
Chapter 2
Initial and Boundary Value Problems
of Fractional Order Hadamard-Type
Functional Differential Equations
and Inclusions

2.1 Introduction

Functional and neutral functional differential equations arise in a variety of areas
of biological, physical, and engineering applications, see, for example, the books
[90, 100] and the references therein. Fractional functional differential equations
involving Riemann-Liouville and Caputo type fractional derivatives have been
studied by several researchers [1, 3, 4, 45, 46, 68, 78, 106, 175].

In this chapter, we discuss the existence of solutions for initial and boundary
value problems of Hadamard-type functional and neutral functional differential
equations and inclusions involving retarded as well as advanced arguments.

2.2 Functional and Neutral Fractional Differential Equations

This section deals with the existence of solutions for initial value problems (IVP for
short) of fractional order functional and neutral functional differential equations.
In the first problem, we consider fractional order functional differential equations:

D˛y.t/ D f .t; yt/; for each t 2 J D Œ1; b�; 0 < ˛ < 1; b > 1; (2.1)

y.t/ D �.t/; t 2 Œ1 � r; 1�; HJ1�˛y.t/jtD1 D 0; (2.2)

where D˛ is the Hadamard fractional derivative, f W J � C.Œ�r; 0�;R/ ! R is a
given continuous function and � 2 C.Œ1 � r; 1�;R/ with �.1/ D 0 and HJ.:/ is the
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14 2 IVP and BVP for Hadamard-Type Differential Equations and Inclusions

Hadamard fractional integral. For any function y defined on Œ1� r; b� and any t 2 J,
we denote by yt the element of C.Œ�r; 0�;R/ and define it as

yt.�/ D y.t C �/; � 2 Œ�r; 0�:

Notice that yt.�/ represents the history of the state from time t � r up to the present
time t.

The second problem is concerned with fractional neutral functional differential
equations:

D˛Œy.t/ � g.t; yt/� D f .t; yt/; t 2 J; (2.3)

y.t/ D �.t/; t 2 Œ1 � r; 1�; HJ1�˛y.t/jtD1 D 0; (2.4)

where f and � are the same as defined in problem (2.1)–(2.2), and g W J �
C.Œ�r; 0�;R/ ! R is a given function such that g.1; �/ D 0.

Theorem 2.1 ([96, p. 213]) Let ˛ > 0; n D �Œ�˛� and 0 � � < 1: Let G be an
open set in R and let f W .a; b��G ! R be a function such that: f .x; y/ 2 C�;logŒa; b�
for any y 2 G: Then the following problem

D˛y.t/ D f .t; y.t//; ˛ > 0; (2.5)

HJ˛�ky.aC/ D bk; bk 2 R; .k D 1; : : : ; n; n D �Œ�˛�/; (2.6)

satisfies the Volterra integral equation:

y.t/ D
nX

jD1

bj

� .˛ � j C 1/

�
log

t

a

�˛�j
C 1

� .˛/

Z t

a

�
log

t

s

�˛�1
f .s; y.s//

ds

s
; t > a > 0;

(2.7)

that is, y.t/ 2 Cn�˛;logŒa; b� satisfies the relations (2.5)–(2.6) if and only if it satisfies
the Volterra integral equation (2.7).

In particular, if 0 < ˛ � 1; the problem (2.5)–(2.6) is equivalent to the following
equation:

y.t/ D b

� .˛/

�
log

t

a

�˛�1
C 1

� .˛/

Z t

a

�
log

t

s

�˛�1
f .s; y.s//

ds

s
; s > a > 0: (2.8)

Further details can be found in [96].
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2.2.1 Functional Differential Equations

By C.J;R/; we denote the Banach space of all continuous functions from J into R

with the norm

kyk1 WD supfjy.t/j W t 2 Jg;

where j � j is a suitable complete norm on R: The space C.Œ�r; 0�;R/ is endowed
with norm k � kC defined by

k�kC WD supfj�.�/j W �r � � � 0g:

Definition 2.1 A function y 2 C 1.Œ1 � r; b�;R/ is said to be a solution of (2.1)–
(2.2) if it satisfies the equation D˛y.t/ D f .t; yt/ on J, the conditions y.t/ D �.t/ on
Œ1 � r; 1� and HJ1�˛y.t/jtD1 D 0:

Our first existence result for the IVP (2.1)–(2.2) is based on the Banach’s contraction
mapping principle.

Theorem 2.2 Let f W J � C.Œ�r; 0�;R/ ! R: Assume that:

(2.2.1) there exists ` > 0 such that

jf .t; u/�f .t; v/j � `ku�vkC; for t 2 J and for every u; v 2 C.Œ�r; 0�;R/:

If
`.log b/˛

� .˛ C 1/
< 1; then there exists a unique solution for the IVP (2.1)–(2.2) on the

interval Œ1 � r; b�:

Proof To transform the problem (2.1)–(2.2) into a fixed point problem, we consider
an operator N W C.Œ1 � r; b�;R/ ! C.Œ1 � r; b�;R/ defined by

N.y/.t/ D

8
<̂

:̂

�.t/; if t 2 Œ1 � r; 1�;

1

� .˛/

Z t

1

�
log

t

s

�˛�1 f .s; ys/

s
ds; if t 2 Œ1; b�:

(2.9)

Let y; z 2 C.Œ1 � r; b�;R/. Then, for t 2 Œ1 � r; b�; we have

jN.y/.t/ � N.z/.tj � 1

� .˛/

Z t

1

�
log

t

s

�˛�1
jf .s; ys/ � f .s; zs/jds

s

� `

� .˛/

Z t

1

�
log

t

s

�˛�1
kys � zskC

ds

s
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� `

� .˛/
ky � zkŒ1�r;b�

Z t

1

�
log

t

s

�˛�1 ds

s

� `.log t/˛

� .˛ C 1/
ky � zkŒ1�r;b�:

Consequently,

kN.y/ � N.z/kŒ1�r;b� � `.log b/˛

� .˛ C 1/
ky � zkŒ1�r;b�;

which implies that N is a contraction as
`.log b/˛

� .˛ C 1/
< 1, and hence the operator N

has a unique fixed point by Banach’s contraction mapping principle. Therefore, the
problem (2.1)–(2.2) has a unique solution on Œ1 � r; b�: �

We make use of the nonlinear alternative of Leray-Schauder type to obtain our
second existence result for the IVP (2.1)–(2.2).

Theorem 2.3 Assume that the following hypotheses hold:

(2.3.1) f W J � C.Œ�r; 0�;R/ ! R is a continuous function;
(2.3.2) there exist a continuous nondecreasing function  W Œ0;1/ ! .0;1/ and

a function p 2 C.Œ1; b�;RC/ such that

jf .t; u/j � p.t/ .kukC/ for each .t; u/ 2 Œ1; b� � C.Œ�r; 0�;R/I

(2.3.3) there exists a constant M > 0 such that

M

 .M/kpk1
.log b/˛

� .˛ C 1/

> 1:

Then the IVP (2.1)–(2.2) has at least one solution on Œ1 � r; b�:

Proof We consider the operator N W C.Œ1 � r; b�;R/ ! C.Œ1 � r; b�;R/ defined
by (2.9) and show that it is both continuous and completely continuous.

Step 1: N is continuous.

Let fyng be a sequence such that yn ! y in C.Œ1 � r; b�;R/: Let � > 0 such that
kynk1 � �: Then

jN.yn/.t/ � N.y/.t/j � 1

� .˛/

Z t

1

�
log

t

s

�˛�1
jf .s; yns/ � f .s; ys/jds

s

� 1

� .˛/

Z b

1

�
log

t

s

�˛�1
sup

s2Œ1;b�
jf .s; yns/ � f .s; ys/jds

s
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� kf .�; yn:/ � f .�; y:/k1
� .˛/

Z b

1

�
log

t

s

�˛�1 ds

s

� .log b/˛kf .�; yn:/ � f .�; y:/k1
� .˛ C 1/

:

Since f is a continuous function, we have

kN.yn/ � N.y/k1 � .log b/˛kf .�; yn:/ � f .�; y:/k1
� .˛ C 1/

! 0 as n ! 1:

Step 2: N maps bounded sets into bounded sets in C.Œ1 � r; b�;R/:

Indeed, it is enough to show that for any �� > 0 there exists a positive constant
Q̀ such that for each y 2 B�� D fy 2 C.Œ1 � r; b�;R/ W kyk1 � ��g; we have
kN.y/k1 � Q̀: By (2.3.2), for each t 2 Œ1; b�; we obtain

jN.y/.t/j � 1

� .˛/

Z t

1

�
log

t

s

�˛�1
jf .s; ys/jds

s

�  .kykŒ1�r;b�/kpk1
� .˛/

Z t

1

�
log

t

s

�˛�1 ds

s

�  .kykŒ1�r;b�/kpk1
� .˛ C 1/

.log b/˛:

Thus

kN.y/k1 �  .��/kpk1
� .˛ C 1/

.log b/˛ WD Q̀:

Step 3: N maps bounded sets into equicontinuous sets of C.Œ1 � r; b�;R/.

Let t1; t2 2 .0; b�; t1 < t2; B�� be a bounded set of C.Œ1 � r; b�;R/ as in Step 2,
and let y 2 B�� : Then

jN.y/.t2/ � N.y/.t1/j � 1

� .˛/

ˇ̌
ˇ
Z t1

1

h �
log

t2
s

�˛�1
�

�
log

t1
s

�˛�1 i
f .s; ys/

ds

s

C 1

� .˛/

Z t2

t1

�
log

t2
s

�˛�1
f .s; ys/

ds

s

ˇ̌
ˇ

�  .��/kpk1
� .˛ C 1/

�
2j.log t2=t1/

˛j C j.log t2/
˛ � .log t1/

˛j
�
:

As t1 �! t2; the right-hand side of the above inequality tends to zero, independent
of y 2 B�� : The equicontinuity for the cases t1 < t2 � 0 and t1 � 0 � t2 is obvious.
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In consequence of Steps 1–3, it follows by the Arzelá-Ascoli theorem that N W
C.Œ1 � r; b�;R/ �! C.Œ1 � r; b�;R/ is continuous and completely continuous.

Step 4: We show that there exists an open set U � C.Œ1�r; b�;R/ with y ¤ �N.y/
for � 2 .0; 1/ and y 2 @U:

Let y 2 C.Œ1 � r; b�;R/ and y D �N.y/ for some 0 < � < 1. Thus, for each
t 2 Œ1; b�,

y.t/ D �

�
1

� .˛/

Z t

1

�
log

t

s

�˛�1
f .s; ys/

ds

s

�
:

By the assumption (2.3.2), for each t 2 J, we get

jy.t/j � 1

� .˛/

Z t

1

�
log

t

s

�˛�1
p.s/ .kyskC/

ds

s

� kpk1 .kykŒ1�r;b�/

� .˛ C 1/
.log b/˛;

which can be expressed as

kykŒ1�r;b�

 .kykŒ1�r;b�/kpk1
.log b/˛

� .˛ C 1/

� 1:

In view of (2.3.3), there exists M such that kykŒ1�r;b� ¤ M. Let us set

U D fy 2 C.Œ1 � r; b�;R/ W kykŒ1�r;b� < Mg:

Note that the operator N W U ! C.Œ1 � r; b�;R/ is continuous and completely
continuous. From the choice of U, there is no y 2 @U such that y D �Ny for
some � 2 .0; 1/. Consequently, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that N has a fixed point y 2 U which is a solution of the
problem (2.1)–(2.2). This completes the proof. �

2.2.2 Neutral Functional Differential Equations

In this subsection, we establish the existence results for the IVP (2.3)–(2.4).

Definition 2.2 A function y 2 C 1.Œ1 � r; b�;R/ is said to be a solution of (2.3)–
(2.4) if it satisfies the equation D˛Œy.t/ � g.t; yt/� D f .t; yt/ on J, the conditions
y.t/ D �.t/ on Œ1 � r; 1� and HJ1�˛y.t/jtD1 D 0:
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Theorem 2.4 (Uniqueness Result) Assume that (2.2.1) and the following condi-
tion hold:

(2.4.1) there exists a nonnegative constant c1 such that

jg.t; u/ � g.t; v/j � c1ku � vkC; for every u; v 2 C.Œ�r; 0�;R/:

If

c1 C `.log b/˛

� .˛ C 1/
< 1; (2.10)

then there exists a unique solution for the IVP (2.3)–(2.4) on the interval Œ1 � r; b�:

Proof Associated with the problem (2.3)–(2.4), we introduce an operator N1 W
C.Œ1 � r; b�;R/ ! C.Œ1 � r; b�;R/ defined by

N1.y/.t/ D

8
<̂

:̂

�.t/; if t 2 Œ1 � r; 1�;

g.t; yt/C 1

� .˛/

Z t

1

�
log

t

s

�˛�1 f .s; ys/

s
ds; if t 2 Œ1; b�:

(2.11)
To show that the operator N1 is a contraction, let y; z 2 C.Œ1 � r; b�;R/. Then, we
have

jN1.y/.t/ � N1.z/.t/j � jg.t; yt/ � g.t; zt/j

C 1

� .˛/

Z t

1

jf .s; ys/ � f .s; zs/j
�

log
t

s

�˛�1 ds

s

� c1kyt � ztkC C `

� .˛/

Z t

1

�
log

t

s

�˛�1
kys � zskC

ds

s

� c1ky � zkŒ1�r;b� C `

� .˛/
ky � zkŒ1�r;b�

Z t

1

�
log

t

s

�˛�1 ds

s

� c1ky � zkŒ1�r;b� C `.log t/˛

� .˛ C 1/
ky � zkŒ1�r;b�:

Consequently, we obtain

kN1.y/ � N1.z/kŒ1�r;b� �
�

c1 C `.log b/˛

� .˛ C 1/

�
ky � zkŒ1�r;b�;

which, in view of (2.10), implies that N1 is a contraction. Hence N1 has a unique
fixed point by Banach’s contraction mapping principle. This, in turn, shows that the
problem (2.3)–(2.4) has a unique solution on Œ1 � r; b�: �
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Theorem 2.5 Assume that (2.3.1) and (2.3.2) hold. Further, we suppose that:

(2.5.1) the function g is continuous and completely continuous, and for any
bounded set B in C.Œ1 � r; b�;R/, the set ft ! g.t; yt/ W y 2 Bg is
equicontinuous in C.Œ1; b�;R/, and there exist constants 0 � d1 < 1; d2 � 0

such that

jg.t; u/j � d1kukC C d2; t 2 Œ1; b�; u 2 C.Œ�r; 0�;R/I

(2.5.2) there exists a constant M > 0 such that

.1 � d1/M

d2 C kpk1 .M/
� .˛ C 1/

.log b/˛
> 1:

Then the IVP (2.3)–(2.4) has at least one solution on Œ1 � r; b�:

Proof Let us show that the operator N1 W C.Œ1� r; b�;R/ ! C.Œ1� r; b�;R/ defined
by (2.11) is continuous and completely continuous.

Using (2.5.1), it suffices to show that the operator N2 W C.Œ1� r; b�;R/ ! C.Œ1�
r; b�;R/ defined by

N2.y/.t/ D
8
<

:

�.t/; t 2 Œ1 � r; 1�;
1

� .˛/

Z t

1

�
log

t

s

�˛�1 f .s; ys/

s
ds; t 2 Œ1; b�;

is continuous and completely continuous. The proof is similar to that of
Theorem 2.3, so we omit the details.

We now show that there exists an open set U � C.Œ1� r; b�;R/ with y ¤ �N1.y/
for � 2 .0; 1/ and y 2 @U:

Let y 2 C.Œ1 � r; b�;R/ and y D �N1.y/ for some 0 < � < 1. Thus, for each
t 2 Œ1; b�; we have

y.t/ D �

�
g.t; yt/C 1

� .˛/

Z t

1

�
log

t

s

�˛�1 f .s; ys/

s
ds

�
:

For each t 2 J; it follows by (2.3.1) and (2.3.2) that

jy.t/j � d1kytkC C d2 C 1

� .˛/

Z t

1

�
log

t

s

�˛�1
p.s/ .kyskC/

ds

s

� d1kytkC C d2 C kpk1 .kykŒ1�r;b�/

� .˛ C 1/
;
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which yields

.1 � d1/kykŒ1�r;b� � d2 C kpk1 .kykŒ1�r;b�/

� .˛ C 1/
.log b/˛:

In consequence, we get

.1 � d1/kykŒ1�r;b�

d2 C kpk1 .kykŒ1�r;b�/

� .˛ C 1/
.log b/˛

� 1:

In view of (2.5.2), there exists M such that kykŒ1�r;b� ¤ M. Let us set

U D fy 2 C.Œ1 � r; b�;R/ W kykŒ1�r;b� < Mg:

Note that the operator N1 W U ! C.Œ1 � r; b�;R/ is continuous and completely
continuous. From the choice of U, there is no y 2 @U such that y D �N1y
for some � 2 .0; 1/. Thus, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that N1 has a fixed point y 2 U which is a solution of
the problem (2.3)–(2.4). This completes the proof. �

2.2.3 An Example

Consider the initial value problem for fractional functional differential equations:

D1=2y.t/ D kytk
2.1C kytk/ C 1

3
; t 2 J WD Œ1; e�; (2.12)

y.t/ D �.t/; t 2 Œ1 � r; 1�; HJ1=2y.t/jtD1 D 0: (2.13)

Let

f .t; x/ D x

2.1C x/
; .t; x/ 2 Œ1; e� � Œ0;1/:

For x; y 2 Œ0;1/ and t 2 J; we have

jf .t; x/ � f .t; y/j D 1

2

ˇ̌
ˇ

x

1C x
� y

1C y

ˇ̌
ˇ D jx � yj

2.1C x/.1C y/
� 1

2
jx � yj:

Hence the condition (2.2.1) holds with ` D 1=2: Since
`.log b/˛

� .˛ C 1/
D 1p

	
< 1;

therefore, by Theorem 2.2, the problem (2.12)–(2.13) has a unique solution on
Œ1 � r; b�.
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2.3 Functional and Neutral Fractional Differential Inclusions

In this section, we study the existence of solutions for initial value problems of
functional and neutral functional Hadamard type fractional differential inclusions
given by

D˛y.t/ 2 F.t; yt/; for each t 2 J WD Œ1; b�; 0 < ˛ < 1; (2.14)

y.t/ D #.t/; t 2 Œ1 � r; 1�; HJ1�˛y.t/jtD1 D 0; (2.15)

and

D˛Œy.t/ � g.t; yt/� 2 F.t; yt/; t 2 J; (2.16)

y.t/ D #.t/; t 2 Œ1 � r; 1�; HJ1�˛y.t/jtD1 D 0; (2.17)

where D˛ is the Hadamard fractional derivative, F W J � C.Œ�r; 0�;R/ ! P.R/

(P.R/ is the family of all nonempty subsets of R) is a given function and # 2
C.Œ1 � r; 1�;R/ with #.1/ D 0 and g W J � C.Œ�r; 0�;R/ ! R is a given function
such that g.1; #/ D 0:

2.3.1 Functional Differential Inclusions

In this section, we establish the existence criteria for the problem (2.14)–(2.15).

Definition 2.3 A function y 2 C 1.Œ1 � r; b�;R/ is called a solution of prob-
lem (2.14)–(2.15) if there exists a function v 2 L1.J;R/ with v.t/ 2 F.t; yt/; a.e.
on J such that D˛y.t/ D v.t/ for a.e. t 2 J; y.t/ D #.t/; t 2 Œ1 � r; 1� and
HJ1�˛y.t/jtD1 D 0:

Theorem 2.6 Assume that:

(2.6.1) F W J � R ! P.R/ is L1-Carathéodory and has nonempty compact and
convex values;

(2.6.2) there exists a continuous nondecreasing function ˇ W Œ0;1/ ! .0;1/ and
a function 
 2 C.J;RC/ such that

kF.t; y/kP WD supfjvj W v 2 F.t; y/g � 
.t/ˇ.kykC/;

for each .t; y/ 2 J � C.Œ�r; 0�;R/I
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(2.6.3) there exists a constant � > 0 such that

�

ˇ.�/k
k1
.log b/˛

� .˛ C 1/

> 1:

Then the initial value problem (2.14) and (2.15) has at least one solution on Œ1�r; b�:

Proof Define an operator ˝F W C.Œ1 � r; b�;R/ ! P.C.Œ1 � r; b�;R// by

˝F.y/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

h 2 C.Œ1 � r; b�;R/ W

h.t/ D

8
ˆ̂<

ˆ̂:

#.t/; if t 2 Œ1 � r; 1�;

1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s

ds; if t 2 Œ1; b�;

9
>>>>=

>>>>;
(2.18)

for v 2 SF;y: It will be shown that the operator ˝F satisfies the assumptions of
Theorem 1.15. Firstly, we observe that ˝F is convex for each y 2 C.Œ1 � r; b�;R/
since SF;y is convex (F has convex values). Next, we show that ˝F maps bounded
sets into bounded sets in C.Œ1 � r; b�;R/: For a positive number r, let Br D fy 2
C.Œ1� r; b�;R/ W kykŒ1�r;b� � rg be a bounded ball in C.Œ1� r; b�;R/. Then, for each
h 2 ˝F.y/; y 2 Br, there exists v 2 SF;y such that

h.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s

ds:

Then, for t 2 J; we have

jh.t/j � 1

� .˛/

Z t

1

�
log

t

s

�˛�1
jv.s/jds

s

� ˇ.kykŒ1�r;b�/k
k1
� .˛/

Z t

1

�
log

t

s

�˛�1 ds

s

� ˇ.kykŒ1�r;b�/k
k1
� .˛ C 1/

.log b/˛:

Thus

khk � ˇ.r/k
k1
� .˛ C 1/

.log b/˛ WD Q̀:

Now, we show that ˝F maps bounded sets into equicontinuous sets of
C.Œ1 � r; b�;R/: Let t1; t2 2 J with t1 < t2 and y 2 Br: For each h 2 ˝F.y/;
we obtain
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jh.t2/ � h.t1/j � 1

� .˛/

ˇ̌
ˇ̌
ˇ

Z t1

1

" �
log

t2
s

�˛�1
�

�
log

t1
s

�˛�1
#

f .s; ys/
ds

s

C 1

� .˛/

Z t2

t1

�
log

t2
s

�˛�1
f .s; ys/

ds

s

ˇ̌
ˇ̌
ˇ

�  .��/kpk1
� .˛ C 1/

�
2j.log t2=t1/

˛j C j.log t2/
˛ � .log t1/

˛j
�
:

Clearly the right hand side of the above inequality tends to zero independent of
y 2 Br as t2 � t1 ! 0: As ˝F satisfies the above three assumptions, it follows by
the Arzelá-Ascoli Theorem that ˝F W C.Œ1 � r; b�;R/ ! P.C.Œ1 � r; b�;R// is
completely continuous.

In our next step, we show that ˝F is upper semicontinuous. It is known [69,
Proposition 1.2] that ˝F will be upper semicontinuous if we establish that it has
a closed graph, since ˝F is already shown to be completely continuous. Thus, we
will prove that ˝F has a closed graph. Let yn ! y�; hn 2 ˝F.yn/ and hn ! h�:
Then, we need to show that h� 2 ˝F.y�/: Associated with hn 2 ˝F.yn/; there exists
vn 2 SF;yn such that for each t 2 J;

hn.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1
vn.s/

ds

s
:

Thus it suffices to show that there exists v� 2 SF;y�
such that for each t 2 J;

h�.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1
v�.s/

ds

s
:

Let us consider the linear operator � W L1.J;R/ ! C.J;R/ given by

v 7! �.v/.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1
v.s/

ds

s
:

Notice that

khn.t/ � h�.t/k D
�����

1

� .˛/

Z t

1

�
log

t

s

�˛�1
.vn.s/ � v�.s//

ds

s

����� ! 0; as n ! 1:

Thus, it follows by Lemma 1.2 that � ı SF;y is a closed graph operator. Further, we
have that hn.t/ 2 �.SF;yn/: Since yn ! y�; we have

h�.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1
v�.s/

ds

s
;

for some v� 2 SF;y�
:
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Finally, we show that there exists an open set U � C.J;R/ with y … ˝F.y/ for
any � 2 .0; 1/ and all y 2 @U: Let � 2 .0; 1/ and y 2 �˝F.y/: Then there exists
v 2 L1.J;R/ with v 2 SF;y such that, for t 2 J, we have

y.t/ D �

�
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v.s/

ds

s

�
:

By the assumption (2.6.2), for each t 2 J, we get

jy.t/j � 1

� .˛/

Z t

1

�
log

t

s

�˛�1

.s/ˇ.kysk/ds

s

� k
k1ˇ.kykŒ1�r;b�/

� .˛ C 1/
.log b/˛;

which can be expressed as

kykŒ1�r;b�

ˇ.kykŒ1�r;b�/k
k1
.log b/˛

� .˛ C 1/

� 1:

In view of (2.6.3), there exists � such that kykŒ1�r;b� ¤ � . Let us set

U D fy 2 C.Œ1 � r; b�;R/ W kykŒ1�r;b� < �g:

Note that the operator ˝F W U ! P.C.Œ1 � r; b�;R// is upper semicontinuous
and completely continuous. From the choice of U, there is no y 2 @U such that
y 2 �˝F.y/ for some � 2 .0; 1/. Consequently, by the nonlinear alternative of
Leray-Schauder type (Theorem 1.15), we deduce that ˝F has a fixed point y 2 U
which is a solution of the problem (2.14)–(2.15). This completes the proof. �

Next, we prove the existence of solutions for the problem (2.14)–(2.15) with a
nonconvex valued right hand side (Lipschitz case) by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler (Theorem 1.18).

Theorem 2.7 Assume that:

(2.7.1) F W J � R ! Pcp.R/ is such that F.�; y/ W J ! Pcp.R/ is measurable for
each y 2 RI

(2.7.2) Hd.F.t; y/;F.t; Ny// � `.t/ky � NykC for almost all t 2 J and y; Ny 2
C.Œ�r; 0�;R/ with ` 2 C.J;RC/ and d.0;F.t; 0// � `.t/ for almost all
t 2 J.

Then, if
.log b/˛

� .˛ C 1/
k`k1 < 1; the initial value problem (2.14)–(2.15) has at least

one solution on Œ1 � r; b�:
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Proof Observe that the set SF;y is nonempty for each y 2 C.Œ1 � r; b�;R/ by
the assumption (2.7.1), so F has a measurable selection (see Theorem III.6 [57]).
Now, we show that the operator ˝F; defined by (2.18), satisfies the hypothesis of
Theorem 1.18. To show that ˝F.y/ 2 Pcl.C.Œ1 � r; b�;R// for each y 2 C.Œ1 �
r; b�;R/, let fungn�0 2 ˝F.y/ be such that un ! u .n ! 1/ in C.Œ1 � r; b�;R/:
Then u 2 C.Œ1 � r; b�;R/ and there exists vn 2 SF;yn such that, for each t 2 J,

un.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1
vn.s/

ds

s
:

As F has compact values, we pass onto a subsequence (if necessary) to obtain
that vn converges to v in L1.J;R/: Thus, v 2 SF;y and for each t 2 J, we have

un.t/ ! u.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1
v.s/

ds

s
:

Hence, u 2 ˝.y/:
Next, we show that there exists ı < 1 (ı WD .log b/˛

� .˛ C 1/
k`k1/ such that

Hd.˝F.y/;˝F.Ny// � ıky � NykC for each y; Ny 2 C.Œ1 � r; b�;R/:

Let y; Ny 2 C.Œ1 � r; b�;R/ and h1 2 ˝F.y/. Then there exists v1.t/ 2 F.t; yt/ such
that, for each t 2 J,

h1.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1
v1.s/

ds

s
:

By (2.7.2), we have

Hd.F.t; y/;F.t; Ny// � `.t/ky � NykC:

So, there exists w 2 F.t; Nyt/ such that

jv1.t/ � wj � `.t/ky � NykC; t 2 J:

Define U W J ! P.R/ by

U.t/ D fw 2 R W jv1.t/ � wj � `.t/ky � NykCg:

Since the multivalued operator U.t/ \ F.t; Nyt/ is measurable (Proposition III.4
[57]), there exists a function v2.t/ which is a measurable selection for U. So
v2.t/ 2 F.t; Nyt/ and for each t 2 J, we have jv1.t/ � v2.t/j � `.t/ky � NykC.



2.3 Functional and Neutral Fractional Differential Inclusions 27

For each t 2 J, let us define

h2.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1
v2.s/

ds

s
:

Thus,

jh1.t/ � h2.t/j � 1

� .˛/

Z t

1

�
log

t

s

�˛�1
jv1.s/ � v2.s/j ds

s

� 1

� .˛/

Z t

1

�
log

t

s

�˛�1
`.s/ky � NykC

ds

s

� 1

� .˛/

Z b

1

�
log

t

s

�˛�1
`.s/ky � NykŒ1�r;b�

ds

s

� .log b/˛

� .˛ C 1/
k`k1ky � NykŒ1�r;b�:

Hence,

kh1 � h2k � .log b/˛

� .˛ C 1/
k`k1ky � NykŒ1�r;b�:

Analogously, interchanging the roles of y and y, we obtain

Hd.˝F.y/;˝F.Ny// � .log b/˛

� .˛ C 1/
k`k1ky � NykŒ1�r;b�:

Since ˝F is a contraction by the given condition, it follows by Theorem 1.18
that ˝F has a fixed point y which is a solution of (2.14)–(2.15). This completes the
proof. �

2.3.2 Neutral Functional Differential Inclusions

This subsection is concerned with the existence of solutions for the problem
(2.16)–(2.17).

Definition 2.4 A function y 2 C 1.Œ1 � r; b�;R/ is said to be a solution of (2.16)–
(2.17) if there exists a function v 2 L1.Œ1; b�;R/ with v.t/ 2 F.t; yt/; a.e. on
Œ1; b� such that D˛Œy.t/ � g.t; yt/� D v.t/ on J; y.t/ D #.t/ on Œ1 � r; 1� and
HJ1�˛y.t/jtD1 D 0:
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Theorem 2.8 Suppose that (2.5.1), (2.6.1) and (2.6.2) hold. Further it is assumed
that:

(2.8.1) there exists a constant M > 0 such that

.1 � d1/M

d2 C k
k1ˇ.M/
� .˛ C 1/

.log b/˛
> 1:

Then the IVP (2.16)–(2.17) has at least one solution on Œ1 � r; b�:

Proof Define an operator Q W C.Œ1 � r; b�;R/ ! P.C.Œ1 � r; b�;R/ by

Q.y/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

h 2 C.Œ1 � r; b�;R/ W

h.t/ D

8
ˆ̂<

ˆ̂:

#.t/; if t 2 Œ1 � r; 1�;

g.t; xt/C 1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s

ds; if t 2 Œ1; b�;

9
>>>>=

>>>>;

for v 2 SF;y:

Using (2.8.1), it suffices to show that the operator Q1 W C.Œ1� r; b�;R/ ! C.Œ1�
r; b�;R/ defined by

Q1.x/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

h 2 C.Œ1 � r; b�;R/ W

h.t/ D

8
ˆ̂<

ˆ̂:

#.t/; if t 2 Œ1 � r; 1�;

1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s

ds; if t 2 Œ1; b�;

9
>>>>=

>>>>;

for v 2 SF;y; is continuous and completely continuous. The proof is similar to that
of Theorem 2.6, so, we omit the details.

Next, we show that there exists an open set U � C.Œ1� r; b�;R/ with y ¤ �Q.y/
for � 2 .0; 1/ and y 2 @U:

Let y 2 C.Œ1 � r; b�;R/ be such that y D �Q.y/ for some 0 < � < 1. Thus, for
each t 2 Œ1; b�; we have

y.t/ D �

�
g.t; yt/C 1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s

ds

�
:

For each t 2 J; it follows by (2.6.2) and (2.5.1) that

jy.t/j � d1kytkC C d2 C 1

� .˛/

Z t

1

�
log

t

s

�˛�1

.s/ˇ.kyskC/

ds

s

� d1kytkC C d2 C k
k1ˇ.kykŒ1�r;b�/

� .˛ C 1/
.log b/˛;
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which yields

.1 � d1/kykŒ1�r;b� � d2 C k
k1ˇ.kykŒ1�r;b�/

� .˛ C 1/
.log b/˛:

In consequence, we get

.1 � d1/kykŒ1�r;b�

d2 C k
k1ˇ.kykŒ1�r;b�/

� .˛ C 1/
.log b/˛

� 1:

In view of (2.8.1), there exists M such that kykŒ1�r;b� ¤ M. Let us set

U D fy 2 C.Œ1 � r; b�;R/ W kykŒ1�r;b� < Mg:

Note that the operator Q W U ! C.Œ1 � r; b�;R/ is continuous and completely
continuous. From the choice of U, there is no y 2 @U such that y D �Qy
for some � 2 .0; 1/. Thus, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that Q has a fixed point y 2 U which is a solution of the
problem (2.16)–(2.17). This completes the proof. �

Theorem 2.9 Assume that (2.7.1) and (2.7.2) hold. In addition, we suppose that:

(2.9.1) there exists a constant L > 0 such that

jg.t; x/ � g.t; y/j � Lkx � ykC; for all t 2 Œ1; b� and x; y 2 C.Œ�r; 0�;R/:

Then, if L C .log b/˛

� .˛ C 1/
k`k1 < 1; the IVP (2.16)–(2.17) has at least one solution

on Œ1 � r; b�:

Proof Since the proof is similar to that of Theorem 2.7, it is omitted. �

2.3.3 Examples

Example 1 For any function # 2 C.Œ1 � r; 1�;R/ with #.1/ D 0; consider the
problem

D˛y.t/ 2 F.t; yt/; for each t 2 J WD Œ1; e�; 0 < ˛ < 1; (2.19)

y.t/ D #.t/; t 2 Œ1 � r; 1�; HJ1�˛y.t/jtD1 D 0; (2.20)
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where

F.t; yt/ D
h 1

4C e � t

� jytj
2.1C jytj/ C 1

4

�
;
1

16
.1C e�t/

i
:

Clearly

kF.t; yt/kP WD supfjuj W u 2 F.t; yt/g � 1

4

�3
4

�
; yt 2 R:

With 
.t/ D 1=4; ˇ.kytk/ D 3=4; by the condition (2.3.3), we find that

M >
3

16� .˛ C 1/
; 0 < ˛ < 1:

Hence, by Theorem 2.6, the problem (2.19)–(2.20) has a solution on Œ1 � r; e�:

Example 2 Let us consider the problem (2.19)–(2.20) with

F.t; yt/ D
h 1
16
;

1

	
p

t C 3
tan�1.yt/C 1

12

i
: (2.21)

Observe that

Hd.F.t; yt/;F.t; Nyt// � 1

	
p

t C 3
ky � NykC:

Letting `.t/ D 1

	
p

t C 3
; we find that d.0;F.t; 0// � `.t/ for almost all t 2 J

and
.log b/˛

� .˛ C 1/
k`k1 D 1

2	� .˛ C 1/
< 1; for 0 < ˛ < 1: Thus all the

conditions of Theorem 2.7 are satisfied. Hence, by the conclusion of Theorem 2.7,
the problem (2.19)–(2.20) with (2.21) has a solution on Œ1 � r; e�:

2.4 Boundary Value Problems of Fractional Order
Hadamard-Type Functional Differential Equations
and Inclusions with Retarded and Advanced Arguments

In this section, we study Hadamard-type fractional functional differential equations
and inclusions involving both retarded and advanced arguments with boundary
conditions.
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2.4.1 Fractional Order Hadamard-Type Functional
Differential Equations

Here, we investigate a boundary value problem of Hadamard-type fractional
functional differential equations involving both retarded and advanced arguments
given by

D˛x.t/ D f .t; xt/; 1 � t � e; 1 < ˛ < 2; (2.22)

x.t/ D 
.t/; 1 � r � t � 1; (2.23)

x.t/ D  .t/; e � t � e C h; (2.24)

where D˛ is the Hadamard fractional derivative, f W Œ1; e� � C.Œ�r; h�;R/ ! R is a
given continuous function, 
 2 C.Œ1 � r; 1�;R/ with 
.1/ D 0 and  2 C.Œe; e C
h�;R/ with  .e/ D 0. For any function x defined on Œ1�r; eCh� and any 1 � t � e,
we denote by xt the element of C.Œ�r; h�;R/ defined by xt.�/ D x.t C �/ for �r �
� � h, where r; h � 0 are constants.

By C WD C.Œ�r; h�;R/; we denote the Banach space of all continuous functions
from Œ�r; h� into R equipped with the norm

k
kŒ�r;h� D supfj
.�/j W �r � � � hg

and C.Œ1; e�;R/ is the Banach space endowed with norm kxk0 D supfjx.t/j W 1 �
t � eg: Also, let E D C.Œ1 � r; e C h�;R/; E1 D C.Œ1 � r; 1�;R/; and E2 D
C.Œe; e C h�;R/ be respectively endowed with the norms kxkŒ1�r;eCh� D supfjx.t/j W
1 � r � t � e C hg; kxkŒ1�r;1� D supfjx.t/j W 1 � r � t � 1g; and kxkŒe;eCh� D
supfjx.t/j W e � t � e C hg:
Lemma 2.1 Given g 2 C.Œ1; e�;R/ and 1 < ˛ � 2; the problem

D˛u.t/ D g.t/; 0 < t < 1; (2.25)

u.1/ D u.e/ D 0; (2.26)

is equivalent to the integral equation

u.t/ D �
Z e

1

G.t; s/
g.s/

s
ds; (2.27)

where

G.t; s/ D 1

� .˛/

8
<

:
.log t/˛�1.1 � log s/˛�1 � .log t � log s/˛�1; 1 � s � t � e;

.log t/˛�1.1 � log s/˛�1; 1 � t � s � e:
(2.28)
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Proof As argued in [96], the solution of Hadamard differential equation (2.25) can
be written as

u.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1 g.s/

s
ds C c1.log t/˛�1 C c2.log t/˛�2: (2.29)

Using the given boundary conditions, we find that c2 D 0; and

c1 D � 1

� .˛/

Z e

1

�
log

e

s

�˛�1 g.s/

s
ds:

Substituting the values of c1 and c2 in (2.29), we obtain

u.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1 g.s/

s
ds � .log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 g.s/

s
ds

D � 1

� .˛/

Z t

1

h
.log t/˛�1.1 � log s/˛�1 � .log t � log s/˛�1ig.s/

s
ds

�
Z e

t

1

� .˛/
.log t/˛�1.1 � log s/˛�1 g.s/

s
ds

D �
Z e

1

G.t; s/
g.s/

s
ds;

where G.t; s/ is given by (2.28). Converse of the theorem follows by direct
computation. This completes the proof. �

By a solution of (2.22)–(2.24), we mean a function x 2 C 2.Œ1 � r; e C h�;R/
that satisfies the equation D˛x.t/ D f .t; xt/ on Œ1; e� and the conditions x.t/ D

.t/; 
.1/ D 0 on Œ1 � r; 1� and x.t/ D  .t/;  .e/ D 0 on Œe; e C h�.

Theorem 2.10 Let f W Œ1; e�� C.Œ�r; h�;R/ ! R be a continuous function. Assume
the following conditions hold:

(2.10.1) there exist p 2 C.J;R/ and ˝ W Œ0;1/ ! .0;1/ continuous and
nondecreasing such that

jf .t; u/j � p.t/˝.kukŒ�r;h�/

for all t 2 J and all u 2 C.Œ�r; h�;R/I
(2.10.2) there exists a number K0 > 0 such that

K0
2kpk0

� .˛ C 1/
˝.K0 C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/

> 1:

Then the boundary value problem (2.22)–(2.24) has at least one solution on the
interval Œ1 � r; e C h�.
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Proof To transform the problem (2.22)–(2.24) into a fixed point problem, we
consider an operator Q W C.Œ1 � r; e C h�;R/ ! C.Œ1 � r; e C h�;R/ defined
by

.Qx/.t/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂


.t/; if t 2 Œ1 � r; 1�;
Z e

1

G.t; s/
f .s; xs/

s
ds; if t 2 Œ1; e�;

 .t/; if t 2 Œe; e C h�:

(2.30)

Let u W Œ1 � r; e C h� ! R be a function defined by

u.t/ D
8
<

:


.t/; if t 2 Œ1 � r; 1�;
0; if t 2 Œ1; e�;
 .t/; if t 2 Œe; e C h�:

For each y 2 C.Œ1; e�;R/ with y.1/ D 0; we denote by z the function defined by

z.t/ D
8
<

:

0; if t 2 Œ1 � r; 1�;
y.t/; if t 2 Œ1; e�;
0; if t 2 Œe; e C h�:

Let us set x.t/ D y.t/C u.t/ such that xt D yt C ut for every 1 � t � e; where

x.t/ D
Z e

1

G.t; s/
f .s; xs/

s
ds;

y.t/ D
Z e

1

G.t; s/
f .s; ys C us/

s
ds:

Next, we define B D fy 2 C.Œ1 � r; e C h�;R/ W y.1/ D 0g and let F W B ! B be an
operator given by

.Fy/.t/ D

8
ˆ̂<

ˆ̂:

0; 1 � r � t � 1;Z e

1

G.t; s/
f .s; ys C us/

s
ds; 1 � t � e;

0; e � t � e C h:

(2.31)

Then it is enough to show that the operator F has a fixed point which will guarantee
that the operator F has a fixed point and in consequence, this fixed point will
correspond to a solution of the problem (2.22)–(2.24). In the following three steps,
it will be shown that the operator F is continuous and completely continuous.
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Step 1: F is continuous.

Let .yn/ be a sequence such that yn ! y in B. Then, we have

j.Fyn/.t/ � .Fy/.t/j �
Z e

1

G.t; s/jf .s; yns C us/ � f .s; ys C us/jds

s

� kf .�; yn.�/ C u.�// � f .�; y.�/ C u.�//k0
Z e

1

G.t; s/
ds

s
:

Since the function f is continuous, we have

kFyn � FykŒ1�r;eCh� � kf .�; yn.�/ C u.�// � f .�; y.�/ C u.�//k0
Z e

1
G.t; s/

ds

s
! 0 as n ! 1:

Step 2: F maps bounded sets into bounded sets in B.

For any k > 0, it is enough to show that there exists a positive constant OL such
that, for each y 2 Uk WD fy 2 B W kykŒ1�r;eCh� � kg; we have kFykŒ1�r;eCh� � OL. For
y 2 B and s 2 J; we have

kyskŒ�r;h� D max
�2Œ�r;h�

jy.s C �/j � max
t2Œ1�r;eCh�

jy.t/j D kykŒ1�r;eCh�

and

kys C usk � kyskŒ�r;h� C kuskŒ�r;h� � kykŒ�r;h� C maxfkxkŒ1�r;1�; kxkŒe;eCh�g:

Let y 2 Uk. Since f is continuous, for t 2 Œ1; e�; we have

j.Fy/.t/j �
ˇ̌
ˇ̌
ˇ
1

� .˛/

Z t

1

�
log

t

s

�˛�1 f .s; ys C us/

s
ds

�.log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 f .s; ys C us/

s
ds

ˇ̌
ˇ̌
ˇ

� 1

� .˛/

Z t

1

�
log

t

s

�˛�1 p.s/˝.kys C uskŒ�r;h�/

s
ds

C.log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 p.s/˝.kys C uskŒ�r;h�/

s
ds

� 2kpk0˝.k C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� .˛/

Z e

1

�
log

t

s

�˛�1 1
s

ds

� 2kpk0˝.k C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� .˛ C 1/

;
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and so

kFykŒ1�r;eCh� � 2kpk0˝.k C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� .˛ C 1/

WD OL:

Consequently, F maps bounded sets into bounded sets in B.

Step 3: F maps bounded sets into equicontinuous sets of B.

Let t1; t2 2 Œ1; e� with t1 < t2 and Uk be a bounded set of B as in Step 2. Let
y 2 Uk: Then, we have

j.Fy/.t2/ � .Fy/.t1/j

�
Z e

1

jG.t2; s/ � G.t1; s/j jf .s; y
s C us/j
s

ds

� kpk0˝.k C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
Z e

1

jG.t2; s/ � G.t1; s/j ds

s
:

As t1 ! t2; the right-hand side of the last inequality tends to zero, independent of
y 2 Uk. The equicontinuity for the cases t1 < t2 � 0 and t1 � 0 � t2 is obvious.

In view of steps 1 to 3, it follows by the Arzelá-Ascoli Theorem that the operator
F is continuous and completely continuous.

Step 4: A priori bounds.

We will show that there exists an open set U � B with y ¤ �Fy for 0 < � < 1

and y 2 @U. Let y 2 B and y D �Fy for some 0 < � < 1. Thus, for each t 2 Œ1; e�;
we have

y.t/ D �

Z e

1

G.t; s/f .s; ys C us/
ds

s
:

By our assumptions, for each t 2 J; we get

jy.t/j � 1

� .˛/

Z t

1

�
log

t

s

�˛�1 p.s/˝.kys C uskŒ�r;h�/

s
ds

C.log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 p.s/˝.kys C uskŒ�r;h�/

s
ds

� 2kpk0˝.kykŒ�r;h� C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� .˛/

Z e

1

�
log

e

s

�˛�1 1
s

ds

� 2kpk0
� .˛ C 1/

˝.kykŒ�r;h� C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/;
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which implies that

kykŒ1�r;eCh�

2kpk0
� .˛ C 1/

˝.kykŒ�r;h� C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� 1:

By (2.10.1), there exists K0 such that kykŒ1�r;eCh� ¤ K0: Set

U D fy 2 B W kykŒ1�r;eCh� < K0 C 1g:

By our choice of U, there is no y 2 @U such that y D �Fy for some 0 < � < 1. As
a consequence of the nonlinear alternative of Leray-Schauder type (Theorem 1.4),
we deduce that F has a fixed point y 2 NU which is a solution to problem (2.22)–
(2.24). �

The next result, concerning the existence of a unique solution of problem (2.22)–
(2.24), is based on the Banach’s fixed point theorem.

Theorem 2.11 Let f W Œ1; e� � C.Œ�r; h�;R/ ! R. Assume that there exists L > 0

such that

jf .t; u.t// � f .t; v.t//j � Lku � vkŒ�r;h�;

for t 2 Œ1; e� and for every u; v 2 C.Œ�r; h�;R/.
If

2L

� .˛ C 1/
< 1;

then the BVP (2.22)–(2.24) has a unique solution on the interval Œ1 � r; e C h�.

Proof As argued in the proof of the preceding theorem, it will be shown that the
operator F W B ! B defined by (2.31) is a contraction, where B D fy 2 C.Œ1 �
r; e C h�;R/ W y.1/ D 0g: For that, let y1; y2 2 B. Then, for t 2 Œ1; e�; we obtain

j.Fy1/.t/ � .Fy2/.t/j �
Z e

1

G.t; s/jf .s; ys
1 C us/ � f .s; ys

2 C us/j ds

s

� L
Z e

1

G.t; s/kys
1 � ys

2kŒ�r;h�
ds

s

� 2L

� .˛/
ky1 � y2kŒ�r;h�

Z e

1

�
log

e

s

�˛�1 1
s

ds

� 2L

� .˛ C 1/
ky1 � y2kŒ1�r;eCh�:
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Consequently, we get

kFy1 � Fy2kŒ1�r;eCh� � 2L

� .˛ C 1/
ky1 � y2kŒ1�r;eCh�;

which shows that F is a contraction by the given assumption, and hence F has a
unique fixed point by means of the Banach’s contraction mapping principle. This,
in turn, implies that the problem (2.22)–(2.24) has a unique solution on the interval
Œ1 � r; e C h�. �

2.4.2 Fractional Order Hadamard-Type Functional
Differential Inclusions

In this subsection, we extend our study initiated for functional fractional differential
equations in the last subsection to the multivalued case:

D˛x.t/ 2 F.t; xt/; 1 � t � e; 1 < ˛ < 2; (2.32)

x.t/ D 
.t/; 1 � r � t � 1; (2.33)

x.t/ D  .t/; e � t � e C h; (2.34)

where F W Œ1; e�� C.Œ�r; h�;R/ ! P.R/ is a multivalued map (P.R/ is the family
of all nonempty subsets of R), while the rest of the quantities are the same as defined
in the problem (2.22)–(2.24).

Theorem 2.12 Assume that (2.10.2) and the following conditions hold:

(2.12.1) F W Œ1; e� � C.Œ�r; h�;R/ ! Pc;cp.R/ is an L1-Carathéodory multivalued
map;

(2.12.2) there exist p 2 C.Œ1; e�;R/ and a continuous and nondecreasing function
˝ W Œ0;1/ ! .0;1/ such that

kF.t; u/k WD supfjvj W v 2 F.t; u/g � p.t/˝.kukŒ�r;h�/;

for almost all t 2 Œ1; e� and all u 2 C.Œ�r; h�;R/:

Then the problem (2.32)–(2.34) has at least one solution on the interval Œ1�r; eCh�.

Proof In relation to the problem (2.32)–(2.34), we introduce an operator N W
C.Œ1 � r; e C h�;R/ �! P.C.Œ1 � r; e C h�;R// as
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N .x/ WD

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

h 2 C.Œ1 � r; e C h�;R/ W

h.t/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:


.t/; if t 2 Œ1 � r; 1�;
Z e

1

G.t; s/v.s/
ds

s
; if t 2 Œ1; e�;

 .t/; if t 2 Œe; e C h�;

9
>>>>>>>>=

>>>>>>>>;

where

v 2 SF;y D fv 2 L1.Œ1; e�;R/ W v.t/ 2 F.t; yt/ for a.e. t 2 Jg:

Observe that the existence of a fixed point of the operator N implies the existence
of a solution to the problem (2.32)–(2.34).

As in the proof of Theorem 2.10, let B D fy 2 C.Œ1 � r; e C h�;R/ W y.1/ D 0g
and let T W B ! P.B/ be defined by

T.y/ WD

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

h 2 C.Œ1 � r;E C h�;R/ W

h.t/ D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

0; if t 2 Œ1 � r; 1�;
Z e

1

G.t; s/v.s/
ds

s
; if t 2 Œ1; e�;

0; if t 2 Œe; e C h�:

9
>>>>>>>>=

>>>>>>>>;

Now, we show that the operator T has a fixed point which is equivalent to proving
that the operator N has a fixed point. We do it in several steps.

Claim 1: T.y/ is convex for each y 2 C.Œ1 � r; e C h�;R/:
This claim is obvious, since F has convex values.

Claim 2: T maps bounded sets into bounded sets in C.Œ1 � r; e C h�;R/:

Let y 2 Uk D fy 2 B W kykŒ1�r;eCh� � kg: Then, for each h 2 T.y/; there exists
v 2 SF;y such that

h.t/ D
Z e

1

G.t; s/v.s/
ds

s
; t 2 Œ1; e�;

and that

jh.t/j �
ˇ̌
ˇ̌
ˇ
1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s

ds � .log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 v.s/
s

ds

ˇ̌
ˇ̌
ˇ

� 1

� .˛/

Z t

1

�
log

t

s

�˛�1 p.s/˝.kys C uskŒ�r;h�/

s
ds
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C.log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 p.s/˝.kys C uskŒ�r;h�/

s
ds

� 2kpk0˝.k C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� .˛ C 1/

:

Thus

khkŒ1�r;eCh� � 2kpk0˝.k C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� .˛ C 1/

WD OL:

This shows that T maps bounded sets into bounded sets in B.

Claim 3: T maps bounded sets in C.Œ1 � r; e C h�;R/ into equicontinuous sets.

We consider Bk as in Claim 2 and let h 2 T.y/ for y 2 Bk; k > 0: Now let
t1; t2 2 Œ1; e� with t2 > t1: Then, we have

jh.t2/ � h.t1/j �
Z e

1

jG.t2; s/ � G.t1; s/jjf .s; ys C us/j ds

s

� kpk0˝.k C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
Z e

1

jG.t2; s/ � G.t1; s/
ds

s
:

Clearly the right-hand side of the last inequality tends to zero as t1 ! t2;
independently of y 2 Bk: In view of Claims 2, 3 and the Arzelá-Ascoli Theorem, we
conclude that T W B �! P.B/ is completely continuous.

In our next step, we show that T is upper semicontinuous. We are done if we show
that the operator T has a closed graph, since T is already shown to be completely
continuous.

Claim 4: T has a closed graph.

Let xn ! x�; hn 2 T.xn/ and hn ! h�: Then, we need to show that h� 2 T.x�/:
Associated with hn 2 T.xn/; there exists vn 2 SF;xn such that for each t 2 Œ1; e�;

hn.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1 vn.s/

s
ds � .log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 vn.s/

s
ds:

Thus it suffices to show that there exists v� 2 SF;x�
such that for each t 2 Œ1; e�;

h�.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1 v�.s/
s

ds � .log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 v�.s/
s

ds:
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Let us consider the linear operator � W L1.Œ1; e�;R/ ! C.Œ1; e�;R/ given by

f 7! �.v/.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s

ds

�.log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 v.s/
s

ds:

Clearly

khn.t/ � h�.t/k D
�����

1

� .˛/

Z t

1

�
log

t

s

�˛�1 .vn.s/ � v�.s//
s

ds

�.log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 .vn.s/ � v�.s//
s

ds

����� ! 0;

as n ! 1: Thus, it follows by Lemma 1.2 that � ı SF;x is a closed graph operator.
Further, we have hn.t/ 2 �.SF;xn/: Since xn ! x�; we get

h�.t/ D 1

� .˛/

Z t

1

�
log

t

s

�˛�1 v�.s/
s

ds � .log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 v�.s/
s

ds;

for some v� 2 SF;x�
.

Claim 5: We will show that there exists an open set U � B with y ¤ �Ty for
0 < � < 1 and y 2 @U.

Let y 2 B be such that y 2 �T.y/ for some 0 < � < 1: Then there exists v 2 SF;y

such that

y.t/ D �

Z e

1

G.t; s/v.s/
ds

s
; t 2 Œ1; e�:

By the given assumptions, for each t 2 Œ1; e�; we have

jy.t/j � 1

� .˛/

Z t

1

�
log

t

s

�˛�1 p.s/˝.kys C uskŒ�r;h�/

s
ds

C.log t/˛�1 1

� .˛/

Z e

1

�
log

e

s

�˛�1 p.s/˝.kys C uskŒ�r;h�/

s
ds

� 2kpk0˝.kykŒ�r;h� C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� .˛/

Z e

1

�
log

e

s

�˛�1 1
s

ds

� 2kpk0
� .˛ C 1/

˝.kykŒ1�r;eCh� C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/:
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Then

kykŒ1�r;eCh�

2kpk0
� .˛ C 1/

˝.kykŒ1�r;eCh� C maxfkxkŒ1�r;1�; kxkŒe;eCh�g/
� 1:

By (2.12.3), there exists K0 such that kykŒ1�r;eCh� ¤ K0: Set

U D fy 2 C.Œ1 � r; e C h�;R/ W kykŒ1�r;eCh� < K0 C 1g:

From the choice of U there is no y 2 @U such that y 2 �T.y/ for � 2 .0; 1/: As a
consequence of the Leray-Schauder Alternative for Kakutani maps (Theorem 1.15),
we deduce that T has a fixed point. Thus the problem (2.32)–(2.34) has at least one
solution. �

Finally, we present an existence result for the problem (2.32)–(2.34) with
nonconvex valued right hand side.

Theorem 2.13 Suppose that:

(2.13.1) F W Œ1; e� � C.Œ�r; h�;R/ �! Pcp.R/ has the property that F.�; y/ W
Œ1; e� 7�! Pcp.R/ is measurable for each y 2 C.Œ�r; h�;R/I

(2.13.2) there exists ` 2 C.J;R/ such that

Hd.F.t; u/;F.t; Nu// � `.t/ku � NukŒ�r;h� for every u; Nu 2 C.Œ�r; h�;R/;

and

d.0;F.0; u// � `.t/; for a.e. t 2 Œ1; e�:

If

2

� .˛ C 1/
k`k0 < 1 .k`k0 D sup

t2Œ1;e�
j`.t/j/;

then there exists at least one solution for the problem (2.32)–(2.34).

Proof Transform the problem (2.32)–(2.34) into a fixed point problem by means
of the multivalued operator T W B ! P.B/ introduced in Theorem 2.12. We shall
show that T satisfies the assumptions of Theorem 1.18. The proof will be given in
two steps.

Step 1: T.y/ 2 Pcl.B/ for each y 2 B.

Indeed, let .yn/n�0 2 T.y/ such that yn �! Qy in B. Then Qy 2 B and there exists
gn 2 SF;y such that for each t 2 Œ1; e�;

yn.t/ D
Z e

1

G.t; s/gn.s/
ds

s
:
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Using (2.13.1) together with the fact that F has compact values, we may pass onto
a subsequence to get that gn converges weakly to g in L1.Œ1; e�;R/: Then, g 2 SF;x

and for each t 2 Œ1; e�; we have

yn.t/ �! Qy.t/ D
Z e

1

G.t; s/g.s/
ds

s
:

So Qy 2 T.y/.

Step 2: There exists � < 1 such that

Hd.T.y/;T.y// � �ky � ykŒ1�r;eCh� for each y; y 2 B:

Let y; y 2 B and h 2 T.y/. Then there exists g.t/ 2 F.t; yt C ut/ such that

h.t/ D
Z e

1

G.t; s/g.s/
ds

s
;

for each t 2 J: From (2.13.2), it follows that

Hd.F.t; y
t C ut//;F.t; yt C ut/// � `.t/ky � ykŒ�r;h�; t 2 Œ1; e�:

Hence there is w 2 F.t; yt C ut/ such that

jg.t/ � wj � `.t/ky � ykŒ�r;h�; t 2 Œ1; e�:

Consider U W Œ1; e� ! P.E/; given by

U.t/ D fw 2 E W jg.t/ � wj � `.t/ky � ykŒ�r;h�g:

Since the multivalued operator V.t/ D U.t/ \ F.t; yt C ut/ is measurable (see
Proposition III.4 in [57]), there exists a function g.t/, which is a measurable
selection for V . So, g.t/ 2 F.t; yt C ut/ and

jg.t/ � g.t/j � `.t/ky � ykŒ�r;h�; for each t 2 Œ1; e�:

Let us define for each t 2 Œ1; e�;

h.t/ D
Z e

1

G.t; s/g.s/
ds

s
:
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Then we have

jh.t/ � h.t/j �
Z e

1

jG.t; s/jjg.s/ � g.s/j ds

s

�
Z e

1

jG.t; s/j`.s/ky � ykŒ�r;h�
ds

s

� 2k`k0ky � ykŒ�r;h�

� .˛/

Z e

1

�
log

e

s

�˛�1 1
s

ds

� 2

� .˛ C 1/
k`k0ky � ykŒ�r;h�:

Thus

kh � hkŒ1�r;eCh� � 2

� .˛ C 1/
k`k0ky � ykŒ1�r;eCh�:

Analogously, interchanging the roles of y and y; it follows that

Hd.T.y/;T.y// � 2

� .˛ C 1/
k`k0ky � ykŒ1�r;eCh�:

So, T is a contraction and hence, by Theorem 1.18, T has a fixed point y; which
is a solution to the problem (2.32)–(2.34). �

2.5 Notes and Remarks

We have established several existence results for initial and boundary value
problems of Hadamard type fractional order functional and neutral functional
differential equations involving both retarded and advanced arguments. Also, we
have discussed the multivalued analog of Hadamard type fractional functional and
neutral functional equations. Our results rely on the standard tools of the fixed point
theory for single and multivalued maps. Our results are not only new in the given
setting but also correspond to some new interesting situations for an appropriate
choice of r and h. For example, the results for ordinary Hadamard-type fractional
differential equations/inclusions follow by taking r D h D 0. Our results reduce to
the retarded and advanced argument cases for r > 0I h D 0 and r D 0I h > 0

respectively. The mixed (both retarded and advanced) case follows by choosing
r > 0 and h > 0: The results of this chapter are adapted from the papers [17, 19]
and [13].
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