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Abstract. Formal methods advocate the crucial role played by the alge-
braic approach in specification and implementation of programs. Tradi-
tionally, a top-down approach (with denotational model as its origin)
links the algebra of programs with the denotational representation by
establishment of the soundness and completeness of the algebra against
the given model, while a bottom-up approach (a journey started from
operational model) introduces a variety of bisimulations to establish the
equivalence relation among programs, and then presents a set of alge-
braic laws in support of program analysis and verification. This paper
proposes a new roadmap for linking theories of programming. Our app-
roach takes an algebra of programs as its foundation, and generates both
denotational and operational representations from the algebraic refine-
ment relation.

1 Introduction

Formal methods advocate the crucial role played by the algebra of programs
in specification and implementation of programs. Study leads to the conclusion
that both the top-down approach (with denotational model as its origin) and
the bottom-up approach (a journey started from operational model) can meet
in the middle:

— Top-down approach usually begins with construction of a specification-
oriented model [1,2,4,10,15], then links the algebra of programs with the
denotational framework by establishment of the soundness and completeness
of the algebra [8,13] against the given model.

— Bottom-up approach starts with an operational semantics [12] and introduces
a rich variety of bisimulations [5,11] to identify the equivalence relation among
programs, and then presents a set of algebraic laws in support of program
analysis and verification.

This paper proposes a new roadmap for linking theories of programming.
Our framework takes an algebra of programs as its basis, and generates both
denotational and operational representations from the algebraic refinement rela-
tion. This new strategy consists of the following steps:
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Step 1: Within a given program algebra (P, C,4), investigate the algebraic
properties of the test operator 7 which has test case tc and testing program P
as its arguments

7 (te, P)

In case of the Guarded Command Language [3], tc is represented by a total
constant assignment x,y, ..,z := a, b, ..,c and the test operator 7 composes tc
and P in sequence:
T (tc, P) =g (tc; P)

For CSP [7,14], a test case has the same alphabet as the testing process, and
takes the form of a generalised prefix process s — @ where s is a sequence of
events in the alphabet of the process P, and @ a choice construct =z : X — Stop
which is added to test the status of P after its engagement in the events of
sequence s. The test 7 (tc, P) behaves like the system composed of processes tc
and P interacting in lock-step synchronisation

T (te, P) =q4 (tc|| P)

Step 2: Explore the dependency between the test outcome with the test case in
the following form
T (te, P) =4 MObs

where Obs denotes the set of visible observations one can record during the
execution of the test and M means the non-deterministic choices.

For the Guarded Command Language, an observation can be either a total
constant assignment or the chaotic program | which represents the worst out-
come. In case of CSP an observation has a very similar form as test case.

Step 3: Based on the algebra of test, identify a program P as a binary relation
[P] which relates the test case with the final observation

[P] =45 {(tc, obs) | T (tc, P) T4 obs}
and select the set inclusion as the refinement relation C,..;

P Crel Q =df ([P] 2 [Q])
Based on the algebra of programs, we can prove
Lra=0CEA4

Step 4: Propose an algebraic definition of the consistency of step relation of
the transition system of programs such that any consistent transition system
(O, Co) satisfies

Co=Ca

Furthermore, our approach shows how to generates the transition rules for CSP
combinators directly from the closure properties of the canonical processes pre-
sented in the consistent criterion of the step relation.

The paper is organised in the following way:
Section 2 adopts this new roadmap to re-establish the semantical models of the
Guarded Command Language, where
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— Section 2.1 provides an algebraic representation of machine state and exmaines
its properties.

— Section 2.2 introduces the notion of test cases.

— Section 2.3 presents a test-based model, where each program is identified as a
binary relation between test case and visible observation recorded during the
execution of the test. It is shown that the refinement relation C,.; in the test
model is equivalent to the algebraic refinement C 4.

— Section 2.4 reconstructs the double predicate model with a simplified version
of the refinement relation Cg;, satisfying Cqp =C 4.

— Section 2.5 revisits the predicate transformer model with the refinement rela-
tion T, and presents its link with the algebra of programs by showing
Ewp =La.

— Section 2.6 links Hoare triple proof system with the test-based model of
Sect. 2.3.

Section 3 proposes a formal definition for the consistency of step relation of tran-
sition system against the algebra of programs. Moreover, it provides a transition
system for the Guarded Command Language, and establishes its correctness.
The paper ends with a short summary in Sect. 4. We leave the proof of some
theorems in the appendix. We will extends the paper by adopting this new
approach on CSP and probabilistic programming languages in the near future.

2 Guarded Command Language

This section investigates how to rediscover a variety of well-established semanti-
cal models from the program algebra presented in [9] for the Guarded Command
Language:
P =1

| var := exp

| P < bexp > P

| P; P

|PNP

|1 X o P(X)

where the notation bexp stands for a Boolean expression.

Rather than following up an inductive approach to assign meaning to pro-
grams, this section develops a new mathematical framework where the behav-
iours of a program are described by those observations one can make during
the testing of a program. To achieve this goal, we first introduce an algebra of
tests and then deduce a simplified version of refinement relation in this alge-
bra. Later we are going to derive a family of well-known denotational models
[3,4,6,9,10] from the algebra of tests, and revalidate those familiar properties of
programming operators.
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2.1 Machine State

An operational approach usually defines the relationship between a program and
its possible execution by machine. In an abstract way, a computation consists of
a sequence of individual steps with the following features

— each step takes the machine from one state to a closely similar state
— each step is drawn from a very limited repertoire.

In a stored program computer, the machine states are represented as pairs
(s, P)
where

(1) s is a text, defining the data state as an assignment of constants to all
variables of the alphabet

Ty Y, .y Z 1= @, b, ..., C

(2) P is a program text, representing the rest of the program that remains to
be executed. When P becomes the empty text €, there is no more program
to be executed. The machine state (¢, €) is the last state of any execution
sequence that contains it, and ¢ presents the final value of the variables in
the end of execution.

The following lemma indicates that data states are the best programs.

Lemma 2.1
(s Ca P)implies (s =4 P).
Algebraic refinment relation on data state sets is the same as set inclusion.
Lemma 2.2
M{s; |1 <i<n} Cutiffte{s;|1<i<n}
Corollary

M{s; |1<i<m} Can{t; |1<j<n}iff{s; |1<i<m}D{t|1<j<n}

2.2 Test

The execution of program (s; P) can be seen as a test on P with the test case s.
The result of such a testing gives rise to a set of possible outcomes obs. We are
then able to compare the behaviours of two programs based on testing.

Formally, the test operator for the Guarded Command Language is defined by

T (s, P) =g (s;P)
When L is taken as the test case, we obtain
T(L,P)=4 L

A test may end with delivery of a set of data states, or fail to produce any
meaningful result.
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Theorem 2.1
For any test 7 (s, P), either there exists a finite nonempty set {¢; | 1 < i < n}
of total constant assignments such that

T(s, P) =af{t; |1 <i<n}
orT(s,P) =4 L
Proof. Any finite program P can be converted into the finite normal form [9]
Labr> Q

where @) is a nondeterministic choice on a finite nonempty set of total assign-
ments
Q={wv:=¢)|1<i<m}

In this case, we conclude that

P — 1 if ble/v] = true
(v=c:P =a {ﬂ{v —elefo] | 1<i<m} i blefu] = false

where b[c/v] stands for result of substituting all free occurrences of variables v
in the Boolean expression b by constants c.

The behaviour of an infinite program can be represented as an infinite
sequence of expressions [9)]

S = {S, | n€ Nat}

where each S, is a finite normal form, and each S, 1 is stronger than its prede-
cessor Sp,:
(Snt1 34 S,) foralln € Nat

This is called the descending chain condition. It allows the later members of
the sequence to exclude more and more of impossible behaviours. The exact
behaviour of the program is captured by the least upper bound of the whole
sequence, written

U{S, | n € Nat}

In fact, the desending chain {(L < b, > Q) |[n € Nat} satisfies the following
stronger order
(L<b,>Qn) =4 (L<by > Qunyk)

for all n, k. That is once n is high enough for b,, to be false, all assignments @,
remain the same as @,, for all m greater than n. The conclusion of the theorem
follows from the continuity of sequential composition:

V= C); Qm if by [C/U} = false

The following theorem reveals the compositionality of the testing process by
demonstrating how to derive the test outcome of a composite program from
those of its components.

((vi=1c);U{Sn|n € Nat} =4 {(L if Vn € Nat e (by[c/v] = true)
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Theorem 2.2
(1) T(s, (PT1Q)) = T(s, P)NT(s, Q)
(2) T(s, (P<b>Q)) = T (s, P)<1(s;b)>T (s, Q) where (v:=c¢);b =g blc/v]
(3) T(s, (P;Q)) =a M{T(t, Q) | T(s, P) Ea t}
(4) 7(s, MX P(X)) =4 U{T (s, P*(L)) | n € Nat} where
PO(L) =g L and P""(L1) =4 P(P"(L1))

Proof of (3). From Theorem 2.1 we only need to consider two cases:
Case 1: T(s, P) =4 M{t; | 1 <i<n}.

T (s, (P;Q)) {assumption}
=a M{ti|1<i<nkQ {UNVLEW =4 (U;W) N (V;W)}
=4 M{7T{;,Q)|1<i<n} {Lemma 2.2}

=A H{T(tv Q) I T(S, P) EA t}
Case 2: T (s, P) =4 L. The conclusion follows from the fact
T(L, Q) =4 L

Theorem 2.3. P =, Q iff for every data state s, 7 (s, P) =4 T (s, Q)

2.3 A Test-Based Model

As described in the previous section, the execution of test 7 (s, P) may yield a
finite nonempty set of outcomes. In the worst case, it may end with a chaotic
state. In this sense, each testing program P can be treated as a binary relation
on test cases and final observations. This section is going to construct a relation
model from the test algebra.

Definition 2.1
A program P can be identified as a binary relation [P] between test case s
with the final data state ¢ it may enter in the end of testing.

[Pl =45 {(s,1) [ T(s, P) Ea t}

As usual we define the refinement relation C,.; on the relational model by the
set inclusion

Pgrel Q =df ([P] 2 [Q])
Theorem 2.4

Lra=0CEA
Proof. Assume that P C,.; Q.
Case 1: T(s, Q) =4 L
T(s,Q) Ca L {Definition 2.1}
= T(s, P)CE4 L {assumption}
= T(s, P) Ea T(s, Q)
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Case 2: T(s, Q) =4 M{t; | 1 <i<n}.

T(s,Q) =a N{t; |1 <1< n} {Lemma 2.2}
= Vie{l,.,n}e(7T(s,Q)C4t;) {Definition 2.1}
= Vie{l, -~,n} o (7T(s, P) Ca t;) {monotonicity of M}
= T(s, P)Cal{t; | 1 <i<n} {assumption}

= T(s, P) Ca T(s,Q)
The conclusion P T4 @ follows from Theorem 2.3.
The opposite inequation (E4 CC,;) follows from Theorem 2.2(1) and the
definition of C,.;.
Moreover, the mapping [] is a homomorphism.

Theorem 2.5

Proof of (3)

(s, t) € [P;Q] {Definition 2.1}
= T(s,(P;Q) Cat {Theorem 2.2(3)}
= MT(u,Q)|7T(s, P) T4 u} Cyat {Lemma 2.2}
= Jue(7(s,P) C4g u) A (T(u, Q) C4 t) {Definition 2.1}
= Jue((s,u) € [P])A((u, t) €[Q)) {Definition of o}
= (s, e([Plo[Q])

2.4 Double Predicates Model

In [6], a precondition is defined as a predicate describing the initial values of
program variables of a program before it is activated, whereas a postcondition
is a predicate only mention of the final values of program variables after the
execution of a program terminates. Following the VDM approach [10] we permit
a postcondition to refer to both initial and final values of program variables in
the following discussion.

Definition 2.2 (Double predicates)

pre(P)(vo) =4 ~(7 (v:=wvy, P) Ea 1)
post(P)(vy, v') =¢r T (v:=wo, P) Ca (v:=7)

where vg and v stand for the initial and final values of the program variables v.

In the above definition, the postcondition meets the following constraint,
which enables us to simplify the definition of refinement in the double predicate
model later.
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Theorem 2.6. post(P) = (pre(P) = post(P))
The refinement order T4, on the double predicate model is defined by

P Cap Q =g Yvg e (pre(P) = pre(Q)) A Vg, v' e (post(Q) = post(P))

Theorem 2.7

Ea=LCgp
PLCyQ {Theorem 2.3}
= VygeT(v:=wy, P) Ca T(v:=1y, Q) {Theorem 2.1}

(T(v:i=wy, P)C4y L
(T(v:i=v9, Q)4 (v:
(T(v:=wvg, P)Cy (v:
B (Vvo o (pre(P) = pre(Q))A )
B Yo, v’ @ (post(Q) = post(P))
= P Ly Q

(T(v =10, Q) Ca 1) :) N
Vg e

{Definition 2.2}
Vo' e

(1
< <
NN
— =
N———

{Def of Ty}

Definition 2.2 enables us to transform the original definition of the program-
ming combinators in the double predicates model [9,10] into a set of the com-
positional laws in our test-generated model:

Theorem 2.8

(1) pre(l) = false

(2) pre(P11Q) = pre(P) Apre(Q)

(3) pre(P <b(v) > Q) = pre(P) <b(vy) > pre(Q)

(4) pre(P;Q) = pre(P) A —3ce (post(P)[c/v'] A —pre(Q)[c/vo])

(5) pre(uX e P(X)) =V, pre(P"(1))

Proof of (4)

—pre(P; Q)(vo) {Defintion 2.2}
= T(v:=vwo, (P5Q)) =a L {Theorem 2.2(3)}
= Tw:=wv,P) =4 1lvV

JteT(v:i=v9, P) CA t ANT(t, Q) =4 L {Definition 2.2}

—pre(P)(vg) V c e post(P)(vg, c) A —pre(Q)(c)
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Theorem 2.9

(1) post(L) = true

(2) post(P Q) = post(P) V post(Q)

(3) post(P <b(v) > Q) = post(P) < b(vy) > post(Q)
(4) post(P; Q) = ce (post(P)c/v'] A post(Q)le/vo])
(5) post(uX e P(X)) = \, post(P"(L))

Proof From Theorem 2.2.

2.5 Predicate Transformer

Given a postcondition r and a proposed design of a final program segment @), it
is possible to deduce the weakest precondition under which the execution of Q
will end with the states that satisfy the postcondition r. This precondition can
often be strengthening, and then taken as the postcondition in the design of the
next preceding segment of the program. In this method, a program is identified
as a predicate transformer mapping the given postcondition to the corresponding
weakest precondition [3]. Based on the algebra of tests, this section redefines the
predicate transformer as follows:

Definition 2.3 (Weakest precondition)
Define

wp(Q, r)(vo) =4 T(v:=19, Q) Ja M{v:=c|r(c)}

In our method, the refinement relation &,,, is defined by

P Cyup Q =4 Vr,Vug e (wp(P, 7)(vg) = wp(Q, r)(vo))
Theorem 2.10
Ewp =La
Proof
PLCaQ {Theorem 2.3}
Yvg @ (T (v:=wvp, P) Ca4 T (v:=wvo, Q)) {Transitivity of T4}
= Vr, Yuge

<T(v :=wvg, P)C4 M{v:=c|r(c)} é)

Tw:=v0,Q)CaM{v:=c|r(c)}
= Vr, Vg e (Wwp(P, r)(vo) = wp(Q, r)(vo)) {Definition of Cp}

= PEpr

{Definition 2.3}
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Like in Sects. 2.3 and 2.4, the new definition of the predicate transformer enables
us to verify the following family of so called healthiness conditions presented
in [3].

Theorem 2.11
(1) wp(Q, false) = false

(2) wp(Q, m1 Ar2) = wp(Q, 1) Awp(Q, 72)

Proof of (2)
wp(Q, 1) A wp(Q, 72) {Definition 2.3}
_ <T(v::v0,Q) Ja H{v:=c|r1(c)}/\>

T(v:=v0, Q) Ja M{v:=c|r2(c)}
T(v:=wv0, Q) Ja M{v:=c| (r1 Ar2)(c)} {Definition 2.3}

wp(Q, 11 AT2)

The next theorem links the double predicates model with the predicate trans-
former model.

{Corollary of Lemma 2.2}

Theorem 2.12
wp(Q, 7(v)) = pre(Q) A ~Jce (post(Q)[c/v'] A -r(c))

wp(Q, r(v)) {Definition 2.3}

= TWw:=w0, Q) da Mv:=c|r(c)} {Theorem 2.1}

Proof = (T(v:=wo, @) #a L) A ) {Definition 2.2}
Vte (T(vi=1v0,Q) Ca t) = (te{v:i=c]|r(c))}

pre(Q) A Vce (post(Q)[c/v'] = r(c)) {calculation}
pre(Q) A —3ce (post(Q)[c/v'] A —r(c))

Corollary
(1) pre(P) = wp(P, true)

(2) post(P) = —wp(P, v #v')

The following theorem validates the original definition of the predicate trans-
former given in [3].

Theorem 2.13

(1) wp(L, r) = false

(2) Wp(Pl‘l ;1) = wp(P,r) A wp(Q, 1)

(3) wp(P<b(v)>Q, r) = wp(P, r) <tb(vg) >wp(Q, 1)
(4) wp(P;Q, r) = wp(P, wp(Q, 1))

(5) wp(uX e P(X)) =V, wp(P"(L1), 1)
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Proof of (4)
wp(P, wp(Q, 7)) {Theorem 2.12}
post(P)[c/v'] A )
—~wp(Q, 7)[c/vo]

= pre(P) A —Jce (
pre(P) A
post(P)[c/V']| A

{Theorem 2.12}

= Cee —pre(Q)[e/vo] V {calculation}
e <post(Q)[c, d/vo, v'] A
—r(d)
post(P) A
re(P —3Jce

R
= e <post(P)[c/'uo} A > N {Theorem 2.8 and 2.9}

—de post(Q)[c, d/vo, ']

-r(d)

= pre(P;Q) A —3d e (post(P;Q)[d/v'] A —r(d)) {Theorem 2.12}

2.6 Hoare Triple

In [6], the correctness of a program was interpreted as the triple
precondition {program} postcondition

known as a Hoare triple, where the postcondition only refers to the final values
of program variables.

Definition 2.4 (Hoare triple)
Define

p{Q}r =g Yvo e (p(vo) = (T (v:=wvo, Q) Ja M{v:=c|r(c)}
Theorem 2.14

p{Q}r = Yug e (p(vo) = wp(Q, 7(v)))
Proof. From Definitions 2.3 and 2.4.

Based on the new definition of Hoare triple we are able to reestablish the sound-
ness of Hoare logic used for verification of programs.

Theorem 2.15 (Hoare triple proof rules)

(1) If p{@}r1 and p{Q}ra then p{Q}(r1 A12)

(2) If p{@Q}r and ¢{Q}r then (pV ¢){Q}r

(3) If p{Q}r then p{Q}(q V)

(4) r(e){v = e}r(v)

(5) If (p Ab){Q1}r and (p A =b){Q2}r then p{Q1 < b1> Q2}r
(6) If p{Q1}q and ¢{Q2}r then p{Q1;Q2}r
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(7) If p{Q1}r and p{Q2}r then p{Q1 M Q2}r
(8) false{Q}r

Proof of (6)

p{Q1;Q2}r {Theorem 2.14}
= Vg e (p(vo) = wp(Q1;Q2, 7)) {Theorem 2.13(4)}
= Vg e (p(vo) = wp(Q1, wp(Q2, 7))) {Theorem 2.11(2) and ¢{Q2}r}
< Vuo e (p(vo) = wp(Q1, 9)) {p{Q1}q}
= true

3 Operational Approach

Let — be a step relation on machine states. Its reflerive transitive closure is
defined by

=" =g vXe(idV (—;X))
where v X.G(X) stands for the greatest fized point of function G.

We define the concept of divergence, being a machine state that can lead to an
infinite execution

(8, P) T =45 Vn, dt, Q e ((S, P) —" (t, Q))

where —1 =g —

and _,n+l =af (_>1

;—=")

Definition 3.1
A step relation is consistent with the algebraic semantics if for any machine
state (s, P)

(1) T(s, P) =a TH{T(t, Q) | (s, P) = (t, Q)}, and
(2) (s, P) 1 implies 7(s, P) =4 L

In the following discussion we will extend the definition of the test operator to
cope with the empty program text

T(s,€) =g s

Theorem 3.1
If — is consistent then

T(s, P) =4 L<(s, P)T 51 {t] (s, P) =" (t, )}

Proof. First we show that 7(s, P) =4 L = (s, P) 1
From Theorem 2.2 and the condition (1) of Definition 3.1 it follows that there
exists machine state (¢, @) such that

(s, P) = (t,Q) and T(t, Q) =4 L
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With induction we conclude that for all n > 0 there exists a machine state
(tn, Qn) satisfying

T(tna Qn) =a 1 and (Sa P) —" (tna Qn)
which leads to the conclusion (s, P) 7

If (s, P) is not divergent, then from the condition (1) of Definition 3.1 we can
show by induction

T(s, P) =a N{t| (s, P) =" (t, )}

Definition 3.1 explores the following correspondence between the step relation
of the operational semantics with the refinement relation of algebraic semantics

(1) Whenever a machine state (s, P) is divergent, then the execution of test
7 (s, P) will end with a chaotic state.

(2) If (s, P) is not divergent, then the final states that it can reach via step
transitions are exactly those delivered by the execution of the test 7 (s, P).

Definition 3.2 (Operational Refinement)
Let — be a consistent step relation. Define

Vse((s, Q) 1= (s, P) 1) A

PLC = , P V
7 e (e~ 1.0 = (“ o )
((s, P) =7 (¢ €))
Theorem 3.2
Co=LCa
Proof
PCahQ {Theorem 2.3}
=Vse(T(s, P) Ca T(s,Q)) {Theorem 2.1}
(T(s,Q) =a 1) = (T(s, P) =4 1)
=Vse (/\ ) {Lemma 2.2 and Theorem 3.1}
Vie (T(s,Q) CEat)=(7T(s, P) Ca t)

(5, @) 1= (s, P) 1) A

=Vse vie (s Q) =" (. 9) = {Definition 3.2}

B ((S;P)T v )
(s, P) =* (L, €))
=PLCo Q

If (s, P) is not divergent, then from the condition (1) of Definition 3.1 we
can show by induction

T(s, P) =4 N{t]| (s, P) =" (t,€)}

Definition 3.1 explores the following correspondance between the step relation
of the operational semantics with the refinement relation of algebraic semantics



A New Roadmap for Linking Theories of Programming 39

(1) Whenever a machine state (s, P) is divergent, then the execution of test
7 (s, P) will end with a chaotic state.

(2) If (s, P) is not divergent, then the final states that it can reach via step
transitions are exactly those delivered by the execution of the test 7 (s, P).

Definition 3.3
In [9], the following transition system was given to the Guarded Command Lan-
guage:

(1) Assignment

(s, v:=¢e) — (s;(v:=¢), €), where (v:=
(2) Choice

(a) (s, PT1Q) = (s, P)

() ((s, PTIQ) — (s, Q)

(3) Conditional
(a) (s, P<b>Q) — (s, P) if (s;b) = true
() (s, P<b>Q) — (s, Q) if (s;0) = false

(a) (s, P;Q) — (£, B; Q) if (s, P) — (t, R)
() (s, P;Q) — (t, Q) if (s, P) — (t, ¢)
(5) Recursion

(5, X o P(X)) (5, P(uX o P(X)))

(4) Composition
5

(6) Chaos
(s, L) — (s, 1)

In the following we are going to establish the consistency of the step relation of
Definition 3.3 with respect to the algebra of programs.

First, we show that the step relation of Definition 3.3 meets the condition (1) of
Definition 3.1.

Theorem 3.3
T(s, P) =a T{T(t,Q) | (s, P) = (¢t, Q)}

Proof: Direct from Theorem 2.2 and the rule (1)—(7) of Definition 3.3.

Theorem 3.4
If P is a finite program, then

(s, P)T=T(s,P) =4 L
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Proof: We give an induction proof based on the structure of program text P:

Base case: Clearly the conclusion holds for the case P = v:=eand P = L

Inductive step:

(s, LM Py) 7T {Rule (2) in Definition 3.3}
= (s, P1) T M(s, P2) 1 {Induction hypothesis}
= (T(s, P1) =a L)V (T(s, P5) =4 1) {Theorem 2.2(1)}

= T(S,P1|_|P2) =4 L

(s, PL<tbr> P2) 1 {Rule (3) in Definition 3.3}
= (s, P1) 71 <s;0> (s, P2) 1 {Induction hypothesis}
= (T(s, P1) =4 1) <180 (T(s, P) =4 1) {Theorem 2.2(2)}

= T(s, PL<b>Py) =4 L

(s, P1; P2) 1 {Rule (4) in Definition 3.3}

L s P v e BTV M)

(tv PQ)T
= T<S7 Pl) =4 1LV

{Induction hypothesis}

Jte(T(s, PL)Eat N T(t, P) =4 1) {Theorem 2.2(3)}

= T(S, Pl;PQ) =A 1
Finally we are going to tackle infinite programs.

Lemma 3.1
If (s, G(Q)) —* (t, €), then either (s, G(L)) T or (s, G(L)) —=* (¢, ¢).

Proof: See Appendix.
Lemma 3.2

(1) (s, F(P)) 1= (s, F(L)) 1 for any program P.
(2) (s, F(pX o P(X)) T= (s, F(P(nX o P(X)))) 1

Proof: See Appendix.

Theorem 3.5

(s, FluX e P(X)) 1= T(s, F(uX e P(X))) =4 L

Proof: (s, F(uX o P(X))) 1 {Lemma 3.2(2)}
= Vne(s, F(P"(uX e P(X)))) 1 {Lemma 3.2(1)}
= Vne(s, F(P"(1))) 7 {Theorem 3.4}
= VneT(s, F(P"(L))) =4 L {Continuity of F'}

= T(s, F(uXeP(X))) =4 L

Combining Theorems 3.3, 3.4 and 3.5 we conclude
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Theorem 3.6
The step relation defined in Definition 3.3 is consistent.

4 Conclusion

This paper proposes a new roadmap for linking theories of programming. From
the investigation of the Guarded Command Language it becomes clear that
algebraic refinement relation plays a key role in building varies denotational
models and their links. Our work also shows that the formalisation of consistency
of operational semantics can be simplified by separation progress requirement
(condition (1) in Definition 3.2) from livelock-free constraint (condition (2)):

— The first requirement excludes the error of omission of a transition. Validation
of the consistent condition (1) is quite straightforward, because it only needs
to examine one step transition.

— the second requirement avoids the inclusion of too many transitions. To handle
this type of livelock free properties, this paper adopts quite tedious structural
induction because it has to deal with recursion and multiple step transition.

We will extend this paper by applying this algebraic approach to build the
mathematical framework for CSP and probabilistic programming languages in
the near future.
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Appendix

Lemma 3.1
If (s, G(Q)) —* (¢, €), then either (s, G(L)) T or (s, G(L)) —=* (¢, ¢).

Proof: Induction on the structure of G.

Base case: G(Q) = Q. The conclusion follows from From Rule (6)

(s, L) — (s, 1)
in Definition 3.2.
Inductive step:
(1) G(Q) =G (@)N GQ(Q)'
(s, G(Q)) — ( {Role (2) in Def 3.2}

{Induction hypothesis}
s, G2(Q)) —

(s, G1(Q)) — V)

(s,

(s, Gi(L) 1 V (S, Gi1(1)) (76)V>
(

{Role (2) in Def 3.2}
s, Go2(L)) TV (s, G2(L)) =" (¢ €)
= (s.GL)) T V(s GL)) = (t, €)
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(2) G(Q) = G1(Q) <b> G2(X)

(s, G(Q)) —=* (t, €) {Role (3) in Def 3.2}
(37 G1 (Q)) —* (tv 6)
= <A(s;b)> {Induction hypothesis}
(s, G2(Q)) =" (¢, €)
(5, G1(L) T V (s, Gi(L)) =" (8, )
= A(s; b)> {Role (3) in Def 3.2}
(5, G2(L) T V (s, G2(L)) =7 (2, ¢)

= (s G(L)) TV (s, G(L) =% (t, €)

(3) G(Q) = G1(Q); G2(Q)

(s, G(Q)) —=* (t, €) {Role (4) in Def 3.2}
(s, G1(Q)) =" (u, €) vV
Jue Induction hypothesis
- (u, G2(@) —* (t, ) Hnduction hypothesis}
o gy [ & EIENT V(s Gr(L) = (. 9 V> {Role (4) in Def 3.2}
(u, G2(L) TV (u, G2(L)) =* (¢, ¢)

= (s.G(L) 1TV (s, G(L) = (L, €)
(4) G(Q) = uX o P(Q, X)
(s, nX o P(G, X)) — (t, €) {Role (5) in Def 3.2}
= (s, P(G, uX o P(G, X))) — (t, €) {Induction hypothesis}

s, P(L, uX o P(L, X)) 1 V ) {Role (5) in Def 3.2}
s, P(L, pX ¢ P(L, X)))H(t €)

(
( (
(s, pX ® P(J_ X)N1 )
(s, uX o P(L, ))—>(t €)

Lemma 3.2

(1) (s, F(P)) T= (s, F(L)) 1
(2) (s, F(pX o P(X)) T= (s, F(P(nX o P(X)))) 1

Proof (1). Based on induction on the structure of F'.

Base case: FI(X) = X. The conclusion follows from the rule (6).
Inductive Step:

(s, F(Q)MF2(Q)) 1 {rule (2)}
= (s, F1(Q)) T V (s, F2(@))1 {induction hypothesis}
= (s, Fu(L) T V(s, F2(L)) T {rule (2)}
= (s, (Fi(L) N F(L) 1

(s, F1(Q) <b>F>(Q)) T {rule (3)}
= (s, F1(Q)) 1 <(s;0) > (s, F2(Q)) T {induction hypothesis}
= (s, Fi(L) 1 Q(s;b) > (s, Fo(L)) 1T {rule (3)}
=
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(s, F1(Q); F2(Q)) 1 {rule (4)}
= (s, 1(Q) TV

Jte (s, F1(Q)) —=* (t,e) A (¢, Fo(Q)) T {Lemma 3.1}
= (s, F1(L)) T V(s, Fi(L)) =" (t, ) A (t, Fo(L) T {rule (4)}

= (s, Fi(L); Fa(L) 1

Proof of (2): Similar to (1).
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