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Abstract The increasing application of process-oriented approaches in new
challenging cyber-physical domains beyond business computing (e.g., personalized
healthcare, emergency management, factories of the future, home automation, etc.)
has led to reconsider the level of flexibility and support required to manage com-
plex processes in such domains. A cyber-physical domain is characterized by the
presence of a cyber-physical system coordinating heterogeneous ICT components
(PCs, smartphones, sensors, actuators) and involving real world entities (humans,
machines, agents, robots, etc.) that perform complex tasks in the “physical” real
world to achieve a common goal. The physical world, however, is not entirely pre-
dictable, and processes enacted in cyber-physical domains must be robust to unex-
pected conditions and adaptable to unanticipated exceptions. This demands a more
flexible approach in process design and enactment, recognizing that in real-world
environments it is not adequate to assume that all possible recovery activities can
be predefined for dealing with the exceptions that can ensue. In this chapter, we
tackle the above issue and we propose a general approach, a concrete framework
and a process management system implementation, called SmartPM, for automati-
cally adapting processes enacted in cyber-physical domains in case of unanticipated
exceptions and exogenous events. The adaptation mechanism provided by SmartPM
is based on declarative task specifications, execution monitoring for detecting failures
and context changes at run-time, and automated planning techniques to self-repair
the running process, without requiring to predefine any specific adaptation policy or
exception handler at design-time.
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2.1 Introduction

As Information and Communication Technologies (ICTs) are being increasingly
integrated and embedded into our everyday environment, the design of embedded
ICT from components (PCs, smartphones, sensors, actuators, etc.) to cyber-physical
systems is becoming a reality. A cyber-physical system (CPS) is a system of intercon-
nected and collaborating computational elements controlling physical components
that provide real world entities (e.g., humans, machines, agents, robots, etc.) with a
wide range of innovative applications and services [1]. CPSs are designed to support
and facilitate collaboration among people and software services on complex tasks.
On the other side, the Business Process Management (BPM) discipline has gained
an increasing importance in describing complex correlations between distributed
systems and offers a powerful representation of collaborative activities [2]. In the
field of online trading and manufacturing, for example, modelling and execution
languages for business processes, such as BPMN [3] and BPEL [4], have proven to
be well suited to formalize high-level sequences of activities involving web service
invocations and human interaction.

Nowadays, the current maturity of process management systems (PMSs) and
methodologies has led to the application of process-oriented approaches in new chal-
lenging cyber-physical domains beyond business computing [5, 6], such as person-
alized healthcare [7-9], emergency management [10, 11], factories of the future [12]
and home automation [13]. Such domains are characterized by the presence of a CPS
coordinating heterogeneous ICT components with a large variety of architectures,
sensors, computing and communication capabilities, and involving real world entities
that perform complex tasks in the “physical” real world to achieve a common goal. In
this context, a PMS is used to manage the life cycle of the collaborative processes that
coordinate the services offered by the CPS to the real world entities. To guarantee
a better control over the interaction that PMS has with the real world, it continu-
ously collects contextual information from the specific cyber-physical domain it is
employed in.

The long-term objective of CPSs is to create a strong link between the physical
world and the cyber world to support their users with performing their tasks [14].
The physical world, however, is not entirely predictable. CPSs do not necessarily
and always operate in a controlled environment, and their collaborative processes
must be robust to unexpected conditions and adaptable to exceptions and external
exogenous events. To this end, we define an exception as any deviation from an
“ideal” collaborative process that uses the available resources to achieve the task
requirements in an optimal way [15].

Exception handling is one of the most important tasks that process designers
undertake during business process modelling and execution [16]. Exceptions can
be either anticipated or unanticipated. An anticipated exception can be planned at
design-time and incorporated into the process model, i.e., a (human) process designer
can provide an exception handler which is invoked during run-time to cope with
the exception. Conversely, unanticipated exceptions generally refer to situations,
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unplanned at design-time, that may emerge at run-time and can be detected by mon-
itoring discrepancies and inconsistencies between the real-world processes and their
computerized representation. To cope with those exceptions, a PMS is required to
allow ad hoc process changes for adapting running process instances in a situation-
and context-dependent way.

However, in cyber-physical domains, the number of possible anticipated excep-
tions is often too large, and traditional manual implementation of exception handlers
at design-time is not feasible for the process designer, who has to anticipate all poten-
tial problems and ways to overcome them in advance. Furthermore, anticipated excep-
tions cover only partially relevant situations, as in such scenarios many unanticipated
exceptional circumstances may arise during the process execution. While most PMSs
of today shy away from dealing with the inherent dynamic nature of cyber-physical
domains [12], the management of processes enacted in such domains requires a
PMS providing real-time monitoring and adaptation features during process execu-
tion. This requires the formalization of explicit mechanisms to model world changes
and responding to anomalous situations, exceptions, exogenous events in an auto-
mated way, in order to achieve the overall objectives of the processes still preserving
their structure without (or by minimising) any human intervention.

In this chapter, we tackle the above challenge by presenting a general approach,
a concrete framework and a PMS implementation, called SmartPM (Smart Process
Management) for automatically adapting processes enacted in cyber-physical
domains in case of unanticipated exceptions and exogenous events. SmartPM is based
on declarative task specifications, process execution monitoring for detecting failures
and context changes at run-time, and automated exception handling and resolution
strategies on the basis of well-established Artificial Intelligence (AI) techniques.
Even more importantly, the adaptation mechanisms provided by SmartPM allow devi-
ations at run-time from the execution path prescribed by the original process without
altering its process model, a feature that makes SmartPM particularly suitable for
managing processes in cyber-physical domains.

The rest of the chapter is organized as follows. In Sect. 2.2 we describe the state-
of-the-art approaches to process adaptation, by investigating existing techniques to
deal with anticipated and unanticipated exceptions in BPM. In Sect.2.3, we first
present a concrete running example of a process enacted in a cyber-physical envi-
ronment; then, we derive a list of characterizing features that a PMS managing
processes in cyber-physical domains should provide. To meet the identified features,
in Sect.2.4 we introduce the general approach to handle with unanticipated excep-
tions and exogenous events as defined in the SmartPM framework, and we present
the architecture of the implemented SmartPM system. Then, in Sect.2.5 we provide
a critical discussion about the general applicability of the SmartPM approach and we
trace the future challenges related to the management of processes in cyber-physical
domains. Finally, Sect. 2.6 concludes the chapter.
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2.2 Related Work

Over the last years, there was a trend in providing PMSs with a growing support
for adapting business processes to deal with exceptions, changing environments and
evolving needs [16, 17]. If not detected and handled effectively, exceptions can result
in severe impacts on the cost and schedule performance of PMSs [18].

Process adaptation techniques rely on the assumption that exceptions and devi-
ations are detectable [19]. When detection capabilities are provided by the PMSs,
mainly in the case of anticipated exceptions, the modeling and execution environ-
ment enables process designers to define events, triggers and conditions (e.g., timers,
error messages, pre- and post-execution constraints, etc.) whose run-time occurrence
or violation is recognized as an exception. When the exceptions and deviations are
unanticipated or caused by external factors not under the control of the PMS, users (or
external systems) are often allowed to explicitly notify the PMS about the detected
exception or deviation.

In this section, we describe the state-of-the-art approaches to process adaptation
considering to what extent users are involved in the process of defining exception
conditions and handling policies (as summarized in Fig.2.1), which directly influ-
ences the degree of automation provided in the exception resolution and process
adaptation stages. Specifically, we first outline traditional exception handling tech-
niques used to deal with anticipated exceptions (Sect.2.2.1). Then, we review the
existing approaches allowing ad hoc process changes for adapting running process
instances in case of unanticipated exceptions (Sect. 2.2.2). Finally, we analyze a num-
ber of techniques from the field of Al that have been applied to BPM with the aim
of increasing the degree of automated process adaptation at run-time (Sect.2.2.3).

2.2.1 Exception Handling

Initial research efforts addressing the need for exception handling in PMSs can
be traced back to the late nineties and early two thousands [15, 20-25]. Although
possible sources of anticipated exceptions are different (as outlined in [21, 22],

o e e ey B e e e e T e e e |
| Typeof | |
: Exception 1 |

| |
et S e e i S e A Sl e ) S S R S S 1
| Resolution - |
I I I
Lo i s o PR SN v P S, J
I i 1 2 !
I PSR 1 I
| Definition | Manually, at H Manually, Semi-automatically, Automatically, X
: Stage |[ Design-Time : at Run-Time at Run-Time at Run-Time :

Fig. 2.1 Exception handling and process adaptation approaches
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they can be related to activity failures, deadline expirations, resource unavailabil-
ities, constraint violations and external events) and go beyond technical failures,
not surprisingly exception handling approaches in PMSs trace and resemble excep-
tion handling mechanisms in programming languages. Abstracting from the specific
techniques and implementations, a common behavioral pattern can be identified.
At design-time, the process designer identifies possible exceptions that may occur,
defines exception triggering events and conditions, and specifies exception handlers
associated with the predefined process model. Exception handlers can be defined
for single activities, for selected process regions (including multiple activities), or
for the overall process (as in the case of a try block in programming languages).
The main process logic is thus clearly separated from the exception handling logic.
During process execution, timers, messages, errors, constraint violations and other
events might interrupt the process flow: the exception is detected and thrown. The
run-time environment checks for the availability of a suitable exception handler,
which is then invoked to catch the exception (as in the case of a catch block).
Typically, the process (or sub-parts of it) is interrupted and the flow of control passes
to the exception handler. The handler defines specific activities to be performed to
recover from the exception, so that process execution can be possibly resumed.

As extensively discussed in [26], exception handling capabilities provided by aca-
demic prototypes and commercial PMSs can be reconducted to the abstract frame-
work introduced before. The different approaches vary in the exception types that can
be handled and in the way they support the definition and selection of exception han-
dlers, which can be completely predefined, contextually selected from a repository
or instantiated from templates. Typical strategies applied when defining exception
handlers for anticipated exceptions have been systematized in the form of exception
handling patterns [16, 27, 28]. When for a given exception no explicit handling logic
is defined or the handler is not able to resolve the issue, a process participant may be
notified and involved in the definition of corrective actions.

Several exception detection and handler activation techniques [20, 24, 29] adopt
a rule-based approach, typically relying on some form of Event-Condition-Action
(ECA) rules. ECA rules have the form “on event if condition do action” and specify
to execute the action (i.e., the exception handler) automatically when the event hap-
pens (i.e., when the exception is caught), provided that the specific condition holds.
ECA rules represent a good way for separating the graphical representation of the
process with the “exception handling flow”. A similar principle has been applied in
YAWL [30], where for each exception that can be anticipated, it is possible to define
an exception handling process, named ex/et, which includes a number of exception
handling primitives (for removing, suspending, continuing, completing, failing and
restarting a workitem/case) and one or more compensatory processes in the form of
worklets (i.e., self-contained YAWL specifications executed as a replacement for a
workitem or as compensatory processes). Exlets are linked to specifications by defin-
ing specific rules (through the Rules Editor graphical tool), in the shape of Ripple
Down Rules specified as “if condition then conclusion”, where the condition defines
the exception triggering condition and the conclusion defines the exlet.
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2.2.2 Ad Hoc Process Change

Even though the handling of anticipated exceptions is fundamental for every PMS,
the latter also needs to be able to deal with unanticipated exceptions. Research efforts
dealing with unanticipated exceptions have established the area of adaptive process
management [16, 31]. While the introduction of exception handling techniques for
anticipated exceptions increases process flexibility and adaptation capabilities, a
different approach is required for handling unanticipated exceptions and deviations
occurring at run-time. The handling of unanticipated exceptions does not assume
the availability of predefined exception handlers and relies on the possibility of
performing ad hoc changes over process instances at run-time. The need to perform
complex behavioral changes over a process instance requires structural adaptation of
the corresponding process model, which leads to adaptations of the process instance
state.

As in the case of exception handling, structural adaptation techniques have been
systematized through the identification and definition of adaptation patterns [32, 33].
Atalow-level of abstraction, structural model adaptations can be performed by apply-
ing change primitives such as adding/removing nodes, routing elements, edges and
other process elements. At a higher level of abstraction, change operations provide
a set of adaptation patterns to perform model adaptations, such as adding, deleting,
moving or replacing activities or process fragments. A single change operation cor-
responds to the application of multiple change primitives, hiding the complexity of
the model editing task. Adaptation patterns are not limited to the control flow per-
spective and also cover other process perspectives to perform changes, e.g., at the
level of the data flow schema or on process resources. In addition, change operations
performed for one perspective (e.g., control flow) may affect the other perspectives
(e.g., the data flow) as well, resulting in so-called secondary changes. Notice that ad
hoc changes must preserve the correctness of the process model and the executability
of the process instance [34].

While a good level of support can be provided to ensure correctness and com-
pliance when high-level change operations are performed, the degree of automation
in performing these changes is generally limited. In fact, ad hoc changes are often
manually performed by experienced users: process execution is suspended and the
model and state of the affected instance are adapted by relying on the capabilities of
the modeling environment. In an attempt to increase the level of user support, semi-
automated approaches have been proposed [35]. They aim at storing and exploiting
available knowledge about previously performed changed, so that users can retrieve
and apply it when adapting a process. Knowledge retrieval and reuse requires estab-
lishing a link between performed changes and the application context, including the
occurred exception and the process state. Contextual information allows, in turn,
identifying similarities between the current exceptional situation and previous cases.
The available knowledge on how similar cases were handled in the past is used
to assist the users, provide recommendations and suggest possible changes to be
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applied. Such an approach has been concretely put into practice using case-based
reasoning techniques [36, 37].

Strong support for adaptive process management and exception handling is pro-
vided by the ADEPT system and its evolutions [38—41]. ADEPTflex offers model-
ing capabilities to explicitly define pre-specified exceptions, and supports changes of
process instances to enable different kinds of ad hoc deviations from the pre-modeled
process models in order to deal with run-time exceptions. These features have been
extended and improved in ADEPT?2, which provides full support for the structural
process change patterns defined in [32], and in ProCycle, which combines ADEPT2
with conversational case-based reasoning (CCBR) methodologies. On the basis of the
ADEPT technology, the AristaFlow BPM Suite was developed, with the aim of trans-
ferring process flexibility and adaptation concepts into an industrial-strength PMS.
Similarly, AgentWork [42] relies on ADEPTflex and exploits a temporal ECA rule
model to automatically detect logical failures and enable both reactive and predic-
tive process adaptation of control- and data-flow elements. Here, exception handling
is limited to single tasks failures, and the possibility exists for conflicting rules to
generate incompatible actions, which requires manual intervention and resolution.

If compared with traditional exception handling approaches (cf. Sect.2.2.1), adap-
tive PMSs deal with unanticipated exceptions by automatically deriving the try
block as the situation in which the PMS does not adequately reflect the real-world
process anymore. As a consequence, one or several process instances have to be
adapted with ad hoc process changes, and the catch block should include those
recovery procedures required for realigning the computerized processes with the
real-world ones.

2.2.3 Al-based Process Adaptation

The AI community has been involved with research on process management for
several decades, and Al technologies can play an important role in the construction
of PMS engines that manage complex processes, while remaining robust, reactive,
and adaptive in the face of both environmental and tasking changes [43]. One of
the first works dealing with this research challenge is [44]. It discusses at high level
how the use of an intelligent assistant based on planning techniques may suggest
compensation procedures or the re-execution of activities if some anticipated failure
arises during the process execution. In [45] the authors describe how planning can be
interleaved with process execution and plan refinement, and investigates plan patch-
ing and plan repair as means to enhance flexibility and responsiveness. Similarly,
the approach presented in [46] highlights the improvements that a legacy workflow
application can gain by incorporating planning techniques into its day-to-day oper-
ation.

A goal-based approach for enabling automated process instance change in case of
emerging exceptions is shown in [47]. If a task failure occurs at run-time and leads to a
process goal violation, a multi-step procedure is activated. It includes the termination



22 A. Marrella and M. Mecella

of the failed task, the sound suspension of the process, the automatic generation
(through the use of a partial-order planner) of a new complete process definition
that complies with the process goal and the adequate process resumption. A similar
approach is proposed in [48]. The approach is based on learning business activities as
planning operators and feeding them to a planner that generates a candidate process
model that is capable of achieving some business goals. If an activity fails during
the process execution at run-time, an alternative candidate plan is provided with the
same business goals. The major issue of [47, 48] lies in the replanning stage used for
adapting a faulty process instance, which forces to completely redefine the process
specification at run-time when the process goal changes (due to some activity failure),
by revolutionizing the work-list of tasks assigned to the process participants (that are
often humans).

In the work [49] the authors propose a goal-driven approach for service-based
applications to automatically adapt business processes to run-time context changes.
Process models include service annotations describing how services contribute to the
intended goal, and business policies over domain elements. Contextual properties are
modeled as state transition systems capturing possible values and possible evolutions
in the case of precondition violations or external events. Process and context evolution
are continuously monitored and context changes that prevent goal achievement are
managed through an adaptation mechanism based on service composition via auto-
mated planning techniques. However, this work requires that the process designer
explicitly defines the policies for detecting the exceptions at design-time.

A work dealing with process interference is that of [50]. Process interference
is a situation that happens when several concurrent business processes depending
on some common data are executed in a highly distributed environment. During the
processes execution, it may happen that some of these data are modified causing unan-
ticipated or wrong business outcomes. To overcome this limitation, the work [50]
proposes a run-time mechanism that uses (i) Dependency Scopes for identifying
critical parts of the processes whose correct execution depends on some shared vari-
ables; and (ii) Intervention Processes for solving the potential inconsistencies gen-
erated from the interference, which are automatically synthesised through a domain
independent planner based on CSP (Constraint Satisfaction Problems) techniques.

2.3 Managing Processes in Cyber-Physical Domains

CPSs are having widespread applicability and proven impact in multiple areas, like
aerospace, automotive, traffic management, healthcare, manufacturing, emergency
management, entertainment, and consumer appliances [14, 51]. According to [1], any
physical environment that contains computing-enabled devices can be considered as
acyber-physical domain. The trend of managing processes in cyber-physical domains
has been fueled by two main factors. On the one hand, the recent development of
powerful mobile computing devices providing wireless communication capabilities
have become useful to support mobile workers to execute tasks in such dynamic
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settings [52]. On the other hand, the increased availability of sensors disseminated
in the world has lead to the possibility to monitor in detail the evolution of several
real-world objects of interest. The knowledge extracted from such objects allows
to depict the contingencies and the context in which processes are carried out, by
consenting a fine-grained monitoring, mining, and decision support for them.

However, if compared with traditional business domains, additional challenges
need to be considered when managing processes in cyber-physical domains. On the
one hand, there is the need of representing explicitly real-world objects and “techni-
cal” aspects like device capability constraints, wireless networking, device mobility,
etc. On the other hand, since cyber-physical domains are intrinsically “dynamic”, a
PMS that runs a process in such domains must be able to adapt itself to the current
real world entities and environment.

To make our discussion more concrete, in Sect.2.3.1 we present an application
scenario (as running example) that comes from the emergency management domain
and is inspired to a real disaster response plan investigated by the authors during
the European project WORKPAD' [53-56]. Then, starting from the analysis of the
application scenario and from the experience gained from participating to several
European Projects involving CPSs, in Sect.2.3.2 we identify a list of high-level
features that a PMS aiming at managing and adapting processes in cyber-physical
domains should provide.

2.3.1 A Running Example from the Emergency Management
Domain

As an application scenario, let us consider the emergency management domain,
in which teams of first responders act in disaster locations with the main purpose
of assisting potential victims and stabilizing the situation. A CPS composed by
first responders’ mobile devices, robots and wireless communication technologies
is coupled with a process-oriented approach for team coordination. A response plan
encoded as a process and executed by a PMS deployed on mobile devices can help
to coordinate the activities of first responders acting on the field.

To be more concrete, let us consider the emergency management situation
described in Fig.2.2a, in which a train derailment is depicted in a grid-type map.
For the sake of simplicity, the train is composed of a locomotive (located at loc33)
and two coaches (located at loc32 and loc31, respectively). In our train derailment
situation, the goal of an incident response plan is to evacuate people from the coaches
and take pictures for evaluating possible damages to the locomotive. To that end, a
response team is sent to the derailment scene. The team is composed of four first
responders, called actors, and two robots, initially all located at location cell loc00. It

IThe WORKPAD Project (http://www.dis.uniromal.it/~workpad) investigated how the use of a
process-oriented approach can enhance the level of collaboration and support provided to first
responders that act in emergency/disaster scenarios.
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Fig. 2.2 A train derailment situation; area and context of the intervention

is assumed that actors are equipped with mobile devices for picking up and executing
tasks, and that each provides specific capabilities. For example, actor act1 is able
to extinguish fire and take pictures, while act2 and act3 can evacuate people from
train coaches. The two robots, in turn, are designed to remove debris from specific
locations. When the battery of a robot is discharged, actor act4 can charge it.

In order to carry on the response plan, all actors and robots ought to be continually
inter-connected. The connection between mobile devices is supported by a fixed
antenna located at loc00, whose range is limited to the dotted squares in Fig.2.2a.
Such a coverage can be extended by robots rb1 and rb2, which have their own
independent (from antenna) connectivity to the network and can act as wireless
routers to provide network connection in all adjacent locations. An incident response
plan is defined by a set of activities that are meant to be executed on the field by
first responders, and are predicated on specific contexts. Therefore, the information
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collected on-the-fly is used for defining and configuring at run-time the incident
response plan at hand. A possible concrete realization of an incident response plan for
our scenario is shown in Fig. 2.2c, using the BPMN modeling language. The process
under investigation is composed of three parallel branches, with tasks instructing
first responders to act for evacuating people from train coaches in loc31 and loc32,
taking pictures of the locomotive, and assessing the gravity of the accident.

Due to the high dynamism of the environment, there are a wide range of exceptions
that can ensue. Because of that, there is not a clear anticipated correlation between a
change in the context and a change in the process. So, suppose for instance that actor
actl is sent to the locomotive’s location, by assigning to it the task GO(loc00, loc33) in
the first parallel branch. Unfortunately, however, the actor happens to reach location
loc03 instead. The actor is now located at a different position than the desired one,
and most seriously, is out of the network connectivity range (cf. Fig.2.2b). Since
all participants need to be continually inter-connected to execute the process, the
PMS has to first find a recovery procedure to bring back full connectivity, and then
find a way to re-align the process. We notice that the execution of an emergency
management process can also be jeopardized by the occurrence of exogenous events
(e.g., a fire burnt up into a coach, a rock slide collapses in a location, etc.). Indeed,
exogenous events could change, in asynchronous manner, some contextual properties
of the scenario in which the process is under execution, hence possibly requiring the
process to be adapted accordingly.

The above example (though it is very simple) shows that in a cyber-physical
domain it is inadequate to assume that a process designer can pre-define all possi-
ble recovery activities for dealing with the exceptions that can ensue. The recovery
procedures will depend on the actual context (e.g., the positions of process partici-
pants, the range of the main network, robot’s battery levels, whether a location has
become dangerous to get it, etc.) and there are too many of them to be considered at
design-time. This emphasizes the fact that for processes enacted in cyber-physical
domains there is a critical need of explicit mechanisms to model world changes and
responding to them in a fully automated way.

2.3.2 High-Level Features for Managing Processes
in Cyber-Physical Domains

The management of processes enacted in cyber-physical domains requires a PMS
providing real-time monitoring and automated adaptation features during process
execution [16]. To this end, the role of the data perspective becomes fundamental.
Data, including information processes by process tasks as well as contextual informa-
tion, is the main driver for triggering process adaptation, as focusing on the control
flow perspective only would be insufficient. In fact, in a cyber-physical domain,
a process is genuinely knowledge and data centric: the process control flow must
be coupled with contextual data and knowledge production and process progres-
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sion may be influenced by user decision making. This means that procedural and
imperative models have to be extended and complemented with the introduction of
declarative elements (e.g., tasks preconditions and effects) which enable a precise
description of data elements and their relations, so as to go beyond simple process
variables, and allow establishing a link between the control flow perspective and the
data perspective.

Starting from the above considerations, coupled with the experience gained in the
area and lessons learned from several European Projects involving CPSs (a partial
list can be found in the Acknowledgements section at the end of the chapter), we
derive a set of 5 high-level characterizing features that must be provided by a PMS
that wants to successfully manage processes enacted in cyber-physical domains:

o [F1] Representing digitally real-world objects. The screening of real-world objects
performed by the physical sensors disseminated in the world must be taken into
consideration when planning and executing a collaborative process in cyber-
physical domains. To make the PMS aware of physical reality, a physical-to-digital
bridge that transforms the knowledge extracted from real-world objects in their
digital counterpart is required.

e [F2] Modeling contextual data. Contextual data representing the cyber-physical
domain in which the process will be enacted and all relevant data affecting the
process and manipulated by it need to be formalized and encoded in an information
model, so as to define data objects and information to be considered as part of the
process context and execution state. A process designer should be also allowed to
express conditions over process data, if needed.

e [F3] Representing data-driven activities. A process executed in a cyber-physical
domain is characterized by activities whose enactment is related to the evolution
of the information model. Such activities are enriched with declarative elements
and constraints (e.g., preconditions and effects) defined on contextual data, which
specify when a particular activity can be executed in a specific state of the contex-
tual scenario, the execution dependencies between activities and the effects that
activity executions have on the current state.

e [F4] Monitoring and exception detection. The PMS should automatically detect
exceptional situations, i.e., any mismatch between the computerized version of
the process and its corresponding real-world version. This requires to monitor
running process instances against the evolution of the process execution context,
to identify when a process instance is deviating from the intended behavior.

e [F5] Exceptions resolution. The PMS should react to any event that represents a
risk for process continuity. If a detected anomalous situation may prevent process
progressing, the PMS needs to automatically deriving and enacting a recovery
procedure that allows the process to progress as expected.

If compared with the features provided by traditional control-flow oriented PMSs
(a comprehensive list can be found in [57]), it is clear that processes enacted in
cyber-physical domains reveal some challenging features (e.g., data orientation, low
predictability, etc.) that pose serious problems for their support through the use of
existing approaches [5]. While there is the lack of a holistic approach that allows to
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tackle the set of identified features as a whole and to provide a right support for them,
we argue that the realization of such an approach can be regarded as a key success
factor for the fruitful application of BPM in new domains different from the business
one, and represents one main challenge that is currently under investigation by the
research community [5, 16]. As a step towards this goal, in the following section
we introduce the SmartPM approach and the corresponding implemented system.
SmartPM provides a flexible approach to manage the life-cycle of processes enacted
in cyber-physical domains, with a targeted support for the set of features discussed
above.

2.4 The SmartPM Approach and System

SmartPM? (Smart Process Management) [58] is a model and a PMS implementing a
set of techniques that enable automatically adapting process instances at run-time in
the presence of unanticipated exceptions, without requiring an explicit definition of
handlers/policies to recover from tasks failures and exogenous events, and without
the intervention of domain experts at run-time.

The SmartPM approach builds on the dualism between an expected reality, the
(idealized) model of reality that is used by the PMS to reason, and a physical reality,
the real world with the actual values of conditions and outcomes. Process execution
steps and exogenous events have an impact on the physical reality and any deviation
from the expected reality results in a mismatch (or exception) to be removed to allow
process progression. If an exception invalidates the enactment of the process being
executed, an external state-of-the-art planner is invoked to synthesise a recovery
procedure that adapts the faulty process instance by removing the gap between the
two realities.

To meet the high-level features described in Sect.2.3.2, SmartPM relies on and
combines well-established Al techniques and frameworks, including the Situation
Calculus [59], the IndiGolog framework [60] and automated planning [61]. The
choice of adopting Al technologies is motivated by their ability to provide the right
abstraction level needed when dealing with dynamic situations in which data (values)
play a relevant role in system enactment and automated reasoning over the system
progress. In the field of BPM, many other formalisms and technologies are being
used, such as Petri Nets [62], Coloured Petri Nets [63], Workflow Nets [64], YAWL
nets [30], BPMN [3] and process algebras [65], with varying degrees of automated
reasoning support over them. While Petri Nets and Worklow Nets do not support data-
based decisions as well as data-driven execution of any kind due to the lack of data-
awareness [66], other formalisms such as Coloured Petri Nets, YAWL Nets, BPMN
and Process Algebras are potentially all fine solutions for realizing our framework.
However, the level of abstraction provided for manipulating data values and reasoning
over dynamic changes is not formally specified (in the case of YAWL), performed at

Zhttp://www.dis.uniromal .it/~smartpm.
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shallow level (in the case of BPMN) or at very low level (in the case of Coloured Petri
Nets and Process Algebras), since such formalisms mainly focus on the control-flow
perspective of a business process. Conversely, the Al field is rich of algorithms and
systems that support the user in the creation, acquisition, adaptation, evolution, and
sharing of data knowledge for specifying and implementing dynamic systems [59,
67, 68].

While the formal model underlying SmartPM is described in detail in [58], in this
section we aim at providing an overview of the SmartPM approach (cf. Sect.2.4.1),
its concrete implementation (cf. Sect.2.4.2) and application (cf. Sect.2.4.3) to the
running example introduced in Sect.2.3.1.

2.4.1 Overview of the Approach

Process Representation

In SmartPM a process model includes a set 7" of n task definitions. Each task #; € T is
described in terms of its preconditions Pre; and effects Eff;, and can be considered as
a single step that consumes input data and produces output data. Data are represented
through a set F of fluents whose definition strictly depends on the specific process
domain of interest. In Al, a fluent is a condition that can change over time. Such
fluents can be used to constrain the task assignment (in terms of task preconditions),
to assess the outcome of a task (in terms of task effects) and as guards for decision
points and routing elements (e.g., for cycles or conditional statements).

SmartPM adopts a service-based approach to process management, that is, tasks
are executed by services (that could be software applications, human actors, robots,
agents, etc.). Choosing the fluents that are used to describe each activity falls into the
general problem of knowledge representation. To this end, the environment, services
and tasks are grounded in domain theories described in Situation Calculus [59].
Situation Calculus is specifically designed for representing dynamically changing
worlds in which all changes are the result of task executions. Situation Calculus
is thus used for providing a declarative specification of the domain (i.e., available
tasks, contextual properties, tasks preconditions and effects, what is known about
the initial state) where a process has to be executed. This declarative specification
also covers the resource perspective, with a definition of the available services and
the capabilities they provide, to be matched with capability requirements defined for
the tasks.

On top of Situation Calculus, SmartPM relies on the IndiGolog high-level agent pro-
gramming language for the specification of the process control flow. IndiGolog [60]
enables the definition of programs with cycles, concurrency, conditional branching
and interrupts that rely on program steps that are actions of some domain theory
expressed in Situation Calculus. The dynamic world of SmartPM is modeled as pro-
gressing through a series of situations, where each situation s is the result of the
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various tasks performed up to that point. In this context, fluents can be considered
as “properties” of the world whose values may vary across situations.

Process Monitoring and Adaptation

SmartPM provides mechanisms for adapting process models that require no prede-
fined handlers. To this end, a specialized version of the concept of adaptation from
the field of agent-oriented programming [69] is used. The approach is schematized in
Fig.2.3. Specifically, adaptation in SmartPM can be seen as reducing the gap between
the expected reality, i.e., the (idealized) model of reality that is used by the PMS to
reason, and the physical reality, i.e., the real world with the actual values of conditions
and outcomes.

The physical reality ¢, reflects the concept of “now”, i.e., what is happening in
the real environment while the process is under execution. The physical reality ¢,
captures exactly the value assumed by each fluent in the situation s. In general, a
task #; can only be performed in a given physical reality ¢ if and only if that reality
satisfies the preconditions Pre; of that task. Moreover, each task has also a set of
effects Eff; that change the current physical reality ¢, into a new physical reality
¢s+1-

A PMS that takes as input a process specification should guarantee that each task
is executed correctly, i.e., with an output that satisfies the process specification itself.
In fact, at execution time, the process can be easily invalidated because of task failures
or since the environment may change due to some external exogenous event. For this
purpose, the concept of expected reality ¥, is introduced. The expected reality in a
situation s is given by the set of fluents that are supposed to hold. Basically, when a
task is executed and completed, both the physical and expected realities are updated
so that:

e the physical reality reflects the actual outcome produced by the task execution;
e the expected reality reflects the intended outcome of the task execution, according
to the specification of task’s effects.
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A recovery procedure is needed in a specific situation if the two realities are
different from each other. A misalignment of the two realities often stems from errors
in the tasks outcomes (e.g., incorrect data values) or is the result of exogenous events
coming from the environment. An execution monitor is responsible for detecting
whether the gap between the expected and physical realities is such that the process
instance cannot progress. In that case, the PMS has to find a recovery procedure
whose execution removes the gap between the physical reality and the expected one.

SmartPM allows the synthesis of a recovery procedure at run-time by invoking
an external state-of-the-art planner [61]. Given as the goal condition the process
state reflecting the expected reality, the planner searches for a plan that may turn the
physical reality into the expected reality. The recovery procedure will be built by
composing tasks stored in a specific repository. The repository contains both tasks
used for defining the specific process instance under execution and other tasks built
on the same contextual scenario and possibly used in past executions of the process.
If a recovery plan exists, it will be executed by SmartPM for adapting the faulty
process instance.

2.4.2 The SmartPM Environment and Architecture

The concrete implementation of the SmartPM approach has required to cover the
modeling, execution and monitoring stages of the process life-cycle and to make
explicit the connection of implemented processes with the real-world objects of the
cyber-physical domain of interest. To that end, as shown in Fig. 2.4, the architecture
of the SmartPM system relies on five architectural layers.

Presentation Layer

The Presentation Layer provides a GUI-based tool called SmartPM Definition Tool
(cf. Fig.2.5), which assists the process designer in the definition of a process model
at design-time. The SmartPM Definition Tool has been developed using the Java SE
7 Platform, and the JGraphX open source graphical library.> To define a process
model with the SmartPM Definition Tool means (i) to build a tasks repository, (ii) to
define the process control flow and (iii) to formalize the contextual knowledge of the
cyber-physical domain in which the process will be enacted.

Contextual knowledge is represented as a domain theory that includes all the
information of the application domain, such as the people/services that may be
involved in performing the process, the exogenous events, the contextual data and
so forth. Data are represented through some atomic terms that range over a set
of data objects, defined over some data types. In short, a data object depicts an
entity of interest (e.g., a location, a capability, a service, etc.), while each data
type explicitly specifies the data objects that represent the domain of that type.
Under this representation, possible values of a data type univocally identify data

3http://www.jgraph.com/.
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objects in the scenario of interest. Afomic terms can be used to express properties
of domain objects (and relations over objects) and argument types of a term—taken
from the set of the available data types—represent the finite domains over which
the term is interpreted. For example, if we consider the emergency management
domain discussed in Sect.2.3.1, the term At[act : Actor] = (loc : Location_type) is
used for recording the position of each actor in the area. Similarly, the numeric term
BatteryLevel[rbt : Robot] = (int : Integer_type) records the battery level of each
robot. In addition, the designer can define complex terms. They are declared as basic
atomic terms, with the additional specification of a well-formed first-order formula
that determines the truth value for the complex term. For example, the complex term
Connected|act : Actor] can be defined to express that an actor is connected to the
network if s/he is in a covered location or if s/he is in a location adjacent to a location
where a robot is located. For each atomic/complex term, the process designer has to
decide which ones are relevant for adaptation and which ones have not to be con-
sidered for that. An atomic term that is considered as relevant for adaptation will be
continuously monitored by the PMS, and if its value becomes different from the one
expected, then the adaptation mechanisms provided by SmartPM will be triggered. A
process designer can also specify which exogenous events may be catched at run-time
and which atomic terms will be modified after their occurrence.

Concerning the definition of process tasks, the process designer is required to
specify which tasks are applicable to the dynamic scenario under study. Tasks will
be stored in a specific tasks repository and can be used for composing the control flow
of the process and for adaptation purposes. Each task can be considered as a single
step that consumes input data and produces output data, and is described with (i) typed
input parameters, (ii) preconditions—defined over atomic and complex terms—that
constrain the task assignment and must be satisfied before the task is applied, and
(iii) deterministic effects, which establish the outcome of a task after its execution
in terms of a change of the value of one or more atomic terms. For example, the task
GO involves two input parameters from and to of type Location_type, representing a
starting and an arrival location. An instance of this task can be executed only if the
actor SRV that will execute it at run-time is at the starting location from and provides
the required capabilities for executing the task. As a consequence of task execution,
the actor moves from the starting to the arrival location, and this is reflected by
assigning to the atomic term A#[SRV] the value 7o in the effect.

Notice that the definition of a valid domain theory and of tasks specifications
allows to meet the features F2 and F3 introduced in Sect.2.3.2. At this point, the
process designer uses the BPMN graphical editor provided by the SmartPM Definition
Tool to define the process control flow among a set of tasks selected from the tasks
repository. The editor provides visual, graphical editing and creation of BPMN 2.0
business processes.* It is important to notice that atomic/complex terms can be used
as guards for decision points and routing elements (e.g., for cycles or conditional

4The SmartPM Definition Tool provides a relevant subset of the BPMN modeling constructs to
define the control flow of a process, including basic activities, start/end events and parallel/exclusive
gateways.
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statements). The outcome of the process design activity is a complete XML-encoded
process specification that is passed to the Execution Layer.

Execution and Service Layers

The Execution Layer is in charge of managing and coordinating the process enact-
ment. The BPMN process and the associated domain theory are taken as input from
the XML-to-IndiGolog Parser component, a Java module that translates them into
situation calculus [59] and IndiGolog [60] readable formats (cf. Sect.2.4.1). It is inter-
esting to notice that while from a user perspective the process control flow is defined
using a subset of the modeling constructs provided by the BPMN notation, an exe-
cutable model is obtained in the form of an IndiGolog program to be executed through
an IndiGolog engine. To that end, we customized an existing IndiGolog engine,’ written
in the well-known open source SWI-Prolog environment,’ to (i) build a physical real-
ity by taking the initial context from the external environment; (ii) build an expected
reality (initially equal to the physical one) that records the expected process state
after each task execution or exogenous event occurrence; (iii) manage the process
routing and decide which tasks are enabled for execution; (iv) collect exogenous
events from the external environment. Once a task is ready for being executed, the
IndiGolog engine is in charge of assigning it to a proper service (which may be a
human actor, a robot, a software application, etc.) that is available (i.e., free from
any other task assignment) and that provides all the required capabilities for task
execution.

Process participants interact with the engine through a Task Handler, an interactive
GUlI-based software application that supports the visualization of assigned tasks
and enables starting task execution and notifying of task completion by selecting
an appropriate outcome (cf. Fig.2.6a). The SmartPM Task Handler is realized for
Android devices from version 4.0 and up. Each device has an unique ID that matches
the service name defined in the domain theory by the designer. Every step of the
task life cycle—ranging from the assignment to the release of a task—requires an
interaction between the IndiGolog engine and the task handlers. Such an interaction
is mainly intended for notifying the device corresponding to the human actor of
actions performed by the IndiGolog engine as well as for notifying the engine of
actions executed by actor through the task handler of the corresponding device. The
communication between the IndiGolog engine and the task handler is mediated by
the Communicator Manager component (which is essentially a web server) and
established using the Google Cloud Messaging (GCM) service.’

As previously discussed, the IndiGolog engine is in charge of monitoring con-
textual data to identify changes or events which may affect process execution, and
notify them to the adaptation layer. This allows to meet the feature F4 introduced
in Sect.2.3.2. Specifically, given a process instance &, after each task completion (or
exogenous event occurrence), the physical and expected realities are updated to reflect

Shttp://sourceforge.net/projects/indigolog/.
Shttp://www.swi-prolog.org/.
7https://developer.android.com/google/gcm/index.html.
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Fig. 2.6 The SmartPM Task Handler

the actual and intended (according to the specification of task’s effects) outcome of
task performance (or the contextual changes produced by an exogenous event). If
we consider the first example shown in Sect.2.3.1, when the task GO(loc00, loc33)
completes, it means that the output value for Af[act1] (generated as an effect of the
task GO) is ‘loc03’, that is different from the task’s expected outcome, that is ‘loc33’.
Hence, the two realities are misaligned, and the faulty process instance § needs to be
adapted (cf. Fig.2.6b).

Adaptation Layer

To enable the automated synthesis of a recovery procedure, and to provide the right
support to feature F5 discussed in Sect.2.3.2, the Adaptation Layer of SmartPM
resorts to classical planning techniques. Process adaptation relies on the capabilities
provided by a PDDL-based planner component (the LPG-td planner [70]), which
assumes the availability of a so-called planning problem, i.e., an initial state and a
goal to be achieved, and of a planning domain definition that includes the actions to
be composed to achieve the goal, the domain predicates and data types. To this end,
if process adaptation is required, the Domain Builder component translates (i) the
domain theory defined at design-time into a planning domain, while the Problem
Builder component converts (ii) the physical reality into the initial state of the plan-
ning problem and (iii) the expected reality into the goal state of the planning problem.
The planning domain and problem represent the input for the planner component and,
in particular, the planning problem reflects the gap between the two realities. If the
planner is able to synthesize a recovery procedure §,, the Synchronization component
combines &’ (which is the remaining part of the faulty process instance § still to be exe-
cuted), with the recovery plan §, and builds an adapted process §” = (3,; 8"). Notice
that, whenever a process § needs to be adapted, every running task is interrupted,
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since the recovery sequence of tasks §, has to be executed before that the remaining
part of the process instance 8’ can progress. Thus, active branches can only resume
their execution after the repair sequence has been executed. This is fundamental to
avoid the risk of introducing data inconsistencies during the repair phase. Finally,
the Synchronization component converts §” into an executable IndiGolog program so
that it can be enacted by the IndiGolog engine. Otherwise, if no plan exists for the
current planning problem and no handling strategy can be automatically derived for
the specific deviation, the control passes back to the process designer, who can try
to manually manage the exception and adapt the process instance.

Cyber-Physical Layer

The cyber-physical layer is tightly coupled with the concrete physical components
available in the cyber-physical domain under consideration. For automating the data
collection from the environment, different built-in and external sensors can be used
with the SmartPM Task Handler. To exploit sensors that are built in the mobile devices,
several plugins have been created for the task handler. For example, location data can
be obtained using built-in GPS sensors. Similarly, using the microphone, it is possi-
ble to automatically get the current noise level near the device. In addition, external
sensors can be taken into use to gather automatic measurements—for prototyping
purposes, the Arduino platform can be used.® The task handler can take advantage
of this technology for gathering environmental data: Arduino has a large variety of
sensors available to measure different environmental values, for example different
gas levels in the air, water quality, radiation level, etc.; Arduino can be connected
with Android via Bluetooth for transferring the data. We notice that the IndiGolog
engine of SmartPM can only work with defined discrete values, while data gathered
from physical sensors have naturally continuous values. Therefore, to meet feature
F1 introduced in Sect.2.3.2, a mapping of such continuous values into their discrete
counterparts is required. To tackle this issue, we enhanced the SmartPM Definition Tool
by providing several web tools that allow process designers to associate some of the
data objects defined in the domain theory with the continuous data values collected
from the environment. Notice that in SmartPM finiteness is crucial, as it is one of
the main assumptions that makes classical planning possible to the computation of a
recovery plan. For example, in the case of the GPS sensor, we developed a location
web tool (as a Google Maps plugin) that allows a process designer to mark areas
of interest from a real map (by selecting latidude/longitude values) and associate
them to the discrete locations (e.g., loc00, loc01, etc.) defined during the design
stage of a process through the SmartPM Definition Tool. Figure 2.7 shows a screenshot
of the location web tool. Similarly, we developed further web tools for the other
developed sensors (temperature, humidity, noise level, etc.). The mapping rules gen-
erated are then encoded in a XML file that is saved into the Communication Manager
and retrieved at run-time (after any task completion) to allow the matching of the
continuous data values collected by the specific sensor into discrete data objects.

8 Arduino is an open-source physical computing platform based on a simple microcontroller board,
and a development environment for writing software for the board, cf. http://arduino.cc/en/guide/
introduction.
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Fig. 2.7 A screenshot of the location web tool provided by the SmartPM Definition Tool

2.4.3 Applying SmartPM to the Running Example

While in the previous sections we discussed the approach underlying SmartPM and
the architecture of the implemented SmartPM system, in this section we present a
practical application of SmartPM with respect to the running example introduced in
Sect.2.3.1. As anticipated in Sect.2.4.2, the design of a process to be enacted in a
cyber-physical domain starts from the SmartPM Definition Tool, which supports the
process design activity. In SmartPM, the process design activity consists of defining
the domain theory, the tasks repository and the control flow of the process.

When defining a new domain theory, the very first step to perform involves spec-
ifying the resource perspective of the process, i.e., the services that will be involved
in tasks execution and the required capabilities to execute those tasks. If we consider
the emergency management scenario depicted in Sect.2.3.1, the following services
and capabilities should be defined:

Service = {actl,act2,act3,act4d,rbl,rb2}
Capability ={movement, hatchet, camera, gps, extinguisher, battery,
digger, powerpack}

‘We notice that the SmartPM Definition Tool allows to explicitly specify the service
providers, i.e., the real-world entities offering services to perform specific process
tasks. Examples of service providers are software components, smartphones, agents,
humans, robots, etc. In our running example, two kinds of providers are required,
actors and robots:

Actor = {actl,act2,act3,actd}
Robot = {rbl,rb2}

To make explicit which capabilities are provided by available services, a special
atomic term Provides[srv : Service, cap : Capability] (that is true if the capability
cap is provided by srv and false otherwise) is used. For example, to state that
actor act1 owns a mobile device with GPS capabilities, the term Provides[act1, gps]
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will be set to true. Concerning the definition of data, two new data types (Boolean
and Integer types are considered as predefined by the SmartPM Definition Tool) are
required to capture the objects of interest in the emergency management domain
under study.

Location_type = {loc00,locl10,l0c20,l0oc30,10c01l,locll,loc02,1l0c03,
locl3,1l0oc23,1l0oc31,1l0c32,1l0c33}
Status_type = {ok, fire,debris}

The data type Status_type denotes the possible “states” of a location, while
Location_type represents locations in the area. As discussed at the end of Sect.2.4.2,
data objects representing locations can be associated to real locations through a loca-
tion web tool. The definition of data types and of the corresponding data objects
allows the process designer to explicitly express the contextual properties of the
cyber-physical domain under study. Such properties are captured through a finite
number of atomic and complex terms. For our emergency management scenario, the
following atomic and complex terms are required:

Evacuated[loc:Location_type] = (bool:Boolean_type)
BatteryLevel [rbt:Robot] = (int:Integer_type)
PhotoTaken[loc:Location_type] = (int:Integer_type)
At [srv:Service]= (loc:Location_type)
Status[loc:Location_type] = (st:Status_type)
MoveStep[] = (int:Integer_type)
DebrisStep[] = (int:Integer_type)
Neigh[locl:Location_type, loc2:Location_type]l = (bool:Boolean_type)
Covered[loc:Location_type] = (bool:Boolean_type)
Connected[act:Actor] = {
EXISTS(ll:Location_type, 12:Location_type, rbt:Robot) .
((atlact]l=11) AND (Covered[ll] OR (at[rbtl]l=12 AND
Neigh([11,12]1)))}

Therefore, we need boolean terms for indicating if people have been evacuated
from a location (Evacuated), integer terms for representing the battery charge level
of each robot (BatteryLevel) or for indicating the number of pictures taken in a spe-
cific location (PhotoTaken), and functional terms for recording the position of each
actor/robot in the area (Ar) or for indicating if a specific location is safe, on fire
or under debris (Status). Some atomic terms may be used as constant values. For
example, the terms MoveStep and DebrisStep reflect the amount of battery consumed
respectively when a robot moves from a location to another and when a robot removes
debris from a specific location. Finally, atomic terms can also be used for express-
ing static relations over objects. For example, the atomic term Neigh indicates all
adjacent locations in the area, while the atomic term Covered reflects the locations
covered by the network provided by the fixed antenna. For each atomic term, the
process designer may decide which ones are relevant for triggering the adaptation
mechanisms provided by SmartPM. In our example, we can consider as relevant the
atomic terms At, Evacuated and PhotoTaken. Finally, as anticipated in Sect.2.4.2,
our emergency management scenario requires also the definition of a complex term
Connected to denote if an actor is connected to the network.
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The definition of the domain theory is the basis to specify the tasks repository and
the exogenous events required for the scenario under study. Our running example
requires the following tasks and exogenous events:

Tasks Repository = {go, move, takephoto, evacuate, updstatus,
extinguishfire, chargebattery}
Ex_events = {photoLost, fireRisk, rockSlide}

For each task, the SmartPM Definition Tool provides a wizard-based editor to build
a task specification and to define the single conditions composing the task precondi-
tions and effects. We notice that the process designer is required to make explicit if
a task effect can be considered as supposed or automatic. When a task returns some
real-world outcome after its completion, we define that outcome as supposed, since
its physical value may be different from the expected one as thought at design-time.
This is the case, for example, of the effect of the task GO (the definition of the task
GO has been provided in Sect.2.4.2), whose consequence is to move an actor from
a starting to an arrival location, which can be different from the one expected at
design-time. Sometimes it may also happen that a task effect is automatic, i.e., it is
applied every time a task completes its execution, independently from the outcomes
returned by the task itself. For example, when a robot removes debris from a loca-
tion, its battery decreases of a fixed quantity that does not depend on any physical
outcome.

The procedure is similar for the definition of exogenous events. However, in this
latter case there is no need to specify any precondition, while effects can only be con-
sidered as automatic (i.e., they are automatically applied to the involved terms when
the exogenous event is catched). For example, the exogenous event ROCKSLIDE(loc)
alerts about a rock slide collapsed in location loc, and its effect changes the value of
the atomic term Status[loc] to the value ‘debris’.

Starting from the domain theory and the tasks repository just defined, the control
flow that captures the response plan of our running example can be built through the
BPMN editor provided by the SmartPM Definition Tool (as shown in Fig.2.5).

The very last step before executing the process consists of instantiating the domain
theory with a starting state, which reflects an initial assignment of values to the
atomic terms. This procedure is performed automatically by the SmartPM Definition
Tool, which collects the values of the properties of the cyber-physical domain of
interest by querying the sensors installed on services’ devices. From a formal point
of view, the definition of the starting state corresponds to the creation of the physical
and expected realities. In the case of our running example, the initial physical and
expected realities reflect the values of the contextual properties of the world before
to execute any step of the emergency management process (cf. Fig. 2.2a). A fragment
of two realities in the starting state Sy is shown below:

e ¢ (Sy) = {Atlactl]=loc00, ..., Connected|actl]=true, ..., Status[loc31]=0k }
e Y (Sp) = {Atlact1]=loc00, ..., Connected|act1])=true, ..., Status[loc31]=0k}

During process enactment, SmartPM is in charge of assigning tasks to proper
services and of continuously monitoring the evolution of the two realities. Let us
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consider again our running example, and suppose that actor act1 is sent to the loco-
motive’s location, by assigning to it the task GO(loc00, loc33) in the first parallel
branch of the emergency management process defined in Fig.2.2c. However, as
depicted in Fig. 2.2b, the actor happens to reach location loc03 instead, meaning that
it is now located at a different position than the desired one and is out of the network
connectivity range. Consequently, the two realities change as follows:

e ¢(S)) ={Atlactl]=loc03, ..., Connected|actl]=false, ..., Status[loc31]=0k}
e (S)) = {Atlactl]=loc33, ..., Connected|act1]=true, ..., Status[loc31]=0k}

To re-align the physical reality with the expected one, SmartPM has to first find a
recovery procedure to bring back full connectivity, and then find a way to re-align
the process. To that end, provided robots have enough battery charge, SmartPM
may first instruct the first robot to move to cell loc03 (cf. Fig.2.8a) in order to re-
establish network connection to actor act 1, and then instruct the second robot to reach
location loc23 in order to extend the network range to cover the locomotive’s location
loc33. Finally, task GO(loc03, loc33) is reassigned to actor act1 (cf. Fig.2.8b). The
corresponding updated process is shown in Fig. 2.9a, with the encircled section being
the recovery (adaptation) procedure. The two realities are updated as follows:

e ¢(S2) = {Atlactl]=loc33, ..., Connected|act1]=true, ..., Status[loc31]=0k}
e 1 (S,) = {Atlactl]=loc33, ..., Connectedlact1]=true, ..., Status[loc31]=0k }

Notice that after the recovery procedure, the enactment of the original process can
be resumed to its normal flow. For example, in the third parallel branch, actor act2
can now be instructed to reach loc31. However, even if act2 completes its task as
expected (cf. Fig.2.8c), a further exception is thrown. In fact, act2 is out of the
network connectivity range and, again, the PMS may instruct the first robot to move
from cell loc03 to cell loc20 in order to re-establish network connection to actor act2
(cf. top of Fig.2.9b). At this point, act2 may start evacuating people from loc31.

As a further example, let us suppose now that a rock slide collapses in location
loc31 (cf. Fig.2.8c) while act2 is evaluating the damages in that area (i.e., act2 is
executing the UPDATESTATUS(/oc31) task). Such an exogenous event, which cor-
responds to ROCKSLIDE(/oc31), changes in asynchronous manner only the physical
reality, as follows:

e ¢(S3) = {Atlactl]=loc33, Connected|actl]=true, ..., Status[loc31]=debris}
e 1 (S3) = {Atlact1]=loc33, Connected[actl]=true, ..., Status[loc31]=0k}

In such a case, SmartPM needs first to abort the running task UPDATESTATUS (loc31)
(the presence of a rock slide may possibly prevent the correct execution of the task),
and then to find a recovery procedure that allows to remove the rock slide from
loc31 by maintaining all the process participants inter-connected to the network.
A possible solution is shown in Fig.2.8d, and consists of instructing act4 to reach
loc20 for recharging the battery of rb1, of moving the robot rb1 in loc31 in order
to remove debris, and finally of reassigning the UPDATESTATUS (loc31) task to act?2.
The corresponding adapted process is shown in the bottom of Fig. 2.9b, and the two
realities are updated as follows:
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Fig. 2.8 Evolution of the contextual scenario introduced in Sect.2.3.1

o ¢ (Sy) = {Atlact1]=loc33, Connected|act1]=true, ..., Status[loc31]=0k}
o Y (Sy) = {At[act1]=loc33, Connected[actl]=true, ..., Status[loc31]=0k}

It is worth noting that we validated the SmartPM approach with a case study
based on real processes coming from the emergency management domain. Specifi-
cally, we first performed empirical experiments on synthetic data by enacting several
emergency management processes, and they confirm the feasibility of the planning-
based approach provided by SmartPM for adapting processes in medium-sized cyber-
physical domains from the timing performance perspective. Then, we tested the
SmartPM System with 3600 different process models having control flows with dif-
ferent structures (and different domain theories associated to them) to measure the
effectiveness of SmartPM in adapting processes. We define the effectiveness of a
PMS as the ability of a PMS to complete the execution of a process model (i.e., to
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Fig. 2.9 Recovery procedures for the emergency response plan introduced in Sect.2.3.1

execute all the tasks involved in a path from the start event to the end event) by
adapting automatically its running process instance if some failure arises, without
the need of any manual intervention of the process designer at run-time. To evaluate
the effectiveness of SmartPM, we simulated processes execution by introducing task
failures and exogenous events during the process enactment according to a given
probability. As an instance, if the percentage of tasks failures was equal to 70 % and
the process model to be executed was composed of 10 tasks, we had that 7 tasks of
its running process instance completed with some physical outcome different from
the one expected, thus requiring the process to be adapted. To sum up, SmartPM was
able to complete 2537 process instances without any domain expert intervention,
corresponding to an effectiveness of about 70.5%. For a detailed discussion of the
above experiments, we invite the interested reader to refer to [58].

2.5 Discussion

The analysis performed in this chapter underlines that processes enacted in cyber-
physical domains demand a more flexible approach to process management, recog-
nizing the fact that in real-world environments process models quickly become out-
dated and hence require closer interweaving of modeling and execution. The fact is
that the common strategy used by the adaptive PMSs to deal with exceptions is to
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manually or semi-automatically define recovery procedures at run-time. However,
in cyber-physical domains, analyzing and defining these adaptations “manually”
becomes time-demanding and error-prone. Indeed, the designer should have a global
vision of the application and its context to define appropriate recovery actions, which
becomes complicated when the number of relevant context features and their inter-
leaving increases.

Conversely, the adaptation mechanism provided by SmartPM is based on execution
monitoring for detecting failures and context changes, and allows to automatically
synthesize at run-time the recovery procedures, without requiring to predefine any
specific adaptation policy or exception handler at design-time. Furthermore, if com-
pared with the existing techniques on process adaptation coming from the field of
Al, the SmartPM approach provides unique features that make it particularly suit-
able for managing processes in cyber-physical domains. For example, if compared
with the works [47, 48] (discussed in Sect.2.2.3), the SmartPM approach adapts a
running process instance by modifying only those parts of the process that need to
be changed/adapted and keeps other parts stable. This is particularly important, as
processes executed in cyber-physical domains often involve real human participants,
and to completely re-define the process specification at run-time for adaptation pur-
poses would mean to revolutionize the work-list of tasks assigned to the process
participants. Finally, while closely related to works [49, 50], the SmartPM approach
deals with changes in a more abstract and domain-independent way, by just check-
ing misalignment between expected/physical realities. Conversely, the work [49]
requires that the process designer explicitly defines the policies for detecting the
exceptions at design-time, while the work [50] requires specification of a (domain-
dependent) adaptation policy, based on volatile variables and when changes to them
become relevant.

From a general perspective, the planning-based automated exception handling
approach of SmartPM should be considered as complementary with respect to existing
techniques, acting as a “bridge” between pre-planned approaches and unplanned
approaches. When an exception occurs and is detected, the run-time engine may
first check the availability of a predefined exception handler, and if no handler was
defined, it can rely on an automated synthesis of the recovery process. In the case
that a planning-based approach fails in synthesizing a suitable handler (or a handler
is generated but its execution does not solve the exception), a human participant can
be involved, leaving her/him the task of manually adapting the process instance.

The use of classical planning techniques for the synthesis of the recovery proce-
dure has a twofold consequence. On the one hand, we can exploit the good perfor-
mance of current state-of-the-art planners to solve medium-sized real-world problems
as used in practice (cf. [58]). On the other hand, classical planning imposes some
restrictions for addressing more expressive problems, including incomplete informa-
tion, preferences and multiple task effects. To sum up, specific requirements frame
the scope of applicability of the approach, which basically relies on the following
assumptions:
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1. process structure can be completely captured in a procedural predefined process
model that explicitly defines the tasks and their execution constraints;

2. process execution context can be fully captured as part of the process model, i.e.,
complete information about a fully observable domain is available;

3. domain objects and contextual properties representing the state of the world can
be reconducted to a finite set of finite-domain variables;

4. process tasks can be completely specified in term of I/O data elements, precon-
ditions and deterministic effects.

Moreover, in addition to the full observability assumption, the approach relies on a
high degree of controllability over the environment: when process execution deviates
from the prespecified expected behavior (i.e., the physical reality deviates from the
expected one), it should be possible to synthesize a recovery process whose execution
modifies the environment (as reflected in the physical reality) so that the process
instance can progress as expected, according to the prespecified model (basically,
the physical reality is reconducted to the expected reality). When the operational
environment and process state cannot be reconducted to their expected representation,
we are back to the case where a process cannot be recovered to progress according
to the predefined model, and it is the process itself that has to be (manually or semi-
automatically) adapted to the changed environment.

The above assumptions result from the need of balancing between modeling com-
plexity and expressive power, and the practical requirements that enable exploiting
classical planning tools. Although the need to explicitly model process execution
context and annotate tasks with preconditions and effects may require some extra
modeling effort at design-time (also considering that process modeling efforts are
often mainly directed to the sole control flow perspective), the overhead is compen-
sated at run-time by the possibility of automating exception handling procedures.

2.6 Conclusion

In this chapter we have introduced a general approach, a concrete framework and
a PMS, called SmartPM, for automated adaptation of processes enacted in cyber-
physical domains in case of unanticipated exceptions. The approach is based on
declarative task specifications and planning techniques, and relies on the ability of
automatically synthesizing recovery procedures at run-time. No predefined exception
detection and handling logic is thus required. The current prototype of SmartPM is
developed to be effectively used by process designers and practitioners. Users define
processes in the well-known BPMN language, enriched with semantic annotations
for expressing properties of tasks, which allow our interpreter to derive the IndiGolog
program representing the process. Interfaces with human actors (as specific graphical
user applications in Java) and software services (through Web service technologies)
allow the core system to be effectively used for enacting processes.



44 A. Marrella and M. Mecella

Future work will include an extension of our approach to “stress” the above
assumptions by making the approach applicable to less-controllable cyber-physical
domains, such as smart museums and, in general, smart spaces. In fact, in the last
years, the current widespread availability of wireless network technology for mass
consumption has triggered the appearance of plenty of wireless and/or mobile devices
providing applications able to enhance the visitors’ experience in cultural sites. The
“pre-fixed” and static visits of physical spaces have been turned into interactive
dynamic experiences customized to the human visitors’ behaviours and needs. In
this context, a process can be used to personalize the visit of an individual into a
smart space.

In addition, we aim at turning the centralized control provided by SmartPM (in
which the reasoning is performed by a single entity, which subsequently instructs the
process participants what to do) into a decentralized control, in which each participant
will be provided with her/his mobile device with the SmartPM system installed into
it. The challenge is to provide each SmartPM system with the ability to adapt the
single processes of individual process participants by considering not only the local
knowledge collected by the single participant, but also the knowledge produced by
the other visitors of the smart space and the global knowledge provided by the smart
space as a whole (e.g., the knowledge produced by the sensors installed in the smart
space). As shown in [71, 72], our research is already going in this direction.
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