Chapter 2
Acceleration of Gravity

Introduction

The Greek philosopher Aristotle (384—322 B.C.) considered the Universe spherical,
finite, and completely filled with aether. According to his model the celestial bodies
(e.g., Moon and planets) are localized each one on a different “sphere,” and all the
Universe is entirely immerse in a bigger sphere, where are the stars. The Earth is
spherical and in rest, and its center coincides with the center of the Universe.
Aristotle did not accept the idea of vacuum—in his vision, the elements that
compose all things and terrestrial beings are different from the aether, substance
of divine origin, eternal and imperishable that forms and fills “the Skies,” which
include the spheres of the Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn, and,
finally, the sphere of the stars. In the sublunary world, below the sphere of the
Moon, there is no place for aether, only for the four elements: earth, water, air, and
fire. The natural movement of these sublunary objects is not a circular and uniform
motion, only reserved to what is perpetual and perfect, but rectilinear and directed
to the center of the Universe, or to the Earth, or its inverse, driven away from the
center (which would be the case of fire and air). As an example, the water is lighter
then earth (less dense, according to modern science), but both follow their natural
movement towards the center, being water above earth, and thus Aristotle explains
the reason why seas are covering the surface of the Earth. Water and earth are heavy
(gravitas) elements. These bodies tend to fall towards the center of the Universe due
to their heaviness (gravity), which is for Aristotle an intrinsically quality of this
matter. So, the gravity impels the heavy bodies to find its natural place.

Unlike Aristotle, who affirmed that the speed of a body in free fall is proportional
to its weight, Galileo Galilei (1564-1642) refuses any statement a priori
(in advance) and starts to observe falling bodies, proposing theoretical models
using mathematical language and conducting experiments in an organized and
systematic way. Thereby, we have the beginning of the scientific method, which
is based on the structuring of theoretical abstract models, usually suggested by a
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question that the researcher makes about a physical phenomenon. The model allows
the discovery of the consequences following the hypotheses that have been
imposed. The researcher should always find in the experiment the verdict of nature
to validate the proposed model. It can be said that Galileo freed science from the
Aristotelian essences and medieval magic, which for more than 2000 years had
impaired its development [1].

Experimental Development

The experimental apparatus' dedicated to the study of free fall is shown in Fig. 2.1.
The setup has five photosensors, a metallic sphere, an electromagnet, and a stop-
watch available to measure up to four intervals of time. Similar setups can be made
in didactic laboratories, as exemplified in reference [2], that uses blue LEDs
combined with photodiodes, an electromagnet and an Arduino acquisition board.”

A metallic sphere is abandoned from the initial position, which can be consid-
ered zero, as indicated in the ruler of the experimental apparatus. The problem can
be approached considering that we know nothing about the physical lows governing

Fig. 2.1 Didactical
apparatus dedicated to study
free fall. The setup has five
photosensors, a metallic
sphere, an electromagnet,
and a stopwatch available to
measure up to four time
intervals

"The didactical equipment used is manufactured by the company CIDEPE (Centro Industrial de
Equipamentos de Ensino e Pesquisa—www.cidepe.com.br). The experimental development as
well as the data analysis presented here is useful for any similar commercial or homemade
equipment.

2 Available in: <http://www.arduino.cc/>. Accessed in: 11/11/2016.
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the movement, only the fact that its speed varies in the vertical direction (after all,
the sphere is initially at rest and, after being abandoned, reaches the table with
non-zero speed). Thereby, we can affirm that the movement of the sphere is
accelerated. The simplest hypothesis is to assume that the acceleration, a, is
constant. In other words, the rate of change of its speed is independent of time:

d
a(t) = d_‘; = const. (2.1)

In this case, what are the expected results for the experiment? Integrating
Eq. (2.1) we expect that the velocity v(¢) varies linearly with time:

v(t) =vo +at (2.2)

being v, the initial velocity at r=0.

The instantaneous velocity is defined as the position’s rate of change of the
observing object as a function of time, v(f) =dx/dt. The Eq. (2.2) can then be
integrated and the position of the falling object can be obtained, having a quadratic
of time:

x(1) = xo + vot + gtz, (2.3)

where X is the initial position, in other words, the position of the object observed in
t=0.

Aiming to verify the proposed model easily, we can prepare the experiment in a
way to simplify the data analysis by putting the metal sphere at initial position equal
to zero (xo =0), and by starting the time measurement at the beginning of the fall,
that is vo =0. If we do so, Eqgs. (2.2) and (2.3) become, respectively:

Observing Eq. (2.5), it is possible to realize if the proposal of a constant
acceleration is compatible with the obtained data of position and time. To visualize
it, we will plot the graph of the position of the sphere as a function of the square of
time, x x *. This procedure is called linearization. If the graph shows a linear
tendency, it is an excellent indication that the model proposed of constant acceler-
ation can describe the free fall of bodies at least near the Earth’s surface, where the
experiment is performed. We can then obtain the value of this constant acceleration
from the slope of the straight line fitted to the experimental data. According to the
proposed model, the slope is equal to the coefficient that multiplies /% in Eq. (2.5), a/2.
If this is so, doubling the slope should give us the value of the acceleration.

Now we are able to test the hypothesis if the acceleration imposed to the bodies
while falling is constant.
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Fig. 2.2 Initial position of the metallic sphere. It is important to align the lower part of the sphere
as close as possible to the zero position. This means that the lower part of the sphere’s shadow
should be as close as possible to the photosensor’s aperture at the imminence of the start of the
experiment (the photosensor emits an electronic signal when the laser is blocked by the sphere)

Let’s abandon the metallic sphere from zero position, as it is shown in Fig. 2.2.
The first photosensor is at position zero. The photosensor used in this experiment
consists of a small source of light (diode) whose emission is detected on the opposite
side by a photodiode, both mounted in a U-shaped metallic structure. The sphere is
detected at the instant it blocks the light on the photodiode (see Fig. 2.2). At this
moment, an electronic signal is sent to the stopwatch to start the measurement. The
lower part of the sphere should be aligned with the zero position and also very close
to the laser beam that goes to the photosensor (1 mm or less), but not enough to start
it. This can be achieved adjusting the electromagnet position until the limitrophe
position to start the stopwatch is found by just looking at the lower part of the sphere’s
shadow produced by the laser, and set it as close as possible to the photosensor’s
aperture at the imminence of starting it. It is important to avoid keeping the electro-
magnet on for too long, otherwise the circuit can be damaged.

The photosensors should be separated in such a way that the measured time
intervals of the movement should not be lower than tens of microseconds (just try
few different configurations of the photosensor positions before starting the final
measurement). This is due to the stopwatch resolution,® which is 1072 s (or 1 ms).
Assuming that the uncertainty” is its own resolution, any measurement would have
a relative uncertainty given by’:

3Resolution is the smallest difference between indications of a display device that can be
significantly perceived [3].

“The uncertainty of a measurement is a parameter that characterizes the dispersion of the values
that can be attributed to this measurement. This parameter can be a standard deviation, or multiple
of it, or half of an interval that corresponds to a stated level of confidence. Preferably, the
uncertainty should be declared with one significant digit. In cases of higher precision it is possible
to express the uncertainty with two significant digits [3].

5In case of an apparatus with digital displays, the resolution corresponds to the digital increment.
In the case of an apparatus that uses analogical displays, the resolution should be estimated by the
experimentalist [3].



Experimental Development 17

Table 2.1 Position and time data set obtained for the free fall of a metallic sphere. Each interval
of time has an associated uncertainty estimated as £ 1 ms. When the intervals are added we need
take into account that the final uncertainty increases

X (mm) taps (MS) %05 (10* ms?)
0+1 0 0 0

88 + 1 117 117 £ 1 1.37 £ 0.02
258 +1 117497 214 +2 4.58 + 0.09
535+1 1174974101 315+£3 9.9+0.2
834+ 1 1174974101482 397 + 4 158 £ 0.3

ot 1
Z(%) = — x 100%
t(o) t>< 00%

For example, time intervals measured between 20 ms and 10 ms give relative
uncertainties of 5-10%. In this experiment, relative uncertainties on time are
around 1%.

To start the experiment, the metallic sphere should be positioned at the electro-
magnet while it is turned on. The stopwatch should then be reset and the electro-
magnet turned off, releasing the sphere. If all the steps described earlier were
accurately done, the initial velocity can be considered zero at first approximation.
This is the crucial point of this experiment, since we are assuming that the initial
velocity is zero, allowing us to investigate x x > as being linear.

Table 2.1 shows a data set from the photosensor’s position, x, as a function of
time represented by ¢,,,,. The photosensor’s position measurements (in other words,
positions of the small apertures in the metallic structure that correspond to the
photosensors as shown in Fig. 2.3) can be made by the following procedure: we
know that the aperture is localized at the middle of the structure and its width is
22 mm. Adding half of this value (11 mm) to the position of the superior base we
can find the desired measurement. In the example shown in Fig. 2.3, the position of
the second photosensor is given by 11 mm + 247 mm = 258 mm.

It is necessary now to evaluate the uncertainty associated with the measurement
of the photosensor’s position. We avoid to estimate the uncertainty by statistical
methods (Type A uncertainty®) and use the evaluation known in metrology Type
B uncertainty.’ This uncertainty can be estimated, in a very conservative way, as

5The method of evaluation of Type A uncertainty is based in statistical analysis on a series of
observations that can be characterized by experimental standard deviations. In metrology, the best
estimate of a physical quantity x that varies randomly is the arithmetic mean value x,, of an
n number of measurements. The standard deviation ¢ characterizes the variability of the measured
values, in other words, the dispersion around the mean value. In general, the standard deviation of
the mean value o,, = o/(n)""* is useful to qualify how the mean value represents the physical
quantity to be measured [3].

"The evaluation of Type B uncertainty is based in a different method than those of statistical
analysis on a series of observations. It can also be characterized by standard deviations estimated
by assuming probability distributions based on the researcher’s experience or other kind of
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Fig. 2.3 The position of the second photosensor can be obtained by adding half of its width
(0.5 x 22 mm = 11 mm) to the position of the its superior part. In this example its value is
11 mm + 247 mm = 258 mm

+1 mm.® This kind of uncertainty measurement evaluation arises from an estimate
based on the past experience and judgment of the experimentalist, and not from the
statistic of several measurements.

The measurements related to the four time intervals can be seen at the stopwatch
display shown in Fig. 2.1. The uncertainty of each measurement can be estimated as
£1 ms. It is possible to estimate this value by making some launches and observing
that the intervals of time can change approximately 1 ms. It is important to note that
when you add two intervals of time, the associated uncertainty of the result
increases. Conservatively, we can adopt that the result of the sum of two intervals
of time (this is also valid for the difference) is the sum of each associated uncer-
tainty. This way of estimating the uncertainty is called maximum possible uncer-
tainty [3]. Using as an example the calculation of the absolute time associated with
the position of the third photosensor (258 mm) it is easy to see that:

taps = 117497 = 214ms
But it also can fluctuate between:

tavse = (1174 1) + (97 + 1) = 216ms

observations. The correct use of the set of available information for the evaluation of the Type B
uncertainty claims for the researcher’s experience and wide knowledge, and this ability can be
learned in practice. An evaluation Type B can be as trustable as an evaluation type A, especially in
a measurement situation where an evaluation type A is based on a comparatively small number of
statistical independent observations [3].

8For example, the experimentalist can ask one or two colleagues to make the same measurement
and evaluate the result of the fluctuations. This is a simple method that can help in the evaluation of
a type B uncertainty.
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fns. = (117 = 1) 4 (97 — 1) = 212ms

It is clear in the example above that the maximum possible variation of the value
of t,,s 1S 2 ms, which corresponds the sum in absolute values of each uncertainty.
It is not difficult to realize that for an N number of terms to be added, the maximum
possible uncertainty will be the sum of the absolute values of the uncertainties of
each associated term. Table 2.1 shows the data set obtained for the free fall of a
metallic sphere.

The last column of Table 2.1 shows the associated values of the square of
absolute time. Below we show how it is possible to obtain an estimate of its
uncertainty. In this case, a possible way would be to derive the square of absolute
time and obtain the uncertainty for each measurement:

8(F) = %t:)az = 2t6t, (2.6)

being &(r*) the associate uncertainty of the quantity °. As an example, we can
calculate the associated uncertainty of the measurement (214 + 2)%

1 = 45796
8(F) =2x214x2 =856

As the uncertainty should present with one or two significant digits [3], we have:
8(7) =9 x 107
And the measurement can be written as:

£ = (458 £9) x 10’ms” = (4.58 + 0.09) x 10*ms>

Analysis of the Experimental Data

The graph of x x ¢* is presented in Fig. 2.4. The associated uncertainties to the
positions are smaller than the size of the representation of the experimental data
points. But the uncertainties associated with the square of time increase and are
visible on the graph at the last three data points. The dashed lines were traced
aiming to delimit the area where possible straight lines would be “acceptable” as a
fit. The central line shows what would be considered the best fit. Note that the fit is
made in an empirical way without any formal mathematical justification, based
only in reasonability. The uncertainties of the experimental points can help us to
choose the area between the dashed lines. If the uncertainties were higher the area
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Fig. 2.4 Graph of x x . Note the two dashed lines delimiting the possible linear fits that would be
“acceptable.” The central line is the best fit that visually adjusts to the experimental data

between the dashed lines would also be larger. This procedure allows the obtaining
of an estimation of the slope’s uncertainty and, thus, the uncertainty of the free fall
acceleration of the bodies.

Using any two points included in the central linear fit and reasonably far from
each other, for example, (0;0) and (10;540), respecting the units, we obtain the
slope value that corresponds to half of the acceleration:

a (540 — 0)mm 0.540m 5
2 = =540m/s
2 (10-0) x 10*ms?2 10 x 10* x 107452 /
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Proceeding in a similar way, we can obtain the slopes related to the dashed
straight lines 5.15 m/s* and 5.65 m/s*. Now it is possible to evaluate the acceleration
and its uncertainty (it is only needed to subtract 5.15 from 5.64 and divide the result
by 2):

g:SMiO%mﬁz

Remember that the uncertainty can be written with one or two significant digits.
Therefore, by this method, the value of the acceleration is:

a=10.84+0.5m/s’

At first glance the linear fit could be considered reasonable, but we can
compare the obtained result with the official value of the local acceleration of
gravity’ measured by the Brazilian National Observatory (O.N.), g =
9.7877394 + 0.0000002 m/s*. This can be made by calculating the relative error,
but first it is important to define the absolute error. The absolute error is the result of
a measurement subtracted by its true value, and here the true value is the standard
value, in other words, the value of the local acceleration of gravity measured by the
O.N. The relative error is given by the ratio of the absolute error by the standard
value, normally expressed in percentage:

10.8 — 9.7877394
9.7877394

Errorrelative = < ) x 100% =~ +10%

Figure 2.5 shows that the standard value of the acceleration of gravity does not
fall within the range of the estimated uncertainty. In order to understand that, it

gsfandard aexpenmenta/
A,
%)
B S e S o e S s St e et !
9.0 9.5 10.0 10.5 11.0 115 12.0
a(m/sg)

Fig. 2.5 Comparison between experimental and standard values of the acceleration of gravity

°Didactic laboratory of physics—Instituto Federal de Educagao, Ciéncia e Tecnologia do Rio de
Janeiro (IFRJ), campus Nilopolis, State of Rio de Janeiro, Brazil.
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is important to review some of the assumptions made during the experiment.
The adjustment of the initial position at zero seems to be reasonable, but what
would be the consequences if the initial velocity was a bit higher than zero? The
first consequence would be that: it would not be possible anymore to expect that the
experimental data would be fitted by a straight line as proposed by our theoretical
model shown at the graph in Fig. 2.4.

Assuming the sphere starts the stopwatch 1 mm after it begins to fall (this is a
reasonable estimation, as it is quite difficult to adjust the separation between the low
part of the sphere and the laser to be less than 1 mm apart without the sphere starting
the stopwatch before it begins to fall—observe the photo on the right shown in
Fig. 2.2), we can use the experimental value of the acceleration itself to obtain an
estimation of the initial velocity in # = 0. Using the equation that relates the final
velocity and the distance that an object travels, which is valid for movements with
constant acceleration (known as Torricelli equation), we have:

vo = V2aAs = \/2 x 10.8m/s2 x 10 m ~ 0.15m/s

If the initial velocity is no longer zero, how can we correct the graph shown in
Fig. 2.47 Equation (2.3) would be written as:

xX(t) = vor + gtz (2.7)

The correction can be made using the displacement of the position x in each data
point by a factor (—vof). We have now a corrected value for each position of the
sphere in function of time, and it can be linearized anew.

x(f) — vot = gtz
L (2.8)
corr — 2

Table 2.2 presents the correct values for the position as a function of time and the
graph shown in Fig. 2.6 includes now the corrected data points (labeled as tri-
angles). It is possible to make a linear fit and obtain an estimation of the slope equal

Table 2.2 Experimental data x (mm) Xeomr = X — Vol 2 s (10° ms?)

of position, corrected position 0+1 011 0

(Xcorr), and squared absolute

time of the metallic sphere in 88 + 1 70+£1 1.37 +0.02

free fall 258 £1 226 £ 1 4.58 + 0.09
535+ 1 488 + 1 99+ 0.2
834 £1 775 £ 1 158 £0.3
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Fig. 2.6 Graph of x x 2. The data points labeled as triangles correspond to the corrected
experimental values (xX.or). The slope of the new linear fit corresponds to 4.9 m/s?, which
corresponds to an acceleration of 9.8 m/s?

t04.9 m/sz, which corresponds to a new value of 9.8 m/s? to the local acceleration of
gravity. This number is much closer to the standard value.

Note that it was necessary to make a first measurement of the acceleration, and
afterwards, improve it using a correction and taking the first acceleration measure-
ment as a reference value. This is a very common procedure in experimental
physics.
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There is another mathematically more elegant procedure to directly obtain the
values of acceleration and initial velocity, which is called “least-squares method.”
Applying this method to the experimental data in the graph x x ¢, we should expect
to fit a parabola, as shown in Eq. (2.3).

Least-Squares Method

The least-squares method is discussed here in a simplified enough way to meet the
needs of this experiment. However, the discussion presented here is useful to the
understanding of the fitting mechanism made by computer programs, differing only
in computing capability. Eq. (2.3) presents the position of the sphere as a function
of time and will be used considering the initial position x, = 0. It is expected that the
graph of x x ¢t shows experimental data distributed along an arch of a parabola,
whose equation can be written as:

x(t) = At + B (2.9)

In the present case, A corresponds to the initial velocity and B to half of the
acceleration (supposed constant) near to the surface of the Earth.

The least-squares method consists in calculating the coefficients A and B in a
way that the distance between each of the N experimental points and the fitted curve
given by Eq. (2.9) is minimized. It is possible to define the function y* that
quantifies these differences:

i — x(t;)] — At — B2 (2.10)

i=1 i=1

Mz
Mz

The sum extends for all N experimental points. The partial derivatives of
function »* related to the coefficients A and B result in a system of equations that
can be easily solved:

S1x84 — S2x83 §2x82 — S1x53

A= and B =

— — (2.11)
$284 53 5284 53

and

N N
sz:Ztiz; S3=Zl§; 54221?; le:inti and sp, = Zx, (2.12)
' i=1 i=1

Table 2.3 presents the constants shown in Eq. (2.12). Using the relations of
Eq. (2.11) we find:
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Table 2.3 Data used to calculate the coefficients A and B using the least-squares method
x(m) [r(s) |F () £ (s%) * (s*) xt (ms) xt’ (ms’)
0.000 |0.000 |0.000000 0.000000 0.000000 0.000000 0.000000
0.088 | 0.117 |0.013689 0.001602 0.000187 0.010296 0.001205
0.258 |0.214 | 0.045796 0.009800 0.002097 0.055212 0.011815
0.535 [0.315 |0.099225 0.031256 0.009846 0.168525 0.053085
0.834 0.397 |0.157609 0.062571 0.024841 0.331098 0.131446
N N N N N
=57 s3=>.0 sg=>1¢ Sie =Y Xiti | S = D xit?
i=1 i=1 i=1 i=1 i=1
=0.31632 = 0.10523 = 0.03697 = 0.56513 = 0.19755
S1x84 — §2xS $2x82 — S1xS
A="D 2 016948 m/s and B =" "N = 4.86106m /s>

$284 — 83 §284 — 83
From the values of A and B we obtain both the initial velocity and the
acceleration:

vo=A=0.17m/s and a=2B=9.72m/s’

Note that the initial velocity is not zero, but very close to the estimation obtained
assuming that the movement begins to be tracked after the sphere travels approx-
imately 1 mm, resulting in an initial velocity of 0.15 m/s. The obtained value of the
acceleration is a bit lower than the one obtained via linear fit, reducing the relative
error to approximately 0.7%.

The graph shown in Fig. 2.7 exhibits the parabolic curve plotted with the aid of
32 points (see Table 2.4) obtained by the fitting function x(f)=
0.16948 £ +0.00486106 *, whose parameters calculated using the least-squares
method are A = 0.16948 mm/ms and B = 0.00486106 mm/ms>. The idea is to
generate a number of points large enough to “connect them,” generating the fitting
curve. The higher the number of points the easier it is to trace the curve.

The uncertainty calculations of the obtained parameters by the least-squares
method can also be performed; however, such calculations are beyond the scope of
this book. For further details, reference [3] is indicated.

To close this chapter, it would be interesting to indicate an experiment to show
that objects with different masses, when the air resistance can be neglected, fall
with the same acceleration. If two spheres with different masses are abandoned
simultaneously, they should reach the ground at the same time. This is a simple
experiment, though there is an important detail: the two bodies should be aban-
doned simultaneously. Professor Joao Canalle published a very interesting article
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Fig. 2.7 Graph x x t. The five experimental data points are labeled as squares. The parabolic
curve was plotted with the aid of 32 points (see Table 2.4) obtained by the fitting function
x(f) =0.16948 r 4 0.00486106 2, whose parameters obtained using the least-squares method are
A = 0.16948 mm/ms and B = 0.00486106 mm/ms?

that explains in detail how to build an apparatus that guarantee simultaneous free
fall, called “Free fall mouse trap” [4]. Professor Canalle suggests the use of a small
metallic mousetrap, screws, wood blocks, and, of course, two bodies with different
masses, €.g., a sphere of glass and one of steel.
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Table 2.4 Position and time data obtained by the fitting function x(r) = 0.16948 ¢ + 0.00486106 1%,
whose parameters obtained by the least-squares method are A = 0.16948 mm/ms and
B = 0.00486106 mm/ms>

t (ms) X (mm) t (ms) x (mm) t (ms) x (mm) t (ms) x (mm)
0.0 0 112.5 81 225.0 284 337.5 611
12.5 3 125.0 97 237.5 314 350.0 655
25.0 7 137.5 115 250.0 346 362.5 700
37.5 13 150.0 135 262.5 379 375.0 747
50.0 21 162.5 156 275.0 414 387.5 796
62.5 30 175.0 179 287.5 451 400.0 846
75.0 40 187.5 203 300.0 488

87.5 52 200.0 228 312.5 528

100.0 66 212.5 256 325.0 569
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