
Chapter 2
Conventional SAR imaging

In this chapter, we explain the fundamental principles of SAR data collection and
image formation, i.e., inversion of the received data. Synthetic aperture radar uses
microwaves for imaging the surface of the Earth from airplanes or satellites. Unlike
photography, which generates the picture by essentially recoding the intensity of the
light reflected off the different parts of the target, SAR imaging exploits the phase
information of the interrogating signals and as such can be categorized as a coherent
imaging technology.

To actually obtain the image of an area on the surface of the Earth (the target), a
synthetic aperture radar illuminates it with a series of electromagnetic pulses. To do
so, the radar antenna is mounted on an airplane or a satellite (called the platform),
and the interrogating pulses are emitted by the antenna at different times and lo-
cations as it moves along the flight trajectory. Then, the pulses are reflected off the
Earth’s surface, and the resulting reflected field, which carries the information about
the target, is received by the same antenna (monostatic SAR) or a different antenna
(bistatic SAR). These received signals represent the raw data. To derive the desired
characteristic(s) of the target from the raw data, i.e., to perform the data inversion
and create the image, each received signal is first processed by the matched filter.
This is a mathematical operation that can be thought of as a certain transformation
of the data with the parameters that match those of the received signal in a particu-
lar way. Then, the contributions from a series of individual signals are summed up,
which amounts to creating a synthetic aperture. This is a key step that creates the
image.

The important mathematical concepts associated with SAR imaging include the
imaged quantity, the imaging kernel or imaging operator, and the image itself. The
imaged quantity is a certain measurable characteristic of the target that we will here-
after interpret as a function � D �.z /, where z is the vector of spatial coordinates
on the target. In the SAR literature, �.z / is often referred to as the ground reflectiv-
ity function, see, e.g., [86]. The image I D I.y / is another function of the spatial
coordinates denoted by y in this instance. The relation between the two functions
�.z / and I.y / is rendered by the imaging operator.
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20 2 Conventional SAR imaging

A mathematical theory that describes the formation of SAR images and provides
means for their quantitative analysis is known as the SAR ambiguity theory, see
[9, 75, 86]. In this theory, the image is represented as a convolution of the ground
reflectivity �.z / with the imaging kernel W.y ; z / D W.y � z / that characterizes
the radar system:

I.y / D
Z
�.z /W.y ; z /dz : (2.1)

Formula (2.1) defines the imaging operator as linear. It allows for a rigorous math-
ematical analysis of the image properties, in particular, its resolution, i.e., the
capability to distinguish between the closely located point targets. Indeed, in the
ideal case, where W.y ; z / D ı.y � z /, the imaging operator becomes an iden-
tity and the image I.y / coincides with the unknown ground reflectivity �.z /. In
more realistic situations though, the kernel W.y ; z /, which is often referred to as
the generalized ambiguity function (GAF), is never equal to the ı-function. Hence,
the imperfections of the image can be unambiguously attributed to the properties of
the kernel and as such, to those of the imaging system.

In the rest of this chapter we will derive and analyze the expression for the imag-
ing kernel W.y ; z / and justify formula (2.1). Representation (2.1) will allow us to
see, in particular, how the parameters of the imaging system affect the final quality
of the image, because those parameters get incorporated into the kernel W.y ; z /.
They include the carrier frequency, the shape and repetition frequency of the inter-
rogating pulses, the shape of the flight trajectory, as well as the direction and shape
of the propagating radar beam that are partially determined by the characteristics of
the antenna.

For the analysis in this chapter, we will employ the start-stop approximation that
considers the antenna motionless when each interrogating pulse is emitted and the
scattered response is received, after which the antenna moves to the next sending/re-
ceiving position along its trajectory. The analysis of the start-stop approximation is
provided in Chapter 6. The additional assumptions that we make in this chapter in-
clude:

• The interrogating field is considered scalar and no polarization is taken into ac-
count. The discussion that involves the actual vector electromagnetic fields and
their polarization is deferred until Chapters 5, 7, and 8. In this chapter, the scalar
interrogating field can be thought of as a given component of the true vector
electric field.

• The platform trajectory is taken as a straight line, which is good approximation
for a short stretch of the satellite orbit. The direction of the antenna beam has a
fixed angle with respect to the flight direction, which means that the beam foot-
print sweeps a strip, or swath, on the Earth’s surface parallel to the orbit as the
antenna moves. Once combined with the processing by means of a matched filter,
this scenario is known as the stripmap SAR imaging. If, in addition, the direc-
tion of the beam is normal to the platform trajectory, then we have a broadside
stripmap imaging.
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• The scattering of radar signals off the target is linearized via the first Born ap-
proximation. The deficiencies of this approach are outlined in Section 2.7. The
remedy is proposed in Chapter 7.

• The target is thought of as deterministic and dispersionless. In reality, dispersion
of the target may be very significant, and we identify its analysis in the context
of transionospheric SAR imaging as one of the important directions for future
study, see Chapter 9.

• Only standard non-interferometric SAR imaging is considered. The properties of
the imaged terrain may vary along the flight trajectory (the azimuthal direction)
and across the flight trajectory (the range direction). No terrain elevation is taken
into account.

These assumptions will be delineated on as the exposition of the material unfolds.
Other assumptions will be introduced and explained as needed.

2.1 Propagation and scattering of radar signals

In the framework of the conventional SAR ambiguity theory, see [9, 75, 86], the
radar signals are interpreted as scalar quantities. Their propagation in free space is
governed by the d’Alembert (or wave) equation:

� 1
c2
@2

@t2
��

�
u D f ; (2.2)

where � is the Laplacian, c is the speed of light, and f D f .t; z / is the density of
the sources, z 2 R

3.
For an unsteady point source (the emitting radar antenna) located at a fixed x 2

R
3, the density is defined as

f .t; z / D P.t/ı.z � x /; (2.3)

and the solution of equation (2.2) written as the Kirchhoff integral reduces to the
standard retarded potential:

u.0/.t; z / D 1

4�

•
R3

f .t � jz � z 0j=c; z 0/
jz � z 0j dz 0

D 1

4�

•
R3

ı.z 0 � x /

jz � z 0j P
�

t � jz � z 0j
c

�
dz 0

D 1

4�

P.t � jz � x j=c/

jz � x j : (2.4)
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Note that the integration over the entire R3 in formula (2.4) corresponds to formally
considering t > �1, as opposed to the more traditional choice t � 0 (that would
also require specifying the initial conditions). Hereafter, solution (2.4) will be used
in the capacity of the incident field.

Suppose that the terrain to be imaged is characterized by the refractive index
n D n.z /. Then, the total field u D u.0/Cu.1/ is governed by the variable coefficient
wave equation:

� 1

v2.z /

@2

@t2
��

��
u.0/ C u.1/

� D f ; (2.5)

where u.1/ D u.1/.t; z / is the scattered field and v.z / D c
n.z / is the speed of light

in the material. In the vacuum region, it is assumed that n.z / D 1 so that v.z / D
c and equation (2.5) transforms back to (2.2). Subtracting the constant coefficient
equation (2.2) written for the incident field u.0/ on the entire space R

3 from the
variable coefficient equation (2.5), we have:

� 1
c2
@2

@t2
��

�
u.1/ D 1 � n2.z /

c2
@2

@t2
�
u.0/ C u.1/

�
: (2.6)

Equation (2.6) involves no simplifying assumptions, and its solution u.1/ is the same
as one would have obtained by solving (2.5) with u.0/ found from (2.2). Hence,
this linear variable coefficient partial differential equation can be used for direct
computation of the scattered field u.1/ if the incident field u.0/ and the refractive
index n.z / are given.

However, the central problem of SAR imaging is rather the inverse problem of
reconstructing the unknown material parameter n.z /, given the incident field u.0/

and taking the scattered field u.1/ as the observable data. In that regard, it is very
important to realize that whereas the incident field u.0/ is known on the entire R

3,
the scattered field u.1/ can be considered known only at certain locations away from
the target region.1 Thus, the inverse problem of SAR imaging becomes effectively
nonlinear, because on the right-hand side of equation (2.6) the unknown quantity of
interest n.z / is multiplied by another unknown quantity, u.1/.t; z /.

2.1.1 The first Born approximation

The most common assumption made in the SAR literature in order to simplify the
formulation of the inverse problem is that of weak scattering:

jn.z /� 1j � 1; ju.1/j � ju.0/j: (2.7)

1In practice, u.1/ is known at the receiving radar antenna, which is mounted on an airborne or
spaceborne platform located above the imaged terrain (Earth’s surface), see Figure 2.1.
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Relations (2.7) allow one to employ the first Born approximation [107, Sec-
tion 13.1.2] and linearize equation (2.6) by disregarding u.1/ on its right-hand side.
This linearization yields an inhomogeneous d’Alembert equation for the scattered
field:

� 1
c2
@2

@t2
��

�
u.1/ D 1 � n2.z /

c2
@2u.0/

@t2
: (2.8)

The source term on the right-hand side of (2.8) is due to the incident field u.0/.t; z /
of (2.4) and variable refractive index n.z /. The solution to equation (2.8) is given
by the Kirchhoff integral:

u.1/.t;x 0/ D 1

4�

Z
1 � n2.z /

jx 0 � z jc2
@2u.0/

@t2
�
t � jx 0 � z j=c; z

�
dz ; (2.9)

where x 0 can be an arbitrary point in R
3. One can think of x 0 as the location of

the receiving antenna. For monostatic SAR, it coincides with that of the emitting
antenna, x 0 D x .

Hereafter, we will consider the emitted signal in the form of a linear frequency-
modulated pulse, or chirp, with the central carrier frequency !0:

P.t/ D A.t/e�i!0t; where A.t/ D �� .t/e
�i˛t2 (2.10)

and �� is the indicator function:

�� .t/ D
(
1; t 2 Œ��=2; �=2�;
0; otherwise:

(2.11)

In formula (2.10), ˛ D B
2�

is the chirp rate, B
2�

is called the bandwidth of the
chirp, and � is its duration. The time-bandwidth product (TBP) of the chirp, B�

2�
,

also known as its compression ratio (see Section 2.6), is assumed large: B� � 1.2

As the indicator �� of (2.11) is compactly supported on Œ��=2; �=2�, the chirp can
be approximately thought of as a band limited function. Indeed, its instantaneous
frequency (as defined, e.g., in [86, Section 5.2.1] via a stationary phase argument)

!.t/
defD d

dt
.!0t C ˛t2/ D !0 C 2˛t D !0 C B

�
t (2.12)

varies between !0 � B=2 and !0 C B=2. The true spectrum of the chirp, of course,
is not confined to the interval Œ!0 � B=2; !0 C B=2� (see Appendix 2.A and specif-
ically footnote9 on page 57, as well as Section 3.2, page 75, for additional detail.)

2In Section 2.6, we will see that a large value of B� is what enables the SAR resolution in range.
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Nonetheless, B is commonly interpreted as the frequency band of the chirp. For typi-
cal SAR applications it is assumed narrow: B � !0. This implies that the amplitude
A.t/ in (2.10) varies slowly compared to the fast carrier oscillation e�i!0 t, because
j˛� j � !0. Hence, A.t/ can be left out when differentiating the incident field (2.4)
for substitution into (2.8), which yields:

@2u.0/

@t2
.t; z / � �!20u.0/.t; z / D �!

2
0

4�

P.t � jz � x j=c/

jz � x j : (2.13)

Consequently, from equation (2.9) we have:

u.1/.t;x 0/ �
Z
�.z ;x ;x 0/P

�
t � jx � z j=c � jx 0 � z j=c

�
dz ; (2.14)

where

�.z ;x ;x 0/ D � !20
16�2jz � x jjz � x 0j

1 � n2.z /

c2
: (2.15)

For common SAR geometries, the distance between either of the antennas, x or
x 0, and the target is much larger than the resolution scale at the target, which can be
considered a typical variation of z . A schematic for the monostatic broadside imag-
ing (x D x 0) is shown in Figure 2.1. Moreover, this distance is also much larger
than the typical variation of either x or x 0, which is characterized by the length of
the synthetic aperture introduced in Section 2.3.2. Hence, given that the quantity
1 � n2.z / on the right-hand side of (2.15) is already small due to the first relation
of (2.7), one can disregard the dependence of the denominator in formula (2.15) on
any of the variables z , x , or x 0, i.e., interpret it as a constant. Indeed, taking the
variation of the denominator into account would bring along a correction propor-
tional to the product of two small terms, which does not need to be considered in
the context of the Born linearization.

Consequently, we can replace equations (2.14) and (2.15) with

u.1/.t;x 0/ �
Z
�.z /P

�
t � jx � z j=c � jx 0 � z j=c

�
dz ; (2.140)

and

�.z / D � !20
16�2R2

1 � n2.z /

c2
; (2.150)

respectively, where R is the distance (slant range) between the SAR platform tra-
jectory (e.g., satellite orbit) and the target,3 see Figure 2.1. The ground reflectivity
function �.z / in (2.140), (2.150) therefore becomes a function of the local index of
refraction n.z / only.

3We are assuming in (2.150) that this distance is the same for both antennas, x and x 0.
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Fig. 2.1 Schematic for the monostatic broadside stripmap SAR imaging. H is the orbit altitude, L
is the distance (range) from the ground track to the target, R is the slant range, � is the angle of in-
cidence or the look angle, and D is the length of a linear antenna. (This figure is a modified version
of [7, Figure 1]. Copyright ©2015 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved. Two different earlier versions have also appeared as [5, Figure 1]
and [6, Figure 1]. Copyright ©2013, 2014 IOP Publishing. Reproduced with permission. All rights
reserved.)

Next, we will discuss how the foregoing linearized model based on weak scatter-
ing can be used for the analysis of SAR imaging. In doing so, we will consider only
the case of a monostatic SAR, i.e., x 0 D x . Then, equation (2.140) becomes

u.1/.t;x / �
Z
�.z /P .t � 2jx � z j=c/ dz : (2.1400)

Our goal is to perform the inversion, i.e., find the unknown �.z / while interpreting
u.1/.t;x / as given data. To do so, we first need to describe the geometry of the
propagation of radar signals.

Hereafter, we will be using the Cartesian coordinates labeled by subscripts as
follows: “1” will correspond to the azimuthal, or along-the-track, coordinate, “2”
will correspond to the range coordinate, i.e., the horizontal coordinate normal to
the track, and “3” will correspond to the vertical coordinate. For convenience, and
with no loss of generality, we place the origin of the coordinate system in the target
area on the ground (rather than directly underneath the platform, i.e., on the ground
track). In addition, we denote by � the angle of incidence, which in our case also
coincides with the look angle or elevation angle, because we do not take into account
the curvature of the Earth’s surface. Then, the orbit altitude becomes H D R cos �
and the distance from the origin to the ground track is given by L D R sin � , see
Figure 2.1.
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2.2 Radiation pattern of the antenna

To begin with, we note that the standard retarded potential (2.4) represents the radi-
ation of waves by a stationary point source. It can be used for describing the SAR
pulses because we are employing the start-stop approximation, and the antenna is
considered motionless during the emission and reception of the signal. The radiation
of waves by moving sources is properly described by Liénard-Wiechert potentials
[106, Chapter 8]. In the case of a straightforward uniform motion, the solution can
also be obtained using the Lorentz transform, which is done in Chapter 6 for the
analysis of the start-stop approximation.

Next, we emphasize that a real-life radar antenna is not a point source, and does
not emit the spherically symmetric waves of type (2.4). It rather emits a beam, which
has the same functional dependence as (2.4), but is confined to a narrow angular
width. To derive the radiation pattern of the antenna, we assume the simplest possi-
ble form for the latter, that of a one-dimensional linear segment of length D aligned
with the flight track. More precisely, we assume that the center of the antenna is lo-
cated at x D .x1; x2; x3/ D .x1;�L;H/, see Figure 2.1, the antenna itself occupies
the interval Œx1 � D=2; x1 C D=2�, and the source density along the antenna is con-
stant. The time-dependent excitation of the antenna is given by the chirp (2.10) so
that we have:

f .t; z / D P.t/�D.z1 � x1/ı.z2 � x2/ı.z3 � x3/; (2.16)

where similarly to (2.11), �D is the indicator function of the interval of length D.
We emphasize that unlike (2.3) which is a point source, formula (2.16) defines a
line source with constant density, i.e., the density that does not vary in space. While
the ı-function in (2.3) has its argument in R

3, both ı-functions in (2.16) have plain
real arguments. Accordingly, the meaning of P in formulae (2.16) and (2.3) is also
somewhat different. The difference can be seen immediately by comparing the so-
lution of the d’Alembert equation (2.2) driven by the point source (2.3) and given
by formula (2.4) with the solution of the same equation (2.2) but driven by the line
source (2.16) and given by the Kirchhoff integral:

u.0/.t; z / D 1

4�

•
R3

f .t � jz � z 0j=c; z 0/
jz � z 0j dz 0

D 1

4�

•
R3

�D.z0
1 � x1/ı.z0

2 � x2/ı.z0
3 � x3/

jz � z 0j P
�

t � jz � z 0j
c

�
dz 0

D 1

4�

x1CD=2Z
x1�D=2

P.t � jz � .z0
1; x2; x3/j=c/

jz � .z0
1; x2; x3/j

dz0
1: (2.17)

Indeed, the final expression for the solution in (2.17) still involves a one-dimensional
integration in space while the Kirchhoff integral in (2.4) yields a plain retarded
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potential. We, however, will always keep one and the same notation P D P.t/ for
the chirp regardless of whether it is a point source or a line source, as it is not likely
to cause any misunderstanding.

Next, let us denote by � the angle between the positive direction x1 and the vector
z � x , see Figure 2.1. Then, for the point .z0

1; x2; x3/ of the antenna, the cosine law
followed by the application of Taylor’s formula yields:

jz � .z0
1; x2; x3/j D

q
jz � x j2 C .z0

1 � x1/2 � 2.z0
1 � x1/jz � x j cos �

� jz � x j
�
1 � .z0

1 � x1/

jz � x j cos � C .z0
1 � x1/2

2jz � x j2 sin2 �

�
;

(2.18)

because .z0
1 � x1/=jz � x j D O.D=R/ � 1, see Figure 2.1. When substituting ap-

proximation (2.18) into the integral (2.17), we take into account that in the definition
of the chirp (2.10) the envelope A.t/ varies slowly, and that the denominator under
the integral on the last line of (2.17) is also a slowly varying function compared to
the fast carrier oscillation. Consequently, we can write:

u.0/.t; z / � 1

4�

x1CD=2Z
x1�D=2

A.t � jz � x j=c/

jz � x j e�i!0.t�jz�x j=c//

� ei!0..z
0

1�x1/ cos ��.z0

1�x1/2 sin2 �=2jz�x j/=cdz0
1

D 1

4�

P.t � jz � x j=c/

jz � x j

D=2Z
�D=2

ei!0.� cos ���2 sin2 �=2jz�x j/=cd�

D D

4�

P.t � jz � x j=c/

jz � x j

1=2Z
�1=2

ei!0.D� cos ��D2�2 sin2 �=2jz�x j/=cd�:

The second term in the exponent under the integral on the last line above can be
dropped provided that !0c

D2

2R D �D2

�0R � 1, where �0 D 2�c
!0

is the carrier wavelength.
This is equivalent to requiring that the target be located in the far-field region of the
antenna of size D. (The Fraunhofer distance for this antenna is 2D2

�0
.) Then, we have

[cf. formula (2.4)]:

u.0/.t; z / � D

4�

P.t � jz � x j=c/

jz � x j

1=2Z
�1=2

ei!0D� cos �=cd�

D D

4�

P.t � jz � x j=c/

jz � x j
sin.!0D cos �=2c/

!0D cos �=2c

defD D

4�

P.t � jz � x j=c/

jz � x j sinc.�D cos �=�0/:

(2.19)
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The maximum of the sinc. � / on the right-hand side of (2.19) is achieved when
the argument is equal to zero, i.e., when � D �=2. Therefore, the maximum level of
radiation emitted by a linear antenna, which is parallel to the orbit, is observed in the
direction normal to the orbit. Away from this maximum the radiation level decreases
and reaches its minimum where sinc.�/ D 0. Hence, it is natural to define the antenna
beam as the region between the two zeroes of the sinc. � / in (2.19) that are closest
to its central maximum. Accordingly, the angular semi-width of the antenna beam
(which is centered at the normal direction � D �=2) is the angle ‚=2 D �=2 � � ,
where � is such that the sinc in (2.19) attains its first zero. This angle is determined
by setting the argument of the sinc. � / equal to �: �D cos.�=2�‚=2/=�0 D � , so
that the semi-width of the main lobe of the sinc becomes

sin
‚

2
� ‚

2
D �0

D
; (2.20)

provided that �0=D � 1 so that the approximation sin.‚=2/ � ‚=2 is valid.
Consequently, the full angular width of the antenna beam is 2�0=D. The spreading
of the beam as it propagates away from the antenna is a manifestation of the well-
known phenomenon of diffraction.

Hereafter, we will employ a simplified form of the antenna radiation pattern.
Namely, we will assume that the antenna radiates uniformly within the angular
width ‚, see formula (2.20), whereas outside of this angle it radiates nothing. In
other words, we will replace the sinc. � / on the right-hand side of formula (2.19)
with the indicator function �

‚
, see (2.11), of the interval Œ�‚=2;‚=2�:

sinc.�D cos �=�0/ 7! �
‚

� z1 � x1
R

�
:

In the previous formula, we took into account that

j cos � j � jz1 � x1j
R

6 �0

D
� 1: (2.21)

We also recall that P. � / in formula (2.19) is the density of a line source. As its
length D is much smaller than the distance from the antenna to the target, we can
replace DP. � / by the density P. � / of an equivalent point source located at the center
of the antenna and radiating within the same angle ‚. Altogether, this yields [cf.
formula (2.4)]:

u.0/.t; z / � 1

4�

P.t � jz � x j=c/

jz � x j �
‚

� z1 � x1
R

�
: (2.190)

In formula (2.190) the subscript “1” denotes the Cartesian coordinate parallel to the
flight track, see Figure 2.1.

However, the actual SAR antenna is not one-dimensional. A somewhat more
realistic (yet still approximate) model for it would be a planar rectangular frame
with one of its sides parallel to the flight track (orbit) and the normal to the plane
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pointing in the direction of incidence, i.e., making the angle � with the vertical axis,
see Figure 2.1. This model allows one to introduce both the horizontal and vertical
radiation pattern of the antenna. The horizontal pattern is the one discussed in this
section, see (2.19), (2.20), and (2.190); it determines the size of the beam footprint
along the flight track, i.e., in the azimuthal direction. The analysis for the vertical
radiation pattern is also the same as presented here (see, e.g., [86]), and the result
naturally coincides with (2.20) — the angular width of the beam will be given by
the ratio of the wavelength to the antenna size in the direction normal to the orbit.
Clearly, the angular width of the beam in the vertical direction, along with the look
angle � , determines the size of the beam footprint across the flight track, i.e., in
the range direction, and as such, the width of the swath in the stripmap imaging
scenario, see Figure 2.1.

A finite size of the beam footprint on the ground implies that the integration area
in formula (2.9) needs to be restricted accordingly. In other words, the integration
with respect to z that yields the scattered field at x 0 shall be performed only over
the region illuminated by the antenna. As such, the integration limits in (2.9) shall
be introduced in both the azimuthal and range direction. Subsequently, they will
be inherited in (2.1400). For clarity, however, we will keep the following simplified
expression for u.1/ obtained by substituting (2.190) into (2.9) and carrying out the
same derivation as in Section 2.1:

u.1/.t;x / �
Z
�.z /P .t � 2jx � z j=c/ �

‚

� z1 � x1
R

�
dz : (2.22)

Formula (2.22) explicitly specifies only the integration limits in azimuth by means
of the indicator function �

‚
. � /. The reason is that the size of the beam footprint in

the azimuthal direction plays an additional very important role as it determines the
maximum size of the synthetic aperture, see Section 2.3.2.

2.3 Inversion of the raw data

2.3.1 Matched filter

To solve the inverse scattering problem for SAR would mean to obtain �.z / from
the known u.1/.t;x /. In other words, one needs to invert the integral operator that
acts on �.z / on the right-hand side of (2.22). The approximate inversion, which
is also called the SAR signal processing, is done in two stages. First, the received
antenna signal u.1/.t;x / given by (2.22) is multiplied by the function

P.t � 2jy � x j=c/ D �� .t � 2jy � x j=c/ei˛.t�2jy�x j=c/2ei!0.t�2jy�x j=c/; (2.23)
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where y is a parameter, and the result is integrated with respect to t:

Ix .y / D
Z
�

P.t � 2Ry=c/u.1/.t;x / dt

D
Z

dz �.z /�
‚

� z1 � x1
R

� Z
�

dt P.t � 2Ry=c/P.t � 2Rz=c/„ ƒ‚ …
Wx .y ;z /

; (2.24)

where

Ry
defD jy � x j and Rz

defD jz � x j:
In formulae (2.23) and (2.24), the overbar denotes a complex conjugate. In the
radar literature, the operation of (2.24) is commonly referred to as application of the
matched filter, see, e.g., [79, Section 3.1.1] or [110, Section 1.2]. The filter (2.23) is
called matched because it is also a chirp with the same duration � , rate ˛, and car-
rier frequency!0 as the original chirp (2.10), (2.11), and in the case where Ry D Rz

the phase of the expression on the right-hand side of (2.23) is exactly the opposite
to the phase of the received signal P.t � 2Rz=c/. The rationale behind choosing the
matched filter in the form (2.23) is presented in Appendix 2.A. Note also that while
in our analysis the matched filter is considered only as a part of the inversion algo-
rithm, it can also be shown that it provides the best signal-to-noise ratio in the sense
of L2 in the case where the inversion is done in the presence of noise, see [9, Section
4.1] and also [110].

The interior integral Wx .y ; z / on the right-hand side of (2.24) is known as the
point spread function (PSF), and the notation

R
�

dt means that the integration lim-
its are determined by the indicator function(s) �� under the integral, see (2.10)
and (2.11). Given the notation Wx .y ; z / for the PSF, the image Ix for a single pulse
emitted from the point x becomes:

Ix .y / D
Z

Wx .y ; z /�.z /�‚

� z1 � x1
R

�
dz : (2.25)

2.3.2 Synthetic aperture

The next stage of inversion is to consider a sequence of radar pulses emitted at
times tn from the equally spaced positions x n D .xn

1;�L;H/, as the antenna moves
along the linear flight track (orbit), see Figure 2.1. Recall that under the start-stop
approximation, the n-th pulse is emitted, and the scattered response is received,
when the antenna is at standstill at the position x n, after which it moves to the
next emitting/receiving position. Let �x1 denote the distance along the flight track
between the successive emitting/receiving positions of the antenna. Then, we can
write:

�x1 D v�p; (2.26)
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where v is the platform velocity and �p D tn � tn�1 is the time interval between two
consecutive pulses. The reciprocal of �p is known as the pulse repetition frequency
(PRF):

fp
defD 1

�p
: (2.27)

We also assume that the pulses are emitted toward the ground in the direction normal
to the platform trajectory. This corresponds to the broadside stripmap SAR imaging,
see Figure 2.1.

The range of values of n in the foregoing sequence of pulses is determined by the
geometry of the antenna beam discussed in Section 2.2. For a given reference loca-
tion y D .y1; y2; 0/ on the ground (i.e., for a given image point), consider those and
only those x n D .xn

1;�L;H/, for which this location remains within the footprint of
the antenna beam, see Figure 2.1. In other words, according to (2.20), we consider
those and only those x n for which

y1 � �0

D
R 6 xn

1 6 y1 C �0

D
R; (2.28a)

or, equivalently,

y1
�x1

� N

2
6 n 6 y1

�x1
C N

2
; where N D

�
2�0R

�x1D

	
: (2.28b)

In formula (2.28b), Œ � � is the notation for the integer part and�x1 is given by (2.26).
By defining the length of the synthetic aperture as

LSA � ‚R D 2
�0

D
R; (2.29)

we recast (2.28a) as

y1 � LSA

2
6 xn

1 6 y1 C LSA

2
; (2.30a)

and redefine N of (2.28b) as

N D
�

LSA

�x1

	
D
�

LSA

v
fp

	
; (2.30b)

where the PRF fp is given by (2.27). In practice, the length of the synthetic aperture
may be chosen smaller than (2.29), i.e., LSA < 2�0R=D, especially when the carrier
frequency !0 is not very high and hence the wavelength �0 D 2�c=!0 is relatively
large. Then, the number of terms N given by (2.30b) in the sequence (2.30a) changes
accordingly.
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The full SAR image I.y / is a coherent sum of the contributions Ix n.y / along the
synthetic aperture, where each Ix n.y / is given by (2.25) for x D x n. As the set of
xn
1 within the synthetic aperture is defined by (2.30a), it is convenient to introduce

the summation limits with the help of the indicator function:

�
LSA
.y1 � xn

1/ D
(
1; if xn

1 satisfies (2.30a),

0; otherwise.

Then,

I.y / D
X

n

�
LSA
.y1 � xn

1/Ix n.y /

D
X

n

�
LSA
.y1 � xn

1/

Z
Wx n.y ; z /�.z /�

‚

� z1 � xn
1

R

�
dz

D
Z hX

n

�
LSA
.y1 � xn

1/�LSA
.z1 � xn

1/Wx n.y ; z /
i
�.z / dz

D
Z

W.y ; z /�.z / dz D W 	 �;

(2.31)

where we took into account that according to (2.20) and (2.29), �
‚

� z1�xn
1

R

� �
�

LSA
.z1 � xn

1/. While each x n in the sum (2.31) is the location of the antenna at
the physical moment of time tn, the summation index n is often referred to as the
“slow time” in the SAR literature,4 see, e.g., [9, Chapter 9].

2.3.3 Imaging kernel

The function W.y ; z / on the last line of (2.31) is obtained by summing up all the
PSFs Wx n.y ; z /:

W.y ; z / D
X

n

�
LSA
.y1 � xn

1/�LSA
.z1 � xn

1/Wx n.y ; z /

D
X

n

�
LSA
.y1 � xn

1/�LSA
.z1 � xn

1/

4As opposed to the physical, or “fast,” time t in formulae (2.24) and (2.32).
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Z
�

dt P.t � tn � 2Rn
y=c/P.t � tn � 2Rn

z=c/ (2.32)

D
X

n

�
LSA
.y1 � xn

1/�LSA
.z1 � xn

1/e
2i!0.Rn

z =c�Rn
y=c/

Z
�

dt A.t � tn � 2Rn
y=c/A.t � tn � 2Rn

z=c/;

where

Rn
y D jy � x nj and Rn

z D jz � x nj: (2.33)

For any choice of y1 and z1, the summation range in (2.32) is clearly finite.
The imaging kernel W.y ; z / of (2.32) is often called the generalized ambigu-

ity function (GAF). Due to the integral representation on the last line of (2.31),
W.y ; z0/ for a given z0 can formally be thought of as the image I.y / of a point
source �.z / D ı.z � z0/. In the end of Section 2.6, we show that W can be ex-
pressed as W.y ; z / D W.y � z /, which justifies the convolution notation W 	 � for
the last integral in (2.31). Note also that formula (2.1) for the image discussed in the
beginning of this chapter coincides with (2.31).

If the foregoing SAR data inversion algorithm were exact, then the imaging ker-
nel W would coincide with the ı-function, W.y � z / D ı.y � z /, which, in turn,
would imply that I D W 	 � D ı 	 � D �. In reality, however, the inversion is only
approximate rather than exact, the kernel W is not a ı-function, and the image does
not, generally speaking, coincide with the ground reflectivity.

To quantify the discrepancies between the ground reflectivity function �.z /
of (2.150) and the image I.y / of (2.31), one should therefore study the properties
of the imaging kernel, i.e., of the GAF W.y ; z / given by (2.32). The GAF is com-
puted in Section 2.4 and analyzed further in Sections 2.5 and 2.6.

2.4 The generalized ambiguity function

2.4.1 Factorized representation of the GAF

We first notice that in each individual term of the sum (2.32), t � tn can be replaced
with t by merely changing the integration variable. The remaining dependence
of A.t � 2Rn

y=c/ and A.t � 2Rn
z=c/ on n is through x n, see (2.33); it is weak be-

cause A in (2.10) is a slowly varying envelope itself. Hence, we can take A.�/ and
A.�/ out of the summation over n, so that the GAF W.y ; z / of (2.32) can approxi-
mately be represented as a product of two factors:

W.y ; z / � W†.y ; z / � WR.y ; z /; (2.34)
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where

W†.y ; z / D
X

n

�
LSA
.y1 � xn

1/�LSA
.z1 � xn

1/e
2ik0.Rn

z�Rn
y / (2.35)

and

WR.y ; z / D
Z
�

A.t � 2Rc
y=c/A.t � 2Rc

z=c/ dt: (2.36)

In (2.35), k0 D !0=c is the carrier wavenumber. In (2.36), we have [cf. for-
mula (2.33)]:

Rc
y D jy � x nc j and Rc

z D jz � x nc j; (2.37)

where x nc is the position of the antenna that corresponds to the center of the sum-
mation interval defined by the product of the two indicator functions under the sum
in (2.35). The actual value of nc is introduced later, see formula (2.43).

We now proceed with the evaluation of the individual factors (2.35) and (2.36).
In Section 2.5, we also estimate the factorization error, i.e., the error of replacing
the GAF (2.32) with its approximate representation (2.34). This error proves to be
small, on the order of the relative bandwidth, i.e., about B=!0.

2.4.2 Azimuthal sum and pulse repetition frequency

To evaluate the azimuthal factor (2.35), we first need to identify and verify an im-
portant constraint for the pulse repetition frequency (2.27) or, equivalently, the time
interval �p between two consecutive pulses, see (2.26). Let us linearize the travel
distances Rn

y and Rn
z of (2.33), see Figure 2.1. With no loss of generality we assume

that z2 D 0 and also denote y2 � z2 D y2 D l for convenience. Then, we can write:

Rn
z D �

H2 C L2 C .xn
1 � z1/

2
�1=2 D �

R2 C .xn
1 � z1/

2
�1=2

D R

�
1C .xn

1 � z1/2

R2

�1=2
� R C 1

2

.xn
1 � z1/2

R

(2.38)

and

Rn
y D �

H2 C .L C l/2 C .xn
1 � y1/

2
�1=2 D �

R2 C 2Ll C l2 C .xn
1 � y1/

2
�1=2

D R

�
1C 2Ll C l2 C .xn

1 � y1/2

R2

�1=2
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� R

�
1C 1

2

2Ll C l2 C .xn
1 � y1/2

R2
� 1

8

4L2l2

R4

�

D R C 1

2

2Ll C l2 cos2 � C .xn
1 � y1/2

R
; (2.39)

where we took into account that 1 � L2=R2 D cos2 � , see Figure 2.1. Subtracting
equation (2.39) from equation (2.38), we have:

Rn
z � Rn

y � .xn
1 � z1/2 � 2Ll � l2 cos2 � � .xn

1 � y1/2

2R

D z21 � y21 � 2Ll � l2 cos2 � C 2.y1 � z1/xn
1

2R

D � Ll

R
C z21 � y21 � l2 cos2 �

2R
C .y1 � z1/xn

1

R
:

(2.40)

Recalling that xn
1 D n�x1 D nLSA=N, for the sum (2.35) we have:

W†.y ; z / D �
2LSA
.y1 � z1/

N2.y ;z /X
nDN1.y ;z /

e2ik0.Rn
z �Rn

y /; (2.41)

where the summation limits are defined according to (2.28b) and (2.30):

N1.y ; z / D
�

max.y1; z1/

�x1
� LSA

2�x1

	
;

N2.y ; z / D
�

min.y1; z1/

�x1
C LSA

2�x1

	
;

(2.42)

and the indicator function �
2LSA
.y1�z1/ in front of the sum in (2.41) accounts for the

fact that if jy1�z1j > LSA, then the intervals defined by �
LSA
.y1�xn

1/ and �
LSA
.z1�xn

1/

on the right-hand side of (2.35) do not overlap, the summation range is empty, and
the sum is equal to zero. To symmetrize the summation interval in (2.41) in the case
of a nonempty overlap, we introduce

nc D
�

y1 C z1
2�x1

	
; Qn D n � nc; and QN D N �

� jy1 � z1j
�x1

	
; (2.43)

where nc is the center of the interval and QN is the number of terms in the sum that
represents W†.y ; z /. In doing so, we note that the sum that yields the image I.y /
for a given y , see the first line of (2.31), is not identical to the sum that yields the
imaging kernel W.y ; z / of (2.32) and, accordingly, the factor W†.y ; z / of (2.35).
For the former, the center of the synthetic aperture is at y1 so that the center of
the summation interval is at


 y1
�x1

�
, and the number of terms in the sum is N, see
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formulae (2.28b) and (2.30). For the latter, the center of the summation interval is
at n D nc given by (2.43), which corresponds to the midpoint between y1 and z1,
and the number of terms is QN. The quantity nc is also used in the definition of Rc

y

and Rc
z , see (2.37), that appear in the factor WR.y ; z / of (2.36). We will see shortly

that N � 1, see (2.50); for this reason, we will often ignore the fractional part in
expressions such as (2.43) and (2.28b).

Substituting (2.40) and (2.43) into (2.41) and assuming QN to be even, we obtain:

W†.y ; z / D e�2ik0
Ll
R eik0

z21�y21�l2 cos2 �
R �

2LSA
.y1 � z1/

�
QN=2X

QnD� QN=2
e2ik0.y1�z1/LSA.QnCnc/=.RN/

D e�2ik0
Ll
R e�ik0

l2 cos2 �
R �

2LSA
.y1 � z1/

�
QN=2X

QnD� QN=2
e2ik0.y1�z1/LSA Qn=.RN/:

(2.44)

On the last line of (2.44), we have the sum of a geometric sequence:

QN=2X
QnD� QN=2

eiQn' D sin.'. QN C 1/=2/

sin.'=2/
; (2.45)

where

' D 2k0.y1 � z1/
LSA

RN
: (2.46)

The function on the right-hand side of (2.45) is a periodic function of its argument
'=2 with the period 2� determined by the denominator. In accordance with (2.46),
it is also a periodic function of the argument .y1 � z1/ with the period X defined as

X D 2�

k0

RN

LSA
D �0RN

LSA
; (2.47)

where �0 is the carrier wavelength. The function (2.45) has a distinct peak between
the two zeroes of the numerator closest to the center: '. QN C 1/=2 D ˙� , with the
maximum reached at ' D 0 , y1 D z1, i.e., where the denominator on the right-
hand side of (2.45) turns into zero. This peak is often referred to as the main lobe.
Due to the periodicity, the function (2.45) also has infinitely many identical peaks
separated by the distance X of (2.47). Those are called the grating lobes, see, e.g.,
[40, Section 1.4.2].
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The periodicity of (2.45) imposes the following constraint on the pulse repetition
frequency. Namely, we would like the azimuthal factor of the GAF (2.44)

W†.y ; z / D e�2ik0
Ll
R e�ik0

l2 cos2 �
R �

2LSA
.y1 � z1/

sin.'. QN C 1/=2/

sin.'=2/
(2.48)

to have only one main lobe and no grating lobes. This is possible when the period X
of (2.47) is greater than the synthetic aperture LSA:

X > LSA; (2.49)

because in this case the grating lobes of (2.45) are cut off by the indicator function
�
2LSA
.y1 � z1/ on the right-hand side of (2.48).5 Inequality (2.49) along with the

definition (2.47) yields:

N >
L2SA

�0

1

R
� 1: (2.50)

The first fraction on the right-hand side of (2.50) is half the Fraunhofer distance of
the synthetic array. It is much larger than the distance R between the antenna and the
target, because the target is in the near field of the array. Equivalently, relation (2.49)
with the help of (2.26), (2.27), and (2.30b) can be recast as:

�p <
LSA

v
� �0R

L2SA

(2.51a)

or

fp >
v

LSA
� L2SA

�0R
: (2.51b)

Inequality (2.51a) is an upper bound for the time interval between the consecutive
pulses, while inequality (2.51b) is its reciprocal lower bound for the PRF. These
bounds guarantee that the period X satisfies (2.49), which, in turn, removes the grat-
ing lobes from the azimuthal factor of the GAF (2.48). For the typical values of the
parameters presented in Table 1.1, inequality (2.51a) holds with a safe margin since
�p D 5 � 10�4s whereas the right-hand side of (2.51a) is approximately equal to
2:56 � 10�3s.

5Grating lobes are responsible for the appearance of “ghost” images of bright targets shifted in
azimuth with respect to their true location y1 D z1. Since the indicator function is only an approx-
imation to the true antenna radiation pattern (see formulae (2.19) and (2.190)), then in reality, the
choice of the period X satisfying (2.49) will reduce the amplitude of grating lobes but not com-
pletely eliminate them.
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For the common imaging configurations (see Table 1.1) we have k0
LSA
N D

2�v�p

�0
> 1, which means that the distance between the successive emitting/receiv-

ing locations of the antenna is greater than the carrier wavelength. Therefore, for
the entire range of .y1 � z1/ for which the right-hand side of (2.48) may be nonzero,
i.e., for y1 and z1 within the beam footprint, jy1 � z1j < LSA, we have j'j . 1 ac-
cording to (2.46) because LSA � R. In practice, we are predominantly interested in
evaluating W†.y ; z / for the locations y and z that are sufficiently close to one an-
other, i.e., jy1 � z1j � LSA. Then, it is easy to see that j'j � 1 and we can therefore
replace the sine function by its argument in the denominator on the right-hand side
of (2.45), sin.'=2/ � '=2. Moreover, for jy1 � z1j � LSA the relative difference
between N and QN is small, see (2.43), and since N � 1 according to (2.50), we have
QN � 1. Altogether, this yields:

QN=2X
QnD� QN=2

eiQn' � sin.' QN=2/
'=2

D QN sin.' QN=2/
QN'=2 D QN sinc

QN'
2
: (2.52)

Unlike (2.45), the sinc function on the right-hand side of (2.52) is not periodic. It
has one main lobe between QN'=2 D ˙� with the maximum at ' D 0 and a series
of sidelobes that decay as j'j increases. The approximation of (2.45) by (2.52) is
accurate for jy1 � z1j � LSA. It is acceptable for the entire range of admissible y1
and z1 though, jy1 � z1j < LSA, because we still have j'j . 1.

In subsequent chapters of the book, we will be computing azimuthal sums similar
to (2.35) on multiple occasions. In doing so, we will automatically disregard the
grating lobes based on the argument presented in this section.

2.4.3 The azimuthal factor

To complete the derivation of the azimuthal factor W†.y ; z /, we notice that the
second exponent on the right-hand side of (2.48) is much smaller than the first one,
and hence we ignore it. Then, using formulae (2.43), (2.46), (2.48), and (2.52), we
can write:

W†.y ; z / � e�2ik0
Ll
R QN sinc

�
k0.y1 � z1/

LSA

R

QN
N

�

D e�2ik0
Ll
R QN sinc

�
k0LSA

R
.y1 � z1/

�
1 � jy1 � z1j

N�x1

��
:

(2.53)

The sinc function in (2.53) reaches its maximum value when y1 D z1, i.e., when the
argument of the sinc.�/ is equal to zero. We also note that the argument of the sinc.�/
in (2.53) becomes zero not only for y1 D z1 but also for jy1�z1j D N�x1. However,
the overall function QN sinc.�/ does not have a peak there because according to (2.52),

at this second zero of the argument only the numerator of sin.' QN=2/
'=2

� QN sin.' QN=2/
QN'=2 is

zero while the denominator is not. Besides, we are mostly interested in the case
jy1 � z1j � LSA D N�x1.
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Furthermore, the sinc. � / in (2.53) reaches its first zero (closest to the maximum)
when the argument is equal to � . To find the location of the first zero, we need to
solve the equation

k0LSA

R
.y1 � z1/

�
1 � y1 � z1

LSA

�
D �; (2.54)

where we have substituted N�x1 D LSA and also replaced jy1� z1j with y1� z1 with
no loss of generality, because the other case is analyzed similarly. Equation (2.54)
is quadratic with respect to y1 � z1 and has the roots:

y1 � z1 D R

2k0

�
k0LSA

R

 k0LSA

R

s
1 � 4�R

k0L2SA

�

� R

2k0

�
k0LSA

R

 k0LSA

R

�
1 � 2�R

k0L2SA

��
:

(2.55)

Note that we have approximated the square root on the first line of (2.55) with its
first order Taylor expansion on the second line of (2.55) because

R

k0L2SA

D R

�

�
2L2SA

�0

��1
� 1: (2.56)

Indeed, the quantity 2L2SA=�0 is the Fraunhofer distance of the synthetic array, which
is much greater than the distance R from the antenna to the target, see Table 1.2.

The first one of the two roots (2.55) is

y1 � z1 D �R

k0LSA
D �Rc

!0LSA

defD �A: (2.57)

For the root (2.57), we clearly have �A � LSA due to the same argument (2.56).
The second root (2.55) is given by

y1 � z1 D R

2k0

�
k0LSA

R
� 1

LSA

�
D LSA ��A:

It is of no interest for subsequent consideration though, because it does not satisfy
the assumption jy1 � z1j � LSA.

The main lobe of the sinc. � / in formula (2.53) is located on the interval between
its two closest zeros on both sides of the central maximum: Œ��A; �A�. Within the
main lobe, we can obviously replace QN with N and obtain the following expression
for W†:

W†.y ; z / � e�2ik0
Ll
R N sinc.k0.y1 � z1/LSA=R/

D e�2ik0
Ll
R N sinc

�
�

y1 � z1
�A

�
defD e�2ik0

Ll
R WA.y ; z /:

(2.58)



40 2 Conventional SAR imaging

Note that the transition from (2.53) to (2.58) involves replacing QN by N not only in
the argument of the sinc. � / but also in front of the sinc. � /. This, however, implies
only a very small, and thus inconsequential, change in the amplitude.

2.4.4 The range factor

The range factor (2.36) of the GAF is given by

WR.y ; z / D
Z
�

A.t � 2Rc
y=c/A.t � 2Rc

z=c/ dt

D
Z
�

�� .t � 2Rc
y=c/ei˛.t�2Rc

y=c/2�� .t � 2Rc
z=c/e�i˛.t�2Rc

z =c/2dt

D
Z minf2Rc

y=c;2Rc
z =cgC�=2

maxf2Rc
y=c;2Rc

z =cg��=2
ei˛.t�2Rc

y=c/2e�i˛.t�2Rc
z =c/2dt:

In the last integral, we change the integration variable: Qt D t � .Rc
y C Rc

z /=c, and
also denote Tc D .Rc

y � Rc
z /=c so that

t � 2Rc
y

c
D Qt � Tc and t � 2Rc

z

c
D Qt C Tc: (2.59)

Then, we have:

WR.y ; z / D
Z �=2�jTc j

��=2CjTc j
ei˛.Qt�Tc/2e�i˛.QtCTc/2dQt D

Z �c=2

��c=2

e�i˛4QtTc
dQt; (2.60)

where � c defD � � 2jTcj. Consequently,

WR.y ; z / D � 1

4i˛Tc

�
e�2i˛�cTc � e2i˛�cTc

�
D sin.2˛� cTc/

2˛Tc

D � c sinc.2˛� cTc/ D � c sinc

�
B
� c

�

Rc
y � Rc

z

c

�
:

(2.61)

The central maximum of the sinc. � / in formula (2.61) is attained at Rc
y D Rc

z . In
this case, the argument of the sinc. � / is equal to zero. The other possibility for the
argument to be equal to zero is � c D 0 , jTcj D �=2. It, however, should not be
considered, because the overall function � c sinc. � / does not have a maximum there
(for the same reason as discussed in the beginning of Section 2.4.3). Moreover, we
are primarily interested in the case jTcj � � . Indeed, jTcj is the absolute value of
the difference between the travel times from two close locations on the target, y and
z , to the radar antenna on the orbit, see Figure 2.1. If, however, we were to have
jTcj � � , this would correspond to a large difference between Rc

y and Rc
z , on the

order of kilometers for the typical vales of the parameters from Table 1.1.
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The first zero of the sinc. � / in (2.61) is attained when its argument is equal to
� . To determine the location of the first zero, we have to solve the equation [cf.
equation (2.54)]

B
�
1 � 2Tc

�

�
Tc D �; (2.62)

where we have substituted .Rc
y �Rc

z /=c D Tc and also replaced jTcj with Tc, because
the case jTcj D �Tc is analyzed similarly. The quadratic equation (2.62) has the
roots [cf. formula (2.55)]:

Tc D �

4B

�
B 
 B

r
1 � 8�

B�

�

� �

4B

�
B 
 B

�
1 � 4�

B�

��
:

(2.63)

Similarly to (2.55), we have employed the first order Taylor approximation of the
square root on the first line of (2.63) because

8�

B�
� 1:

Indeed, the compression ratio of the chirp, B�=2� , (i.e., its TBP) is always chosen
to be large, see the typical value in Table 1.2.

The first root (2.63) is

Tc D �

B
, Rc

y � Rc
z D �c

B
defD �R: (2.64)

It obviously satisfies the constraint jTcj � � because again, the TBP of the chirp is
large, B� � 1. The second root (2.63) is of no further interest:

Tc D �

2
� �

B
;

because for this root we have jTcj � � rather than jTcj � � .
The main lobe of the sinc. � / in (2.61), if considered as a function of Rc

y � Rc
z ,

is located on the interval Œ��R; �R�. Inside this interval, we can replace � c by � on
the right-hand side of (2.61) and thus obtain [cf. formula (2.58)]:

WR.y ; z / � � sinc

�
B

c
.Rc

y � Rc
z /

�
D � sinc

�
�

Rc
y � Rc

z

�R

�
: (2.65)

In doing so, we are also replacing � c by � in front of the sinc. � /, which only results
in an insignificant change of the amplitude. Altogether, we conclude that the effect
of Tc on the integration limits in (2.60) is small and can be disregarded.
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2.4.5 Fourier interpretation of the data inversion

The fact that both WA.y ; z /, see (2.58), and WR.y ; z /, see (2.65), evaluate to a
sinc function is not accidental. For the range factor WR.y ; z /, the sinc comes as an
implication of the linear variation of the instantaneous frequency (2.12) along the
chirp: !.t/ D !0 C B

�
t, where t 2 Œ��=2; �=2�, so that the integral (2.60) can be

recast as

WR.y ; z / D
Z �c=2

��c=2

e�2i.!.Qt/�!0/Tc
dQt: (2.66)

As for the azimuthal factor WA.y ; z /, the exponents under the sum in (2.44) can
be thought of as representing a linear variation of the local wavenumber along the
synthetic array. Indeed, the quantity

k.Qn/ defD k0LSA Qn
RN

(2.67)

depends linearly on Qn, and from (2.44) and (2.58) we have:

WA.y ; z / D
QN=2X

QnD� QN=2
e2ik.Qn/.y1�z1/; (2.68)

which is very similar to (2.66), because y1 � z1 can substitute for Tc / .Rc
y � Rc

z /,
and k.Qn/ is a linear function of Qn that turns into zero exactly in the middle of the
summation interval, i.e., at Qn D 0 , n D nc, much like !.Qt/ � !0 turns into zero
in the middle of the chirp (2.10). The difference between (2.66) and (2.68) is that
the former is an integral and the latter is a sum, but a sum of type (2.68) can always
be thought of as a quadrature formula of the Newton-Cotes type approximating the
corresponding integral, see [15, Section 4.1].

Formulae (2.66) and (2.68) allow for an intuitive and convenient yet semi-
qualitative Fourier interpretation of the SAR data inversion algorithm. Indeed, if
we were to replace the integral on the right-hand side of (2.66) by an integral over
the entire real axis, then the latter could be thought of as a genuine Fourier transform
that evaluates to a ı-function (in the sense of distributions):

Z 1

�1
e

�4i˛Qt
�

Rc
y
c � Rc

z
c

�
dQt D �

2˛
ı

�
Rc
y

c
� Rc

z

c

�
:

An analogous interpretation that would result in ı.y1 � z1/ can obviously be given
to (2.68), with an additional caveat that it is a sum rather than an integral. Sub-
stituting the ı-functions instead of WR and WA would make the data inversion
exact. Hence, it is the discrepancy between the right-hand sides of (2.66) and (2.68)
and the corresponding true Fourier transforms that explains the approximate nature
of the foregoing SAR data inversion algorithm. A similar Fourier-based treatment of
the matched filter (2.23) is given in Appendix 2.A.
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2.4.6 Doppler viewpoint for the azimuthal reconstruction

The “instantaneous” wavenumber k.Qn/ of (2.67) can be recast as follows:

k.Qn/ D k0
R

�LSAn

N
� LSAnc

N

�
� k0

xn
1 � .y1 C z1/=2

R

D k0
2

hxn
1 � y1

R
C xn

1 � z1
R

i
D �k0

2

h
tan
��
2

� �n
y

�
C tan

��
2

� �n
z

� i

� � k0
2

h
sin
��
2

� �n
y

�
C sin

��
2

� �n
z

� i

� � k0 sin

�
�

2
� �n

y C �n
z

2

�
D �k0 cos

�n
y C �n

z

2

defD �k0 cos Q�n; (2.69)

where Qn and n are related by (2.43), and �n
y and �n

z are the angles between the plat-
form velocity and the direction from x n to y and to z , respectively, see Figure 2.1.
Note that for narrow antenna beams and broadside imaging, the angles �

2
� �n

y and
�
2

��n
z are small; that’s why the approximation in (2.69) holds. Using (2.69) we can

recast (2.68) as

WA.y ; z / �
ncC QN=2X

nDnc� QN=2
e�2ik0 cos Q�n.y1�z1/ D

ncC QN=2X
nDnc� QN=2

e�2i!0 cos Q�n.y1�z1/=c; (2.70)

which shows that the variation of the local wavenumber along the synthetic array
can be attributed to a Doppler-like effect. Indeed, it is well-known that the standard
linear Doppler frequency shift (for more detail, see Section 6.1 and, specifically,
equation (6.7b)) is proportional to the ratio of the platform speed v to the wave
propagation speed c (the velocity factor) times the cosine of the angle between the
platform velocity and the direction to the target (the geometric factor):

! � !0 / v

c
cos �:

In formula (2.70), the actual physical Doppler effect, which is due to the platform
motion, does not manifest itself, because we are using the start-stop approximation,
and the platform is considered motionless at the times when it emits and receives
the SAR signals.6 On the other hand, as we have mentioned in Section 2.3.2, it
is common to associate the change in the antenna position, i.e., the variation of n,
with the so-called slow time. Then, the local wavenumber k.n/ given by the fi-

nal expression in (2.69), k.n/
defD �k0 cos Q�n, can be thought of as a function of

slow time. The dependence of k.n/ on slow time in (2.70) is through cos Q�n, so that

6The role of the platform motion and the corresponding physical Doppler effect in SAR analysis is
discussed in detail in Chapter 6.
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its value is determined by the transmitting/receiving location n only and is not af-
fected by how rapidly the platform moves between different locations. Thus, the
quantity cos Q�n and hence the exponent in formula (2.70) can be interpreted as the
second, geometric, contributing factor to the Doppler frequency shift in slow time.
This frequency (rather, wavenumber) shift varies linearly along the synthetic array,
see (2.67), which can also be seen as a chirp of length LSA in the azimuthal direction.
It is to be noted though that in the literature the Doppler interpretation of synthetic

arrays is sometimes incorrectly attributed to the physical fast time t, as opposed to
the slow time n, see, e.g., [79, Section 4.5.1] or [40, Section 1.4.2.2].

We note that formula (2.58) was obtained for the maximum length of the syn-
thetic aperture that corresponds to the full width of the antenna beam, see (2.29). If
the length of the synthetic aperture LSA is taken smaller than that, then W†.y ; z /
of (2.58) acquires an insignificant phase multiplier that depends on the azimuthal
coordinate (an equivalent analysis for the imaging in range can be found in [79,
Section 3A.2]).

Let us additionally recall that formula (2.40) was derived with the help of lin-
earization (i.e., first order Taylor expansion) of the square roots in (2.38) and (2.39).
One can also obtain the next term in the expansion assuming that LSA=R is a small
parameter. Then, using (2.43) and taking into account that jlj � R and jy1�z1j � R,
we can write:

Rn
y � Rn

z � Ll

R
� y1 � z1

R
.Qn�x1/� Ll

2R3
.Qn�x1/

2: (2.71)

If the last term on the right-hand side of (2.71), which is quadratic with respect
to Qn, is included into the exponents under the sum in (2.44), then those exponents
will not all turn into zero for any choice of y1 unless l D 0, i.e., unless y2 D z2.
This can be thought of as a quadratic phase error (QPE) between the signal and
the matched filter. One of its implications for imaging is a slight smearing of the
sinc shape in (2.58) for l ¤ 0. We will, however, postpone the discussion of QPE
until Chapter 3, see formula (3.122), where this error is independent of the range
coordinate and comes from the propagation of radar signals in a dispersive medium
rather than from the geometry, as in (2.71).

In the next section, we estimate the error associated with the approximate factor-
ized representation (2.34) of the GAF W.y ; z /.

2.5 Factorization error of the GAF

The approach we follow in this section for evaluating the integrals involved in the
GAF is similar to that of Section 2.4. First, we take into account (2.42) and recast
the genuine non-factorized expression (2.32) for the GAF as follows:
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W.y ; z / D
N2.y ;z /X

nDN1.y ;z /

Z
�

A.t � 2Rn
y=c/A.t � 2Rn

z=c/e2i!0.Rn
z=c�Rn

y=c/dt

D
N2.y ;z /X

nDN1.y ;z /

Z
�

�� .t � tn
y /e

i˛.t�tny /
2

�� .t � tn
z /e

�i˛.t�tnz /
2

� ei!0.tnz �tny /dt;

(2.72)

where the integration variable has been changed as suggested in the beginning of
Section 2.4: : t � tn 7! t, and new notations have been used:

tn
y

defD 2Rn
y

c
D 2jx n � y j

c
and tn

z
defD 2Rn

z

c
D 2jx n � z j

c
: (2.73)

Then, similarly to (2.59), we introduce a new integration variable Qt and new con-
stants Tn:

Qt D t � tn
z C tn

y

2
; Tn D tn

y � tn
z

2
� Rn

y � Rn
z

c
; (2.74)

so that

t � tn
y D Qt � Tn and t � tn

z D Qt C Tn:

As mentioned in Section 2.4.1 (see the discussion right after equation (2.61)), a
typical travel time between y and z is much shorter than the duration of the pulse.
This is equivalent to jTnj � � ; hence, the two indicator functions �� under the
integral in (2.72) overlap on some interval.7 The center of this interval is Qt D 0 and
the endpoints are Qt D �=2� jTnj and Qt D ��=2C jTnj, so that its length is

�n D � � 2jTnj: (2.75)

The phase of the integrand in (2.72) can be expressed as

˛.t � tn
y /
2 � ˛.t � tn

z /
2 C !0.t

n
z � tn

y /

D ˛
�
.Qt � Tn/2 � .Qt C Tn/2

�
C !0.t � .Qt C Tn/� .t � .Qt � Tn///

D � ˛ � 4QtTn � 2!0Tn;

7That’s why, unlike in (2.41), we do not have �
2LSA
.y1 � z1/ in front of the sum in (2.72).
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so the integration can be carried out analytically [cf. formula (2.60)]:

W.y ; z / D
N2.y ;z /X

nDN1.y ;z /

e�2i!0Tn
Z �n=2

��n=2

e�4i˛TnQtdQt

D
N2.y ;z /X

nDN1.y ;z /

e�2i!0Tn �1
4i˛Tn

.e�2i˛�nTn � e2i˛�nTn
/

D
N2.y ;z /X

nDN1.y ;z /

e�2i!0Tn 1

4i˛Tn
2i sin.2˛�nTn/

D
N2.y ;z /X

nDN1.y ;z /

e�2i!0Tn
�n sinc.2˛�nTn/:

(2.76)

Let us now introduce a new function:

W(R†/.y ; z /
defD WR.y ; z / � W†.y ; z /; (2.77)

where similarly to (2.41),

W†.y ; z / D
N2.y ;z /X

nDN1.y ;z /

e2i!0.Rn
z �Rn

y /=c D
N2.y ;z /X

nDN1.y ;z /

e�2i!0Tn
;

and similarly to (2.36),

WR.y ; z / D
Z
�

A.t � 2Rc
y=c/A.t � 2Rc

z=c/ dt D � c sinc.2˛� cTc/: (2.78)

In formula (2.78), � c and Tc denote �n and Tn, respectively, for n D nc, see (2.43),
and are, of course, the same as � c and Tc of Section 2.4. We emphasize that unlike
the approximation (2.34), formula (2.77) is the exact definition of a new function.
Our goal is to determine how accurately this new function W(R†/.y ; z / of (2.77)–
(2.78) approximates the GAF W.y ; z / of (2.72) or, equivalently, (2.76). To assess
the accuracy of approximation, we will estimate the error

W � W(R†/ D
N2.y ;z /X

nDN1.y ;z /

e�2i!0Tn
Œ�n sinc.2˛�nTn/� � c sinc.2˛� cTc/�: (2.79)
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Using (2.40), (2.43), and (2.74), taking into account that xn
1 D n�x1 D nLSA=N,

and recalling that L=R D sin � , we can write:

Tn D Rn
y � Rn

z

c
D Ll

Rc
C l2 cos2 �

2Rc
� z21 � y21

2Rc
� .y1 � z1/xn

1

Rc

� l sin �

c
� y1 � z1

c

�xn
1

R
� y1 C z1

2R

�

D l sin �

c
� y1 � z1

c

LSA

RN
Qn defD Tc � T Qn;

(2.80)

where

T Qn D .y1 � z1/LSA

NcR
Qn defD QnT 1 and T 1 D .y1 � z1/LSA

NcR
: (2.81)

Using (2.43), we change the summation variable in (2.79) from n to Qn:

W � W(R†/ D
QN=2X

QnD� QN=2
e�2i!0TQn

Œ� Qn sinc.2˛� QnT Qn/ � � c sinc.2˛� cTc/�; (2.82)

where [cf. formulae (2.74) and (2.75)]

T Qn D Tc � T Qn and � Qn D � � 2jT Qnj:

As jTcj � � and jT Qnj � � , we can write using the first order Taylor formula:

sinc.2˛� QnT Qn/ � sinc.2˛� cTc/C 2˛.� QnT Qn � � cTc/ sinc0.2˛� cTc/

� sinc.2˛� cTc/� 2˛�T Qn sinc0.2˛� cTc/;
(2.83)

where in the increment of the argument .� QnT Qn � � cTc/ we have disregarded all the
terms higher than first order with respect to either Tc or T Qn. With the help of (2.83),
the expression in square brackets on the right-hand side of (2.79) evaluates to

� Qn sinc.2˛� QnT Qn/ � � c sinc.2˛� cTc/

� 2.jTcj � jT Qnj/ sinc.2˛� cTc/ � 2˛�2T Qn sinc0.2˛� cTc/; (2.84)

where again, we have neglected all the terms higher than first order with respect
to either Tc or T Qn. Moreover, as ˛�2 D B�=2 � 1 (the TBP of the chirp B�

2�
is considered large, see Table 1.2), the second term on the right-hand side of the
previous equality appears much greater than the first term (taking into account that
j sinc0.2˛� cTc/j < 1

2
). Then, dropping the first term and denoting

S D �2˛�2 sinc0.2˛� cTc/; (2.85)
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we can transform formula (2.82) into

W � W(R†/ � eiˆ0S

QN=2X
QnD� QN=2

e2i!0T QnT Qn D ST 1eiˆ0

QN=2X
QnD� QN=2

QneiQn'; (2.86)

where according to (2.80) and (2.81) we have [cf. formula (2.46)]:

ˆ0 D �2!0l
c

sin � and ' D 2!0T 1 D 2
!0LSA

NRc
.y1 � z1/: (2.87)

To calculate the sum on the right-hand side of (2.86), we differentiate the left-
hand side and the right-hand side of (2.52) with respect to ':

QN=2X
QnD� QN=2

Qnein' D 1

i

@

@'

QN=2X
QnD� QN=2

ein' � 1

i

@

@'

� QN sinc
QN'
2

�
D QN2

2i
sinc0 QN'

2
:

Then, similarly to Section 2.4.1, we replace QN with N and using (2.85), obtain the
following expression for the factorization error (2.86):

W � W(R†/ � ST 1N2

2i
eiˆ0 sinc0 N'

2
D NS

2i!0
eiˆ0

N'

2
sinc0 N'

2
; (2.88)

where according to (2.57) and (2.87):

N'

2
D �.y1 � z1/

�A
: (2.89)

Hence, for the relative error of factorization we can write using (2.88) along
with (2.65) and (2.58):

max jW � W(R†/j
max jW(R†/j D 1

N�

NjSj
2!0

ˇ̌̌N'
2

ˇ̌̌ˇ̌̌
sinc0 N'

2

ˇ̌̌
: (2.90)

Note that both W and W(R†/ are complex-valued quantities. Hence, keeping the
absolute value of their difference small is necessary and sufficient for these two
quantities to be close to one another. That, in turn, allows one to use the factorized
GAF W(R†/, which is easier to analyze, for assessing the quality of the original non-
factorized GAF W.

To obtain an estimate for the right-hand side of equation (2.90) we first notice that

max
x2.�1;1/

j sinc0.x/j < 1

2
:
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Then, given the definition of S by formula (2.85) and taking into account (2.89),
we have:

max jW � W(R†/j
max jW(R†/j <

˛�

4!0

�jy1 � z1j
�A

D B

8!0

�jy1 � z1j
�A

: (2.91)

Hereafter, we will only be interested in considering jy1 � z1j . �A or, equivalently,
considering only the main lobe of the sinc. � / in the azimuthal factor (2.58), see
Section 2.6 for further details. Then, from (2.91) we obtain:

max jW � W(R†/j
max jW(R†/j . �

8

B

!0
: (2.92)

Formula (2.92) provides an estimate for the relative error due to the factoriza-
tion (2.77)–(2.78) or, equivalently, (2.34)–(2.36). This error is on the order of one
percent, given the value of the relative bandwidth B

!0
� 3 � 10�2 presented in Ta-

ble 1.2. It is interesting to note that according to (2.88), the dominant term of this
error vanishes if either y1 D z1 or y2 D z2 (the latter implies Tc D 0, see (2.81),
and hence S D 0, see (2.85)). The key to understanding this effect is the expression
for T Qn in (2.80)–(2.82). Physically, T Qn is the difference between the pulse two-way
travel time for the pairs .x n;y / and .x n; z /. As a function of the satellite position
n, T Qn has a constant part Tc and a part T Qn which is linear in Qn D n � nc. It is the
variation of the range PSF sinc.2˛� QnT Qn/ with Qn in formula (2.82) that is responsi-
ble for the leading term of the factorization error. If y2 D z2, then the constant part
of T Qn vanishes and so does the PSF tangent slope given by sinc0.2˛� cTc/. Hence, the
leading term of the variation of the PSF disappears. On the other hand, if y1 D z1
then it is the leading term of the variation of T Qn with Qn that vanishes (T Qn � 0,
see (2.81)), and so does the leading term of the variation of sinc.2˛� QnT Qn/ regard-
less of the value of 2˛� cTc. Only in the general “diagonal” configuration: y1 ¤ z1
and y2 ¤ z2, does the coupling between the range and azimuthal terms become
significant, which yields the full unabridged expression for the error (2.88).

2.6 Resolution

A key measure of radar performance is its capacity to tell between two closely lo-
cated point targets. It is called the resolution, and it directly affects the quality of the
image. The generalized ambiguity function built in Section 2.4 provides a very effi-
cient tool for studying the SAR resolution because it can be conveniently interpreted
as the image of a point target. Moreover, the factorized form of the GAF (2.34)
proves very useful in that it allows one to quantify the performance of the SAR
sensor independently in different directions.

First of all, we notice that according to formulae (2.35), (2.36), (2.65), and (2.58)
the factorized GAF (2.34) is a function of only two independent spatial direc-
tions — the azimuthal direction which is parallel to the flight track and the slant
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range direction which is normal to the flight track. On one hand, this basically
means that the SAR data collection algorithm we have described (a monostatic
non-interferometric sensor traveling along a linear trajectory) can generate only
two-dimensional datasets, and we expect that it will provide resolution only in those
two directions (range and azimuth). On the other hand, it leads to a certain vague-
ness because �.z / is a function of three variables and the integration in (2.31) (and
prior to that, in (2.22)) is performed over a 3D region (z 2 R

3). A standard way of
removing this vagueness in the SAR ambiguity theory [9, 75, 86] consists of artifi-
cially restricting the dimension of the set on which �.z / is specified. This is done
by eliminating the vertical coordinate and defining the plane z3 D 0, i.e., the sur-
face of the Earth, as the locus of all the targets. Accordingly, the ground reflectivity
function (2.150) becomes

�.z / � �.z1; z2; z3/ D �.z1; z2/ı.z3/; (2.93)

which is a single layer, or layer of monopoles, on the surface. From the standpoint
of physics, considering the reflectivity in the form of (2.93) merely suggests that
all the scattering occurs only at the surface of the target, which is what one intu-
itively expects when imaging the Earth from an aircraft or a satellite. The integration
in (2.31) is then performed over a 2D region (plane), and the resulting image recon-
structs �.z1; z2/, i.e., yields the reflectivity on the surface of the Earth as a function
of the two horizontal coordinates.

To analyze the performance of the SAR instrument in the azimuthal and range
directions, we use the individual factors of the GAF W†.y ; z / and WR.y ; z / given
by formulae (2.58) and (2.65), respectively. Introducing the same notation as in the
first equality of (2.87):

ˆ0 D �2k0
Ll

R
;

we can recast (2.58) as

W†.y ; z / � eiˆ0WA.y ; z /; (2.94)

where [cf. (2.57)]

WA.y ; z / D N sinc
�
�

y1 � z1
�A

�
and �A D �Rc

!0LSA
: (2.95)

The sinc function in (2.95) attains its maximum at y1 D z1 and has its first zero
where y1 � z1 D �A. Therefore, �A is the semi-width of the main lobe of the
sinc. � /. The quantity�A given by the second equality of (2.95) (and also by (2.57))
is called the azimuthal resolution, because it is assumed that if two point targets are
at least �A apart, then their images given by sinc functions of semi-width �A can
be distinguished from one another. For the typical values of the parameters given in
Table 1.1, the azimuthal resolution �A of (2.95) evaluates to approximately 10m.
Altogether, the function WA.y ; z / of (2.95) describes the performance of the SAR
sensor in the azimuthal direction.
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For the second factor, WR, we can write in accordance with (2.64), (2.65):

WR.y ; z / � � sinc
�
�

Rc
y � Rc

z

�R

�
; where �R D �c

B
: (2.96)

The exact same argument as in the case of azimuthal resolution allows one to inter-
pret the quantity �R in formula (2.96), see also (2.64), as the range resolution. The
function WR.y ; z / describes the performance of the SAR sensor in the range direc-
tion. Moreover, we see that the range resolution �R is about B� times smaller than
the plain spatial length of the chirp c� . That’s why the TBP of the chirp B�

2�
is also

called its compression ratio. For the chirp bandwidth B defined in Table 1.1, the nu-
merical value of the range resolution�R defined in formula (2.96) is approximately
19m.

Given the idea behind the definition of the compression ratio of the chirp, one can
introduce a similar concept for the azimuthal direction as well. Indeed, according to
the analysis of Section 2.4.6, the linear variation of the local wavenumber k D k.Qn/
along the synthetic array can be interpreted as a chirp of length LSA. Its ratio to the
azimuthal resolution�A (i.e., compression ratio):

LSA

�A
D 2L2SA

�0

1

R
� 1

is equal to the ratio of the Fraunhofer distance for the synthetic array over the dis-
tance from the antenna to the target, which is large, see Table 1.2.

Let us also recall that n D nc of (2.43) corresponds to the center of the synthetic
aperture when computing the imaging kernel. Hence, we can write: xnc

1 D y1Cz1
2

,
and then formula (2.40) yields:

Rc
y � Rc

z � Ll

R
C l2 cos2 �

2R
:

As l D y2 � z2 and jlj � R, the second term on the right-hand side of the previous
equality is much smaller than the first term and can be dropped. Hence, from the
first equality of (2.96) we have:

WR.y ; z / � � sinc
�
�

y2 � z2
�R

sin �
�
: (2.960)

The difference between formulae (2.96) and (2.960) is that the former shows the
dependence of WR.y ; z / on the slant range variables Rc

y and Rc
z , whereas the latter

shows the dependence of WR.y ; z / on the actual range coordinates y2 and z2, see
Figure 2.1. Accordingly, the resolution �R defined in (2.96) is, in fact, the slant
range resolution, while the actual range resolution derived from (2.960) would be
�R= sin � . However, the difference between the two is only by a constant factor of
1= sin � . Hence, throughout the book we will be using expressions of the type (2.96),
as opposed to (2.960), for assessing the performance of the SAR instrument in the
range direction, and will be referring to �R as the range resolution.
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The overall expression for the factorized GAF W.y ; z / of (2.34) becomes

W.y ; z / D W†.y ; z /WR.y ; z / D eiˆ0WA.y ; z /WR.y ; z /: (2.97)

We notice that according to (2.40) and (2.94)–(2.96), the GAF depends only on
the difference of its arguments: W.y ; z / D W.y � z /, which indeed allows us to
interpret formula (2.31) with the kernel (2.34) as a convolution integral:

I.y / D
Z

W.y ; z /�.z /dz D
Z

W.y � z /�.z /dz D W 	 �:

Each of the two factors, WA and WR, describes the spreading of the GAF in the cor-
responding direction, i.e., a measure of how different it is from the ideal ı-function.
We therefore conclude that the shape of the GAF W.y ; z / directly affects the quality
of the reconstruction of �.z / in the form of I.y /, see (2.31).

We emphasize, however, that while the entire previous discussion in this section
is based on the approximate factorized form of the GAF (2.34), the true GAF given
by formula (2.32) is not factorized. As such, it does not provide a convenient form
for studying, or even defining, the radar resolution independently for the range and
azimuthal directions. That’s why the factorization error that we computed in Sec-
tion 2.5 becomes important — it quantifies the difference between the two forms
of the GAF, the one that allows for a direct analysis of the SAR resolution and the
one that does not. According to the estimate (2.92), the relative error of the GAF
factorization is small, on the order of the relative bandwidth of the SAR system.
Therefore, the approximate resolution analysis of this section that is based on the
factorized form of the GAF (2.34) still provides an accurate assessment of the SAR
performance. The factorization error in this context can be thought of as a source
of image distortions, understood as discrepancies between the simplified factorized
imaging kernel and its genuine non-factorized counterpart. Again, estimate (2.92)
indicates that the relative magnitude of those distortions is not large for those pa-
rameters that we have chosen. Of course, for wide-band interrogating waveforms it
may be substantial.

2.7 Deficiencies of the conventional approach

Earlier publications in the literature discussing the SAR ambiguity theory, in-
cluding some of our own papers [1, 3, 5], did not distinguish between W†.y ; z /
and WA.y ; z /, whereas these two factors are related by the fast phase multiplier
eiˆ0 , see (2.87) and (2.94). As the absolute value of this multiplier is one, ignoring it
has no effect on the expressions for resolution in either direction. That is why in the
case of a point scatterer one can obtain the correct expressions for both the range
and azimuthal resolution even with the fast phase ignored, see, e.g., [1, 3, 5, 75, 86].
For the case of extended scatterers, however, the fast phase in formula (2.31) should
be retained. Keeping the fast phase is also important for SAR interferometry [111].
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The fast phase term eiˆ0 in (2.97) allows one to separate the scales of variation
in both the imaged quantity � and the image I into fast (on the order of wave-
length) and slow (much longer than the wavelength, on the order of resolution), see
Section 7.2 of Chapter 7. This, in turn, enables the backscattering via the resonant
Bragg mechanism and yields a physical interpretation of the observable quantity in
SAR imaging as a slowly varying amplitude of the Bragg harmonic in the spec-
trum of ground reflectivity. Otherwise, consider, for example, a constant refractive
index, n.z / D const, on a semi-space. The reflection from such a target is specu-
lar and involves no backscattering. Yet if the reflectivity �.z / given by (2.150) for
n.z / D const is substituted into (2.31), and the fast phase term eiˆ0 is not included
into W.y ; z /, then there will be a nonzero image intensity. This leads to an inconsis-
tency because formula (2.31) describes the monostatic SAR imaging and therefore
can generate an image only if a certain part of the incident field is scattered back to
the antenna.

Moreover, the intensity of the image (2.31) for a homogeneous half-space will
not depend on polarization because the entire previous development is done in the
scalar framework. In reality, however, the polarization needs to be taken into ac-
count. This is done in Section 7.5 of Chapter 7.

Another inconsistency in the traditional exposition of the SAR ambiguity theory
is related to the representation of the ground reflectivity function in the form of a
single layer on the surface of the target, see (2.93). Such a representation is usually
justified by the rapid decay of the radar signal as it penetrates below the Earth’s
surface. From the standpoint of physics, this is an adequate consideration because
the typical SAR carrier frequencies are in the microwave range and their penetration
depth is small.8 It suggests, however, that the scattering is strong, as it prevents
the incident field from penetrating deep into the target. Hence, the condition for
applicability of the first Born approximation, which assumes weak scattering, is
violated. Moreover, a singular expression for � in (2.93) is an obvious violation
of (2.7).

We postpone the remedying of these inconsistencies until Chapter 7, i.e., until
after the discussion on transionospheric SAR imaging. In Chapter 7, we address the
foregoing concerns by introducing a new approach to the treatment of radar targets
that will allow us to compute the scattered signal in any given direction. The new
approach is more comprehensive than the previous one as it carries no constraint that
the scattering has to be weak, and does not rely on the first Born approximation.
Yet it keeps the inverse scattering problem for SAR linear, and eventually allows
one to obtain its solution in the form of convolution (2.31), where the integral is
taken only along the surface of the target. When the scattering is weak, the results
obtained in the new framework become equivalent to those obtained by means of
the conventional approach.

8The penetration depth for an electromagnetic wave can often be estimated as one half of the
wavelength, see, e.g., [19, Chapter 7].
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2.8 Chapter summary

We presented a traditional exposition of the SAR ambiguity theory for the case of
monostatic broadside non-interferometric (i.e., 2D) imaging. Our discussion cov-
ered the interrogating waveforms (linear chirps), as well as their propagation and
scattering in Section 2.1, including the first Born approximation in Section 2.1.1;
the analysis of the antenna radiation pattern in Section 2.2; and that of the two-stage
inversion of the raw data in Section 2.3. The two stages of inversion are the applica-
tion of the matched filter (2.23), (2.24) in Section 2.3.1 (see also Appendix 2.A) and
the summation over the synthetic aperture (2.31), see Section 2.3.2. In Section 2.4,
we computed the imaging kernel, i.e., the GAF, and in the subsequent Section 2.5
we estimated the error associated with its factorized representation; the latter being
a very convenient tool for the resolution analysis presented in Section 2.6. In Sec-
tion 2.7, we outlined some inconsistencies of the traditional approach related to the
use of the first Born approximation and to the absence of the resonant Bragg scale
in the scattering model. These inconsistencies will be addressed in Chapter 7, i.e.,
after the forthcoming ionospheric discussion in Chapters 3, 4, and 5.

The most important concepts and equations in this chapter include:

• The list of assumptions right before Section 2.1;
• The retarded potential formula (2.4) for the propagation of a radar pulse in vac-

uum;
• The convolution formula (2.1400) for the field scattered off the target;
• Formula (2.23) for the matched filter;
• Equation (2.32) for the imaging kernel;
• The concept of factorization of the GAF represented by formula (2.77);
• Formula (2.92) for the factorization error;
• Formulae (2.95) and (2.96) that define the range and azimuthal factors of the

GAF and introduce the expressions for the range and azimuthal resolution.

Appendix 2.A Choosing the matched filter

Let the received field be given by the integral [cf. formula (2.1400)]

u.t;x / D
Z
�.z /P .t � 2Rz=c/ dz ; (2.98)

where �.z / incorporates both the ground reflectivity and the propagation atten-
uation, see (2.150), and let the image be defined with the help of the function
K D K.t;y / [cf. formula (2.24)]:

Ix .y / D
Z 1

�1
K.t;y /u.t;x /dt: (2.99)
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Substituting (2.98) into (2.99) and changing the order of integration, we arrive at a
mapping �.z / 7! Ix .y /, which is known as the imaging operator:

Ix .y / D
Z
�.z /

Z 1

�1
K.t;y /P .t � 2Rz=c/ dtdz : (2.100)

The function K.t;y /, which is at our disposal, can be chosen to achieve some desir-
able properties of the imaging operator (2.100).

One of those properties may be to maximize the return from isolated point scat-
terers. Namely, let �.z / D �z0ı.z � z0/, where �z0 is a constant factor and z0 is
given. Then, formula (2.100) yields:

Ix .y / D �z0

Z 1

�1
K.t;y /P .t � 2Rz0=c/ dt: (2.101)

Assume that the function K.t;y / is absolutely square integrable with respect to t
uniformly in y , i.e., 8y W K.t;y / 2 L2.�1;1/, and the estimate

Z 1

�1
jK.t;y /j2 dt 6 EK (2.102)

holds with one and the same constant EK for all y . Consider the image (2.101) at
y D z0. We will seek K.t;y / that maximizes the return Ix .z0/ relative to the input
�z0 , i.e., maximizes the ratio jIx .z0/j

j�z0 j , subject to constraint (2.102).
From the Cauchy-Schwarz inequality we get the following estimate:

jIx .y /j D
ˇ̌̌
ˇ�z0

Z 1

�1
K.t;y /P .t � 2Rz0=c/ dt

ˇ̌̌
ˇ 6 j�z0 j

p
EKEP; (2.103)

where

EP D
Z 1

�1
jP.t/j2 dt < 1:

For the chirp (2.10), (2.11), EP D � . The equality in (2.103) is reached only for

K.t;y / D
s

EK

EP
P
�
t � 2Ry=c

�
: (2.104)

Formula (2.104) defines the matched filter: the kernel in the integral operator (2.99)
is a scaled delayed complex conjugate replica of the original signal. Moreover, it is
easy to see that the resulting maximum value of jIx .z0/j

j�z0 j appears independent of z0.
If we take EK D � , then formula (2.104) reduces to the expression (2.23) for the
matched filter that we introduced in Section 2.3.1.
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The consideration based solely on point scatterers is deficient though in that the
real radar targets may have a different composition. As such, instead of maximiz-
ing the return from point scatterers we may require that the kernel of the imaging
operator (2.100), i.e., the PSF

Wx .y ; z / D
Z 1

�1
K.t;y /P .t � 2Rz=c/ dt; (2.105)

be close to the delta-function ı.y � z /. This requirement is more general than the
previous one because in the case of a true equality: Wx .y ; z / D ı.y �z /, the image
I.y / on the left-hand side of (2.100) exactly reconstructs the unknown function �.z /
regardless of its actual form.

Yet the question of how one shall understand the “closeness” between Wx .y ; z/
and ı.y�z / requires attention, because spaces of distributions are not equipped with
norms. We will use the spectral interpretation, i.e., employ the Fourier transform.
Namely, let QK and QP denote the Fourier transforms of K and P, respectively, in time:

QK.!;y / D
Z 1

1
K.t;y /ei!tdt; QP.!/ D

Z 1

1
P.t/ei!tdt:

Then, taking into account that the Fourier transform of a product is the convolution
of Fourier transforms, for the PSF (2.105) we can write:

Wx .y ; z / D 1

2�

Z 1

�1
ei!2Rz =c QP.!/ QK.�!;y / d!: (2.106)

For the rest of this section, we will adopt a simplified one-dimensional setting, for
which y D Ry � y and z D Rz � z. Then, the following identity holds:

ı.y � z/ D 2

c
ı
�
2Ry=c � 2Rz=c

� D 2

c

1

2�

Z 1

�1
e�i!2.Ry�Rz /=cd!:

Matching the right-hand side of the previous equality against that of (2.106), we see
that if

QP.!/ QK.�!; y/ D e�i!2Ry=c; (2.107)

then the spectra of the two expressions differ only by the constant 2
c , which is not

essential. Consequently, if (2.107) could be satisfied for all !, then Wx .y; z/ will be
proportional to ı.y � z/, which is our goal.

However, choosing QK.!; y/ to satisfy (2.107) for all! 2 R is not possible if QP.!/
is zero (or very small by absolute value) for a range of frequencies. This appears to
be the case for the chirped signals (2.10), (2.11) that are designed to have their
spectrum confined to a band of width B around the central carrier frequency !0:

QP.!/ D
Z 1

�1
�� .t/e

�i˛t2e�i!0tei!t dt

�
r
�

˛
e�i�=4ei.!�!0/2=.4˛/�B.! � !0/:

(2.108)
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The integration in (2.108) has been performed using the method of stationary phase,
and the factor

�B.! � !0/ defD
(
1; j! � !0j 6 B=2;

0; otherwise;
(2.109)

on the last line of (2.108) originates from the condition that the stationary point of
the phase

tst D ! � !0

2˛
(2.110)

must belong to the interval Œ��=2; �=2� defined by the indicator function �� .t/
of (2.11).9 It is only in the frequency band j! � !0j 6 B=2 defined by (2.109)
that QK.!; y/ can be chosen to satisfy (2.107):

QK.!; y/ D 1

QP.�!/ei!2Ry=c D const � QP.!/ei!2Ry=c; (2.111)

where QP.!/ denotes the Fourier transform of the complex conjugate of P.t/, and the
second equality in (2.111) is derived with the help of (2.108) and (2.109). Applying
the inverse Fourier transform to (2.111), we obtain:

K.t; y/ / P.t � 2Ry=c/; (2.112)

which coincides with the matched filter expression (2.104). Hence, for the chirped
signals the matched filter formula (2.104) also satisfies (2.107) so that the spectrum
of Wx .y; z/ D Wx .y � z/ coincides with that of ı.y � z/ for j! � !0j 6 B=2. In this
sense, Wx .y � z/ can be considered an approximation to ı.y � z/.

9 The method of stationary phase provides only an approximate, rather than exact, value of the
Fourier integral in (2.108). Therefore, the actual spectrum of the chirp (2.10), (2.11) extends be-
yond the interval ! 2 Œ!0 � B=2; !0 C B=2�. Its more accurate computation would require the
analysis of the case where the stationary point (2.110) is located at or near either of the endpoints
of the integration interval t 2 Œ��=2; �=2�, including the situation when it is outside of this in-
terval, see, e.g., [112, Chapter III, Section 1] for detail. The exact spectrum of the chirp can be
expressed via the erf. � / functions of a complex argument, see, e.g., [5], although for obtaining
practical estimates the resulting expressions still need to be approximated.
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