
Chapter 2

Measurable Functions
and Convergence

1 Mappings and σ-Fields

Notation 1.1 (Inverse images) Suppose X denotes a function mapping some set Ω into
the extended real line R̄ ≡ R∪{±∞}; we denote this by X : Ω → R̄. Let X+ and X− denote
the positive part and the negative part of X, respectively:

X+(ω) ≡
{

X(ω) if X(ω) ≥ 0,
0 else,(1)

X−(ω) ≡
{ −X(ω) if X(ω) ≤ 0,

0 else.(2)

Note that

(3) X = X+ − X− and |X| = X+ + X− = X + 2X− = 2X+ − X.

We also use the following notation:

(4) [X = r] ≡ X−1(r) ≡ {ω : X(ω) = r} for all real r,

(5) [X ∈ B] ≡ X−1(B) ≡ {ω : X(ω) ∈ B} for all Borel sets B,

(6) X−1(B) ≡ {X−1(B) : B ∈ B}.

We call these the inverse images of r,B, and B, respectively. We let

(7) B̄ ≡ σ[B, {+∞}, {−∞}].

Inverse images are also well-defined when X : Ω → Ω′ for arbitrary sets Ω and Ω′. �

For A,B ∈ Ω we define A	B ≡ ABc ∪ AcB and A\B ≡ ABc. There is use for the
notation
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24 CHAPTER 2. MEASURABLE FUNCTIONS AND CONVERGENCE

(8) ‖X‖ ≡ sup
ω∈Ω

|X(ω)|,

and we will also reintroduce this sup norm in other contexts below.

Proposition 1.1 (Basics of inverse images) Let X : Ω → Ω′ and Y : Ω′ → Ω′′. Let T
denote an arbitrary index set. Then for all A,B,At ⊂ Ω′ we have

(9) X−1(Bc) = [X−1(B)]c, X−1(A\B) = X−1(A)\X−1(B),

(10) X−1
(⋃

t∈T
At

)
=

⋃
t∈T

X−1(At) , X−1
(⋂

t∈T
At

)
=

⋂
t∈T

X−1(At).

For all sets A ⊂ Ω′′, the composition Y ◦ X satisfies

(11) (Y ◦ X)−1(A) = X−1(Y −1(A)) = X−1 ◦ Y −1(A).

Proof. Trivial. �

Proposition 1.2 (Preservation of σ-fields) Let X : Ω → Ω′. Then:

(12) A ≡ X−1(a σ-field A′ of subsets of Ω′) = (a σ-field of subsets of Ω).

(13) X−1(σ[C′]) = σ[X−1(C′)] for any collection C′ of subsets of Ω′.

A′ ≡ {A′ : X−1(A′) ∈ (a specific σ-field A of subsets of Ω)}(14)
= (a σ-field of subsets of Ω′).

Proof. Now, (12) is trivial from proposition 1.1. Consider (14). Now:

(a) A′ ∈ A′ implies X−1(A′) ∈ A
implies X−1(A′c) = [X−1(A′)]c ∈ A implies A′c ∈ A′,

(b) An’s ∈ A′ implies X−1(A′
n)’ s ∈ A

implies X−1(
⋃

nA′
n) =

⋃
nX−1(A′

n) ∈ A implies
⋃

nA′
n ∈ A′.

This gives (14). Consider (13). Using (12) gives

(c) X−1(σ[C′]) =(a σ-field containing X−1(C′)) ⊃ σ[X−1(C′)].

Then (14) shows that

(d) A′ ≡ {A′ : X−1(A′) ∈ σ[X−1(C′)]} =(a σ-field containing C′) ⊃ σ[C′], so that (using

first σ[C′] ⊂ A′ from (d), and then the definition of A′ in (d))

(e) X−1(σ[C′]) ⊂ X−1(A′) ⊂ σ[X−1(C′)].

Combining (c) and (e) gives (13). [We will apply (13) below to obtain (2.2.6).] �

Roughly, using (12) we will restrict X so that F(X) ≡ X−1(B̄) ⊂ A for our original
(Ω,A, μ), so that we can then “induce” a measure on (R̄, B̄). Or, (14) tells us that the
collection A′ is such that we can always induce a measure on (Ω′,A′). We do this in the next
section. First, we generalize our definition of Borel sets to n dimensions.
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Example 1.1 (Euclidean space) Let

Rn ≡ R × · · · × R ≡ {(r1, . . . , rn) : each ri is in R}.

Let Un denote all open subsets of Rn, in the usual Euclidean metric. Then

(15) Bn ≡ σ[Un] is called the class of Borel sets of Rn.

Following the usual notation, B1 × · · · × Bn ≡ {(b1, . . . , bn) : b1 ∈ B1, . . . , bn ∈ Bn}.
Now let

(16)
∏n

i=1
B ≡ B × · · · × B ≡ σ[{B1 × · · · × Bn : all Bi are in B}].

Now consider

(17) σ[{(−∞, r1] × · · · × (−∞, rn] : all ri are in R}].

Note that the three σ-fields of (15), (16), and (17) are equal. Just observe that each of
these three classes generates the generators of the other two classes, and apply exercise 1.1.1.
(Surely, we can define a generalization of area λ2 on (R2,B2) by beginning with λ2(B1×B2) =
λ(B1) × λ(B2) for all B1 and B2 in B, and then extending to all sets in B2. We will do this
in theorem 5.1.1, and we will call it Lebesgue measure on two-dimensional Euclidean space.
This clearly extends to λn on (Rn,Bn).) �
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2 Measurable Functions

We seek a large usable class of functions that is closed under passage to the limit. This
is the fundamental property of the class of measurable functions. Propositions 2.2 and 2.3
below will show that the class of measurable functions is also closed under all of the standard
mathematical operations. Thus, this class is sufficient for our needs.

Definition 2.1 (Simple functions, etc.) Let the measure space (Ω,A, μ) be given and fixed
throughout our discussion. Consider the following classes of functions. The indicator function
1A(·) of the set A ⊂ Ω is defined by

1A(ω) ≡
{

1 if ω ∈ A,
0 else.(1)

A simple function is of the form

(2) X(ω) ≡
n∑

i=1

xi1Ai
(ω) for

n∑
1

Ai = Ω with all Ai ∈ A, and xi ∈ R.

An elementary function is of the form

(3) X(ω) ≡
∞∑

i=1

xi1Ai
(ω) for

∞∑
i=1

Ai = Ω with all Ai ∈ A, and xi ∈ R̄.

Definition 2.2 (Measurability) Suppose that X : Ω → Ω′, where (Ω,A) and (Ω′,A′) are
both measurable spaces. We then say that X is A′-A-measurable if X−1(A′) ⊂ A. We also
denote this by writing either

(4) X : (Ω,A) → (Ω′,A′) or X : (Ω,A, μ) → (Ω′,A′)

(or even X : (Ω,A, μ) → (Ω′,A′, μ′) for the measure μ′ “induced” on (Ω′,A′) by the
mapping X, as will soon be defined). In the special case X : (Ω,A) → (R̄, B̄), we simply call
X measurable; and in this special case we let F(X) ≡ X−1(B̄) denote the sub σ-field of A
generated by X.

Proposition 2.1 (Measurability criteria) Let X : Ω → R̄. Suppose σ[C] = B̄.
Then measurability can be characterized by either of the following:

X is measurable if and only if X−1(C) ⊂ A.(5)

X is measurable if and only if X−1([−∞, x]) ∈ A for all x ∈ R̄.(6)

Note that we could replace [−∞, x] by any one of [−∞, x), [x,+∞], or (x,+∞].

Proof. Consider (5). Let X−1(C) ⊂ A. Then

(a) X−1(B̄) = X−1(σ[C]) = σ[X−1(C)] by proposition 2.1.2

(b) ⊂ A since X−1(C) ⊂ A, and A is a σ-field.

The other direction is trivial. Thus (5) holds. To demonstrate (6), we need to show that B
satisfies
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(c) σ[{[−∞, x] : x ∈ R}] = B̄ ≡ σ[B, {−∞}, {+∞}].

Since B = σ[CI ] for CI as in (1.3.2) and since

(d) (a, b] = [−∞, b] ∩ [−∞, a]c, [−∞, b) =
⋃∞

1 [−∞, b − 1/n],

(e) {−∞} = ∩n[−∞,−n], {+∞} =
⋂

n[−∞, n]c, etc.,

the equality (c) is obvious. The rest is trivial. �

Proposition 2.2 (Measurability of common functions) Let X,Y , and Xn’s be mea-
surable functions. Consider cX with c > 0,−X, inf Xn, supXn, lim inf Xn, lim supXn,
lim Xn if it exists, X2,X ± Y if it is well-defined, XY where 0 · ∞ ≡ 0,X/Y if it is well-
defined, X+,X−, |X|, and the composite g(X) for a continuous g and for any measurable
function g. All of these are measurable functions.

Proposition 2.3 (Measurability via simple functions)

(7) Simple and elementary functions are measurable.

X : Ω → R̄ is measurable if and only if
(8)

X is the limit of a sequence of simple functions.

Moreover:

If X ≥ 0 is measurable, then X is
(9)

the limit of a sequence of simple functions that are ≥ 0 and ↗ .

The Xn’s and Zn’s that are defined in (10) and (12) below are important.

Proof. The functions in proposition 2.2 are measurable, as is now shown.

(a) [cX < x] = [X < x/c], [−X < x] = [X > −x].

(b) [inf Xn < x] = ∪[Xn < x], supXn = − inf(−Xn).

(c) lim inf Xn = sup
n

( inf
k≥n

Xk), lim supXn = − lim inf(−Xn).

(d) lim Xn = lim inf Xn, provided that limXn(ω) exists for all ω.

(e) [X2 < x] = [−√
x < X <

√
x] = [X <

√
x] ∩ [X ≤ −√

x]c.

Each of the sets where X or Y equals 0,∞, or −∞ is measurable; use this below.

(f) [X > Y ] =
⋃

r{ X > r > Y : r is rational}, so [X > Y ] is a measurable set.

So, [X + Y > z] = [X > z − Y ] ∈ A since z − Y is trivially measurable.

(Here [X = ∞] ∩ [Y = −∞] = ∅ is implied, as X + Y is well defined. Etc., below.)
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(g) X − Y = X + (−Y ) and XY = [(X + Y )2 − (X − Y )2]/4.

(h) X/Y = X × (1/Y ),

since [1/Y < x] = [Y > 1/x] for x > 0 in case Y > 0, and for general Y one can write
1
Y = 1

Y 1[Y >0] − 1
−Y 1[Y <0] with the two indicator functions measurable.

(i) X+ = X ∨ 0 and X− = (−X) ∨ 0.

For g measurable, (g ◦ X)−1(B̄) = X−1(g−1(B̄)) ⊂ X−1(B̄) ⊂ A. Then continuous g are
measurable, since

(j) g−1(B) = g−1(σ[open sets]) = σ[g−1(open sets)] ⊂ σ[open sets] ⊂ B̄, and both
g−1({+∞}) and g−1({−∞}) are a (possibly void) subset of {−∞,+∞}. Now apply the result
for measurable g.

We now prove proposition 2.3. Claim (7) is trivial. Consider (8). Define simple functions
Xn by

Xn ≡
n2n∑
k=1

k − 1
2n

×
{

1[ k−1
2n ≤X< k

2n ] − 1[ k−1
2n ≤−X< k

2n ]

}
(10)

+ n × {1[X≥n] − 1[−X≥n]}.

Since |Xn(ω) − X(ω)| ≤ 2−n for |X(ω)| < n, we have

(k) Xn(ω) → X(ω) as n → ∞ for each ω ∈ Ω.

Also, the nested subdivisions k/2n cause Xn to satisfy
(l) Xn ↗ when X ≥ 0.

We extend proposition 2.3 slightly by further observing that

(11) ‖Xn − X‖ → 0 as n → ∞, if X is bounded.

Also, the elementary functions

Zn ≡
∞∑

k=1

k − 1
2n

×
{

1[ k−1
2n ≤X< k

2n ] − 1[ k−1
2n ≤−X< k

2n ]

}
(12)

+ ∞ × {1[X=∞] − 1[X=−∞]}

are always such that

(13) ‖(Zn − X) × 1[−∞<X<∞]‖ ≤ 1/2n → 0 as n → ∞. �

Proposition 2.4 (The discontinuity set is measurable; Billingsley) If (M,d) and (M ′, d′)
are metric spaces and ψ : M → M ′ is any function (not necessarily a measurable function),
then the discontinuity set of ψ defined by
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(14) Dψ ≡ {x ∈ M : ψ is not continuous at x}

is necessarily in the Borel σ-field Bd (that is, the σ-field generated by the d-open subsets of M).

Proof. Let

Aε,δ ≡ {x ∈ M : d(x, y) < δ, d(x, z) < δ and
(a)

d′(ψ(y), ψ(z)) ≥ ε for distinct y, z ∈ M}.

Note that Aε,δ is an open set, since {u ∈ M : d(x, u) < δ0} ⊂ Aε,δ will necessarily occur if
δ0 ≡ {δ − [d(x, y) ∨ d(x, z)]}/2; that is, the y and z that work for x also work for all u in M
that are sufficiently close to x. (Note: The y that worked for x may have been x itself.) Then
(b) Dψ =

⋃∞
i=1

⋂∞
j=1Aεi,δj

∈ Bd,

where ε1, ε2, . . . and δ1, δ2, . . . both denote the positive rationals, since each Aε,δ is an open
set. �

Induced Measures

Example 2.1 (Induced measures) We now turn to the “induced measure” previewed
above. Suppose X : (Ω,A, μ) → (Ω′,A′), so that X is A′-A-measurable. We define μX ≡ μ′

by

(15) μX(A′) ≡ μ′(A′) ≡ μ(X−1(A′)) for each A′ ∈ A′.

Then μX ≡ μ′ is a measure on (Ω′,A′) called the induced measure. This is true, since we
verify that

(a) μ′(∅) = μ(X−1(∅)) = μ(∅) = 0, and

μ′ (
∑∞

1 A′
n) = μ

(
X−1 (

∑∞
1 A′

n)
)

= μ
(∑∞

1 X−1(A′
n)

)
(b) =

∑∞
1 μ(X−1(A′

n)) =
∑∞

1 μ′(A′
n).

Note also that

(c) μ′(Ω′) = μ(X−1(Ω′)) = μ(Ω).

Thus if μ is a probability measure, then so is μX ≡ μ′. Note also that we could regard X as
an A′-F(X)-measurable transformation from the measure space (Ω,F(X), μ) to (Ω′,A′, μX).

Suppose further that F is a generalized df on the real line R, and that μF (·) is the
associated measure on (R,B) satisfying μF ((a, b]) = F (b) − F (a) for all a and b (as was
guaranteed by the correspondence theorem (theorem 1.3.1)). Thus (R,B, μF ) is a measure
space. Define

(16) X(ω) = ω for all ω ∈ R.

Then X is a measurable transformation from (R,B, μF ) to (R,B) whose induced measure μX

is equal to μF . Thus for any given df F we can always construct a measurable function X
whose df is F. �
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Exercise 2.1 Suppose (Ω,A) = (R2,B2), where B2 denotes the σ-field generated by all
open subsets of the plane. Recall that this σ-field contains all sets B × R and R × B for all
B ∈ B; here B1 × B2 ≡ {(r1, r2) : r1 ∈ B1, r2 ∈ B2}. Now define measurable transformations
X1((r1, r2)) = r1 and X2(r1, r2)) = r2. Then define Z1 ≡ (X2

1 + X2
2 )1/2 and Z2 ≡ sign(X1 −

X2), where sign(r) equals 1, 0,−1 according as r is > 0,= 0, < 0. The exercise is to give
geometric descriptions of the σ-fields F(Z1),F(Z2), and F(Z1, Z2).

Proposition 2.5 (The form of an F(Z)-measurable function) Suppose that Z is a mea-
surable function on (Ω,A) and that Y is F(Z)-measurable. Then there must exist a measur-
able function g on (R̄, B̄) such that Y = g(Z).

Proof. (The approach of this proof is to consider indicator functions, simple functions,
nonnegative functions, general functions. This approach will be used again and again. Learn
it!) Suppose that Y = 1D for some set D ∈ F(Z), so that Y is an indicator function that is
F(Z)-measurable. Then we can rewrite Y as Y = 1D = 1Z−1(B) = 1B(Z) ≡ g(Z), for some
B ∈ B̄ that depends on D, where g(r) ≡ 1B(r). Thus the proposition holds for indicator
functions. It holds for simple functions, since when all Bi ∈ B̄,

Y =
∑m

1 ci1Di
=

∑m
1 ci1Z−1(Bi) =

∑m
1 ci1Bi

(Z) ≡ g(Z).

Let Y ≥ 0 be F(Z)-measurable. Then there do exist ↗simple F(Z)-measurable functions Yn

such that Y ≡ limn Yn = limn gn(Z) for the ↗simple B̄-measurable functions gn. Now let
g = lim gn, which is B̄-measurable, and note that Y = g(Z). For general Y = Y + − Y −, use
g = g+ − g−. �

Exercise 2.2 (Measurability criterion) Let C denote a π̄-system of subsets of Ω. Let V
denote a vector space of functions; that is, X + Y ∈ V and αX ∈ V for all X,Y ∈ V and all
α ∈ R—and, all the usual elementary facts hold.

(a) Suppose that:

(17) 1C ∈ V for all C ∈ C.

(18) If An ↗ A with 1An
∈ V, then 1A ∈ V.

Show that 1A ∈ V for every A ∈ σ[C].

(b) It then follows trivially that every simple function

(19) Xn ≡
∑m

1
αi1Ai

is in V;

here m ≥ 1, all αi ∈ R, and
∑m

1 Ai = Ω with all Ai ∈ σ[C].

(c) Now suppose further that Xn ↗ X for Xn’s as in (19) implies that X ∈ V. Show that V
contains all σ[C]-measurable functions.
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3 Convergence

Convergence Almost Everywhere

Definition 3.1 (→a.e.) Let X1,X2, . . . denote measurable functions on (Ω,A, μ) to (R̄, B̄).
Say that the sequence Xn converges almost everywhere to X (denoted by Xn →a.e. X as
n → ∞) if for some N ∈ A for which μ(N) = 0 we have Xn(ω) → X(ω) as n → ∞ for
all ω /∈ N . If for all ω /∈ N the sequence Xn(ω) is a Cauchy sequence, then we say that
the sequence Xn mutually converges a.e. and denote this by writing Xn − Xm →a.e. 0 as
m ∧ n → ∞. (Here, m ∧ n ≡ min(m,n).)

Exercise 3.1 Let X1,X2, . . . be measurable functions from (Ω,A, μ) to (R̄, B̄).

(a) If Xn →a.e. X, then X = X̃ a.e. for some measurable X̃.

(b) If Xn →a.e. X and μ is complete, then X itself is measurable.

Proposition 3.1 A sequence of measurable functions Xn that are a.e. finite converges a.e.
to a measurable function X that is a.e. finite if and only if these functions Xn converges mutu-
ally a.e. (Thus we can redefine such functions on null sets and make them everywhere finite
and everywhere convergent and/or follow the convention of corollary 2 to the Carethéodory
theorem 1.2.1 and automatically complete every measure.)

Proof. The union of the countable number of null sets on which finiteness or convergence
fails is again a null set N . On N c, the claim is just a property of the real numbers. �

Proposition 3.2 (The convergence and divergence sets are measurable) Consider
the finite measurable functions X,X1,X2, . . . (perhaps redefined on null sets to achieve this);
thus, they are B-A-measurable. Then the convergence and mutual convergence sets are
measurable. In fact, the convergence set is given by

(1) [Xn → X] ≡
∞⋂

k=1

∞⋃
n=1

∞⋂
m=n

[
|Xm − X| <

1
k

]
∈ A,

and the mutual convergence set is given by

(2) [Xn − Xm → 0] ≡
∞⋂

k=1

∞⋃
n=1

∞⋂
m=n

[
|Xm − Xn| <

1
k

]
∈ A.

Proof. Just read the right-hand side of (1) as, for all ε ≡ 1/k > 0 there exists an n such
that for all m ≥ n we have |Xm(ω) − X(ω)| < 1/k. (Practice saying this until it makes
sense.) �

Taking complements in (1) allows the divergence set to be expressed via

(3) [Xn → X]c =
∞⋃

k=1

∞⋂
n=1

∞⋃
m=n

[
|Xm − X| ≥ 1

k

]
≡

∞⋃
k=1

Ak with Ak ↗ in k,

where

(4) Ak =
⋂∞

n=1
Dkn, and the Dkn ≡

⋃∞
m=n

[|Xm − X| ≥ 1/k] are ↘ in n.
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Proposition 3.3 Consider finite measurable Xn’s and a finite measurable X on
any (Ω,A, μ). (i) We have

Xn →a.e. (such an X) iff Xn − Xm →a.e. 0 iff

μ(
⋂∞

n=1

⋃∞
m=n

[|Xm − Xn| > ε]) = 0, for all ε > 0.(5)

(A finite limit X(ω) exists if and only if the Cauchy criterion holds; and we want to be able
to check for the existence of a finite limit X(ω) without knowing its value.)
(ii)(Most useful criterion for →a.e.) On any (Ω,A, μ), we have

Xn → a.e. (some finite measurable X) provided

μ
(⋃∞

m=n
[|Xm − Xn| > ε]

)
→ 0, for all ε > 0, iff(6)

(7) μ([ max
n≤m≤N

|Xm − Xn| > ε]) ≤ ε for all N ≥ n ≥ (some nε), for all ε > 0.

Proof. Use proposition 1.1.2 on the ↗ sets in the mutual convergence analog of the sets
Ak in (3) to obtain (5). Then the intersection of sets in (5) is a subset of each set in the
intersection; thus (6) yields (5). Finally, the sets in (7) increase to the set in (6); so use
proposition 1.1.2 yet again. (Replace Xn by X in (5), (6), and (7) and require μ(Ω) < ∞.
Then the converse that (5) implies (6) holds, as the events in (6) are then ↘ .) �

Remark 3.1 (Additional measurability for convergence and divergence) Suppose we still
assume that X1,X2, . . . are finite measurable functions. Then the following sets are seen
to be measurable:

[ω : Xn(ω) → X(ω) ∈ R̄]c = [lim inf Xn < lim supXn]
=

⋃
rational r[lim inf Xn < r < lim supXn] ∈ A,(8)

(9) [lim sup Xn = +∞] =
⋂∞

m=1
[lim supXn > m] ∈ A.

These comments reflect the following fact: If Xn(ω) does not converge to a finite
number, then there are several different possibilities; but these interesting events are all
measurable. �

Convergence in Measure

Definition 3.2 (→μ) A given sequence of measurable and a.e. finite functions X1,X2, . . .
is said to converge in measure to the measurable function X taking values in R̄ (to be denoted
by Xn →μ X as n → ∞) if

(10) μ([|Xn − X| ≥ ε]) → 0 as n → ∞, for all ε > 0.

(Such convergence implies that X must be finite a.s., as

[|X| = ∞] ⊂
{⋃∞

k=1
[|Xk| = ∞]

}
∪ [|Xn − X| ≥ ε]

shows.) We say that these Xn converge mutually in measure, which we denote by writing
Xm − Xn →μ 0 as m ∧ n → ∞, if μ([|Xm − Xn| ≥ ε]) → 0 as m ∧ n → ∞, for each ε > 0.
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Proposition 3.4 (a) If Xn →μ X and Xn →μ X̃, then X = X̃ a.e.
(b) On a complete measure space, X = X̃ on N c, for a null set N.

Proof. For all ε > 0

(a) μ([|X − X̃| ≥ 2ε]) ≤ μ([|Xn − X| ≥ ε]) + μ([|Xn − X̃| ≥ ε]) → 0,

giving μ([|X − X̃| ≥ ε]) = 0 for all ε > 0. Thus

(b) μ([X �= X̃]) = μ(
⋃

k[|X − X̃| ≥ 1/k]) ≤ ∑∞
1 μ(|X − X̃| ≥ 1/k) =

∑∞
1 0,

as claimed. �

Exercise 3.2 (a) Show that in general →μ does not imply →a.e..
(b) Give an example with μ(Ω) = ∞ where →a.e. does not imply →μ.

Theorem 3.1 (Relating →μ to →a.e.) Let X and X1,X2, . . . be measurable and finite a.e.
functions. The following are true.

(11) Xn →a.e. (such an X) if and only if Xn − Xm →a.e. 0.

(12) Xn →μ (such an X) if and only if Xn − Xm →μ 0.

(13) Let μ(Ω) < ∞. Then Xn →a.e. (such an X) implies Xn →μ X.

(14) (Riesz) If Xn →μ X, then for some nk we have Xnk
→a.e. X. (See (16)).

(Reducing →μ to → a.e. by going to subsequences) Suppose μ(Ω) < ∞. Then

Xn →μ X if and only if
(15)

each subsequence n′ has a further n′′ on which Xn′′ →a.e. (such an X).

Proof. Now, (11) is proposition 3.1, and (12) is exercise 3.3 below. Result (13) comes from
the elementary observation that

(a) μ([|Xn − X| ≥ ε]) ≤ μ(
⋃∞

m=n[|Xm − X| ≥ ε]) → 0, by (6).

To prove (14), choose nk ↑ such that

(b) μ(Ak) ≡ μ([|Xnk
− X| > 1/2k]) < 1/2k,

with μ([|Xn − X| > 1/2k]) < 1/2k for all n ≥ nk. Now let

(c) Bm ≡ ⋃∞
k=mAk, so that μ(Bm) ≤ ∑∞

k=m 2−k ≤ 1/2m−1

On Bc
m =

⋂∞
mAc

k we have |Xnk
− X| ≤ 1/2k for all k ≥ m, so that

(d) |Xnk
(ω) − X(ω)| ≤ 1/2k → 0 as k → ∞, for each ω ∈ Bc

m,

with μ(Bm) ≤ 1/2m−1. Since convergence occurs on each Bc
m, we have
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(e) Xnk
(ω) → X(ω) as k → ∞ for each ω ∈ C ≡ ⋃∞

m=1B
c
m,

where Bm =
⋃∞

k=mAk is ↘ with (
⋂∞

m=1Bm) ⊂ (every Bm). So

(f) μ(Cc) = μ(
⋂∞

m=1Bm) ≤ lim supμ(Bm) ≤ lim 1/2m−1 = 0,

completing the proof of (14).
(Comment on exercise 3.3: When Xn →μ X, analogy with (a) gives

(16) μ({|Xm − Xn| ≥ 1/2k}) ≤ 1/2k for all m,n ≥ (some nk).

Thus Ak ≡ { |Xnk
− Xnk+1 | ≥ 1/2k} has P (Ak) ≤ 1/2k for all k. In analogy with the

first paragraph, prove the a.s. convergence of the Xnk
to some X on this subsequence by

considering

(17) |Xnk
− Xn�

| ≤ |(Xnk
− Xnk+1) + · · · + (Xn�−1 − Xn�

)|.

Then show that the whole sequence converges in measure to this X.)
Consider the unproven half of (15). Suppose that every n′ contains a further n′′ as claimed

(with a particular X). Assume that Xn →μ X fails. Then for some εo > 0 and some n′

(g) limn′ μ([|Xn′ − X| > εo]) = (some ao) > 0.

But we are given that some further subsequence n′′ has Xn′′ →a.e. X, and thus Xn′′ →μ X
by (13), using μ(Ω) < ∞. Thus

(h) limn′′ μ([|Xn′′ − X| > εo]) = 0;

but this is a contradiction of (g). �

Exercise 3.3 As in (12), show that Xn →μ X if and only if Xm −Xn →μ 0. (Hint. Adapt
the proof of (16).)

Exercise 3.4 (a) Suppose that μ(Ω) < ∞ and g is continuous a.e. μX (that is, g is
continuous except perhaps on a set of μX measure 0). Then Xn →μ X implies that g(Xn) →μ

g(X).
(b) Let g be uniformly continuous on the real line. Then Xn →μ X implies that g(Xn) →μ

g(X). (Here, μ(Ω) = ∞ is allowed.)

Exercise 3.5 (a) (Dini) Consider continuous transformations Xn from a compact space
Ω to R for which Xn(ω) ↗ X(ω) for each ω ∈ Ω, where X is continuous. Then Xn converges
uniformly to X on Ω.(Likewise, if Xn(ω) ↘ X(ω) for all ω.)
(b) In general, a uniform limit of bounded and continuous functions Xn is also bounded and
continuous.



4. PROBABILITY, RVS, AND CONVERGENCE IN LAW 35

4 Probability, RVs, and Convergence in Law

Definition 4.1 (Random variable and df) (a) A probability space (Ω,A, P ) is just a
measure space for which P (Ω) = 1. Now, X : (Ω,A, P ) → (R,B) will be called a random
variable (to be abbreviated rv); thus it is a B-A-measurable function. If X : (Ω,A, P ) →
(R̄, B̄), then we will call X an extended rv.
(b) The distribution function (to be abbreviated df) of a rv is defined by

(1) FX(x) ≡ P (X ≤ x) for all − ∞ < x < ∞.

We recall that F ≡ FX satisfies

(2) F is ↗ and right continuous, with F (−∞) = 0 and F (+∞) = 1.

We let CF denote the continuity set of F that contains all points at which F is continuous.
(That F ↗ is trivial, and the other three properties all follow from the monotone property of
measure, since (∞, x] =

⋂∞
n=1(−∞, x + an] for every possible sequence

an ↘ 0,
⋂∞

n=1(−∞,−n] = ∅, and
⋃∞

n=1(−∞, n] = R.)
(c) If F is ↗ and right continuous with F (−∞) ≥ 0 and F (+∞) ≤ 1, then F will be called
a sub df.
(d) The induced measure on (R,B) (or (R̄, B̄)) will be denoted by PX . It satisfies

(3) PX(B) = P (X−1(B)) = P (X ∈ B) for all B ∈ B
(for all B ∈ B̄ if X is an extended rv). We call this the induced distribution of X. We use the
notation X ∼= F to denote that the induced distribution PX(·) of the rv X has df F.
(e) We say that rvs Xn (with dfs Fn) converge in distribution or converge in law to a rv X0

(with df F0) if

(4) Fn(x) = P (Xn ≤ x) → F0(x) = P (X0 ≤ x) at each x ∈ CF0 .

We abbreviate this by writing either Xn →d X0, Fn →d F0, or L(Xn) → L(X0).

Notation 4.1 Suppose now that {Xn : n ≥ 0} are rvs on (Ω,A, P ). Then it is customary
to write Xn →p X0 (in place of Xn →μ X0) and Xn →a.s. X0 (as well as Xn →a.e. X0). The
“p” is an abbreviation for in probability, and the “a.s.” is an abbreviation for almost surely.
Anticipating the next chapter, we let Eg(X) denote

∫
g(X)dμ, or

∫
g(X)dP when μ is a

probability measure P . We say that Xn converges to X0 in rth mean if E|Xn − X0|r → 0.
We denote this by writing Xn →r X0 or Xn →Lr

X0. �

Proposition 4.1 Suppose that the rvs X ∼= F and Xn
∼= Fn satisfy Xn →p X. Then

Xn →d X. (Thus, Xn →a.s. X implies that Xn →d X.)

Proof. (This result has limited importance. But the technique introduced here is useful;
see exercise 4.1 below.) Now,

(a) Fn(t) = P (Xn ≤ t) ≤ P (X ≤ t + ε) + P (|Xn − X| ≥ ε)

(b) ≤ F (t + ε) + ε for all n ≥ some nε.

Also,

Fn(t) = P (Xn ≤ t) ≥ P (X ≤ t − ε and |Xn − X| ≤ ε) ≡ P (AB)
≥ P (A) − P (Bc) = F (t − ε) − P (|Xn − X| > ε)
≥ F (t − ε) − ε for n ≥ (some n′

ε).
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Thus for n ≥ (nε ∨ n′
ε) we have

(c) F (t − ε) − ε ≤ lim Fn(t) ≤ lim Fn(t) ≤ F (t + ε) + ε.

If t is a continuity point of F , then letting ε → 0 in (c) gives Fn(t) → F (t). Thus
Fn →d F. �

The following elementary result is extremely useful. Often, one knows that Xn →d X,
but what one is really interested in is a slight variant of Xn, rather than Xn itself. The next
result was designed for just such situations.

Definition 4.2 (Type) Two rvs X and Y are of the same type if Y ∼= aX + b.

Theorem 4.1 (Slutsky) Suppose that Xn →d X, while the rvs Yn →p a and Zn →p b as
n → ∞ (here Xn, Yn, and Zn are defined on a common probability space, but X need not
be). Then

(5) Un ≡ Yn × Xn + Zn →d aX + b as n → ∞.

Exercise 4.1 Prove Slutsky’s theorem. (Hint. Recall the proof of proposition 4.1. Then
write Un = (Yn − a)Xn + (Zn − b) + aXn + b where Yn − a →p 0 and Zn − b →p 0. Note also
that P (|Xn| > (some large Mε)) < ε for all n ≥ (some nε).)

Exercise 4.2 Let c be a constant. Show that Xn →d c if and only if Xn →p c.

Remark 4.1 Suppose X1,X2, . . . are independent rvs with a common df F. Then Xn →d

X0 for any rv X0 having df F . However, there is no rv X for which Xn converges to X in the
sense of →a.s.,→p, or →r. (Of course, we are assuming that X is not a degenerate rv (that
is, that μF is not a unit point mass).) �
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5 Discussion of Sub σ-Fields ∗

Consider again a sequence of rvs X1,X2, . . . where each quantity Xn is a measurable trans-
formation Xn : (Ω,A, P ) → (R,B, PXn

), and where PXn
denotes the induced measure. Each

rv Xn is B-F(Xn)-measurable, with F(Xn) a sub σ-field of A. Even though the intersection
of any number of σ-fields is a σ-field, the union of even two σ-fields need not be a σ-field. We
thus define the sub σ-field generated by X1, . . . , Xn as

(1) F(X1, . . . , Xn) ≡ σ[
⋃n

k=1F(Xk)] = X−1(Bn) for Xn ≡ (X1, . . . , Xn)′,

where the equality will be shown in the elementary proposition 5.2.1 below.
Note that F(X1, . . . , Xn) ⊂ F(X1, . . . , Xn,Xn+1), so that these necessarily form an

increasing sequence of σ-fields of A. Also, define

(2) F(X1,X2, . . .) ≡ σ[
⋃∞

k=1
F(Xk)].

It is natural to say that such Xn = (X1, . . . , Xn)′ are adapted to the F(X1, . . . , Xn). In fact,
if F1 ⊂ F2 ⊂ · · · is any sequence of σ-fields for which F(X1, . . . , Xn) ⊂ Fn for all n, then we
say that the Xn’s are adapted to the Fn’ s.

Think of F(X1, . . . , Xn) as the amount of information available at time n from X1, . . . , Xn;
that is, you have available for inspection all of the probabilities

(3) P ((X1, . . . , Xn) ∈ Bn) = P ((X1, . . . , Xn)−1(Bn)) = P(X1,...,Xn)(Bn),

for all Borel sets Bn ∈ Bn. Rephrasing, you have available for inspection all of the probabilities

(4) P (A), for all A ∈ F(X1, . . . , Xn).

At stage n+1 you have available P (A) for all A ∈ F(X1, . . . , Xn,Xn+1); that is, you have more
information available. (Think of Fn\F(X1, . . . , Xn) as the amount of information available
to you at time n that goes beyond the information available from X1, . . . , Xn; perhaps some
of it comes from other rvs not yet mentioned, but it is available nonetheless.)

Suppose we are not given rvs, but rather (speaking informally now, based on your general
feel for probability) we are given joint dfs Fn(x1, . . . , xn) that we think ought to suffice to
construct probability measures on (Rn,Bn). In (2.2.16) we saw that for n = 1 we could just
let (Ω,A, μ) = (R,B, μF ) and use X(ω) = ω to define a rv that carried the information in
the df F . How do we define probability measures Pn on (Rn,Bn) so that the coordinate rvs

(5) Xk(ω1, . . . , ωn) = ωk for all (ω1, . . . , ωn) ∈ Rn

satisfy

(6) Pn(X1 ≤ x1, . . . , Xn ≤ xn) = Fn(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn,

and thus carry all the information in Fn? Chapter 5 will deal with this construction. But
even now it is clear that for this to be possible, the Fn’s will have to satisfy some kind of
consistency condition as we go from step n to n + 1. Moreover, the consistency problem
should disappear if the resulting Xn’s are “independent.”

But we need more. We will let R∞ denote all infinite sequences ω1, ω2, . . . for which each
ωi ∈ R. Now, the construction of (5) and (6) will determine probabilities on the collection
Bn × ∏∞

k=n+1R of all subsets of R∞ of the form

(7)
Bn × ∏∞

k=n+1R
≡ {(ω1, . . . , ωn, ωn+1, . . .) : (ω1, . . . , ωn) ∈ Bn, ωk ∈ R for k ≥ n + 1},

http://dx.doi.org/10.1007/978-3-319-52207-4_5
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with Bn ∈ Bn. Each of these collections is a σ-field (which within this special probability
space can be denoted by F(X1, . . . , Xn)) in this overall probability space (R∞,B∞, P∞), for
some appropriate B∞. But what is an appropriate σ-field B∞ for such a probability measure
P∞? At a minimum, B∞ must contain

(8) σ
[⋃∞

n=1

{
Bn ×

∏∞
k=n+1

R
}]

= σ
[⋃∞

n=1
F(X1, . . . , Xn)

]
,

and indeed, this is what we will use for B∞. Of course, we also want to construct the measure
P∞ on (R∞,B∞) in such a way that

(9) P∞
(∏n

k=1
(−∞, xk] ×

∏∞
k=n+1

R
)

= Fn(x1, . . . , xn) for all n ≥ 1

and for all x1, . . . , xn in R. The details are given in chapter 5.
Until chapter 5 we will assume that we are given the rvs X1,X2, . . . on some (Ω,A, P ), and

we will need to deal only with the known quantities F(X1, . . . , Xn) and F(X1,X2, . . .) defined
in (1) and (2). This is probability theory: Given (Ω,A, P ), we study the behavior of rvs
X1,X2, . . . that are defined on this space. Now contrast this with statistics: Given a physical
situation producing measurements X1,X2, . . ., we construct models {(R∞,B∞, P θ

∞) : θ ∈ Θ}
based on various plausible models for F θ

n(x1, . . . , xn), θ ∈ Θ, and we then use the data
X1,X2, . . . and the laws of probability theory to decide which model θ0 ∈ Θ was most likely
to have been correct and what action to take. In particular, the statistician must know that
the models to be used are well-defined.

We also need to extend all this to uncountably many rvs {Xt : t ∈ T}, for some interval T
such as [a, b], or [a,∞), or [a,∞], or (−∞,∞), . . . . We say that rvs Xt : (Ω,A, P ) → (R,B)
for t ∈ T are adapted to an ↗sequence of σ-fields Ft if Fs ⊂ Ft for all s ≤ t with both s, t ∈ T
and if each Xt is Ft-measurable. In this situation we typically let RT ≡ ∏

t∈T Rt and then
let

(10) Ft ≡ F(Xs : s ≤ t) ≡ σ
[⋃

s
X−1

s (B) : s ≤ t and s ∈ T
]

for all t ∈ T.

This is also done in chapter 5 (where more general sets T are, in fact, considered).
The purpose in presenting this section here is to let the reader start now to become

familiar and comfortable with these ideas before we meet them again in chapter 5 in a more
substantial and rigorous presentation. (The author assigns this as reading at this point and
presents only a very limited amount of chapter 5 in his lectures.)

Exercise 5.1 (a) Show that the class C ≡ {X−1
1 (B1)∩{X−1

2 (B2) : B1, B2 ∈ B} is a π̄-system
that generates the σ-field F(X1,X2).

(b) Recall the Dynkin π-λ theorem, and state its implications in this context.

(c) State an extension of this part (a) to F(X1, . . . , Xn) and to F(X1,X2, . . .).
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