Chapter 2

Measurable Functions
and Convergence

1 Mappings and o-Fields

Notation 1.1 (Inversg images) Suppose X denotes a function mapping some set €2 into
the extended real line R = RU{+oc}; we denote this by X : @ — R. Let X and X~ denote
the positive part and the negative part of X, respectively:

1) X*w)= { g““’) iefls‘f’(‘*’) =0,

S
i
S
I

{ —X(w) if X(w) <0,
0 else.

Note that

(3) X=X"-X" and |X|=XT+X =X+2X" =2X"-X.
We also use the following notation:

(4) X=r]=X"!r)={w: X(w) =7} for all real r,

(5) [X € B]= X Y(B)={w: X(w) € B} for all Borel sets B,

(6) X YB)={X"YB): BeB}

We call these the inverse images of r, B, and B, respectively. We let

(7) B =o[B, {+o00}, {—o0}].
Inverse images are also well-defined when X : Q — ' for arbitrary sets  and . O

For A,B € Q we define AAB = AB°U A°B and A\B = AB°. There is use for the
notation
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@) X[l = sup | X(w)],
weN
and we will also reintroduce this sup norm in other contexts below.

Proposition 1.1 (Basics of inverse images) Let X : @ — Q and YV : ' — Q". Let T
denote an arbitrary index set. Then for all A, B, A; C €’ we have

9 X 'BY)=[xX"1B)", X7HA\B) = X1 (A\X1(B),

—1 _ -1 —1 _ —1
(1) X (UteTAt) - teTX (4e) X (nteTAt> N tETX (A2).
For all sets A C Q| the composition Y o X satisfies
(1) (YoX)™'(4) = X{(Y~1(4)) = XTo¥1(A).

Proof.  Trivial. O

Proposition 1.2 (Preservation of o-fields) Let X : Q — Q. Then:

(12) A= X"!(a o-field A" of subsets of Q') = (a o-field of subsets of Q).
(13) X Yo[C']) = o[ X 1] for any collection C’ of subsets of €'.

(14) A = {A": X YA € (a specific o-field A of subsets of Q)}
= (a o-field of subsets of Q).

Proof. Now, (12) is trivial from proposition 1.1. Consider (14). Now:

(a) A e A implies X ~1(A") € A
implies X ~1(A¢) = [X1(A)]ce A implies A" € A/,

(b) A,’se A implies X 1(A/) se A
implies X (U, A,) =U,X 1(4,) € A implies (J,, 4], € A'.

This gives (14). Consider (13). Using (12) gives

(c) X 1(o]C']) =(a o-field containing X ~(C")) D o[X~(C")].

Then (14) shows that

(d) A/ ={A": X7 1(A) € o[X~1(C")]} =(a o-field containing C") D ¢[C’], so that (using
first o[C'] € A’ from (d), and then the definition of A’ in (d))

(e) X~ 1(o[C']) c X~ HA) C o[XH(C)).

Combining (c) and (e) gives (13). [We will apply (13) below to obtain (2.2.6).] O

Roughly, using (12) we will restrict X so that F(X) = X~!(B) c A for our original
(€, A, i), so that we can then “induce” a measure on (R,B). Or, (14) tells us that the
collection A’ is such that we can always induce a measure on (£',.A"). We do this in the next
section. First, we generalize our definition of Borel sets to n dimensions.
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Example 1.1 (Euclidean space) Let
R,=Rx---xR={(r1,...,mn): eachr; isin R}.

Let U,, denote all open subsets of R,,, in the usual Euclidean metric. Then

(15) B, = o[U,] is called the class of Borel sets of R,,.

Following the usual notation, By X -+ X By, = {(b1,...,b,) : b1 € By,...,b, € By}
Now let

(16) Hé_lBEBx X B=o[{By X+ x B, : all B; are in B}].
Now consider
(17)  o[{(cocsm1] X+ X (200, 7n] : all r; are in R}].

Note that the three o-fields of (15), (16), and (17) are equal. Just observe that each of
these three classes generates the generators of the other two classes, and apply exercise 1.1.1.
(Surely, we can define a generalization of area Ay on (Rg, B2) by beginning with A\o(B; x By) =
A(B1) X A(Bs) for all By and Bs in B, and then extending to all sets in B2. We will do this
in theorem 5.1.1, and we will call it Lebesgue measure on two-dimensional Euclidean space.
This clearly extends to A, on (R, B,).) O
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2 Measurable Functions

We seek a large usable class of functions that is closed under passage to the limit. This
is the fundamental property of the class of measurable functions. Propositions2.2 and 2.3
below will show that the class of measurable functions is also closed under all of the standard
mathematical operations. Thus, this class is sufficient for our needs.

Definition 2.1 (Simple functions, etc.) Let the measure space (9, A, 1) be given and fixed
throughout our discussion. Consider the following classes of functions. The indicator function
14(-) of the set A C  is defined by

1 ifweA,
(1) la(w) = {0 else.

A simple function is of the form

(2) X(w) = zn:xilAi (w) for zn:Ai =Q withall A; €A, and z; €R.
i=1 1

An elementary function is of the form

(3) X(w) = imi]‘Ai (w) for i A; = Qwith all A; € A, and z; € R.
i=1

i=1

Definition 2.2 (Measurability) Suppose that X : Q — Q', where (Q,.4) and (€, A’) are
both measurable spaces. We then say that X is A’-A-measurable if X~1(A’) C A. We also
denote this by writing either

(4) X:(QA) = (QA) or X:(QA4Ap — (QA)

(or even X : (Q,Apu) — (@, A, ) for the measure /' “induced” on (€, A") by the
mapping X, as will soon be defined). In the special case X : (Q,.4) — (R, B), we simply call
X measurable; and in this special case we let F(X) = X ~(B) denote the sub o-field of A
generated by X.

Proposition 2.1 (Measurability criteria) Let X : Q — R. Suppose o[C] = B.
Then measurability can be characterized by either of the following:

(5) X is measurable if and only if X (C) C A.
(6) X is measurable if and only if X ~!([—oc,z]) € A for all z € R.

Note that we could replace [—oo, z] by any one of [—oo, ), [z, +00], or (z, +00].

Proof.  Consider (5). Let X !(C) C A. Then
(a) X YB)=X"1(cC)) =] X1(0)] by proposition 2.1.2
(b) C A since X71(C) C A, and A is a o-field.

The other direction is trivial. Thus (5) holds. To demonstrate (6), we need to show that B
satisfies
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(c)  o[{[-o0,2]: 2 € R}] = B=0[B,{—00}, {+o0}].

Since B = ¢[C;] for C; as in (1.3.2) and since

(d) (av b] = [—OO, b} N [—OO, a]c7 [_007 b) = U<1>o[_007 b— 1/77‘]7
(e) {_OO} = ﬂn[—OO, —TL], {+OO} = nn[_ooan]cv etc.,

the equality (c) is obvious. The rest is trivial.

27

O

Proposition 2.2 (Measurability of common functions) Let X,Y, and X,,’s be mea-
surable functions. Consider ¢X with ¢ > 0,—X, inf X,,, sup X,,, liminf X,,, limsup X,,,
lim X, if it exists, X2, X £V if it is well-defined, XY where 0 - 0o = 0, X/Y if it is well-
defined, X+, X~ |X|, and the composite g(X) for a continuous g and for any measurable

function g. All of these are measurable functions.

Proposition 2.3 (Measurability via simple functions)
(7) Simple and elementary functions are measurable.

X : Q — R is measurable if and only if

X is the limit of a sequence of simple functions.
Moreover:

) If X > 0 is measurable, then X is
9
the limit of a sequence of simple functions that are >0 and .

The X,,’s and Z,,’s that are defined in (10) and (12) below are important.

Proof. The functions in proposition 2.2 are measurable, as is now shown.

(a) [eX <z]=[X <z/d, [-X <a]=[X > —z].

(b) [inf X, <2z]=U[X, <z], sup X,, = —inf(—X,,).

(¢) liminf X,, = sup(ggf Xk), limsup X,, = — liminf(—X,,).

(d) lim X, = liminf X, provided that lim X, (w) exists for all w.

(6) [X?<a]l=[-Vr<X<Val=[X<Van[X < —Va]

Each of the sets where X or Y equals 0, 00, or —oo is measurable; use this below.

(f) X >Y]=U,{X >r>Y :risrational}, so [X > Y] is a measurable set.

So, [ X +Y >z =[X >2z-Y] € Asince z — Y is trivially measurable.

(Here [X = oco] N [Y = —o0] = 0 is implied, as X + Y is well defined. Etc., below.)
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(g0 X-Y=X+(-Y) and XY =[(X+Y)?—(X-Y)?)/4
(h)  X/Y =X x(1/Y),

since [1/Y < 2] = [Y > 1/z] for z > 0 in case Y > 0, and for general Y one can write
% = %1[y>0] — 7—1},1[y<0] with the two indicator functions measurable.

(i) Xt=XVO0and X~ =(—X)VO0.

For g measurable, (go X)™*(B) = X 1(¢7*(B)) ¢ X '(B) C A. Then continuous g are
measurable, since
4] g Y(B) = g !(ofopen sets]) = o[g~!(open sets)] C ofopen sets] C B, and both
g ({+o0}) and g~ ({—oc0}) are a (possibly void) subset of {—o0, +00}. Now apply the result
for measurable g.

We now prove proposition 2.3. Claim (7) is trivial. Consider (8). Define simple functions
X, by

n2™
k-1
(10)  Xp =) on * {1[’“273§X<2%] - 1[%S—X<2%]}
=1
+ X {lxsn] = l=x>n] }-

Since | X, (w) — X(w)| < 27" for | X (w)| < n, we have
(k) Xp(w) = X(w) asn— oo for each w € .

Also, the nested subdivisions k/2™ cause X,, to satisfy
Q) X, /" when X > 0.
We extend proposition 2.3 slightly by further observing that

(11) X, — X|| =0 asn— oo, if X is bounded.

Also, the elementary functions

are always such that

(13) (Zn — X) X lj—ooex<oq)ll £1/2" =0 asn — oo. 0

Proposition 2.4 (The discontinuity set is measurable; Billingsley) If (M,d) and (M’ ,d’)
are metric spaces and ¢ : M — M’ is any function (not necessarily a measurable function),
then the discontinuity set of ¢ defined by
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(14) Dy ={x € M : ¢ is not continuous at z}

is necessarily in the Borel o-field B, (that is, the o-field generated by the d-open subsets of M).

Proof. Let

Acs={r e M :d(x,y) < d,d(z,z) <6 and

(®) d' (Y (y),1(z)) > e for distinct y,z € M}.

Note that A, s is an open set, since {u € M : d(x,u) < dp} C Acs will necessarily occur if
do = {0 — [d(x,y) V d(z, z)]}/2; that is, the y and z that work for x also work for all w in M
that are sufficiently close to z. (Note: The y that worked for  may have been z itself.) Then

(b) Dy = Uﬁlﬂ;‘ilAEiﬁj € Ba,

where €1, €2,... and 01, d2, ... both denote the positive rationals, since each A, s is an open
set. ]

Induced Measures

Example 2.1 (Induced measures) We now turn to the “induced measure” previewed
above. Suppose X : (Q, A, u) — (', A"), so that X is A’-A-measurable. We define px = 1/
by

(15)  px(A) = (A)=w(X1(A")  foreach A’ € A

Then pux = ' is a measure on (', A’) called the induced measure. This is true, since we
verify that

(@) p/(0) =pX7H0)) = u®) =0, and

p ST AL) = p (XTI AL)) = (7 XH(AY)
(b) =307 m(XTH(AL)) = 2077 /' (A).

Note also that

(€)  w'(Q)=pX~HL)) = p(Q).

Thus if i is a probability measure, then so is pux = p’. Note also that we could regard X as
an A’-F(X)-measurable transformation from the measure space (Q, F(X), u) to (', A", ux).

Suppose further that F is a generalized df on the real line R, and that pg(-) is the
associated measure on (R, B) satisfying pup((a,b]) = F(b) — F(a) for all @ and b (as was
guaranteed by the correspondence theorem (theorem 1.3.1)). Thus (R, B, up) is a measure
space. Define

(16) X(w)=w for all w € R.

Then X is a measurable transformation from (R, B, ) to (R, B) whose induced measure jx
is equal to pp. Thus for any given df F' we can always construct a measurable function X
whose df is F. |
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Exercise 2.1 Suppose (2, A) = (Rg, Bs), where By denotes the o-field generated by all
open subsets of the plane. Recall that this o-field contains all sets B x R and R x B for all
B € B; here By x By = {(r1,r2) : 1 € By,r2 € Ba}. Now define measurable transformations
X1((r1,72)) = r1 and Xo(r1,73)) = 2. Then define Z; = (X? + X2)Y/? and Z, = sign(X; —
Xs), where sign(r) equals 1, 0,—1 according as r is > 0,= 0,< 0. The exercise is to give
geometric descriptions of the o-fields F(Z,), F(Z2), and F(Z1, Z3).

Proposition 2.5 (The form of an F(Z)-measurable function) Suppose that Z is a mea-
surable function on (£2,.A) and that Y is F(Z)-measurable. Then there must exist a measur-
able function g on (R, B) such that Y = ¢g(Z).

Proof. (The approach of this proof is to consider indicator functions, simple functions,
nonnegative functions, general functions. This approach will be used again and again. Learn
it!) Suppose that ¥ = 1p for some set D € F(Z), so that Y is an indicator function that is
F(Z)-measurable. Then we can rewrite Y as Y = 1p = 1z-1(p) = 15(Z) = g(Z), for some
B € B that depends on D, where g(r) = 1p(r). Thus the proposition holds for indicator
functions. It holds for simple functions, since when all B; € B,

Y =3 "cilp, => 1" cilz-yp,) =21 cilp,(Z) = g(Z).

Let Y > 0 be F(Z)-measurable. Then there do exist “simple J(Z)-measurable functions Y,
such that Y = lim,, lfn = lim,, g,(Z) for the simple B-measurable functions g,. Now let
g = lim g,,, which is B-measurable, and note that Y = g(Z). For general Y = Y+ — Y~ use

g=9"—g". O

Exercise 2.2 (Measurability criterion) Let C denote a 7T-system of subsets of . Let V
denote a vector space of functions; that is, X +Y € V and aX € V for all X|Y € V and all
a € R—and, all the usual elementary facts hold.

(a) Suppose that:
(17)  1lc eV forall Cel.

(18) IfA, /A withly, €V, thenly e V.

Show that 14 € V for every A € o[C].

(b) It then follows trivially that every simple function
m . .

(19) X, = Zl a;ly, isinV;

here m > 1, all ; € R, and Y." A; = Q with all A; € o[C].

(¢) Now suppose further that X,, / X for X,,’s as in (19) implies that X € V. Show that V
contains all o[C]-measurable functions.
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3 Convergence

Convergence Almost Everywhere

Definition 3.1 (—,..) Let X1, Xs,... denote measurable functions on (2, A4, i) to (R, B).
Say that the sequence X,, converges almost everywhere to X (denoted by X,, —,. X as
n — oo) if for some N € A for which u(N) = 0 we have X, (w) — X(w) as n — oo for
all w ¢ N. If for all w ¢ N the sequence X, (w) is a Cauchy sequence, then we say that
the sequence X,, mutually converges a.e. and denote this by writing X,, — X,;, —4.. 0 as
m An — oco. (Here, m An = min(m,n).)

Exercise 3.1 Let X;, Xo,... be measurable functions from (£, A, i) to (R, B).
(a) If X, =g X, then X = X a.e. for some measurable X.

(b) If X,, —4.. X and p is complete, then X itself is measurable.

Proposition 3.1 A sequence of measurable functions X,, that are a.e. finite converges a.e.
to a measurable function X that is a.e. finite if and only if these functions X, converges mutu-
ally a.e. (Thus we can redefine such functions on null sets and make them everywhere finite
and everywhere convergent and/or follow the convention of corollary 2 to the Carethéodory
theorem 1.2.1 and automatically complete every measure.)

Proof. The union of the countable number of null sets on which finiteness or convergence
fails is again a null set N. On N€¢, the claim is just a property of the real numbers. |

Proposition 3.2 (The convergence and divergence sets are measurable) Consider
the finite measurable functions X, X1, Xo, ... (perhaps redefined on null sets to achieve this);
thus, they are B-A-measurable. Then the convergence and mutual convergence sets are
measurable. In fact, the convergence set is given by

oo oo o0

(1) (X, — X] = ﬂUﬂbX X|<HEA,

k=1n=1m=n

and the mutual convergence set is given by

oo oo oo

(2) X —Xm—0l=(J N [|Xm—Xn|<H € A

k=1n=1m=n
Proof.  Just read the right-hand side of (1) as, for all e = 1/k > 0 there exists an n such
that for all m > n we have |X,,(w) — X(w)| < 1/k. (Practice saying this until it makes
sense. ) O

Taking complements in (1) allows the divergence set to be expressed via

oo o0 oo

(3) x.-x=UUN U [|X - X|> }EUAk with Ay /in k,
k=1

k=1n=1m=n

o0 oo
(4) Ag = ﬂ _1D;m7 and the Dy, = U ([ X = X[ > 1/k] are N\ inn.
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Proposition 3.3 Consider finite measurable X,’s and a finite measurable X on
any (2, A, p). (i) We have

Xn —a.e. (such an X) iff X, —Xm —ae 0 iff
(5) “(ﬂnzlum:n“Xm —X,|>¢)=0, foralle>0.

(A finite limit X (w) exists if and only if the Cauchy criterion holds; and we want to be able
to check for the existence of a finite limit X (w) without knowing its value.)
(ii)(Most useful criterion for —,.) On any (Q, A, 1), we have

X,, — a.e. (some finite measurable X) provided

6) u (U::nuxm ~ X > e]) —0,for all € > 0, iff

(7) w(| max | X — Xn| > €]) <€ for all N > n > (some n,),for all € > 0.

Proof. Use proposition 1.1.2 on the " sets in the mutual convergence analog of the sets
Aj in (3) to obtain (5). Then the intersection of sets in (5) is a subset of each set in the
intersection; thus (6) yields (5). Finally, the sets in (7) increase to the set in (6); so use
proposition 1.1.2 yet again. (Replace X, by X in (5), (6), and (7) and require u(Q) < oc.
Then the converse that (5) implies (6) holds, as the events in (6) are then “\ .) O

Remark 3.1 (Additional measurability for convergence and divergence) Suppose we still
assume that X;, Xs,... are finite measurable functions. Then the following sets are seen
to be measurable:

[w: X, (w) = X(w) € R¢ = [liminf X,, < limsup X,,]

(8) = U ational »liminf X,, <7 < limsup X,,| € A,
(9) [limsup X,, = +o0] = ﬂooil[lim sup X, > m] € A.

These comments reflect the following fact: If X, (w) does not converge to a finite
number, then there are several different possibilities; but these interesting events are all
measurable. O

Convergence in Measure

Definition 3.2 (—,) A given sequence of measurable and a.e. finite functions Xy, Xo, ...
is said to converge in measure to the measurable function X taking values in R (to be denoted
by X,, —, X as n — oo) if

(10)  w([|Xn—X|>¢)—0 asn — oo, for all € > 0.

(Such convergence implies that X must be finite a.s., as
[1X] = o] « { U 11Xkl = o] } U[1 X0 = X| > ]

shows.) We say that these X,, converge mutually in measure, which we denote by writing
X — Xy = 0as mAn — oo, if u([| Xm — Xp| >€]) = 0as m An — oo, for each € > 0.
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Proposition 3.4 (a) If X,, —, X and X,, —, X, then X = X a.e.
(b) On a complete measure space, X = X on N¢, for a null set N.

Proof. Foralle>0

(2) (X = X| 2 2€) < w([| X0 = X| 2 €]) + p([|Xn — X| 2 €]) = 0,

giving u([|X — X| > ¢]) = 0 for all € > 0. Thus

(b)  w(X # X)) = pUlIX = X| = 1/K) < X7u(X - X[ > k) = 370,

as claimed. 0O

Exercise 3.2 (a) Show that in general —, does not imply —g.c..
(b) Give an example with £(Q) = oo where —,_.. does not imply —,,.

Theorem 3.1 (Relating —, to —,.) Let X and X1, X»,... be measurable and finite a.e.
functions. The following are true.

(11) X, —a.e (such an X) if and only if X, — X —ae O.
(12) X, —, (such an X) if and only if X, — X,,, —, 0.
(13)  Let pu(€2) < oco. Then X,, —¢.. (such an X) implies X,, —, X.

(14)  (Riesz) If X,, —, X, then for some nj we have X,,, —,. X. (See (16)).

(Reducing —, to — a.e. by going to subsequences) Suppose ;(£2) < co. Then

(15) Xy —u X if and only if
15
each subsequence n’ has a further n” on which X,,» —,... (such an X).

Proof. Now, (11) is proposition 3.1, and (12) is exercise 3.3 below. Result (13) comes from
the elementary observation that

(@) [ Xn = X| =€) < (U [1Xm = X| = €]) — 0, by (6).

To prove (14), choose ny T such that
(b)  u(Ar) = p((|Xn, — X[ >1/2"]) <1/2%,

with p([| X, — X| > 1/2*]) < 1/2* for all n > nj. Now let
(¢)  Bm=Uj—,, Ak, so that u(B,,) <Y ;o 27k <1/2m-1

On B¢, = N7 A¢ we have |X,,, — X| < 1/2* for all k > m, so that
(d) | X, (W) — X(w)] <1/2% — 0 as k — oo, for each w € BS,,

with p(B,,) < 1/2™~1. Since convergence occurs on each B, we have
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(e) X, (w)— X(w)ask — oo for eachw e C =J0-_, B¢

m=1"m>

where B,,, = Jre,,, Ay is \, with ((-_,By) C (every By,). So

(£)  w(C) = p(N_yBm) < limsup u(B,,) < lim1/2m~ 1 =0,

completing the proof of (14).
(Comment on exercise 3.3: When X,, —, X, analogy with (a) gives

(16)  pu({| X — Xn| > 1/2F1) < 1/2F for all m,n > (some ny).

Thus A, = { [X,, — Xp,,,| > 1/2F} has P(Ag) < 1/2F for all k. In analogy with the
first paragraph, prove the a.s. convergence of the X,,, to some X on this subsequence by
considering

(17) |X7lk - an| < |(Xnk - Xnk+1) +e (Xné—l - X”e)|'

Then show that the whole sequence converges in measure to this X.)
Consider the unproven half of (15). Suppose that every n’ contains a further n” as claimed
(with a particular X). Assume that X,, —, X fails. Then for some ¢, > 0 and some n’

(g)  limy, p([|Xn — X| > €)) = (some a,) > 0.

But we are given that some further subsequence n’ has X,,» —,. X, and thus X,,» —, X
by (13), using u(€2) < co. Thus

(h)  limp p([[ X — X[ > €0]) = 0;
but this is a contradiction of (g). O

Exercise 3.3 Asin (12), show that X,, —, X if and only if X,, — X,, —, 0. (Hint. Adapt
the proof of (16).)

Exercise 3.4 (a) Suppose that p() < oo and ¢ is continuous a.e. px (that is, g is
continuous except perhaps on a set of 1x measure 0). Then X,, —,, X implies that g(X,,) —,
9(X).

(b) Let g be uniformly continuous on the real line. Then X,, —, X implies that g(X,,) —,
g(X). (Here, p(2) = oo is allowed.)

Exercise 3.5 (a) (Dini) Consider continuous transformations X,, from a compact space
2 to R for which X,,(w) / X (w) for each w € Q, where X is continuous. Then X,, converges
uniformly to X on Q.(Likewise, if X,,(w) \, X(w) for all w.)

(b) In general, a uniform limit of bounded and continuous functions X, is also bounded and
continuous.
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4 Probability, RVs, and Convergence in Law

Definition 4.1 (Random variable and df) (a) A probability space (2, A, P) is just a
measure space for which P(2) = 1. Now, X : (Q, A, P) — (R, B) will be called a random
variable (to be abbreviated rv); thus it is a B-A-measurable function. If X : (Q, A4, P) —
(R, B), then we will call X an extended rv.

(b) The distribution function (to be abbreviated df) of a rv is defined by

(1) Fx(z)=P(X <) for all —oo <z < o0.
We recall that F' = F'x satisfies
(2) Fis ' and right continuous, with F'(—o0) = 0 and F'(+o00) = 1.

We let Cr denote the continuity set of F' that contains all points at which F' is continuous.
(That F' " is trivial, and the other three properties all follow from the monotone property of
measure, since (co,x] = No—,(—oc,z + a, for every possible sequence
an \, 0,0, (=00, —n] =0, and |J,—,(—o0,n] = R.)

(¢) If Fis /" and right continuous with F(—oo) > 0 and F(4o00) < 1, then F' will be called
a sub df.

(d) The induced measure on (R, B) (or (R, B)) will be denoted by Px. It satisfies
(3) Px(B)=P(X Y(B)=P(X€B) forall BeB

(for all B € B if X is an extended rv). We call this the induced distribution of X. We use the
notation X = F' to denote that the induced distribution Px(-) of the rv X has df F.

(e) We say that rvs X,, (with dfs F},) converge in distribution or converge in law to a rv X,
(with df Fp) if

(4) F,(x) = P(X, <z)— Fy(z) = P(Xo < ) at each x € Cp,.
We abbreviate this by writing either X,, —4 Xo, F,, —a Fo, or L(X,,) — L(Xp).

Notation 4.1  Suppose now that {X,, : n > 0} are rvs on (92, 4, P). Then it is customary
to write X,, —, X, (in place of X,, —, Xo) and X,, —4.5. Xo (as well as X, —4.. Xo). The

[19ee))

'p” is an abbreviation for in probability, and the “a.s.” is an abbreviation for almost surely.
Anticipating the next chapter, we let Eg(X) denote [ ¢(X)du, or [ g(X)dP when p is a
probability measure P. We say that X,, converges to Xq in rth mean if E|X,, — Xo|" — 0.
We denote this by writing X,, —, Xo or X,, —,,. Xo. O

Proposition 4.1 Suppose that the rvs X = F and X,, = F, satisfy X,, —, X. Then
X, —a4 X. (Thus, X,, —,.s X implies that X,, —4 X.)

Proof. (This result has limited importance. But the technique introduced here is useful;
see exercise 4.1 below.) Now,

(a) F.(t)=P(X,<t)<P(X<t+e)+P(X,—X|>e)
(b) < F(t+¢€) + € for all n > some n,.

Also,

F,(t)=P(X, <t)>P(X <t—eand |X, — X| <e€) = P(AB)
A)—P(B°)=F(t—e) —P(|X,, — X|>¢)

t—¢)—¢  forn > (some n.).
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Thus for n > (n. V n.) we have
() F(t—e)—e<limF,(t) <limF,(t) < F(t+e) +e.

If ¢ is a continuity point of F', then letting ¢ — 0 in (c) gives F,(t) — F(t). Thus
F, —4 F. O

The following elementary result is extremely useful. Often, one knows that X,, —4 X,
but what one is really interested in is a slight variant of X,,, rather than X, itself. The next
result was designed for just such situations.

Definition 4.2 (Type) Two rvs X and Y are of the same type if Y = aX +b.

Theorem 4.1 (Slutsky) Suppose that X,, —4 X, while the rvs Y;, —, a and Z,, —, b as
n — oo (here X,,,Y,,, and Z, are defined on a common probability space, but X need not
be). Then

(5) U, =Y, x X, +7Z, —wqgaX +b as n — o0.

Exercise 4.1 Prove Slutsky’s theorem. (Hint. Recall the proof of proposition 4.1. Then
write U, = (Y,, — a)X,, + (Z, — b) + aX,, + b where Y;, —a —, 0 and Z,, — b —, 0. Note also
that P(|X,| > (some large M.)) < € for all n > (some n.).)

Exercise 4.2 Let c be a constant. Show that X,, —4 c if and only if X,, —, c.

Remark 4.1 Suppose X;, Xo,... are independent rvs with a common df F. Then X,, —4
X for any rv Xy having df F'. However, there is no rv X for which X,, converges to X in the
sense of —4 5, —p, or —,. (Of course, we are assuming that X is not a degenerate rv (that
is, that pp is not a unit point mass).) O
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5 Discussion of Sub o-Fields *

Consider again a sequence of rvs X1, Xo,... where each quantity X,, is a measurable trans-
formation X, : (2,4, P) — (R, B, Px, ), and where Px, denotes the induced measure. Each
rv X, is B-F(X,,)-measurable, with F(X,,) a sub o-field of .A. Even though the intersection
of any number of o-fields is a o-field, the union of even two o-fields need not be a o-field. We
thus define the sub o-field generated by X1, ..., X, as

(1) F(X1,....X,) =olUp_, F(X)] =X"Y(B,) for X, = (X4,...,X,),

where the equality will be shown in the elementary proposition 5.2.1 below.
Note that F(Xi,...,X,) € F(X1,...,X,, Xnt1), so that these necessarily form an
increasing sequence of o-fields of A. Also, define

= F(X):

(2) f(Xl,XQ,...)EO'[ k1

It is natural to say that such X,, = (Xy,...,X,,)" are adapted to the F(X,...,X,,). In fact,
if /1 C Fy C -+ is any sequence of o-fields for which F(X7,...,X,) C F, for all n, then we
say that the X,,’s are adapted to the F,,’ s.

Think of (X7, ..., X,,) as the amount of information available at time n from X1, ..., X,;
that is, you have available for inspection all of the probabilities

(3) P((X1,...,Xn) € By) = P((X1,...,X0) " "(Bn)) = Pix,....x,)(Bn),

for all Borel sets B,, € B,,. Rephrasing, you have available for inspection all of the probabilities

(4) P(A), forall A € F(Xy,...,X,).

At stage n+1 you have available P(A) for all A € F(X7, ..., X,, Xp4+1); that is, you have more
information available. (Think of F,\F(Xj,...,X,) as the amount of information available
to you at time n that goes beyond the information available from X, ..., X,,; perhaps some
of it comes from other rvs not yet mentioned, but it is available nonetheless.)

Suppose we are not given rvs, but rather (speaking informally now, based on your general
feel for probability) we are given joint dfs F,(z1,...,x,) that we think ought to suffice to
construct probability measures on (R, ;). In (2.2.16) we saw that for n = 1 we could just
let (Q,A, 1) = (R,B,ur) and use X (w) = w to define a rv that carried the information in
the df F. How do we define probability measures P, on (R,,B,) so that the coordinate rvs

(5) Xi(wi, .. wp) = wi for all (wy,...,wn) € Ry,
satisfy
(6) P(Xy <z,...,Xpn <) =Fy(zg,...,2,) for all (x1,...,2,) € Ry,

and thus carry all the information in F,? Chapter 5 will deal with this construction. But
even now it is clear that for this to be possible, the F,’s will have to satisfy some kind of
consistency condition as we go from step n to n + 1. Moreover, the consistency problem
should disappear if the resulting X,,’s are “independent.”

But we need more. We will let R, denote all infinite sequences w1, ws, ... for which each
w; € R. Now, the construction of (5) and (6) will determine probabilities on the collection

B, x HZC:”HR of all subsets of R, of the form

BnXHZin+1R
={(w1,-yWnyWnt1y--) i (Wiy.o . wn) € Bpywi € R for k > n+ 1},

(7)
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with B,, € B,,. Each of these collections is a o-field (which within this special probability
space can be denoted by F(X1,...,X,)) in this overall probability space (Rso, Boo, Peo), for
some appropriate Bo.,. But what is an appropriate o-field By, for such a probability measure
P,? At a minimum, B,, must contain

®  o|U_ {B.xII_,. B} = |U_ 7. x0)].

and indeed, this is what we will use for B,,. Of course, we also want to construct the measure
P, on (Rs, Bso) in such a way that

(9) Py (H:Zl(—oo,xk] X HZO:”_HR) = Fp(z1,...,2p) forallm >1
and for all x1,...,x, in R. The details are given in chapter 5.

Until chapter 5 we will assume that we are given the rvs X1, X, ... on some (Q, A, P), and
we will need to deal only with the known quantities F (X1, ..., X,,) and F(X1, Xo,...) defined
in (1) and (2). This is probability theory: Given (2,4, P), we study the behavior of rvs
X1, X, ... that are defined on this space. Now contrast this with statistics: Given a physical
situation producing measurements X1, Xo, . . ., we construct models {( R, Boo, P2) : 0 € O}
based on various plausible models for FY(z1,...,z,), § € O, and we then use the data
X1, Xs,... and the laws of probability theory to decide which model 6y € © was most likely
to have been correct and what action to take. In particular, the statistician must know that
the models to be used are well-defined.

We also need to extend all this to uncountably many rvs {X; : t € T}, for some interval T'
such as [a,b], or [a,0), or [a, ], or (—00,0),.... We say that rvs X; : (Q, A, P) — (R, B)
for t € T are adapted to an sequence of o-fields F; if Fy C F; for all s <t with both s,t € T
and if each X; is F;-measurable. In this situation we typically let Ry = HteTRt and then
let

(10) ftzf(XS:sgt)Ea[UX;l(B):sgtandSET] forall t € T.

This is also done in chapter 5 (where more general sets T are, in fact, considered).

The purpose in presenting this section here is to let the reader start now to become
familiar and comfortable with these ideas before we meet them again in chapter 5 in a more
substantial and rigorous presentation. (The author assigns this as reading at this point and
presents only a very limited amount of chapter 5 in his lectures.)

Exercise 5.1 (a) Show that the class C = {X; ' (B1)N{X; ' (B2) : Bi, By € B} is a T-system
that generates the o-field F (X7, X5).

(b) Recall the Dynkin 7-\ theorem, and state its implications in this context.

(c) State an extension of this part (a) to F(X1,...,X,) and to F(X1, Xa,...).
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