
Chapter 2

Acceleration of Gravity

Introduction

The Greek philosopher Aristotle (384–322 B.C.) considered the Universe spherical,

finite, and completely filled with aether. According to his model the celestial bodies

(e.g., Moon and planets) are localized each one on a different “sphere,” and all the

Universe is entirely immerse in a bigger sphere, where are the stars. The Earth is

spherical and in rest, and its center coincides with the center of the Universe.

Aristotle did not accept the idea of vacuum—in his vision, the elements that

compose all things and terrestrial beings are different from the aether, substance

of divine origin, eternal and imperishable that forms and fills “the Skies,” which

include the spheres of the Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn, and,

finally, the sphere of the stars. In the sublunary world, below the sphere of the

Moon, there is no place for aether, only for the four elements: earth, water, air, and

fire. The natural movement of these sublunary objects is not a circular and uniform

motion, only reserved to what is perpetual and perfect, but rectilinear and directed

to the center of the Universe, or to the Earth, or its inverse, driven away from the

center (which would be the case of fire and air). As an example, the water is lighter

then earth (less dense, according to modern science), but both follow their natural

movement towards the center, being water above earth, and thus Aristotle explains

the reason why seas are covering the surface of the Earth. Water and earth are heavy

(gravitas) elements. These bodies tend to fall towards the center of the Universe due

to their heaviness (gravity), which is for Aristotle an intrinsically quality of this

matter. So, the gravity impels the heavy bodies to find its natural place.

Unlike Aristotle, who affirmed that the speed of a body in free fall is proportional

to its weight, Galileo Galilei (1564–1642) refuses any statement a priori

(in advance) and starts to observe falling bodies, proposing theoretical models

using mathematical language and conducting experiments in an organized and

systematic way. Thereby, we have the beginning of the scientific method, which

is based on the structuring of theoretical abstract models, usually suggested by a
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question that the researcher makes about a physical phenomenon. The model allows

the discovery of the consequences following the hypotheses that have been

imposed. The researcher should always find in the experiment the verdict of nature

to validate the proposed model. It can be said that Galileo freed science from the

Aristotelian essences and medieval magic, which for more than 2000 years had

impaired its development [1].

Experimental Development

The experimental apparatus1 dedicated to the study of free fall is shown in Fig. 2.1.

The setup has five photosensors, a metallic sphere, an electromagnet, and a stop-

watch available to measure up to four intervals of time. Similar setups can be made

in didactic laboratories, as exemplified in reference [2], that uses blue LEDs

combined with photodiodes, an electromagnet and an Arduino acquisition board.2

A metallic sphere is abandoned from the initial position, which can be consid-

ered zero, as indicated in the ruler of the experimental apparatus. The problem can

be approached considering that we know nothing about the physical lows governing

Fig. 2.1 Didactical

apparatus dedicated to study

free fall. The setup has five

photosensors, a metallic

sphere, an electromagnet,

and a stopwatch available to

measure up to four time

intervals

1The didactical equipment used is manufactured by the company CIDEPE (Centro Industrial de

Equipamentos de Ensino e Pesquisa—www.cidepe.com.br). The experimental development as

well as the data analysis presented here is useful for any similar commercial or homemade

equipment.
2Available in: <http://www.arduino.cc/>. Accessed in: 11/11/2016.
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the movement, only the fact that its speed varies in the vertical direction (after all,

the sphere is initially at rest and, after being abandoned, reaches the table with

non-zero speed). Thereby, we can affirm that the movement of the sphere is

accelerated. The simplest hypothesis is to assume that the acceleration, a, is

constant. In other words, the rate of change of its speed is independent of time:

a tð Þ ¼ dv

dt
¼ const: ð2:1Þ

In this case, what are the expected results for the experiment? Integrating

Eq. (2.1) we expect that the velocity v(t) varies linearly with time:

v tð Þ ¼ v0 þ at ð2:2Þ

being v0 the initial velocity at t¼ 0.

The instantaneous velocity is defined as the position’s rate of change of the

observing object as a function of time, v(t)¼ dx/dt. The Eq. (2.2) can then be

integrated and the position of the falling object can be obtained, having a quadratic

of time:

x tð Þ ¼ x0 þ v0tþ a

2
t2, ð2:3Þ

where x0 is the initial position, in other words, the position of the object observed in
t¼ 0.

Aiming to verify the proposed model easily, we can prepare the experiment in a

way to simplify the data analysis by putting the metal sphere at initial position equal

to zero (x0¼ 0), and by starting the time measurement at the beginning of the fall,

that is v0¼ 0. If we do so, Eqs. (2.2) and (2.3) become, respectively:

v tð Þ ¼ at ð2:4Þ
x tð Þ ¼ a

2
t2 ð2:5Þ

Observing Eq. (2.5), it is possible to realize if the proposal of a constant

acceleration is compatible with the obtained data of position and time. To visualize

it, we will plot the graph of the position of the sphere as a function of the square of

time, x� t2. This procedure is called linearization. If the graph shows a linear

tendency, it is an excellent indication that the model proposed of constant acceler-

ation can describe the free fall of bodies at least near the Earth’s surface, where the
experiment is performed. We can then obtain the value of this constant acceleration

from the slope of the straight line fitted to the experimental data. According to the

proposed model, the slope is equal to the coefficient that multiplies t2 in Eq. (2.5), a/2.
If this is so, doubling the slope should give us the value of the acceleration.

Now we are able to test the hypothesis if the acceleration imposed to the bodies

while falling is constant.
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Let’s abandon the metallic sphere from zero position, as it is shown in Fig. 2.2.

The first photosensor is at position zero. The photosensor used in this experiment

consists of a small source of light (diode) whose emission is detected on the opposite

side by a photodiode, both mounted in a U-shaped metallic structure. The sphere is

detected at the instant it blocks the light on the photodiode (see Fig. 2.2). At this

moment, an electronic signal is sent to the stopwatch to start the measurement. The

lower part of the sphere should be aligned with the zero position and also very close

to the laser beam that goes to the photosensor (1 mm or less), but not enough to start

it. This can be achieved adjusting the electromagnet position until the limitrophe

position to start the stopwatch is found by just looking at the lower part of the sphere’s
shadow produced by the laser, and set it as close as possible to the photosensor’s
aperture at the imminence of starting it. It is important to avoid keeping the electro-

magnet on for too long, otherwise the circuit can be damaged.

The photosensors should be separated in such a way that the measured time

intervals of the movement should not be lower than tens of microseconds (just try

few different configurations of the photosensor positions before starting the final

measurement). This is due to the stopwatch resolution,3 which is 10�3 s (or 1 ms).

Assuming that the uncertainty4 is its own resolution, any measurement would have

a relative uncertainty given by5:

Fig. 2.2 Initial position of the metallic sphere. It is important to align the lower part of the sphere

as close as possible to the zero position. This means that the lower part of the sphere’s shadow
should be as close as possible to the photosensor’s aperture at the imminence of the start of the

experiment (the photosensor emits an electronic signal when the laser is blocked by the sphere)

3Resolution is the smallest difference between indications of a display device that can be

significantly perceived [3].
4The uncertainty of a measurement is a parameter that characterizes the dispersion of the values

that can be attributed to this measurement. This parameter can be a standard deviation, or multiple

of it, or half of an interval that corresponds to a stated level of confidence. Preferably, the

uncertainty should be declared with one significant digit. In cases of higher precision it is possible

to express the uncertainty with two significant digits [3].
5In case of an apparatus with digital displays, the resolution corresponds to the digital increment.

In the case of an apparatus that uses analogical displays, the resolution should be estimated by the

experimentalist [3].
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δt

Δt
%ð Þ ¼ 1

Δt
� 100%

For example, time intervals measured between 20 ms and 10 ms give relative

uncertainties of 5–10%. In this experiment, relative uncertainties on time are

around 1%.

To start the experiment, the metallic sphere should be positioned at the electro-

magnet while it is turned on. The stopwatch should then be reset and the electro-

magnet turned off, releasing the sphere. If all the steps described earlier were

accurately done, the initial velocity can be considered zero at first approximation.

This is the crucial point of this experiment, since we are assuming that the initial

velocity is zero, allowing us to investigate x� t2 as being linear.

Table 2.1 shows a data set from the photosensor’s position, x, as a function of

time represented by tabs. The photosensor’s position measurements (in other words,

positions of the small apertures in the metallic structure that correspond to the

photosensors as shown in Fig. 2.3) can be made by the following procedure: we

know that the aperture is localized at the middle of the structure and its width is

22 mm. Adding half of this value (11 mm) to the position of the superior base we

can find the desired measurement. In the example shown in Fig. 2.3, the position of

the second photosensor is given by 11 mm þ 247 mm ¼ 258 mm.

It is necessary now to evaluate the uncertainty associated with the measurement

of the photosensor’s position. We avoid to estimate the uncertainty by statistical

methods (Type A uncertainty6) and use the evaluation known in metrology Type

B uncertainty.7 This uncertainty can be estimated, in a very conservative way, as

Table 2.1 Position and time data set obtained for the free fall of a metallic sphere. Each interval

of time has an associated uncertainty estimated as � 1 ms. When the intervals are added we need

take into account that the final uncertainty increases

x (mm) tabs (ms) t2abs (10
4 ms2)

0 � 1 0 0 0

88 � 1 117 117 � 1 1.37 � 0.02

258 � 1 117þ97 214 � 2 4.58 � 0.09

535 � 1 117þ97þ101 315 � 3 9.9 � 0.2

834 � 1 117þ97þ101þ82 397 � 4 15.8 � 0.3

6The method of evaluation of Type A uncertainty is based in statistical analysis on a series of

observations that can be characterized by experimental standard deviations. In metrology, the best

estimate of a physical quantity x that varies randomly is the arithmetic mean value xm of an

n number of measurements. The standard deviation σ characterizes the variability of the measured

values, in other words, the dispersion around the mean value. In general, the standard deviation of

the mean value σm ¼ σ/(n)1/2 is useful to qualify how the mean value represents the physical

quantity to be measured [3].
7The evaluation of Type B uncertainty is based in a different method than those of statistical

analysis on a series of observations. It can also be characterized by standard deviations estimated

by assuming probability distributions based on the researcher’s experience or other kind of
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�1 mm.8 This kind of uncertainty measurement evaluation arises from an estimate

based on the past experience and judgment of the experimentalist, and not from the

statistic of several measurements.

The measurements related to the four time intervals can be seen at the stopwatch

display shown in Fig. 2.1. The uncertainty of each measurement can be estimated as

�1 ms. It is possible to estimate this value by making some launches and observing

that the intervals of time can change approximately 1 ms. It is important to note that

when you add two intervals of time, the associated uncertainty of the result

increases. Conservatively, we can adopt that the result of the sum of two intervals

of time (this is also valid for the difference) is the sum of each associated uncer-

tainty. This way of estimating the uncertainty is called maximum possible uncer-
tainty [3]. Using as an example the calculation of the absolute time associated with

the position of the third photosensor (258 mm) it is easy to see that:

tabs ¼ 117þ 97 ¼ 214ms

But it also can fluctuate between:

tabsþ ¼ 117þ 1ð Þ þ 97þ 1ð Þ ¼ 216ms

Fig. 2.3 The position of the second photosensor can be obtained by adding half of its width

(0.5 � 22 mm ¼ 11 mm) to the position of the its superior part. In this example its value is

11 mm þ 247 mm ¼ 258 mm

observations. The correct use of the set of available information for the evaluation of the Type B

uncertainty claims for the researcher’s experience and wide knowledge, and this ability can be

learned in practice. An evaluation Type B can be as trustable as an evaluation type A, especially in

a measurement situation where an evaluation type A is based on a comparatively small number of

statistical independent observations [3].
8For example, the experimentalist can ask one or two colleagues to make the same measurement

and evaluate the result of the fluctuations. This is a simple method that can help in the evaluation of

a type B uncertainty.
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tabs� ¼ 117� 1ð Þ þ 97� 1ð Þ ¼ 212ms

It is clear in the example above that the maximum possible variation of the value

of tabs is �2 ms, which corresponds the sum in absolute values of each uncertainty.

It is not difficult to realize that for an N number of terms to be added, the maximum

possible uncertainty will be the sum of the absolute values of the uncertainties of

each associated term. Table 2.1 shows the data set obtained for the free fall of a

metallic sphere.

The last column of Table 2.1 shows the associated values of the square of

absolute time. Below we show how it is possible to obtain an estimate of its

uncertainty. In this case, a possible way would be to derive the square of absolute

time and obtain the uncertainty for each measurement:

δ t2
� � ¼ d t2ð Þ

dt
δt ¼ 2tδt, ð2:6Þ

being δ(t2) the associate uncertainty of the quantity t2. As an example, we can

calculate the associated uncertainty of the measurement (214 � 2)2.

t2 ¼ 45796

δ t2
� � ¼ 2� 214� 2 ¼ 856

As the uncertainty should present with one or two significant digits [3], we have:

δ t2
� � ¼ 9� 102

And the measurement can be written as:

t2 ¼ 458� 9ð Þ � 102ms2 ¼ 4:58� 0:09ð Þ � 104ms2

Analysis of the Experimental Data

The graph of x� t2 is presented in Fig. 2.4. The associated uncertainties to the

positions are smaller than the size of the representation of the experimental data

points. But the uncertainties associated with the square of time increase and are

visible on the graph at the last three data points. The dashed lines were traced

aiming to delimit the area where possible straight lines would be “acceptable” as a

fit. The central line shows what would be considered the best fit. Note that the fit is

made in an empirical way without any formal mathematical justification, based

only in reasonability. The uncertainties of the experimental points can help us to

choose the area between the dashed lines. If the uncertainties were higher the area
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between the dashed lines would also be larger. This procedure allows the obtaining

of an estimation of the slope’s uncertainty and, thus, the uncertainty of the free fall

acceleration of the bodies.

Using any two points included in the central linear fit and reasonably far from

each other, for example, (0;0) and (10;540), respecting the units, we obtain the

slope value that corresponds to half of the acceleration:

a

2
¼ 540� 0ð Þmm

10� 0ð Þ � 104ms2
¼ 0:540m

10� 104 � 10�6s2
¼ 5:40 m=s2

Fig. 2.4 Graph of x� t2. Note the two dashed lines delimiting the possible linear fits that would be

“acceptable.” The central line is the best fit that visually adjusts to the experimental data
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Proceeding in a similar way, we can obtain the slopes related to the dashed

straight lines 5.15 m/s2 and 5.65 m/s2. Now it is possible to evaluate the acceleration

and its uncertainty (it is only needed to subtract 5.15 from 5.64 and divide the result

by 2):

a

2
¼ 5:40� 0:25 m=s2

Remember that the uncertainty can be written with one or two significant digits.

Therefore, by this method, the value of the acceleration is:

a ¼ 10:8� 0:5 m=s2

At first glance the linear fit could be considered reasonable, but we can

compare the obtained result with the official value of the local acceleration of

gravity9 measured by the Brazilian National Observatory (O.N.), g ¼
9.7877394 � 0.0000002 m/s2. This can be made by calculating the relative error,

but first it is important to define the absolute error. The absolute error is the result of

a measurement subtracted by its true value, and here the true value is the standard

value, in other words, the value of the local acceleration of gravity measured by the

O.N. The relative error is given by the ratio of the absolute error by the standard

value, normally expressed in percentage:

Errorrelative ¼ 10:8� 9:7877394

9:7877394

� �
� 100% � þ10%

Figure 2.5 shows that the standard value of the acceleration of gravity does not

fall within the range of the estimated uncertainty. In order to understand that, it

Fig. 2.5 Comparison between experimental and standard values of the acceleration of gravity

9Didactic laboratory of physics—Instituto Federal de Educaç~ao, Ciência e Tecnologia do Rio de

Janeiro (IFRJ), campus Nilópolis, State of Rio de Janeiro, Brazil.
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is important to review some of the assumptions made during the experiment.

The adjustment of the initial position at zero seems to be reasonable, but what

would be the consequences if the initial velocity was a bit higher than zero? The

first consequence would be that: it would not be possible anymore to expect that the

experimental data would be fitted by a straight line as proposed by our theoretical

model shown at the graph in Fig. 2.4.

Assuming the sphere starts the stopwatch 1 mm after it begins to fall (this is a

reasonable estimation, as it is quite difficult to adjust the separation between the low

part of the sphere and the laser to be less than 1 mm apart without the sphere starting

the stopwatch before it begins to fall—observe the photo on the right shown in

Fig. 2.2), we can use the experimental value of the acceleration itself to obtain an

estimation of the initial velocity in t ¼ 0. Using the equation that relates the final

velocity and the distance that an object travels, which is valid for movements with

constant acceleration (known as Torricelli equation), we have:

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2aΔs

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 10:8m=s2 � 10�3 m

q
� 0:15m=s

If the initial velocity is no longer zero, how can we correct the graph shown in

Fig. 2.4? Equation (2.3) would be written as:

x tð Þ ¼ v0tþ a

2
t2 ð2:7Þ

The correction can be made using the displacement of the position x in each data
point by a factor (�v0t). We have now a corrected value for each position of the

sphere in function of time, and it can be linearized anew.

x tð Þ � v0t ¼ a

2
t2

xcorr ¼ a

2
t2

ð2:8Þ

Table 2.2 presents the correct values for the position as a function of time and the

graph shown in Fig. 2.6 includes now the corrected data points (labeled as tri-

angles). It is possible to make a linear fit and obtain an estimation of the slope equal

Table 2.2 Experimental data

of position, corrected position

(xcorr), and squared absolute

time of the metallic sphere in

free fall

x (mm) xcorr ¼ x – v0t t2abs (10
4 ms2)

0 � 1 0 � 1 0

88 � 1 70 � 1 1.37 � 0.02

258 � 1 226 � 1 4.58 � 0.09

535 � 1 488 � 1 9.9 � 0.2

834 � 1 775 � 1 15.8 � 0.3
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to 4.9 m/s2, which corresponds to a new value of 9.8 m/s2 to the local acceleration of

gravity. This number is much closer to the standard value.

Note that it was necessary to make a first measurement of the acceleration, and

afterwards, improve it using a correction and taking the first acceleration measure-

ment as a reference value. This is a very common procedure in experimental

physics.

Fig. 2.6 Graph of x� t2. The data points labeled as triangles correspond to the corrected

experimental values (xcorr). The slope of the new linear fit corresponds to 4.9 m/s2, which

corresponds to an acceleration of 9.8 m/s2
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There is another mathematically more elegant procedure to directly obtain the

values of acceleration and initial velocity, which is called “least-squares method.”

Applying this method to the experimental data in the graph x� t, we should expect

to fit a parabola, as shown in Eq. (2.3).

Least-Squares Method

The least-squares method is discussed here in a simplified enough way to meet the

needs of this experiment. However, the discussion presented here is useful to the

understanding of the fitting mechanism made by computer programs, differing only

in computing capability. Eq. (2.3) presents the position of the sphere as a function

of time and will be used considering the initial position x0¼ 0. It is expected that the

graph of x� t shows experimental data distributed along an arch of a parabola,

whose equation can be written as:

x tð Þ ¼ Atþ Bt2 ð2:9Þ

In the present case, A corresponds to the initial velocity and B to half of the

acceleration (supposed constant) near to the surface of the Earth.

The least-squares method consists in calculating the coefficients A and B in a

way that the distance between each of the N experimental points and the fitted curve

given by Eq. (2.9) is minimized. It is possible to define the function χ2 that

quantifies these differences:

χ2 ¼
XN
i¼1

xi � x tið Þ½ �2 ¼
XN
i¼1

xi � Ati � Bt2i
� �2 ð2:10Þ

The sum extends for all N experimental points. The partial derivatives of

function χ2 related to the coefficients A and B result in a system of equations that

can be easily solved:

A ¼ s1xs4 � s2xs3
s2s4 � s23

and B ¼ s2xs2 � s1xs3
s2s4 � s23

ð2:11Þ

and

s2 ¼
XN
i¼1

t2i ; s3 ¼
XN
i¼1

t3i ; s4 ¼
XN
i¼1

t4i ; s1x ¼
XN
i¼1

xiti and s2x ¼
XN
i¼1

xit
2
i ð2:12Þ

Table 2.3 presents the constants shown in Eq. (2.12). Using the relations of

Eq. (2.11) we find:
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A ¼ s1xs4 � s2xs3
s2s4 � s23

¼ 0:16948m=s and B ¼ s2xs2 � s1xs3
s2s4 � s23

¼ 4:86106m=s2

From the values of A and B we obtain both the initial velocity and the

acceleration:

v0 ¼ A ¼ 0:17m=s and a ¼ 2B ¼ 9:72m=s2

Note that the initial velocity is not zero, but very close to the estimation obtained

assuming that the movement begins to be tracked after the sphere travels approx-

imately 1 mm, resulting in an initial velocity of 0.15 m/s. The obtained value of the

acceleration is a bit lower than the one obtained via linear fit, reducing the relative

error to approximately 0.7%.

The graph shown in Fig. 2.7 exhibits the parabolic curve plotted with the aid of

32 points (see Table 2.4) obtained by the fitting function x(t)¼
0.16948 tþ 0.00486106 t2, whose parameters calculated using the least-squares

method are A ¼ 0.16948 mm/ms and B ¼ 0.00486106 mm/ms2. The idea is to

generate a number of points large enough to “connect them,” generating the fitting

curve. The higher the number of points the easier it is to trace the curve.

The uncertainty calculations of the obtained parameters by the least-squares

method can also be performed; however, such calculations are beyond the scope of

this book. For further details, reference [3] is indicated.

To close this chapter, it would be interesting to indicate an experiment to show

that objects with different masses, when the air resistance can be neglected, fall

with the same acceleration. If two spheres with different masses are abandoned

simultaneously, they should reach the ground at the same time. This is a simple

experiment, though there is an important detail: the two bodies should be aban-

doned simultaneously. Professor Jo~ao Canalle published a very interesting article

Table 2.3 Data used to calculate the coefficients A and B using the least-squares method

x (m) t (s) t2 (s2) t3 (s3) t4 (s4) xt (ms) xt2 (ms2)

0.000 0.000 0.000000 0.000000 0.000000 0.000000 0.000000

0.088 0.117 0.013689 0.001602 0.000187 0.010296 0.001205

0.258 0.214 0.045796 0.009800 0.002097 0.055212 0.011815

0.535 0.315 0.099225 0.031256 0.009846 0.168525 0.053085

0.834 0.397 0.157609 0.062571 0.024841 0.331098 0.131446

s2 ¼
PN
i¼1

t2i

¼ 0.31632

s3 ¼
PN
i¼1

t3i

¼ 0.10523

s4 ¼
PN
i¼1

t4i

¼ 0.03697

s1x ¼
PN
i¼1

xiti

¼ 0.56513

s2x ¼
PN
i¼1

xit
2
i

¼ 0.19755
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that explains in detail how to build an apparatus that guarantee simultaneous free

fall, called “Free fall mouse trap” [4]. Professor Canalle suggests the use of a small

metallic mousetrap, screws, wood blocks, and, of course, two bodies with different

masses, e.g., a sphere of glass and one of steel.

Fig. 2.7 Graph x� t. The five experimental data points are labeled as squares. The parabolic

curve was plotted with the aid of 32 points (see Table 2.4) obtained by the fitting function

x(t)¼ 0.16948 tþ 0.00486106 t2, whose parameters obtained using the least-squares method are

A ¼ 0.16948 mm/ms and B ¼ 0.00486106 mm/ms2
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