Chapter 2
Learning and Recognition Methods
for Image Search and Video Retrieval

Ajit Puthenputhussery, Shuo Chen, Joyoung Lee, Lazar Spasovic
and Chengjun Liu

Abstract Effective learning and recognition methods play an important role in intel-
ligent image search and video retrieval. This chapter therefore reviews some popular
learning and recognition methods that are broadly applied for image search and video
retrieval. First some popular deep learning methods are discussed, such as the feed-
forward deep neural networks, the deep autoencoders, the convolutional neural net-
works, and the Deep Boltzmann Machine (DBM). Second, Support Vector Machine
(SVM), which is one of the popular machine learning methods, is reviewed. In par-
ticular, the linear support vector machine, the soft-margin support vector machine,
the non-linear support vector machine, the simplified support vector machine, the
efficient Support Vector Machine (eSVM), and the applications of SVM to image
search and video retrieval are discussed. Finally, other popular kernel methods and
new similarity measures are briefly reviewed.

2.1 Introduction

The applications in intelligent image search and video retrieval cover all corners of
our society from searching the web to scientific discovery and societal security. For
example, the New Solar Telescope (NST) at the Big Bear Solar Observatory (BBSO)
produces over one terabytes of data daily, and the Solar Dynamic Observatory (SDO)
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Fig. 2.1 Video analysis in solar physics for solar event detection

launched by NASA generates about four Terabytes of video data per day. Such huge
amount of video data requires new digital image and video analysis techniques to
advance the state-of-the-art in solar science. Motion analysis methods based on the
motion field estimation and Kalman filtering may help characterize the dynamic
properties of solar activities in high resolution. Figure 2.1 shows an example for solar
features and events detection. First, a sequence of SDO images is processed based on
motion field analysis to locate candidate regions of interest for features and events.
The differential techniques that apply the optical flow estimation and the feature-
based techniques that utilize feature matching and Kalman tracking approaches may
be applied to locate the candidate regions for features and events. Other techniques,
such as the conditional density propagation method and the particle filtering method,
will further enhance the localization performance. Second, a host of feature and
event detection and recognition methods will then analyze the candidate regions for
detecting features and events as indicated in the right image in Fig.2.1.

Another example of video-based applications for societal security is police body-
worn cameras, which present an important and innovative area of criminal justice
research with the potential to significantly advance criminal justice practice. The
Community Policing Initiative proposed by the White House would provide a 50%
match to states that purchase such cameras [83], and the recent Computing Commu-
nity Consortium whitepaper on body-worn cameras released by a panel of computer
vision experts and law enforcement personnel recommends increased research fund-
ing for technology development [17]. Figure 2.2 shows the idea of innovative police
body-worn cameras that recognize their environment. Specifically, advanced face
detection and facial recognition technologies, which are robust to challenging fac-
tors such as variable illumination conditions, may be applied for suspect detection in
video to improve public safety and well-being of communities. The state-of-the-art
image indexing and video retrieval methods should be utilized for searching, index-
ing, and triaging the large amount of video data in order to meet various criminal
justice needs, such as forensic capabilities and the freedom of information act (FOIA)
services.

This chapter reviews some representative learning and recognition methods that
have broad applications in intelligent image search and video retrieval. We first
discuss some popular deep learning methods, such as the feedforward deep neural



2 Learning and Recognition Methods for Image Search and Video Retrieval 23

ff Public Safety and Well-being " : - >
( e Commiinities ( Forensic Analysis, FOIA Services
4
Suspect Detection ]¢ Facial Recognition l- Poli = Indexing, Retrieval H Search, Triaging ‘
olice
Policing, Race, Minor, Race Automated Event Summarization,
‘ Justice H Detection }"’ Body-worn -» Detection Transmission
Cameras PTENI o .
[ Police Safety H Weapon Detection }¢ 59"3:;:;}-:;3“
- - L q
k O‘I"F icer Safety and Wellness ) ( Privacy Concerns, Privacy Protection J

Fig. 2.2 Innovative police body-worn cameras that recognize their environment

networks [35, 49], the deep autoencoders [2, 81], the convolutional neural networks
[23], and the Deep Boltzmann Machine (DBM) [22, 61]. We then discuss one of the
popular machine learning methods, namely, Support Vector Machine (SVM) [77].
Specifically we review the linear support vector machine [78], the soft-margin sup-
port vector machine [78], the non-linear support vector machine [77], the simplified
support vector machine [11, 54], the efficient Support Vector Machine (eSVM) [13,
14], and the applications of SVM to image search and video retrieval [25, 37, 52,
62, 75, 87]. We finally briefly review some other popular kernel methods and new
similarity measures [40, 41, 44].

2.2 Deep Learning Networks and Models

Deep artificial neural network is an emerging research area in computer vision and
machine learning and has gained increasing attention in recent years. With the advent
of big data, the need for efficient learning methods to process an enormous number
of images and videos for different kinds of visual applications has greatly increased.
The task of image classification is a fundamental and important computer vision and
machine learning problem wherein after learning a model based on a set of training
and validation data, the labels for the test data have to be predicted. Image classifi-
cation is a challenging problem as there can be many variations in the background
noise, illumination conditions, as well as multiple poses, distortions and occlusions
in the image. In recent years, different deep learning methods such as the feedfor-
ward deep neural networks [35, 49], the deep autoencoders [2, 81], the convolutional
neural networks [23], and the Deep Boltzmann Machine (DBM) [22, 61], have been
shown to achieve good performance for image classification problems. One possible
reason for the feasibility of the deep learning methods is due to the discovery of
multiple levels of representation within an image that leads to a better understanding
of the semantics of the image.
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2.2.1 Feedforward Deep Neural Networks

In this section, we discuss the architecture, the different layers, and some widely
used activation functions in the feedforward deep neural networks. A feedforward
deep neural network can be considered as an ensemble of many units that acts as a
parametric function with many inputs and outputs to learn important features from
the input image. Feedforward deep neural networks are also called multilayer per-
ceptrons [59] and typically contain many hidden layers. Figure 2.3 shows the general
architecture of a deep feedforward neural network with N hidden layers. Now let’s
consider a feedforward network with one hidden layer. Let the input layer be denoted
as I, the output layer as O, the hidden layer as H, and the weight vector for con-
nections from the input layer to the hidden layer as W;. Therefore, the hidden unit
vector can be computed as H = f (WITI + by), where by is the bias vector for the
hidden layer and f(.) is the activation function. Similarly, the output vector can be
computed as O = f (WZT H + b,), where W, is the weight matrix for connections
from the hidden layer to the output layer and b is the bias vector for the output layer.

The feedforward deep neural network can be optimized with many different opti-
mization procedures but a common approach is to use momentum based stochastic
gradient descent. An activation function takes in an input and performs some mathe-
matical operation so that the output lies within some desired range. We next discuss
some activation functions that are commonly used in the literature for deep neural
networks. The rectified linear unit (ReLU) is the most popular activation function
used for deep neural networks. It acts as a function that thresholds the input value
at zero and has the mathematical form g(y) = max(0, y). Some advantages of the
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Fig. 2.3 The general architecture of feedforward deep neural networks
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ReLU include that it helps the stochastic gradient descent process to converge faster
[35] and can be implemented as a lightweight operation. Many different variants of
the ReLU have been proposed to improve upon the ReLU. A leaky ReLU was propose
by Maas et al. [49] wherein the function would never become zero but will be equal
to a small constant. The leaky ReLU has the form f(y) = max(0, y) + ¢ min(0, y),
where c is a small constant. Another variant known as the PReLLU was proposed by He
et al. [27] which considers c as a parameter learned during the training process. The
sigmoid activation function produces an output in the range between 0 and 1 and has
the form o (y) = 1/(1 4+ e™Y). Some issues with the sigmoid activation function are
that the output produced is not centered and it reduces the gradient to zero. The tanh
activation function has the mathematical form tanh(y) = 20 (2y) — 1 and is a scaled
version of the sigmoid activation function. It produces a centered output between — 1
and 1, and overcomes the disadvantage of the sigmoid activation function.

2.2.2 Deep Autoencoders

The autoencoders are based on an unsupervised learning algorithm to develop an
output representation that is similar to the input representation with the objective of
minimizing the loss of information. Figure 2.4 shows the general architecture of a
deep autoencoder where encoding takes place to transform the input vector into a
compressed representation and decoding tries to reconstruct the original represen-
tation with minimum distortion [2, 81]. Let I be the set of training vectors, and the
autoencoder problem may be formulated as follows: finding {W, W, by, b, } from
H= f(W/I+b;) and O = (W) H + by), such that O and I are similar with the
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Fig. 2.4 The general architecture of a deep autoencoder



26 A. Puthenputhussery et al.

minimum loss of information. A popular optimization procedure used for solving the
autoencoders is the back propagation method for computing the gradient weights.

Different variants of autoencoders have been proposed so as to make them suitable
for different applications. A sparse deep autoencoder [21, 57] integrates a sparsity
criterion into the objective function to learn feature representation from images.
Another variant is a denoising autoencoder [5] that is trained to reconstruct the
correct output representation from a corrupted input data point. Deep autoencoders
have been extensively applied for dimensionality reduction and manifold learning
with applications to different visual classification tasks [21, 57].

2.2.3 Convolutional Neural Networks (CNNs)

In this section, we discuss the different layers, the formation of different layer blocks
in a Convolutional Neural Network (CNN) [23] and some state-of-the-art CNNs [28,
35, 68, 70, 88] for the ImageNet challenge. A CNN is similar to a regular neural
network but is more specifically designed for images as input and uses a convolution
operation instead of a matrix multiplication. The most common layers in a CNN
are the input layer, the convolution layer, the rectified linear unit (ReLU) layer,
the pooling layer, and a fully connected layer. The convolution layer computes the
dot product between the weights and a small region connected to the input image,
whereas the ReLLU layer performs the elementwise activation using the function
f(y) = max(0, y). The pooling layer is used to reduce the spatial dimensions as we
go deeper into the CNN, and finally the fully connected layer computes the class score
for every class label of the dataset. An example of a convolutional neural network
architecture is shown in Fig.2.5 that contains two convolutional and pooling layers
followed by an ReLU layer and a fully connected layer.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [60] is a
challenging and popular image database having more than a million train images
and 100,000 test images. Table2.1 shows the performance of different CNNs on
the ImageNet dataset for the ILSVRC challenge. The AlexNet was the first CNN
that won the ILSVRC 2012 challenge and was a network with five convolutional
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Fig. 2.5 An example of a convolutional neural network (CNN) architecture
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Table 2.1 The top 5 error in the classification task using the ImageNet dataset

No. CNN Top 5 error (%)
1 AlexNet [35] 16.40
2 ZFNet [88] 11.70
3 VGG Net [68] 7.30
4 GoogLeNet [70] 6.70
5 ResNet [28] 3.57

layers, five max-pooling layers and three fully-connected layers. The ZFNet was
then developed that improved the AlexNet by fine-tuning the architecture of the
AlexNet. The ILSVRC 2014 challenge winner was the GoogleNet which used an
inception module to remove a large number of parameters from the network for
improved efficiency. The current state-of-the-art CNN and the winner of ILSVRC
2015 is the ResNet which introduces the concept of residual net with skip connections
and batch normalization with 152 layers in the architecture.

2.2.4 Deep Boltzmann Machine (DBM)

A Deep Boltzmann Machine (DBM) [22, 23, 61] is a type of generative model where
the variables with each layer depend on each other conditioned on the neighbour-
ing variables. A DBM is a probablistic graph model containing stacked layers of a
Restricted Boltzmann Machine (RBM) where the connections between all the layers
are undirected. For a DBM with a visible layer v, three hidden layers hy, h, and h;3,
weight matrices Wi, W, and W3, and the partition function Z, the joint probability
is given as follows [61]:

1
PM= > ~ exp[v! Wih; + h;"Wsh, + hy,” Wihs]
hy, hy, hs

The pre-training for a DBM must be initialized from stacked restricted Boltzmann
machines or RBMs, and a discriminative fine tuning is performed using the error back
propagation algorithm. A DBM derives a high level representation from the unlabeled
data while the labeled data is only used to slightly fine-tune the data. Experimental
results on several visual recognition datasets show that the DBM achieves better
performance than some other learning methods [22, 61].

2.3 Support Vector Machines

Support Vector Machine (SVM) is one of the popular machine learning methods.
The fundamental idea behind SVM is a novel statistical learning theory that was
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proposed by Vapnik [77]. Unlike traditional methods such as Neural Networks which
are based on the empirical risk minimization (ERM), SVM was based on the VC
dimension and the structural risk minimization (SRM) [77]. Since its introduction,
SVM has been applied to a number of applications ranging from text detection and
categorization [32, 67], handwritten character and digit recognition [73], speech ver-
ification and recognition [48], face detection and recognition [72], to object detection
and recognition [53].

Though SVM achieves better generalization performance compared with many
other machine learning technologies, when solving large-scale and complicated prob-
lems, the learning process of SVM tends to define a complex decision model due to
the increasing number of support vectors. As a result, SVM becomes less efficient
due to the expensive computation cost, which involves the inner product computation
for a linear SVM and the kernel computation for a kernel SVM for all the support
vectors. Many new SVM approaches have been proposed to address the inefficiency
problem (i.e. the large number of support vectors) of the conventional SVM [8, 11,
15, 36, 38, 54, 58, 65]. We will discuss these approaches in Sect.2.3.4 and present
a new efficient Support Vector Machine (eSVM) in Sect.2.3.5 [12-14].

2.3.1 Linear Support Vector Machine

To introduce the linear SVM we will start with outlining the application of SVM to
the simplest case of binary classification that is linearly separable. Let the training
setbe {(x1, y1), (X2, ¥2), ..., (X;, ¥}, where x; € R", y; € {—1, 1} indicate the two
different classes, and [ is the number of the training samples. An n dimensional
hyperplane that can completely separate the samples may be defined as:

WX +b=0 2.1)

This hyperplane is defined such that w'x + b > +1 for the positive samples and
w'x + b < —1 for the negative samples. As mentioned above, SVM searches the
optimal separating hyperplane by maximizing the geometric margin. This margin
can be maximized as follows:

min Jw'w,
w.b 2.2)
subject to y;(W'x; +b)>1, i =1,2,...,1

The Lagrangian theory and the Kuhn-Tucker theory are then applied to optimize
the functional in Eq. 2.2 with inequality constraints [78]. The optimization process
leads to the following quadratic convex programming problem:
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] ]
1
max >, o — 3 > 0l yiyiXiX;
i=1 ij=1

i 2.3
subject to Y yia; =0, @

i=1
o >0,i=1,2,...1

From the Lagrangian theory and the Kuhn-Tucker theory, we also have:

!
W= Zyiaixi = z Vit X (2.4)
i=1

ieSV

where SV is the set of Support Vectors (SVs), which are the training samples with
nonzero coefficients «;. The decision function of the SVM is therefore derived as
follows:

f(x) =sign(wx+b) = sign(z Vi X;X + b) (2.5)
ieSV

2.3.2 Soft-Margin Support Vector Machine

In applications with real data, the two classes are usually not completely linearly
separable. The soft-margin SVM was then proposed with a tolerance of misclassifi-
cation error [78]. The fundamental idea of the soft-margin SVM is to maximize the
margin of the separating hyperplane while minimizing a quantity proportional to the
misclassification errors. To do this, the soft-margin SVM introduces the slack vari-
ables & > 0 and a regularizing parameter C > 0. The soft-margin SVM is defined
as follows: 1

min Jw'w+C > &,

. Wb i=1 (2.6)
subject to y;(W'x; +b) > 1 —§&; ,
&E=>0, i=12,...,L

Using the Lagrangian theory, its quadratic convex programming program is defined
as follows: 1 Z
maaXZa,- — % Z Oli(ijiijin
i=1 i,j=1
! 2.7
subject to Y yia; =0, @7
i=1

O0<o; <C,i=12...1

From Eq.2.6 we can observe that the standard SVM is defined on the trade-off
!
between the least number of misclassified samples (min C Y &;) and the maximum
i i=1
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margin (mi}gl %wf w) of the separating hyperplane. The decision function of the soft-

margin SVM is the same with the linear SVM.

2.3.3 Non-linear Support Vector Machine

The linear SVM and the soft-margin SVM are generally not suitable for complex
classification problems which are completely inseparable. Non-linear Support Vector
Machine solves the non-linear classification by mapping the data from the input
space into a high dimensional feature space using a non-linear transformation @ :
x; = ¢(x;). Cover’s theorem states that if the transformation is nonlinear and the
dimensionality of the feature space is high enough, then the input space may be
transformed into a new feature space where the data are linearly separable with
high probability [77]. This nonlinear transformation is performed in an implicit way
through kernel functions [77].
Specifically, the non-linear SVM is defined as follows:

i

min %W’W+C > &,

. =l (2.8)
subject to y;(Wo(x;)) +b) > 1§,

& >0, i=1,2,...,1.

Its corresponding quadratic convex programming program is as follows:

I !
mj‘XZO‘i — 1 > aiajyiy; K(xi, X))
i=1 ij=1
! 2.9
subject to Y yia; =0, 29
i=1
O<og;<C,i=1,2,...1

where K (X;, X;) = ¢ (X;)'¢(x;) is the kernel function. The decision function of the
non-linear SVM is defined as follows:

f) =sign(D yioi K (%, %) +b) (2.10)

ieSV

Typically, there are three types of kernel functions, namely, the polynomial kernel
functions, the Gaussian kernel functions, and the Sigmoid functions (though strictly
speaking, the Sigmoid functions are not kernel functions).

1. Polynomial: K (x;, x;) = (x!x; + 1)¢
2. Gaussian: K (x;,Xx;) = exp(—%

3. Sigmoid: K (x;, X;) = tanh(Box!x; + Bi)



2 Learning and Recognition Methods for Image Search and Video Retrieval 31

2.3.4 Simplified Support Vector Machines

Although SVM exhibits many theoretical and practical advantages like good gener-
alization performance, the decision function of SVM involves a kernel computation
with all Support Vectors (SVs) and thus leads to a slow testing speed. This situation
becomes even worse when SVM is applied to large-scale and complicated problems
like image search and video retrieval. The decision function becomes over complex
due to the large number of SVs and the testing speed is extremely slow because of
the expensive kernel computation cost. To address this problem, much research has
been carried out to simplify the SVM model and some simplified SVMs have been
proposed. In this section, we will first thoroughly analyze the structure and distrib-
ution of SVs in the traditional SVM as well as its impact on the computation cost
and generalization performance. We will then review some representative simplified
SVMs.

Previous research shows that the complexity of a classification model depends
on the size of its parameters [1]. A simple model can generate a fast system but
has poor accuracy. In contrast, a complex model can reach a higher classification
accuracy on the training data but will lead to lower efficiency and poor generalization
performance.

From Eq.2.10, it is observed that the complexity of SVM model depends on the
size of SVs, which are defined as a subset of training samples whose corresponding
a; is not equal to zero. According to the Karush-Kuhn-Tucker (KKT) conditions,
the optimization problem of the standard SVM defined in Eq. 2.4 should satisfy the
following equation:

ailyi(@ex)+b)—14+&1=0,i=1,2,...1 (2.11)

where «; # 0 when y; (0'¢(x) + b) — 1 + & = 0. Because of the flexibility of the
parameter &;, the probability that y;(@'¢ (x) + b) — 1 + & = 0 holds is very high,
and thus ¢; is more likely to get a nonzero value. More specifically, in Eq.2.11,
SVs are those samples between and on the two separating hyperplanes o’ (x) +
b= —1and o'¢(x) + b = 1 (Fig.2.6). For a complicated large-scale classification
problem, since many misclassified samples exist between these two hyperplanes
during training, the size of SVs will be very large and thus an over complex decision
model will be generated.

As we mentioned above, the primary impact of an over complex model is on
its computation efficiency. From Eq.2.10, it is observed that the decision func-
tion of SVM involves a kernel computation with all SVs. Therefore, the compu-
tational complexity of SVM is proportional to the number of SVs. An over complex
model contains a large number of SVs and thus its computational cost becomes very
expensive. This will lead to a slower classification speed that restricts the applica-
tion of SVM to real-time applications. Another potential harm of an over complex
SVM model is to reduce its generalization performance. SVM is well known for its
good generalization performance. Unlike the techniques such as the Artificial Neural
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Fig. 2.6 SVM in 2D space @-x+b=1
(Red circles represent
support vectors)

Networks (ANNG5) that are based on the Empirical Risk Minimization (ERM) prin-
ciple, SVM is based on the Structural Risk Minimization (SRM) principle [77]. the
SRM principle empowers SVM with good generalization performance by keeping a
balance between seeking the best classifier using the training data and avoiding over-
fitting during the learning process. However, an over complex model is likely to break
this balance and increases the risk of overfitting and thus reduces its generalization
performance.

Burges [8] proposed a method that computes an approximation to the decision
function in terms of a reduced set of vectors to reduce the computational complexity
of the decision function by a factor of ten. The method was then applied to handwrit-
ten digits recognition [65] and face detection [58]. However, this method not only
reduces the classification accuracy but also slows down the training speed due to the
higher computational cost for the optimal approximation. A Reduced Support Vector
Machine (RSVM) was then proposed as an alternative to the standard SVM [36, 38].
A nonlinear kernel was generated based on a separating surface (decision function)
by solving a smaller optimization problem using a subset of the training samples.
The RSVM successfully reduced the model’s complexity but it also decreased the
classification rate. Furthermore, a new SVM, named v-SVM, was proposed [15].
The relationship among the parameter v, the number of support vectors, and the
classification error was thoroughly discussed. However, this method would reduce
the generalization performance when the parameter v is too small. Other simplified
support vector machine models are introduced in [11, 54]. To summarize, most of
these simplified SVMs are able to reduce the computational cost but often at the
expense of accuracy.
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2.3.5 Efficient Support Vector Machine

‘We now introduce an efficient Support Vector Machine (eSVM), which significantly
improves the computational efficiency of the traditional SVM without sacrificing
its generalization performance [13]. The eSVM has been successfully applied to
eye detection [14]. Motivated by the above analysis that it is the flexibility of the
parameter £; that leads to the large number of support vectors, the eSVM implements
the second optimization of Eq. 2.8 as follows:

mg%%a)’a)—}—Cé,
subject to yi(0'¢p(x;))+b)>1,i€V —-MV (2.12)
Vi) +b)=1-&,ieMV,E>0

where M is the set of the misclassified samples in the traditional SVM and V is the
set of all training samples. Its dual quadratic convex programming problem is:

max > o; — & > oo vy K (x, x;)

* jev i,jev
subject to Y yia; =0, ( > ai) <cC, (2.13)

ieV ieMV
o >0,ieV

Note that instead of the flexibility of the slack variables in Eq.2.8, we set these
slack variables to a fixed value in Eq.2.12. Now the new KKT conditions of Eq.2.12
become:

a,[y,(w’¢(x)+b)—1]:0, ieV-MV (2.14)
o[yi(@opx)+b)—1+£]1=0,ie MV ’

According to Eq.2.14, @; # 0 when y;(0'¢(x) +b) —1=0,i € V— MV or
yi(@¢(x)+b)—14+&=0,i € MV. The support vectors are those samples on
the two separating hyperplanes w’'¢ (x) + b = —1 and ' ¢ (x) + b = 1 and the mis-
classified samples farthest away from the hyperplanes (Fig.2.7). As a result, the
number of support vectors is much less than those defined by Eq.2.11.

Compared with the traditional SVM, which is defined on the trade-off between the
!
least number of the misclassified samples (min C >’ &;) and the maximum margin
S =l

(mil? %a)’ w) of the two separating hyperplanes, the eSVM is defined on the trade-

off between the minimum margin of the misclassified samples (méin C£) and the

maximum margin (mi;l %a)’ o) between the two separating hyperplanes. For compli-
w,

cated classification problems, the traditional SVM builds up a complex SVM model
in pursuit of the least number of misclassified samples to some extend. Accord-
ing to SRT, it will increase the risk of overfitting on the training samples and thus
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Fig. 2.7 eSVM in 2D space (Red circles represent support vectors)

reduces its generalization performance. The eSVM pursues the minimal margin of
misclassified samples and its decision function is more concise. Therefore, the eSVM
can be expected to achieve higher classification accuracy than the traditional SVM.

2.3.6 Applications of SVM

This section presents a survey of the applications of SVM to image search and video
retrieval. Rapidly increasing use of smart phones and significantly reduced storage
cost have resulted in the explosive growth of digital images and videos over the
internet. As a result, image or video based search engines are in an urgent demand
to find similar images or videos from a huge image or video database. Over the last
decade many learning based image search and video retrieval techniques have been
presented. Among them SVM as a powerful learning tool is widely used.

Chang and Tong [75] presented an image search method using a so called sup-
port vector machine active learning (SV M active). SV M scrive cOmbines active learn-
ing with support vector machine. Intuitively, SV M 4.iy. Works by combining three
ideas: (1) SV M 4.ive regards the task of learning a target concept as one of learning
an SVM binary classifier. An SVM captures the query concept by separating the
relevant images from irrelevant ones with a hyperplane in a projected space, usually
a very high-dimensional one. The projected points on one side of the hyperplane are
considered relevant to the query concept and the rest irrelevant; (2) SV M 4.+ive learns
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the classifier quickly via active learning. The active part of SV M4y Selects the
most informative instances with which to train the SVM classifier. This step ensures
fast convergence to the query concept in a small number of feedback rounds; (3) once
the classifier is trained, SV M 4.y returns the top-k most relevant images. These are
the k images farthest from the hyperplane on the query concept side. SV M 4c/ive
needs at least one positive and one negative example to start its learning process.
Two seeding methods were also presented: one by MEGA and one by keywords. To
make both concept-learning and image retrieval efficient, a multi-resolution image-
feature extractor and a high-dimensional indexer were also applied. Experiments ran
on three real-world image data sets that were collected from Corel Image CDs and the
internet (http://www.yestart.com/pic/). Those three data sets contain a four-category,
aten-category, and a fifteen-category image sets, respectively. Each category consists
of 100-150 images. Experimental results show that SV M 4.4, achieves significantly
higher search accuracy than the traditional query refinement schemes.

Guo et al. [25] presented a novel metric to rank the similarity for texture image
search. This metric was named distance from boundary (DFB), in which the boundary
is obtained by SVM. In conventional texture image retrieval, the Euclidean or the
Mahalanobis distances between the images in the database and the query image are
calculated and used for ranking. The smaller the distance, the more similar the pattern
to the query. But this kind of metric has some limitations: (1) the retrieval results
corresponding to different queries may be much different although they are visually
similar; (2) the retrieval performance is sensitive to the sample topology; (3) the
retrieval accuracy is low. The basic idea of the DFB is to learn a non-linear boundary
that separates the similar images with the query image from the remaining ones. SVM
is applied to learn this non-linear boundary due to its generalization performance.
Compared with the traditional similarity measure based ranking, the DFB method
has three advantages: (1) the retrieval performance is relatively insensitive to the
sample distribution; (2) the same results can be obtained with respect to different
(but visually similar) queries; (3) the retrieval accuracy is improved compared with
traditional methods. Experiments on the Brodatz texture image database [7] with 112
texture classes show the effectiveness of the DFB method.

Recently the interactive learning mechanism was introduced to image search.
The interactive learning involves a relevance feedback (RF) that is given by users to
indicate which images they think are relevant to the query. Zhang et al. [89] presented
an SVM based relevance feedback for image search. Specifically, during the process
of relevance feedback, users can mark an image as either relevant or irrelevant.
Given the top Ngp images in the result as the training data, a binary classifier can
be learned using an SVM to properly represent the user’s query. An SVM is chosen
here due to its generalization performance. Using this binary classifier, other images
can be classified into either the relevance class or the irrelevance class in terms of
the distance from each image to the separating hyperplane. Obviously, in the first
learning iteration, both marked relevant samples and unmarked irrelevant samples are
all close to the query. Such samples are very suitable to construct the SVM classifier
because support vectors are just those that lie on the separating margin while other
samples far away from the hyperplane will contribute nothing to the classifier. In
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the following iterations, more relevant samples fed back by users can be used to
refine the classifier. Experiments were performed on a database that consists of 9,918
images from the Corel Photo CD (http://www.yestart.com/pic/). Five iterations were
carried out to refine the SVM classifier, with each iteration allowing users to mark
top 100 (Ngr = 100) images as feedback. A Gaussian kernel was chosen for the
SVM. Experimental results show that both the recall rate and the precision rate are
improved as the learning iteration progresses, and finally it reaches a satisfactory
performance.

Hong et al. [31] presented a method that utilized SVM to update the preference
weights (through the RF) that are used to evaluate the similarity between the rele-
vant images. The similarity between two images — the query image and the searched
image—is defined by summing the distances of individual features with fixed pref-
erence weights. The weights can be updated through the RF to reach better search
performance. In [31], SVM was applied to perform non-linear classification on the
positive and negative feedbacks through the RF. The SVM learning results are then
utilized to automatically update the preference weights. Specifically, once the SVM
separating hyperplane was trained, the distance between a feedback sample and the
separating hyperplane indicates that how much this sample belonging to the assigned
class is differentiated from the non-assigned one. In other words, the farther the pos-
itive sample feedbacks from the hyperplane, the more distinguishable they are from
the negative samples. Therefore, those samples should be assigned a larger weight
compared with other samples. In [31], the preference weight is set linearly propor-
tional to the distance between the sample and the separating hyperplane. Experiments
were performed on the COREL dataset (http://www.yestart.com/pic/), which con-
tains 17,000 images. A polynomial kernel function with d = 1 was used for the SVM
learning. The preference weights were normalized to the range [10, 100]. Experi-
mental results show improved accuracy over other RF based methods.

Li et al. [37] presented a multitraining support vector machine (MTSVM) to fur-
ther improve the SVM based RF for image retrieval. The MTSVM is based on the
observation that (1) the success of the co-training model augments the labeled exam-
ples with unlabeled examples in information retrieval; (2) the advances in the random
subspace method overcomes the small sample size problem. With the incorporation
of the SVM and the multitraining model, the unlabeled examples can generate new
informative training examples for which the predicted labels become more accu-
rate. Therefore, the MTSVM method can work well in practical situations. In the
MTSVM learning model, the majority voting rule (MVR) [34] was chosen as the
similarity measure in combining individual classifiers since every single classifier
has its own distinctive ability to classify relevant and irrelevant samples. Experiments
were carried out upon a subset of images from the Corel Photo Gallery (http://www.
yestart.com/pic/). This subset consists of about 20,000 images of very diverse subject
matters for which each image was manually labeled with one of the 90 concepts. Ini-
tially, 500 queries were randomly selected, and the program autonomously performs
a RF with the top five most relevant images (i.e., images with the same concept as
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the query) marked as positive feedback samples within the top 40 images. The five
negative feedback samples are marked in a similar fashion. The procedure is chosen
to replicate a common working situation where a user would not label many images
for each feedback iteration. Experimental results shown that MTSVM consistently
improved the performance over conventional SVM-based RFs in terms of precision
and standard deviation.

With the observation of the success application of RF and SVM to image retrieval,
Yazdi et al. [87] applied RF and SVM to video retrieval. The proposed method con-
sists of two major steps: key frame extraction and video shot retrieval. A new frame
extraction method was presented using a hierarchical approach based on clustering.
Using this method, the most representative key frame was then selected for each
video shot. The video retrieval was based on an SVM based RF that was capable
of combining both low-level features and high-level concepts. The low-level fea-
tures are the visual image features such as color and texture, while the high-level
concepts are the user’s feedback through RF. The video database was finally classi-
fied into groups of relevant and irrelevant using this SVM classifier. The proposed
method was validated on a video database with 800 shots from Trecvid2001 (http://
www.open-video.org) and home videos. The video shots database includes airplanes,
jungles, rivers, mountains, wild life, basketball, roads, etc. A total of 100 random
queries were selected and judgements on the relevance of each shot to each query
shot were evaluated. Different kernels for SVM-based learning in RF module were
used. Experimental results show that SVM with the Gaussian function as kernel
has better performance than the linear or polynomial kernel. The final experimental
results show the improved performance after only a few RF iterations.

More applications of SVM to image search and video retrieval can be found in
[10, 30, 52, 62, 71, 86].

2.4 Other Popular Kernel Methods and Similarity
Measures

Kernel methods stress the nonlinear mapping from an input space to a high-
dimensional feature space [18, 29, 63, 66]. The theoretical foundation for implement-
ing such a nonlinear mapping is the Cover’s theorem on the separability of patterns:
“A complex pattern-classification problem cast in a high-dimensional space nonlin-
early is more likely to be linearly separable than in a low-dimensional space” [26].
Support Vector Machine (SVM) [18, 78], which defines an optimal hyperplane with
maximal margin between the patterns of two classes in the feature space mapped non-
linearly from the input space, is a kernel method. Kernel methods have been shown
more effective than the linear methods for image classification [3, 16, 50, 64]. Being
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linear in the feature space, but nonlinear in the input space, kernel methods thus
are capable of encoding the nonlinear interactions among patterns. Representative
kernel methods, such as kernel PCA [64] and kernel FLD [3, 16, 50], overcome
many limitations of the corresponding linear methods by nonlinearly mapping the
input space to a high-dimensional feature space. Scholkopf et al. [64] showed that
kernel PCA outperforms PCA using an adequate non-linear representation of input
data. Yang et al. [85] compared face recognition performance using kernel PCA and
the Eigenfaces method. The empirical results showed that the kernel PCA method
with a cubic polynomial kernel achieved the lowest error rate. Moghaddam [51]
demonstrated that kernel PCA with Gaussian kernels performed better than PCA for
face recognition. Some representative kernel methods include kernel discriminant
analysis [56, 84], kernel-based LDA [47], localized kernel eigenspaces [24], sparse
kernel feature extraction [19], and multiple kernel learning algorithm [79, 80, 82].

Further research shows that new kernel methods with unconventional kernel mod-
els are able to improve pattern recognition performance [40]. One such kernel method
is the multi-class Kernel Fisher Analysis (KFA) method [40]. The KFA method
extends the two-class kernel Fisher methods [16, 50] by addressing multi-class pat-
tern recognition problems, and it improves upon the traditional Generalized Discrim-
inant Analysis (GDA) method [3] by deriving a unique solution. As no theoretical
guideline is available in choosing a right kernel function for a particular application
and the flexibility of kernel functions is restricted by the Mercer’s conditions, one
should investigate new kernel functions and new kernel models for improving the
discriminatory power of kernel methods. The fractional power polynomial models
have been shown to be able to improve image classification performance when inte-
grated with new kernel methods [39, 40]. A fractional power polynomial, however,
does not necessarily define a kernel function, as it might not define a positive semi-
definite Gram matrix. Hence, a fractional power polynomial is called a model rather
than a kernel function.

Similarity measures play an essential role in determining the performance of
different learning and recognition methods [9, 43, 44, 46, 74]. Some image classi-
fication methods, such as the Eigenfaces method [33, 76], often apply the whitened
cosine similarity measure for achieving good classification performance [6, 55].
Other methods, such as the Fisherfaces method [4, 20, 69], however, often utilize
the cosine similarity measure for improving image classification performance [45,
46]. Further research reveals why the whitened cosine similarity measure achieves
good image classification performance for the Principal Component Analysis (PCA)
based methods [41, 42]. In addition, new similarity measures, such as the PRM
Whitened Cosine (PWC) similarity measure and the Within-class Whitened Cosine
(WWC) similarity measure, for further improving image classification performance
have been presented [41]. The reason why the cosine similarity measure boosts the
image classification performance for the discriminant analysis based methods has
been discovered due to its theoretical roots in the Bayes decision rule for minimum
error [44]. Furthermore, some inherent challenges of the cosine similarity, such as
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its inadequacy in addressing distance and angular measures, have been investigated.
And finally a new similarity measure, which overcomes the inherent challenges by
integrating the absolute value of the angular measure and the /, norm of the distance
measure, is presented for further enhancing image classification performance [44].

2.5 Conclusion

‘We have reviewed in this chapter some representative learning and recognition meth-
ods that have broad applications in intelligent image search and video retrieval. In
particular, we first discuss some popular deep learning methods, such as the feed-
forward deep neural networks [35, 49], the deep autoencoders [2, 81], the convolu-
tional neural networks [23], and the Deep Boltzmann Machine (DBM) [22, 61]. We
then discuss one of the popular machine learning methods, namely, Support Vector
Machine (SVM) [77]. Specifically we review the linear support vector machine [78],
the soft-margin support vector machine [78], the non-linear support vector machine
[77], the simplified support vector machine [11, 54], the efficient Support Vector
Machine (eSVM) [13, 14], and the applications of SVM to image search and video
retrieval [25, 37, 52, 62, 75, 87]. We finally briefly review some other popular kernel
methods and new similarity measures [40, 41, 44].
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