Chapter 2

Initial and Boundary Value Problems
of Fractional Order Hadamard-Type
Functional Differential Equations
and Inclusions

2.1 Introduction

Functional and neutral functional differential equations arise in a variety of areas
of biological, physical, and engineering applications, see, for example, the books
[90, 100] and the references therein. Fractional functional differential equations
involving Riemann-Liouville and Caputo type fractional derivatives have been
studied by several researchers [1, 3, 4, 45, 46, 68, 78, 106, 175].

In this chapter, we discuss the existence of solutions for initial and boundary
value problems of Hadamard-type functional and neutral functional differential
equations and inclusions involving retarded as well as advanced arguments.

2.2 Functional and Neutral Fractional Differential Equations

This section deals with the existence of solutions for initial value problems (IVP for
short) of fractional order functional and neutral functional differential equations.
In the first problem, we consider fractional order functional differential equations:

D%y(t) = f(t,y,), foreachreJ =[1,b], O<a <1, b>1, (2.1)
YO =@, te[l=r1], uJ'""O)|=1 =0, (2.2)

where D* is the Hadamard fractional derivative, f : J x C([-r,0],R) — Risa
given continuous function and ¢ € C([1 — r, 1], R) with ¢(1) = 0 and zJ® is the
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14 2 IVP and BVP for Hadamard-Type Differential Equations and Inclusions

Hadamard fractional integral. For any function y defined on [1 — r, b] and any ¢ € J,
we denote by y, the element of C([—r, 0], R) and define it as

v(0) =y +6), 6€[-r0].

Notice that y,(-) represents the history of the state from time ¢ — r up to the present
time ¢.

The second problem is concerned with fractional neutral functional differential
equations:

D¥[y(t) — g(t.y)] = f(t, ), t € J, (2.3)
YO) = ¢, re[l—=r1],  wJ' "¥(O]=1 =0, (24)
where f and ¢ are the same as defined in problem (2.1)—(2.2), and g : J X

C([-r,0],R) — R is a given function such that g(1, ¢) = 0.

Theorem 2.1 ([96, p. 213]) Leta > 0, n = —[—a]and 0 < y < 1. Let G be an
open setinR andletf : (a,b] x G — R be a function such that: f(x,y) € Cy,0gla, b]
foranyy € G. Then the following problem

Dy(t) = f(t,y(1), a >0, (2.5)
W ya+) = b, breR, (k=1,....n, n=—[-a]), (2.6)

satisfies the Volterra integral equation:

n

bj 1\ 1 ! Al ds
y@© = Z m (log ;) + m/ﬂ (log ;) f(s,y(s))?, t>a>0,

=1
2.7
that is, y(t) € Ch—qg10gla, b satisfies the relations (2.5)—(2.6) if and only if it satisfies
the Volterra integral equation (2.7).
In particular, if 0 < a < 1, the problem (2.5)—(2.6) is equivalent to the following
equation:

1

b a—1 1 a—1 d
¥ =5 — (log 2) +m ) (log ﬁ) f(s,y(s))?s, s>a>0. (2.8

I'(a)

Further details can be found in [96].
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2.2.1 Functional Differential Equations

By C(J,R), we denote the Banach space of all continuous functions from J into R
with the norm

[¥lloo := sup{ly(®)| : t € J},

where | - | is a suitable complete norm on R. The space C([—r, 0], R) is endowed
with norm || - ||¢ defined by

[¢llc := sup{lp(0)] : —r < 6 < 0.

Definition 2.1 A function y € €' ([1 — r, 5], R) is said to be a solution of (2.1)-
(2.2) if it satisfies the equation D*y(r) = f (¢, y,) on J, the conditions y(z) = ¢(¢) on
[1—r, 1] and zJ' = *y(1)|;=1 = 0.

Our first existence result for the IVP (2.1)—(2.2) is based on the Banach’s contraction
mapping principle.

Theorem 2.2 Letf : J x C([-r,0],R) — R. Assume that:

(2.2.1) there exists £ > 0 such that
lf(z,u)—f(t,v)| < L||lu—v||c, fort € J and for every u,v € C([—r, 0], R).

£(log b)*
If —F((0g+ )1) < 1, then there exists a unique solution for the IVP (2.1)—(2.2) on the
o

interval [1 —r, D).

Proof To transform the problem (2.1)—(2.2) into a fixed point problem, we consider
an operator N : C([1 — r,b],R) — C([1 — r, b], R) defined by

¢(1), ifre[l—r1],

A O @9
m/} (log;) ds, ifre[l,b].

N

Ny)(@) =

Lety,z € C([1 — r,b],R). Then, for ¢t € [1 — r, b], we have

1 ! a—l ds
NGO =N = 1 [ (o) e =620 T

N

{ ! ol ds
- log - e — Zslle —
F(a)/l (ogs) lys — zsllc .

IA
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oy =l [ (og) T8
= Lyt [ (i)
I'(a) =l ), s
L(log 1)
< —=\y—zlln=rn.
=T@+1) Iy = zllp—r.1
Consequently,
L(log b)*
NG) = N@lli—rs) < =———ly = 2llii=rs]»
ING) = N@ p-re) < @il Iy = zllp—r.s)
P . . £(log b)*
which implies that N is a contraction as F(——I-l) < 1, and hence the operator N
o
has a unique fixed point by Banach’s contraction mapping principle. Therefore, the
problem (2.1)—(2.2) has a unique solution on [1 — r, b]. |

We make use of the nonlinear alternative of Leray-Schauder type to obtain our
second existence result for the IVP (2.1)—(2.2).

Theorem 2.3 Assume that the following hypotheses hold:

(2.3.1) f:J x C([-r,0],R) — R is a continuous function;
(2.3.2) there exist a continuous nondecreasing function ¥ : [0, 00) — (0, 00) and
a function p € C([1, b], RT) such that

[f (. w)| < p()Y (lullc) foreach (1,u) € [1.b] x C([=r. 0], R);

(2.3.3) there exists a constant M > 0 such that
M
YM)plloo~—+

(log b)*
'ao+1)
Then the IVP (2.1)—(2.2) has at least one solution on [1 — r, b].

Proof We consider the operator N : C([1 — r,b],R) — C([1 — r,b],R) defined
by (2.9) and show that it is both continuous and completely continuous.

Step 1: N is continuous.

Let {y,} be a sequence such that y, — y in C([1 — r, b], R). Let > 0 such that
[¥nlloo < 1. Then

/\

INO@ ~ NGO < F(a) o [ (1o ) T o — sl

| /\

rir [ e )™ sup ) 601

S SE[1,b]
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FC3n) =FCeloe 7 (0 1y d
< e [ o) S

_ (ogb)*|If C,yn) =f (¥ lloo
- I'ae+1) '

Since f is a continuous function, we have

_ (og D [[f Cyn) =fC 3 oo

INGW) = NO)loo =< ICE) — 0 asn — oo.

Step 2: N maps bounded sets into bounded sets in C([1 — r, b], R).

_ Indeed, it is enough to show that for any n* > 0 there exists a positive constant
£ such that for eachy € B» = {y € C([1 —r,b],R) : ||yllc < n*}, we have
INOD)|loo < £. By (2.3.2), for each t € [1, b], we obtain

W01 = 1 [ (o) T 0
S w(||y||ur_$)||p||oo 1’ ()" 2
TSIy
Thus
INGY oo < LIMPles 100y — 7

I'a+1)

Step 3: N maps bounded sets into equicontinuous sets of C([1 — r, b], R).

Lett,t, € (0,b], t| <1y, By~ be abounded set of C([1 —r, b], R) as in Step 2,
and lety € By+. Then

NI~ NI = s [ [(10e2) T = (10g %) Jrtsn®

1 f ¥ ds
[ (o2)" feZ
tra ) (o) 7607

< LU (ol tog /1) + [dog ) — (ogr¥]).

As tj — 1, the right-hand side of the above inequality tends to zero, independent
of y € Byx. The equicontinuity for the cases 1; < < 0and# < 0 < 1, is obvious.
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In consequence of Steps 1-3, it follows by the Arzela-Ascoli theorem that N :
C([1 = r,b],R) — C([1 — r, b],R) is continuous and completely continuous.

Step4:  We show that there exists an open set U C C([1—r, b], R) withy # AN(y)
for A € (0,1)and y € 0U.

Lety € C([1 —r,b],R) and y = AN(y) for some 0 < A < 1. Thus, for each

tel,b],
1 ! G ds
y) =21 (m /1 (log ;) f(s,y5) ?) :

By the assumption (2.3.2), for each ¢ € J, we get
ol ds
< log - o) —
y(o)] = F( ) (ogs) POV (Isllo)

- ||p||oo¢(||y||[1—r.b])
- I'o+1)

(log b)“,

which can be expressed as

”y”[l—r.b]
W(”y”[l rb])”p”oo

(logb)® = "

I'oe+1)

In view of (2.3.3), there exists M such that ||y||[i—-, 7 M. Let us set
={y e C(1 = r.b.R) : [Iyllp-rs < M}.

Note that the operator N : U — C([1 — r,b],R) is continuous and completely
continuous. From the choice of U, there is no y € dU such that y = ANy for
some A € (0, 1). Consequently, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that N has a fixed point y € U which is a solution of the
problem (2.1)—(2.2). This completes the proof. O

2.2.2 Neutral Functional Differential Equations

In this subsection, we establish the existence results for the IVP (2.3)—(2.4).

Definition 2.2 A function y € €' ([1 — r, b], R) is said to be a solution of (2.3)-
(2.4) if it satisfies the equation D*[y(r) — g(¢,y;)] = f(t,y,) on J, the conditions
y(1) = ¢(t) on [1 —r, 1] and xJ'~*y(1)];=1 = 0.
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Theorem 2.4 (Uniqueness Result) Assume that (2.2.1) and the following condi-
tion hold:

(2.4.1) there exists a nonnegative constant ¢y such that
lg(t,u) — g(t,v)| < cil|lu—vl|lc, forevery u,v € C([—r,0],R).

If

L(log b)* <1

I'ae+1) (2.10)

then there exists a unique solution for the IVP (2.3)—(2.4) on the interval [1 — r, b].

Proof Associated with the problem (2.3)—(2.4), we introduce an operator N,
C([1 =r,b],R) = C([1 — r, b], R) defined by

¢ (), ifre[l—r1],
M) = (rog ) L),
t [
gt y) + 1_,( ) ( 0g - )
(2.11)
To show that the operator N is a contraction, let y,z € C([1 — r, b], R). Then, we
have

,ifre[l,b].

INIG) (@) = Ni(@) ()] = [g(t.y:) — g(t.20)]

a—1 dS
s s 1 -
s [ s sl (1oe )
<l —alle + s [ (108 ) -zl
(& - e - s — <s -
= Cl|Yr — Zllc F(a) gs Y ch
Iy -zl Iy -zl (ogh) T
<ci||y—zlp=rp + =—=—=Ily—2 l—r,b/ (og )
1= F() =i | ;
L(logt)*
<cilly —zllp=rsy + mﬂy — Zllf—ra)-

Consequently, we obtain

log b)*
INi0) =M@l = 1+ i = el

which, in view of (2.10), implies that N; is a contraction. Hence N; has a unique
fixed point by Banach’s contraction mapping principle. This, in turn, shows that the
problem (2.3)—(2.4) has a unique solution on [1 — r, b]. |
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Theorem 2.5 Assume that (2.3.1) and (2.3.2) hold. Further, we suppose that:

(2.5.1) the function g is continuous and completely continuous, and for any
bounded set B in C([1 — r,b],R), the set {t — g(t,y;) : v € B} is
equicontinuous in C([1, b], R), and there exist constants 0 < dy < 1, d > 0
such that

lg(t, )| < dillullc +da, t€[1,b], ue C([-r,0],R);

(2.5.2) there exists a constant M > 0 such that
(1—d)M

IPlloo ¥ (M)

d ———— ~(logh)*
2+ Fla+ 1) (log b)

> 1.

Then the IVP (2.3)—(2.4) has at least one solution on [1 — r, b].

Proof Let us show that the operator Ny : C([1 —r, b], R) — C([1 —r, b], R) defined
by (2.11) is continuous and completely continuous.

Using (2.5.1), it suffices to show that the operator N, : C([1 —r, b],R) — C([1 —
r, b], R) defined by

o), tel—r1],
NANIGES “ 1f(s s)
F(a)/ ds, t € [1,b],

is continuous and completely continuous. The proof is similar to that of
Theorem 2.3, so we omit the details.

We now show that there exists an open set U C C([1 —r, b], R) with y # AN(y)
for A € (0,1) and y € oU.

Lety € C([1 —r,b],R) and y = AN;(y) for some 0 < A < 1. Thus, for each
t € [1, b], we have

y(t)—l(g(t yi) + I )/

For each ¢ € J, it follows by (2.3.1) and (2.3.2) that

a 1f(S yv) )

1o @t d
b O1 = dillle + -+ s [ (108 ) pw oS

IPlloo ¥ Iy llj1—r.51)
Fa+1) ’

<d|lyllc +d2» +
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which yields
Ploo ¥ (I¥ll1—r.61)
1—-d —rp =< d —~ (log b)*.
( DIlli=rp) < d2 + ICES)) (logb)
In consequence, we get
[ (||1 _wdgn)”ﬁ”“_r'? =t
Plloo Yil[1=r.b] o
d log b
A

In view of (2.5.2), there exists M such that ||y|/i—-, 7 M. Let us set
U={yeC(l-rbLR):|ylln—rs <M.

Note that the operator N; : U — C([1 — r,b],R) is continuous and completely

continuous. From the choice of U, there is no y € 90U such that y = ANy

for some A € (0,1). Thus, by the nonlinear alternative of Leray-Schauder type

(Theorem 1.15), we deduce that N; has a fixed point y € U which is a solution of
the problem (2.3)—(2.4). This completes the proof. O

2.2.3 An Example

Consider the initial value problem for fractional functional differential equations:

1/2 _ [l l o
DV/=y(1) —2(1 D + 3 tedJ :=|[1,¢], (2.12)
YOy =@, tell=r1l, w/'/?yD)i=1 = 0. 2.13)
Let
X
f(t,x) = m, (t,x) (S [1,6‘] X [O, OO)

For x,y € [0, 00) and ¢ € J, we have

1| x y =yl :
t,x) —f(t, =35 - - =

¢(log by 1
Hence the condition (2.2.1) holds with £ = 1/2. Since <0280" _ 1}
F'a+1) Nz

therefore, by Theorem 2.2, the problem (2.12)—(2.13) has a unique solution on
[1—r,b].
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2.3 Functional and Neutral Fractional Differential Inclusions

In this section, we study the existence of solutions for initial value problems of
functional and neutral functional Hadamard type fractional differential inclusions
given by

Dy(t) € F(1.y,), foreachr € J:=[1,b], 0<a <1, (2.14)
0y =00, tell=r1], zJ' " yO)=1 =0, (2.15)
and
D*[y(t) — g(t.y)] € F(t.y1), t € J, (2.16)
o) =0, te[l=r1], ' y®)|=1 =0, (2.17)

where D* is the Hadamard fractional derivative, F : J x C([-r,0],R) — Z(R)
(Z(R) is the family of all nonempty subsets of R) is a given function and ¥ €
C([1 —r,1],R) with 3(1) = 0 and g : J x C([-r,0],R) — R is a given function
such that g(1,9) = 0.

2.3.1 Functional Differential Inclusions

In this section, we establish the existence criteria for the problem (2.14)—(2.15).

Definition 2.3 A function y € %'([1 — r,b],R) is called a solution of prob-
lem (2.14)—(2.15) if there exists a function v € L!(J,R) with v(f) € F(t,y,), a.e.
on J such that Dy(r) = v(¢) for ae. t € J, y(f) = 0(),t € [1 —r, 1] and
HJ'_"‘y(t)Iz=1 =0.

Theorem 2.6 Assume that:

(2.6.1) F : J xR — Z[R) is L'-Carathéodory and has nonempty compact and
convex values;

(2.6.2) there exists a continuous nondecreasing function B : [0, 00) — (0, 00) and
a function ¢ € C(J,RT) such that

IF@ 2 = sup{lv] : v e F(.y)} < Z@B(yle).

foreach (t,y) € J x C([-r,0],R);



2.3 Functional and Neutral Fractional Differential Inclusions 23

(2.6.3) there exists a constant ¢ > 0 such that

o

POl s

> 1.

Then the initial value problem (2.14) and (2.15) has at least one solution on [1—r, b].
Proof Define an operator 27 : C([1 — r, b],R) — Z(C([1 — r,b],R)) by

heC(l—rb),R):
9 (1), ifrel—rl],

1 [/ el u(s) .
), (ond) e e
(2.18)

for v € Sp,. It will be shown that the operator {25 satisfies the assumptions of
Theorem 1.15. Firstly, we observe that £2f is convex for each y € C([1 — r, b], R)
since S, is convex (F has convex values). Next, we show that £2r maps bounded
sets into bounded sets in C([1 — r, b],R). For a positive number r, let B, = {y €
C([1—=r,b],R) : l¥llji=rp < r}be abounded ball in C([1 —r, b], R). Then, for each
h e 2r(y),y € B,, there exists v € Sg, such that

h(t) = % /ll <log g)a_l @ds.

Then, for t € J, we have

ol = s [ (1oe ) ol

S
- BUyln—rs)l¢lloe [ el ds
= I'() /1 (logs) s
BUyIi=rs) ¢ oo a
S T T+ legh)
Thus
B¢ loo o .7
”h” = m(logb) = L.

Now, we show that $2p maps bounded sets into equicontinuous sets of
C([1 — r,b],R). Let #;,1, € J with#; < t, and y € B,. For each h € £2(y),
we obtain



24 2 IVP and BVP for Hadamard-Type Differential Equations and Inclusions

() = (i) = %' [ [(log )7 (10g )" }f(s,ys)?

1 12 H\e! ds
i@ ), (23) f(s’ys)?'

Clearly the right hand side of the above inequality tends to zero independent of
y € Bras tp —t; — 0. As §2p satisfies the above three assumptions, it follows by
the Arzeld-Ascoli Theorem that 27 : C([1 — r,b],R) — Z(C([1 — r,b],R)) is
completely continuous.

In our next step, we show that £27 is upper semicontinuous. It is known [69,
Proposition 1.2] that £2 will be upper semicontinuous if we establish that it has
a closed graph, since §2f is already shown to be completely continuous. Thus, we
will prove that 25 has a closed graph. Let y, — y«, h, € 2p(y,) and h, — hs.
Then, we need to show that i, € £2r(y«). Associated with &, € 2r(y,), there exists
Up € Sp,y, such that for each 7 € J,

hat) = %a) /1 (o) i 2.

Thus it suffices to show that there exists v« € Sg,, such that for each t € J,

a—1 ds

he(t) = ﬁ /;t (log 2) U« (5) <

Let us consider the linear operator ® : L'(J,R) — C(J, R) given by

t a—1 d
v OW)() = %/1 (log E) v(s) ?s

N

Notice that

v = d
17, (2) — hse () || = m/l (log ﬁ) (V,(s) — V4 (5)) FS" — 0, as n — oo.

Thus, it follows by Lemma 1.2 that & o S, is a closed graph operator. Further, we
have that 4, (t) € ©(Sr,,). Since y, — y«, we have

for some v« € Sk, .
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Finally, we show that there exists an open set U € C(J,R) with y ¢ 2¢(y) for
any A € (0,1)and all y € dU. Let A € (0,1) and y € A£2p(y). Then there exists
veL(J,R)withv € Sry such that, for t € J, we have

y(@) = A (% /lt (log g) - v(s) ?) .

By the assumption (2.6.2), for each ¢ € J, we get

1 ! TG ds
b1 = 7 [ (o2 t) ™ c0prD T

€ oo B lli1—r61)
I'e+1)

IA

(log b)*,

which can be expressed as

”y”[l—r.h]

<.
logh)* —
ﬁ(||y||u_r,b]>||z||oo—F((‘;g +)1)

In view of (2.6.3), there exists o such that ||y||i—.5 7 0. Let us set
U= {y € C([l —=r b]’R) : ”y”[l—r,b] < O}'

Note that the operator 2 : U — Z(C([1 — r,b],R)) is upper semicontinuous
and completely continuous. From the choice of U, there is no y € dU such that
y € A82p(y) for some A € (0,1). Consequently, by the nonlinear alternative of
Leray-Schauder type (Theorem 1.15), we deduce that £25 has a fixed point y € U
which is a solution of the problem (2.14)—(2.15). This completes the proof. O

Next, we prove the existence of solutions for the problem (2.14)—(2.15) with a
nonconvex valued right hand side (Lipschitz case) by applying a fixed point theorem
for multivalued maps due to Covitz and Nadler (Theorem 1.18).

Theorem 2.7 Assume that:

(2.7.1) F:J xR — Z,(R) is such that F(-,y) : J] = Pc,(R) is measurable for
eachy € R;

(2.7.2) Hy(F(t,y),F(t,y) < L@y — Yllc for almost all t € J and y,y €
C([-r,0],R) with £ € C(J,RT) and d(0,F(t,0)) < L(t) for almost all
tel.

., (logb)*
Then, if —82_
i r a1

one solution on [1 — r, b].

I€lloc < 1, the initial value problem (2.14)—(2.15) has at least
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Proof Observe that the set Sp, is nonempty for each y € C([1 — r,b],R) by
the assumption (2.7.1), so F has a measurable selection (see Theorem II1.6 [57]).
Now, we show that the operator §2, defined by (2.18), satisfies the hypothesis of
Theorem 1.18. To show that 2r(y) € L,(C([1 — r,b],R)) for each y € C([1 —
r,b],R), let {u,}n>0 € 2r(y) be such that u, — u (n — o0) in C([1 — r, D], R).
Then u € C([1 — r, b], R) and there exists v, € Sr,, such that, foreach 7 € J,

() = %/}t (1o g)a_l 2 (5) ?.

As F has compact values, we pass onto a subsequence (if necessary) to obtain
that v, converges to v in L'(J,R). Thus, v € Sr.y and for each t € J, we have

a—1 ds

w0, (F) — u(t) = ﬁ/j (1o é) v(s) .

Hence, u € £2(y).
(log b)

— ¢ h that
Tt [€]loc) such tha

Next, we show that there exists § < 1 (§ :=

Hd(QF(y)’QF@)) =< 5”)7_)_7”6‘ for each y’)_} € C([l =7 b]’R)

Lety,y € C([1 —r,b],R) and h; € 2r(y). Then there exists v((t) € F(t,y,) such
that, for each r € J,

h(t) = ﬁ /;t (log é)aq v1(8) %

By (2.7.2), we have

Hq(F(1,y), F(1,5) < @)y = llc.
So, there exists w € F(t,y,) such that
lvi(®) =wl =L@y —Ylc, teJ.
Define U : J — Z(R) by
U ={weR:|vi@)—wl =L@y —Jlic}
Since the multivalued operator U(¢) N F(t,y,) is measurable (Proposition II1.4

[57]), there exists a function v,(f) which is a measurable selection for U. So
vy(t) € F(t,y,) and for each ¢ € J, we have |v{(f) — v2(¢)| < L)y — Yllc.
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For each t € J, let us define

ha(t) = ﬁ /] o) i 2.

Thus,
0 = he(0] = s [ o) o) — a2
< [ (ogf) T ol 51
< ﬁ 11’ (102 1) ey 5l &
< e ol = Sl
Hence,
TNE F“(Zg—i)j)|w||w||y—y||u_r,m.

Analogously, interchanging the roles of y and y, we obtain

(log b)*

Hy(2£(y), 2r () < FatD)

[€lloolly = ¥ll1—ra1-

Since §2p is a contraction by the given condition, it follows by Theorem 1.18
that £27 has a fixed point y which is a solution of (2.14)—(2.15). This completes the
proof. O

2.3.2 Neutral Functional Differential Inclusions

This subsection is concerned with the existence of solutions for the problem
(2.16)—(2.17).

Definition 2.4 A function y € €' ([1 — r, b],R) is said to be a solution of (2.16)—
(2.17) if there exists a function v € L!([1,b],R) with v(r) € F(t,y,), a.e. on
[1, b] such that D¥[y(¢) — g(t,y,)] = v(t) on J, y(t) = ¥() on [l —r,1] and
al "y (0)|i=1 = 0.
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Theorem 2.8 Suppose that (2.5.1), (2.6.1) and (2.6.2) hold. Further it is assumed
that:

(2.8.1) there exists a constant M > 0 such that
(1—d)M

1€l 00 B(M) «
Fat1) 1080

> 1.

d) +

Then the IVP (2.16)—(2.17) has at least one solution on [1 — r, b].
Proof Define an operator Q : C([1 — r,b],R) - Z(C([1 — r,b],R) by

heC(l—-rb],R):
3(1), ifrell—r1],
Oy) =

h(t) = 1\ v(s)

1 ! .
gt x) + Ta)/l <log E) Tds, ift e [1,0],

forv € Sp,.
Using (2.8.1), it suffices to show that the operator Q; : C([1 —r, b],R) — C([1—
r, b], R) defined by

he C(l1—-r,b,R):

31, ifre[l—rl,
01(x) =
MO=4 0 pete
F(a)/l (log;) —ds,ifre (L8,

for v € Sg,, is continuous and completely continuous. The proof is similar to that
of Theorem 2.6, so, we omit the details.

Next, we show that there exists an open set U C C([1 —r, b], R) withy # AQ(y)
for A € (0,1)and y € 0U.

Lety € C([1 — r, b],R) be such that y = AQ(y) for some 0 < A < 1. Thus, for
each t € [1, b], we have

N\ v(s)

y@) = A (g(t, ) + ﬁ /lt <log ;) Tds) .

For each t € J, it follows by (2.6.2) and (2.5.1) that

t

a—1
(o))" c@palo S

N

1
Nl <d )+ ——
YOI = dillyle +ds + s |

I lloo B lIp—re)

T+ 1) (log b)*,

<dllyllc +d> +
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which yields
1S ooBUYN1=r51)
1—d o <d 2V (log b)°.
( DIllji=rp < d2 + ICE)) (log b)
In consequence, we get
||§(|1| _ﬁd(ln) ||”y||[1_,;,] =1
Yil[1=r.p] o
d o log b
2t et leeh)

In view of (2.8.1), there exists M such that ||y||/i—-, 7 M. Let us set
U={yeC([1-r.bLR):|lylli-re <M}

Note that the operator Q : U — C([l1 — r,b],R) is continuous and completely
continuous. From the choice of U, there is no y € dU such that y = AQy
for some A € (0,1). Thus, by the nonlinear alternative of Leray-Schauder type
(Theorem 1.15), we deduce that Q has a fixed point y € U which is a solution of the
problem (2.16)—(2.17). This completes the proof. O

Theorem 2.9 Assume that (2.7.1) and (2.7.2) hold. In addition, we suppose that:

(2.9.1) there exists a constant L > 0 such that

lg(t,x) — g(t,y)| < L|x—yllc, forallt € [1,b] and x,y € C([-r, 0], R).

log b)*
Then, if L + MHZHOo < 1, the IVP (2.16)—(2.17) has at least one solution
I'ae+1)
on [l —r,b].
Proof Since the proof is similar to that of Theorem 2.7, it is omitted. |

2.3.3 Examples

Example 1 For any function ¢ € C([1 — r,1],R) with #(1) = 0, consider the
problem

D%y(t) € F(t,y,), foreacht e J:=[l,e], O<a <1, (2.19)

yO =0@), te[l—rl], uJ'" (0= =0, (2.20)
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where

|yl =
F.y) = [4+e—t<2(1 Jyr o %)’11_6(] e )]'

Clearly

1/3
130l = supllul : w € Fley) < 4(3). v € e

With £(¢) = 1/4, B(|ly/|l) = 3/4, by the condition (2.3.3), we find that

3

M>—— 0O<a<l.
161N (x + 1)

Hence, by Theorem 2.6, the problem (2.19)—(2.20) has a solution on [1 — r, ¢].
Example 2 Let us consider the problem (2.19)—(2.20) with

F(t.v) [1 L ) + 1] 2.21)
V) = |—, ———tan — . :
Yt 16" 7 ’_t+3 Yt 2
Observe that

HA(F (7). F(t.5)) < ——|ly— 3]

d »Vt)s » Vi _nmy Yilc-

Letting £(1) !
ettin = —
g Tt +3
(log b)*

1
d ————||¢ = —
and Tl = e
conditions of Theorem 2.7 are satisfied. Hence, by the conclusion of Theorem 2.7,
the problem (2.19)—(2.20) with (2.21) has a solution on [1 — r, ¢].

, we find that d(0, F(¢,0)) < £(¢) for almost all ¢t € J

< 1, for 0 < o < 1. Thus all the

2.4 Boundary Value Problems of Fractional Order
Hadamard-Type Functional Differential Equations
and Inclusions with Retarded and Advanced Arguments

In this section, we study Hadamard-type fractional functional differential equations
and inclusions involving both retarded and advanced arguments with boundary
conditions.
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2.4.1 Fractional Order Hadamard-Type Functional
Differential Equations

Here, we investigate a boundary value problem of Hadamard-type fractional
functional differential equations involving both retarded and advanced arguments
given by

Dx(t) = f(t,x), 1 <t<e, 1 <a <2, (2.22)
x(t) = (), 1 —=r<t=<1, (2.23)
x(t) =y¢(@), e<t=e+h, (2.24)

where D is the Hadamard fractional derivative, f : [1,¢e] x C([—r,h],R) — Risa
given continuous function, y € C([1 — r, 1],R) with y(1) = 0 and ¢ € C([e,e +
h], R) with i (¢) = 0. For any function x defined on [l —r,e+h] andany 1 <7 <e,
we denote by x' the element of C([—r, k], R) defined by x'(8) = x(¢ + 0) for —r <
6 < h, where r, h > 0 are constants.

By C := C([-r, h], R), we denote the Banach space of all continuous functions
from [—r, k] into R equipped with the norm

I xlj=rs = sup{lx(@)| : —r < 0 < h}

and C([1, e], R) is the Banach space endowed with norm ||x|[¢ = sup{|x(r)| : 1 <
t < e}. Also,let E = C([1 —r,e + h],R), E; = C(J1 — r,1],R), and E, =
C([e, e + n], R) be respectively endowed with the norms ||x||[i—rc4+4 = sup{|x(?)] :
l—r<t=<e+h} [|xln=ry = sup{|x(®)| : 1 —r <t < 1}, and ||x||je.e4n] =
sup{|x(?)| e <t < e+ h}.

Lemma 2.1 Giveng € C([1,¢],R) and 1 < a < 2, the problem
D%u(t) =g(t), O0<t<l, (2.25)
u(l) = u(e) =0, (2.26)

is equivalent to the integral equation

u(t) = — / G(t, s)@ds, (2.27)
1 A
where
1 (log)*~'(1 —logs)* ™' — (logr —logs)* ', 1 <s<t<e,
G(t,s) =

(@) | (1og )2~ (1 — log 5)*~!, I<t<s<e.
(2.28)
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Proof As argued in [96], the solution of Hadamard differential equation (2.25) can
be written as

u(®) T T )/ a 8 )ds+c1(logr)“ '+ ca(log ). (2.29)

Using the given boundary conditions, we find that ¢, = 0, and

1 € e\e—1 g(s)
= —— log — 2—d
“ ') J, ( °8 s) s

Substituting the values of ¢ and ¢; in (2.29), we obtain

_ 1™ g ) 50,
u(t) = r()/ log ) ds = (log1) r()[ s
1 1

- “ o= a—178(5)
_—m 1 [(logt) 1(1—10gs) l—(logt—logS) l:ITds

e 1

/ G(t, )g(—)d
where G(z,s) is given by (2.28). Converse of the theorem follows by direct
computation. This completes the proof. |

By a solution of (2.22)-(2.24), we mean a function x € €*([1 — r,e + h].R)
that satisfies the equation D*x(f) = f(¢,x") on [1,e] and the conditions x(r) =
x(@®), y(1) =0on [l —r, 1] and x(r) = ¥ (), ¥ (e) = 0 on [e,e + A].

Theorem 2.10 Letf : [1,e] x C([—r, h],R) — R be a continuous function. Assume
the following conditions hold:

(2.10.1) there exist p € C(J,R) and 2 : [0,00) — (0,00) continuous and
nondecreasing such that

If (. w)| < p()2(lJull-rm)

forallt € J and all u € C([-r, h], R);
(2.10.2) there exists a number Ky > 0 such that

K
0 > 1.

2|lpllo

— (K —r,1]s e.e
Fat D (Ko + max{||lxli—r.1s 1% /le.eta)

Then the boundary value problem (2.22)—(2.24) has at least one solution on the
interval [1 —r,e + hJ.
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Proof To transform the problem (2.22)—(2.24) into a fixed point problem, we
consider an operator 2 : C([1 — r,e 4+ h],R) — C([1 — r,e + h],R) defined
by

x (), ifrel—r1],
(2x)(1) = / "6, s)" (S’sxs) ds, if t € [1, €], (2.30)
1
v(1), ift € [e,e+ hl.

Letu : [1 —r,e + h] — R be a function defined by

x(@), iftre[l—r1],
u(r) =40, ifrell,e,
Y(t),ift € [e,e + h).

For each y € C([1, ¢], R) with y(1) = 0, we denote by z the function defined by
0, ifre[l—r1],
() = (¥, ift € [1.¢].
0, iftelee+hl.

Let us set x(£) = y(¢) + u(r) such that X' = y' + u' forevery 1 <t < e, where

x(1) = [ G097 4

o= [ 6. >M

Next, we define B={y € C([1 —r,e + h],R) : y(1) =0} and let § : B — Bbe an
operator given by

0, l—-r<t<l,

(@) = /G(t )f(sy—Jru) ds,1<t<e, (2.31)
1 S
0, e<t<e+h

Then it is enough to show that the operator § has a fixed point which will guarantee
that the operator .% has a fixed point and in consequence, this fixed point will
correspond to a solution of the problem (2.22)—(2.24). In the following three steps,
it will be shown that the operator § is continuous and completely continuous.



34 2 IVP and BVP for Hadamard-Type Differential Equations and Inclusions

Step 1:  F is continuous.

Let (y,) be a sequence such that y, — y in B. Then, we have
¢ ns S S S ds
@y (@) = SO = | GE.9)lf (5.7 +u) —fs.y" +u)—
1
nO 0 CRCNTY ds
= WFCY +u?) =fCy7 +u?)o | Glrs) =
1
Since the function f is continuous, we have
: : : : ¢ d
183 = 8 ln—retn = WGy +u) =630 +u)o /1 Glt.s) = = 0asn — .

Step 2:  § maps bounded sets into bounded sets in B.

For any k > 0, it is enough to show that there exists a positive constant i: such
that, for eachy € Uy :={y € B : ||y|[i=re+n =< k}, we have ||Fy|ji—r.e4n < L. For
y € Band s € J, we have

i, = ma 0)] < ma H| =
5l = max, s+ O] < _max O] = Iyl

and
V' + @' | < 1y ll=rm + 1 = < [IY=rmy + max{[x/lp—r.1s 1) e.ctnr}-

Let y € Uy. Since f is continuous, for ¢ € [1, e], we have

“ V(s y' +MS)
@01 = | s [ (1og ) T LI,
—(log 1)~ )" ey +w)
loe"™ 1 )[ ;
- "‘ Lp(s)2(lly* + 'l - rh])
- F(O[) s
a—1 “ Lp()2(Ily° +14‘||[—rh])
+(logt Fa )/ -
2||P||0~Q(k+maX{||x||[1—r,1]7||X||[e,e+h]}) € el ]
< F(a) : (10g;) ;dS
_ 2lpllo$2(k + maxilxllp—r.1, xllie.e+})

T'a+1) ’
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and so

2|Ipllo$2 (k + max{|lx[lji—r.1, Xl . e+h]})
I'a+1)

I8Vl 1=r.e+n < =1L
Consequently, § maps bounded sets into bounded sets in B.

Step 3:  § maps bounded sets into equicontinuous sets of B.

Letf;, , € [1,¢] with #; < t, and Uy be a bounded set of B as in Step 2. Let
y € Uy. Then, we have

|EY)(12) = EY) (1)

= [(1602.9 - 6091 L2
! S

¢ ds
< lpllo$2 (k + max{||x|{1—r1 ||JC||[e,e+h]}')/1 |G(t2,5) — G(11, 9)] =

As t; — 1, the right-hand side of the last inequality tends to zero, independent of
y € Uy. The equicontinuity for the cases t; < t; < 0and #; < 0 < ¢, is obvious.

In view of steps 1 to 3, it follows by the Arzeld-Ascoli Theorem that the operator
§ is continuous and completely continuous.

Step 4: A priori bounds.

We will show that there exists an open set U C B withy # AFyfor0 < A < 1
andy € dU. Lety € Band y = AFy for some 0 < A < 1. Thus, for each ¢ € [1, €],
we have

¢ d
y(H) = A /1 G(t, 5)f (s, + i) ?s

By our assumptions, for each t € J, we get

t a—1 s
PR + ' lirm)
N < —— 1
501 = g [ (10e) -
"‘ Lps)22(]ly’ +MY||[—rh])
1 t a—1
+(log?) I )[ .
2 ) —r —r,1]» e.e ¢ 11
< IplloS2Cllyli; ,h]+maX{||X||[1 A xle.en ) (log f)“ 1
I'(a) 1 s s

2|lpllo

- - —r1]s e.e s
a5 2+ maxt s, I¥liees)
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which implies that

IVl [1=r.e+4] <1

LIy ll=rn + maxg||lx[li—r.1, [*]e.c+1})

2|lpllo
I'a+1)

By (2.10.1), there exists Ky such that ||y||[i—r..+n 7 Ko. Set
U={yeB:|ylli-retn < Ko+ 1}.

By our choice of U, thereisno y € dU such thaty = Ay forsome 0 < A < 1. As
a consequence of the nonlinear alternative of Leray-Schauder type (Theorem 1.4),
we deduce that § has a fixed point y € U which is a solution to problem (2.22)—
(2.24). O

The next result, concerning the existence of a unique solution of problem (2.22)—
(2.24), is based on the Banach’s fixed point theorem.

Theorem 2.11 Let f : [1,¢e] x C([—r, h],R) — R. Assume that there exists L > 0
such that

If @ u(®) —f (. v@)] = Lllu = vl

fort € [1, e] and for every u, v € C([—r, h], R).
If
2L
— <1,
I'lae+1)

then the BVP (2.22)—(2.24) has a unique solution on the interval [1 — r, e + h].

Proof As argued in the proof of the preceding theorem, it will be shown that the
operator § : B — B defined by (2.31) is a contraction, where B = {y € C([1 —
r,e + h],R) : y(1) = 0}. For that, let y;, y, € B. Then, for ¢ € [1, e], we obtain

¢ , , d

@00 = @01 = [ G965+ ) =6+ S
¢ ‘ : d
<L [ 69—l S

2L ” ” /e (1 e>ot—l 1
—_ - —r og — —ds
() Y1 = Y2ll[-rh] \ gs

<2
=T@+1) Y1 = 20l[1—r,e+n]-
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Consequently, we get

I3y1 — 82 lli—re+n =< Iyt = y2llpi—r.e+ns

2L
I'le+1)
which shows that § is a contraction by the given assumption, and hence § has a
unique fixed point by means of the Banach’s contraction mapping principle. This,

in turn, implies that the problem (2.22)—(2.24) has a unique solution on the interval
[1—r,e+ Al |

2.4.2 Fractional Order Hadamard-Type Functional
Differential Inclusions

In this subsection, we extend our study initiated for functional fractional differential
equations in the last subsection to the multivalued case:

Dx(f) € F(t,x'), 1 <t<e, 1l <a <2, (2.32)
x(0) =@, 1-r<t=1, (2.33)
x(t) =y(), e<t<e+h, (2.34)

where F : [1,¢e] x C([—r, h], R) — Z(R) is a multivalued map (Z(R) is the family
of all nonempty subsets of R), while the rest of the quantities are the same as defined
in the problem (2.22)—(2.24).

Theorem 2.12 Assume that (2.10.2) and the following conditions hold:

(2.12.1) F:[1,e] x C([-r,h],R) = 2. .,(R) is an L'-Carathéodory multivalued
map;

(2.12.2) there exist p € C([1, €], R) and a continuous and nondecreasing function
£2 : [0, 00) — (0, 00) such that

[F(t wl := sup{[v] : v € F(t,u)} < p()2([[ull-rn),

for almost allt € [1,e] and all u € C([—r, h], R).
Then the problem (2.32)—(2.34) has at least one solution on the interval [1—r, e+h].

Proof In relation to the problem (2.32)—(2.34), we introduce an operator .4 :
C((1—=r,e+h,R) — Z(C(1 —r,e+ h],R)) as
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he C([1—r,e+h],R):

x(@®), ifte[l—r1],

e/V( ) = e

* h(t) = / G(t,s)v(s)?, ift € [1,e],
1

v (0). ift € le.e + h,

where
veSpy, ={vel([l,e],R):v(t) € F(t,)") forae. t €J}.

Observe that the existence of a fixed point of the operator .#” implies the existence
of a solution to the problem (2.32)—(2.34).

As in the proof of Theorem 2.10,let B = {y € C([1 —r,e + h],R) : y(1) = 0}
and let ¥ : B — Z(B) be defined by

heC(l —r.E+Hh.R):

0, ifre[l —r1],

i(y) = e
h(t) = /1 G(t,s)v(s)?, ift € [1,e],

0, ift € [e,e + H].
Now, we show that the operator ¥ has a fixed point which is equivalent to proving
that the operator .4 has a fixed point. We do it in several steps.

Claim 1: <(y) is convex foreachy € C([1 —r,e + h], R).
This claim is obvious, since F' has convex values.
Claim 2: ¥ maps bounded sets into bounded sets in C([1 — r, e + h],R).

Lety € Ug = {y € B : |[¥llji=re+n < k}. Then, for each & € E(y), there exists
v € Sf, such that

h(r) = /leG(t,s)v(s)?, rell, e,

and that

|h(1)]

IA

g [ (o)t [ o)

Lt e )20 + )
< — log - —d.
= r(a)/l (1oe *

N N
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+(log 1) lr( )/ “ U p(s)S2(Jly* S"'”S"[—rh])
2||1?||0~Q(/’<+ max{[|x[|j1—r1, ||x||[e e+il})
I'o+1)
Thus
2|pllos2(k + max{[lxlln—r.y. [1¥lljeetn}) .

All—retn) < =1L
[ r———— T+ 1

This shows that T maps bounded sets into bounded sets in B.
Claim 3: ¥ maps bounded sets in C([1 — r, e + h], R) into equicontinuous sets.

We consider By as in Claim 2 and let 7 € T(y) fory € By, k > 0. Now let
t1,t € [1, e] with t, > ;. Then, we have

¢ d
o) = ha)] = 16029 = Glo G5 + 0] S

¢ ds
< lIpllo$2 (k + max{||x|l1-r1 ||)C||[e.e+h]})/1 |G(t2,5) — G(t1,5) e

Clearly the right-hand side of the last inequality tends to zero as #; — 1y,
independently of y € By. In view of Claims 2, 3 and the Arzel4-Ascoli Theorem, we
conclude that ¥ : B — Z?(B) is completely continuous.

In our next step, we show that ¥ is upper semicontinuous. We are done if we show
that the operator ¥ has a closed graph, since ¥ is already shown to be completely
continuous.

Claim4: ¥ has a closed graph.

Let x, — x4, h, € (x,) and h, — hs. Then, we need to show that /1, € T(xx).
Associated with i, € T(x,), there exists v, € Sp, such that for each 7 € [1, ¢],
01 1 Uy
(s) ds

B (t) = %a)/lt (1og ds — (log 1)*~ 11“( )/ -

Thus it suffices to show that there exists vy« € Sg, such that for each ¢ € [1, ¢],

ha(t) = ﬁ /1 ' <log ﬁ)a—l U*S(S) ds — (log t)a_l%a) /1 (1og §>a_1 v*s(s) “

oz lvn()
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Let us consider the linear operator ® : L'([1, ¢],R) — C([1, ¢], R) given by

0~ u(s)

£ 000 = i [ (10gf)

N

Clearly

12 (1) — R (D] =

°‘ ! (vn(S)—v*(S))
IN( )/ s

am1_ 1 "‘ i) — 04 (8)

as n — oo. Thus, it follows by Lemma 1.2 that ® o Sg, is a closed graph operator.
Further, we have £, (f) € @(Sr,,). Since x, — x«, we get

B = %/; ( B ﬁ/l'e (log E)a—l v*s(s)ds’

for some vy € Sgp, .
Claim 5:  We will show that there exists an open set U C B with y # A%y for
O0<A<landye dU.

— 0,

1 vk(s)
s
s

Lety € B be such that y € A%(y) for some 0 < A < 1. Then there exists v € S¢
such that

() = )L/le G(t, s)v(s)?, tell,e.

By the given assumptions, for each 7 € [1, e], we have

t a—1 s
PE)LAY + wlli=r)
D < —— 1
901 = s [ (og ) -
a Lp@2(Y + i) |
1 e~ 1
e 755 | (e ;
2 2 —r. —r1]s e,e ¢ -1
- IplloS2(llyll; ,h1+maX{IIXI|[1 s Xl e.e+m}) (logf)“ 1,
I'(x) 1 s s
2(pllo

Tetn™ e ma -1 e.e .
= T 0 2ot + max{ilu—rn. Il
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Then

[yl [1—r.e+h]

<1

2[|pllo -
QLyl—r.et+n + maxgllxllp—r.1, [*e.ct+n})

I'a+1)
By (2.12.3), there exists Ky such that ||y||ji—.c+n # Ko. Set
U= {y € C([l —re+ h]7R) : ||y||[l—r.e+h] < KO + 1}

From the choice of U there isno y € dU such thaty € AT (y) for A € (0,1). Asa
consequence of the Leray-Schauder Alternative for Kakutani maps (Theorem 1.15),
we deduce that ¥ has a fixed point. Thus the problem (2.32)—(2.34) has at least one
solution. O

Finally, we present an existence result for the problem (2.32)-(2.34) with
nonconvex valued right hand side.

Theorem 2.13 Suppose that:

(2.13.1) F : [l,e] x C([-r,h],R) — Z,(R) has the property that F(-,y) :
[1,e] — P, (R) is measurable for each'y € C([—r, h], R);
(2.13.2) there exists £ € C(J,R) such that

Hy(F(t,u), F(t,u)) < £(0)||u — ull[—rp for every u,u € C([—r, h],R),
and
d(0,F(0,u)) < £(1), forae t€]l,e].
If

——|€llo <1 (||€]lo = sup [£(5)]),
o<1 (el = sup je)

then there exists at least one solution for the problem (2.32)—(2.34).

Proof Transform the problem (2.32)—(2.34) into a fixed point problem by means
of the multivalued operator ¥ : B — £?(B) introduced in Theorem 2.12. We shall
show that T satisfies the assumptions of Theorem 1.18. The proof will be given in
two steps.

Step1:  T(y) € Py(B) for each'y € B.

Indeed, let (y,)n>0 € T(¥) such that y, — y in B. Then y € B and there exists
gn € SF,y such that for each 7 € [1, ¢],

yau(®) :/; G(t,s)g,,(s)?.
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Using (2.13.1) together with the fact that F has compact values, we may pass onto
a subsequence to get that g, converges weakly to g in L'([1, ¢], R). Then, g € Sg.,
and for each t € [1, e], we have

() — (1) = fl ’ G(t, s)g(s)?.

So§ e T(y).

Step 2:  There exists y < 1 such that

Hy(2(»), TO)) < ylly = Yl-re+n foreach y,y € B.

Lety,y € Band h € T(y). Then there exists g(¢) € F(z,y" + u') such that

o = [ 6.0
for each ¢t € J. From (2.13.2), it follows that
Hy(F(t.y' +u)), F.5 +u") <L®Oly —l-rm. 1€l e]
Hence there is w € F(t,y' + u') such that
lg(t) =wl < L@y = ll—rm. 1€ [1.€].
Consider U : [1,e] - Z(E), given by
U@t) ={weE:[g(t) —w| < LDy = Illi—rm}-
Since the multivalued operator V(f) = U(f) N F(t, ' + u') is measurable (see
Proposition II1.4 in [57]), there exists a function g(r), which is a measurable

selection for V. So, g(f) € F(t,¥ + u') and

lg() =8| = €Oy = Fll-rm. foreach 1 €[l e].

Let us define for each 7 € [1, ¢],

_ ¢ d
() = /1 G, 970)
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Then we have
_ e d
0 =701 < [ 1696 50
¢ d.
§[|G@QWGWy—Whmr§

Sy e -1
gwm)ww/@gylﬁ
1 N

- I'() s
<=2 Jeloly -l
“T@+1) ollY = Yll[—r.n-
Thus
I — Rl < 2 [€1lolly = ¥l
[1—re+h] = Ta+l) ollY = Yll[1—r.e+n]-

Analogously, interchanging the roles of y and y, it follows that

2
Hy(T(y), TO)) < mllfllolly—illn_r,e+h1.

So, ¥ is a contraction and hence, by Theorem 1.18, ¥ has a fixed point y, which
is a solution to the problem (2.32)—(2.34). O

2.5 Notes and Remarks

We have established several existence results for initial and boundary value
problems of Hadamard type fractional order functional and neutral functional
differential equations involving both retarded and advanced arguments. Also, we
have discussed the multivalued analog of Hadamard type fractional functional and
neutral functional equations. Our results rely on the standard tools of the fixed point
theory for single and multivalued maps. Our results are not only new in the given
setting but also correspond to some new interesting situations for an appropriate
choice of r and h. For example, the results for ordinary Hadamard-type fractional
differential equations/inclusions follow by taking r = h = 0. Our results reduce to
the retarded and advanced argument cases for r > 0;h = O and r = 0;h > 0
respectively. The mixed (both retarded and advanced) case follows by choosing
r > 0 and & > 0. The results of this chapter are adapted from the papers [17, 19]
and [13].
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