Verifying Parametric Thread Creation

Igor Walukiewicz

CNRS, LaBRI, University of Bordeaux, Bordeaux, France

Abstract. Automatic verification of concurrent systems is an active
area of research since at least a quater of a century. We focus here on
analyses of systems designed to operate with an arbitrary number of
processes. German and Sistla, already in 1992, initiated in depth investi-
gation of this problem for finite state systems. For infinite state systems,
like pushdown systems, extra care is needed to avoid undecidability, as
reachability is undecidable even for two identical pushdown processes
communicating via single variable. Kahlon and Gupta in 2006 have pro-
posed to use parametrization as means of bypassing this undecidability
barrier. Indeed when instead of two pushdown processes we consider some
unspecified number of them, the reachability problem becomes decidable.
This idea of parametrization as an abstraction has been pursued further
by Hague, who in 2011 has shown that the problem is still decidable
when one of the pushdown processes is made different from the others:
there is one leader process and many contributor processes. We discuss
how the idea of parametrization as an abstraction leads to decidability,
and in some cases even efficient algorithms, for verification of systems
which combine recursion with dynamic thread creation.

1 An Overview

We consider recursive programs with thread creation. A thread can be abstracted
as a pushdown process. Communication between threads is via global variables as
well as via local variables that are shared between a thread and its sub-threads.
This setting is an abstraction of a situation found today in many programming
languages such as Java, Scala, or Erlang.

While this setting can model many phenomena in programming languages, it
is not adapted to automatic verification. Reachability is not decidable even for
the case when there are two threads communicating over a 2-bit shared variable.
In absence of global variables, reachability becomes undecidable already for two
pushdown threads if a rendez-vous primitive is available [19]. A similar result
holds if finitely many locks are allowed [11].

We obtain a decidable setting by relaxing the semantics of thread creation
operation. Instead of creating one thread the operation creates some unspecified
number of threads. The general idea goes back to Kahlon, who observed that
various verification problems become decidable for multi-pushdown systems that
are parametric [10], i.e., systems consisting of an arbitrary number of indistin-
guishable pushdown threads. Later, Hague extended this result by showing that
© Springer International Publishing AG 2017

B. Steffen et al. (Eds.): SOFSEM 2017, LNCS 10139, pp. 11-14, 2017.
DOI: 10.1007/978-3-319-51963-0_2



12 1. Walukiewicz

an extra designated leader thread can be added without sacrificing decidability
[9]. All threads communicate here over a shared, bounded register without lock-
ing. It is crucial for decidability that only one thread has an identity, and that
the operations on the shared variable do not allow to elect a second leader.

The setting of Hague has attracted some attention in recent years. Esparza
et al. established the complexity of deciding reachability in that model [7]. La
Torre et al. generalized these results to hierarchically nested models for a fixed
nesting depth [14]. Durand-Gasselin et al. [6] have shown decidability of the live-
ness problem for this model. It turns out that the problem has a surprisingly low
complexity, namely it is PSPACE-complete [8]. Another problem that has been
considered is universal reachability: this is the question of deciding if on every
maximal execution trace of the system, the leader reaches some designated state.
In terms of temporal logics, reachability is about EF properties, while universal
reachability is about AF properties. While still decidable, this problem has very
different nature and it turns out to be coNEXPTIME-complete [8]. Indeed, gen-
eralizing this result we obtain that all stuttering LTL properties of the leader
process can be decided in cONEXPTIME.

The results above concern the case with one leader process that issues one
thread creation operation resulting in some number of sub-processes who do not
create any new sub-processes. It turns out that we can go even further and have
a decidable model for recursive programs with parametric thread creation [18].
Reachability is decidable for a very general class of processes. Every sub-process
can maintain a local pushdown store, spawn new sub-processes, and communi-
cate over global variables, as well as via local variables with its sub-processes
and with its parent. As in [7,9,14], all variables have bounded domains and no
locks are allowed.

The algorithm for deciding reachability in this expressive model relies on
well-quasi-orders, so its complexity is very high. Yet, there are simpler instances
where we know algorithms of a reasonable complexity [18]. As one such instance,
we consider the situation where communication between sub-processes is through
global variables only. We show that reachability for this model can be effectively
reduced to reachability in the model of Hague [7,9], giving us a precise char-
acterization of the complexity for pushdown threads as PSPACE. As another
instance, we consider a parametric variant of generalized futures where spawned
sub-processes may not only return a single result but create a stream of answers.
For that model, we obtain complexities between NP and DEXPTIME. This opens
the venue to apply e.g. SAT-solving to check safety properties of such programs.

2 Related Work

There are other approaches than parametrization to get a decidable model of
recursive programs with thread creation.

One approoach is to consider systems with locks. As we have mentioned,
the model with locks is undecidable even if there are no shared variables, no
rendez-vous, or other means of communication between processes. Interestingly,



Verifying Parametric Thread Creation 13

decidability is regained if locking is performed in a disciplined way. This is, e.g.,
the case for nested [11] and contextual locking [5]. These decidability results
have been extended to dynamic pushdown networks as introduced by Bouajjani
et al. [4]. This model combines pushdown threads with dynamic thread creation
by means of a spawn operation, while it ignores any exchange of data between
threads. Indeed, reachability of dedicated states or even regular sets of configu-
rations stays decidable in this model, if finitely many global locks together with
nested locking [15,17] or contextual locking [16] are allowed. Such regular sets
allow, e.g., to describe undesirable situations such as concurrent execution of
conflicting operations.

Another approach is to bound the number of switches of execution contexts.
A simple definition of an execution context is a part of an execution when only
one process reads from its stack. A context switch is when some other process
starts reading from its stack. So the reachability problem now asks for an exe-
cution with a given fixed number of context switches. Many decidability results
have been established in the last decade for more and more refined notions of
context switching [1-3,12,13]. In [1,3], dynamic thread creation is allowed.

References

1. Atig, M.F., Bouajjani, A., Qadeer, S.: Context-bounded analysis for concurrent
programs with dynamic creation of threads. Logical Meth. Comput. Sci. 7(4), 1-
48 (2011)

2. Bollig, B., Gastin, P., Schubert, J.: Parameterized verification of communicating
automata under context bounds. In: Ouaknine, J., Potapov, 1., Worrell, J. (eds.)
RP 2014. LNCS, vol. 8762, pp. 45-57. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-11439-2_4

3. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Sarukkai, S., Sen, S.
(eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348-359. Springer, Heidelberg (2005).
doi:10.1007/11590156_28

4. Bouajjani, A., Miller-Olm, M., Touili, T.: Regular symbolic analysis of dynamic
networks of pushdown systems. In: Abadi, M., Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 473-487. Springer, Heidelberg (2005). doi:10.1007/
11539452_36

5. Chadha, R., Madhusudan, P., Viswanathan, M.: Reachability under contextual
locking. In: Flanagan, C., Konig, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp.
437-450. Springer, Heidelberg (2012)

6. Durand-Gasselin, A., Esparza, J., Ganty, P., Majumdar, R.: Model checking para-
meterized asynchronous shared-memory systems. In: Kroening, D., Pasareanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 67-84. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-21690-4_5

7. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous
shared-memory systems. J. ACM 63(1), 10 (2016)

8. Fortin, M., Muscholl, A., Walukiewicz, I.: On parametrized verification of asyn-
chronous, shared-memory pushdown systems. CoRR, abs/1606.08707 (2016)


http://dx.doi.org/10.1007/978-3-319-11439-2_4
http://dx.doi.org/10.1007/978-3-319-11439-2_4
http://dx.doi.org/10.1007/11590156_28
http://dx.doi.org/10.1007/11539452_36
http://dx.doi.org/10.1007/11539452_36
http://dx.doi.org/10.1007/978-3-319-21690-4_5
http://dx.doi.org/10.1007/978-3-319-21690-4_5

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

1. Walukiewicz

Hague, M.: Parameterised pushdown systems with non-atomic writes. In:
Chakraborty, S., Kumar, A. (eds.) IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 12-14, 2011,
Mumbai, India, vol. 13 of LIPIcs, pp. 457-468. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, December 2011

Kahlon, V.: Parameterization as abstraction: a tractable approach to the dataflow
analysis of concurrent programs. In: Proceedings of the Twenty-Third Annual
IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 , Pittsburgh,
PA, USA, pp. 181-192. IEEE Computer Society, June 2008

Kahlon, V., Ivanc¢ié, F., Gupta, A.: Reasoning about threads communicating via
locks. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
505-518. Springer, Heidelberg (2005). doi:10.1007/11513988_49

La Torre, S., Madhusudan, P., Parlato, G.: Model-checking parameterized concur-
rent programs using linear interfaces. In: Touili, T., Cook, B., Jackson, P. (eds.)
CAV 2010. LNCS, vol. 6174, pp. 629-644. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14295-6_54

La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing parameterized pro-
grams. In: FIT 2012, EPTCS, vol. 87, pp. 34-47 (2012)

La Torre, S., Muscholl, A., Walukiewicz, I.: Safety of parametrized asynchro-
nous shared-memory systems is almost always decidable. In: Aceto, L., de Frutos-
Escrig, D. (eds.) 26th International Conference on Concurrency Theory, CON-
CUR, LIPIcs, Madrid, Spain, September 1.4, vol. 42, pp. 72-84. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik (2015)

Lammich, P., Miiller-Olm, M.: Conflict analysis of programs with procedures,
dynamic thread creation, and monitors. In: Alpuente, M., Vidal, G. (eds.) SAS
2008. LNCS, vol. 5079, pp. 205-220. Springer, Heidelberg (2008)

Lammich, P., Miiller-Olm, M., Seidl, H., Wenner, A.: Contextual locking
for dynamic pushdown networks. In: Logozzo, F., Fahndrich, M. (eds.) SAS
2013. LNCS, vol. 7935, pp. 477-498. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38856-9_25

Lammich, P., Miiller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 525-539. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02658-4_39

Muscholl, A., Seidl, H., Walukiewicz, I.: Reachability for dynamic parametric
processes. CoRR, abs/1609.05385 (2016)

Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst. 22(2), 416-430 (2000)


http://dx.doi.org/10.1007/11513988_49
http://dx.doi.org/10.1007/978-3-642-14295-6_54
http://dx.doi.org/10.1007/978-3-642-14295-6_54
http://dx.doi.org/10.1007/978-3-642-38856-9_25
http://dx.doi.org/10.1007/978-3-642-38856-9_25
http://dx.doi.org/10.1007/978-3-642-02658-4_39
http://dx.doi.org/10.1007/978-3-642-02658-4_39

2 Springer
http://www.springer.com/978-3-319-51962-3

SOFSEM 2017: Theory and Practice of Computer
Science

43rd International Conference on Current Trends in
Theory and Practice of Computer Science, Limerick,
Ireland, January 16-20, 2017, Proceedings

Steffen, B.; Baier, C.; van den Brand, M.; Eder, J.;
Hinchey, M.; Margaria, T. (Eds.)

2017, XV, 526 p. 109 illus., Softcover

ISBM: 978-3-319-51962-3



	Verifying Parametric Thread Creation
	1 An Overview
	2 Related Work
	References


