modern Software Tools in Scientific Computing
(Birkhauser, Boston, 1997), pp. 163-202

3. S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout,
W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. Mclnnes, K. Rupp, B.F. Smith, H. Zhang, PETSc
users manual. Technical Report ANL-95/11 - Revision 3.5, Argonne National Laboratory
(2014)

4. L. Berger-Vergiat, H. Waisman, B. Hiriyur, R. Tuminaro, D. Keyes, Inexact Schwarz-algebraic
multigrid preconditioners for crack problems modeled by extended finite element methods. Int.
J. Numer. Methods Eng. 90, 311-328 (2012)

5. H. Blum, R. Rannacher, On the boundary value problem of the biharmonic operator on domains
with angular corners. Math. Methods Appl. Sci. 2, 556-581 (1980)

6. S.C. Brenner, A two-level additive Schwarz preconditioner for nonconforming plate elements.
Numer. Math. 72, 419-447 (1996)

7. S.C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element
methods. Math. Comput. 65, 897-921 (1996)

8. S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods. Texts in
Applied Mathematics, 3rd edn. (Springer, New York, 2008)

9. S.C. Brenner, K. Wang, Two-level additive Schwarz preconditioners for C° interior penalty
methods. Numer. Math. 102, 231-255 (2005)

10. S.C. Brenner, K. Wang, An iterative substructuring algorithm for a C? interior penalty method.
Electron. Trans. Numer. Anal. 39, 313-332 (2012)

11. S.C. Brenner, C.B. Davis, L.-Y. Sung, A partition of unity method for a class of fourth order
elliptic variational inequalities. Comput. Methods Appl. Mech. Eng. 276, 612-626 (2014)

12. S.C. Brenner, C.B. Davis, L.-Y. Sung, A partition of unity method for the displacement obstacle
problem of clamped kirchhoff plates. J. Comput. Appl. Math. 265, 3-16 (2014)


http://www.hpc.lsu.edu
http://www.hpc.lsu.edu

16

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

S.C. Brenner et al.

S.C. Brenner, C.B. Davis, L.-Y. Sung, A partition of unity method for the obstacle problem of
simply supported Kirchhoff plates, in Meshfree Methods for Partial Differential Equations VII,
ed. by M. Griebel, M. A. Schweitzer. Lecture Notes in Computational Science and Engineering,
vol. 100 (Springer International Publishing, Berlin, 2015), pp. 23-41

W. Dahmen, S. Dekel, P. Petrushev, Multilevel preconditioning for partition of unity methods:
some analytic concepts. Numer. Math. 107, 503-532 (2007)

M. Dauge, Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathe-
matics, vol. 1341 (Springer, Berlin/Heidelberg, 1988)

C.B. Davis, A partition of unity method with penalty for fourth order problems. J. Sci. Comput.
60, 228-248 (2014)

M. Dryja, O.B. Widlund, An additive variant of the Schwarz alternating method in the case of
many subregions. Technical Report 339, Department of Computer Science, Courant Institute
(1987)

C. Farhat, P.-S. Chen, J. Mandel, F.-X. Roux, The two-level FETI method for static and
dynamic plate problems Part I: an optimal iterative solver for biharmonic systems. Comput.
Methods Appl. Mech. Eng. 155, 129-151 (1998)

X. Feng, O.A. Karakashian, Two-level non-overlapping Schwarz preconditioners for a discon-
tinuous Galerkin approximation of the biharmonic equation. J. Sci. Comput. 22/23, 289-314
(2005)

P. Grisvard, Singularities in Boundary Value Problems (Masson, Paris, 1992)

P. Grisvard, Elliptic Problems in Nonsmooth Domains (Society for Industrial and Applied
Mathematics, Providence, RI, 2011)

V. Gupta, C.A. Duarte, 1. Babuska, U. Banerjee, A stable and optimally convergent generalized
{FEM} (SGFEM) for linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng.
266, 23-39 (2013)

V. Gupta, C.A. Duarte, 1. Babuska, U. Banerjee, Stable {GFEM} (SGFEM): improved con-
ditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics. Comput.
Methods Appl. Mech. Eng. 289, 355-386 (2015)

C. Lang, D. Makhija, A. Doostan, K. Maute, A simple and efficient preconditioning scheme
for heaviside enriched XFEM. Comput. Mech. 54, 1357-1374 (2014)

P. LeTallec, J. Mandel, M. Vidrascu, Balancing domain decomposition for plates, in Domain
Decomposition Methods in Scientific and Engineering Computing, ed. by D.E. Keyes, J. Xu.
Contemporary Mathematics, vol. 180. (American Mathematical Society, Providence, RI,
1994), pp. 515-524

P. LeTallec, J. Mandel, M. Vidrascu, A Neumann-Neumann domain decomposition algorithm
for solving plate and shell problems. SIAM J. Numer. Anal. 35, 836-867 (1998)

J.M. Melenk, 1. Babuska, The partition of unity finite element method: basic theory and
applications. Comput. Methods Appl. Mech. Eng. 139, 289-314 (1996)

H.-S. Oh, J.G. Kim, W.-T. Hong, The piecewise polynomial partition of unity functions for
the generalized finite element methods. Comput. Methods Appl. Mech. Eng. 197, 3702-3711
(2008)

M.A. Schweitzer, Stable enrichment and local preconditioning in the particle-partition of unity
method. Numer. Math. 118, 137-170 (2011)

A. Toselli, O.B. Widlund, Domain Decomposition Methods - Algorithms and Theory (Springer,
New York, 2005)

H. Waisman, L. Berger-Vergiat, An adaptive domain decomposition preconditioner for crack
propagation problems modeled by XFEM. Int. J. Multiscale Comput Eng. 11, 633-654 (2013)
X. Zhang, Two-level Schwarz methods for the biharmonic problem discretized conforming C'
elements. SIAM J. Numer. Anal. 33, 555-570 (1996)

Q. Zhang, U. Banerjee, 1. Babuska. Higher order stable generalized finite element method.
Numer. Math. 128, 1-29 (2014)



2 Springer
http://www.springer.com/978-3-319-51953-1

Meshfree Methods for Partial Differential Equations Will
Griebel, M.; Schweitzer, M.A, (Eds.)

2017, W, 240 p. 69 illus., 58 illus. in color,, Hardcover
ISBN: 978-3-319-51953-1



	A Two-Level Additive Schwarz Domain Decomposition Preconditioner for a Flat-Top Partition of Unity Method
	1 Introduction
	2 A Flat-Top Partition of Unity Method
	2.1 Partition of Unity
	2.2 Generalized Finite Element Space
	2.3 Discretization Error Estimate and Conditioning

	3 A Two-Level Additive Schwarz Preconditioner
	3.1 Coarse Problem
	3.2 Local Problems
	3.3 The Preconditioner

	4 Condition Number Estimates
	4.1 Estimate for λmax (BTL Ah)
	4.2 Estimate for λmin(BTLAh)
	4.3 Estimate for κ(BTLAh)

	5 Numerical Results
	5.1 Results for the Unit Square
	5.1.1 Small Overlap
	5.1.2 Generous Overlap

	5.2 An L-Shaped Domain
	5.2.1 Small Overlap
	5.2.2 Generous Overlap


	6 Concluding Remarks
	References


