Chapter 2

Time Series Regression and Exploratory
Data Analysis

In this chapter we introduce classical multiple linear regression in a time series
context, model selection, exploratory data analysis for preprocessing nonstationary
time series (for example trend removal), the concept of differencing and the backshift
operator, variance stabilization, and nonparametric smoothing of time series.

2.1 Classical Regression in the Time Series Context

We begin our discussion of linear regression in the time series context by assuming
some output or dependent time series, say, x;, fort = 1, ..., n, is being influenced by
a collection of possible inputs or independent series, say, z:1, 22, - - ., 214, Where we
first regard the inputs as fixed and known. This assumption, necessary for applying
conventional linear regression, will be relaxed later on. We express this relation
through the linear regression model

X = Bo+ P12 + Pazia + 0+ ByZig + Wi 2.1

where SBo, B1, . . ., B4 are unknown fixed regression coefficients, and {w, } is a random
error or noise process consisting of independent and identically distributed (iid)
normal variables with mean zero and variance o2, For time series regression, it
is rarely the case that the noise is white, and we will need to eventually relax that
assumption. A more general setting within which to embed mean square estimation
and linear regression is given in Appendix B, where we introduce Hilbert spaces and
the Projection Theorem.

Example 2.1 Estimating a Linear Trend
Consider the monthly price (per pound) of a chicken in the US from mid-2001 to
mid-2016 (180 months), say x;, shown in Fig. 2.1. There is an obvious upward
trend in the series, and we might use simple linear regression to estimate that trend
by fitting the model
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Fig. 2.1. The price of chicken: monthly whole bird spot price, Georgia docks, US cents per
pound, August 2001 to July 2016, with fitted linear trend line

X =Bo+ Bize +wr, 2 =20015,2001-%

6
1,2001%,...,20165.

This is in the form of the regression model (2.1) with ¢ = 1. Note that we are

making the assumption that the errors, w;, are an iid normal sequence, which may

not be true; the problem of autocorrelated errors is discussed in detail in Chap. 3.
In ordinary least squares (OLS), we minimize the error sum of squares

(xr = [Bo + ﬂth])z
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with respect to 8; for i = 0, 1. In this case we can use simple calculus to evaluate
00/3B; = 0 fori = 0,1, to obtain two equations to solve for the Bs. The OLS
estimates of the coefficients are explicit and given by

_ Z:L:l(xt - X)(z — 2)
Y (z = 2)?

where ¥ = )}, x;/n and Z = ), z;/n are the respective sample means.

Using R, we obtained the estimated slope coefficient of 8; = 3.59 (with a
standard error of .08) yielding a significant estimated increase of about 3.6 cents
per year. Finally, Fig. 2.1 shows the data with the estimated trend line superimposed.
R code with partial output:

summary(fit <- lm(chicken~time(chicken), na.action=NULL))
Estimate Std.Error t.value
(Intercept) -7131.02 162.41 -43.9
time (chicken) 3.59 0.08 44 .4

/?1 and /?0 =X —-/?1 Z,

Residual standard error: 4.7 on 178 degrees of freedom
plot(chicken, ylab="cents per pound")
abline(fit) # add the fitted line

The multiple linear regression model described by (2.1) can be conveniently writ-
ten in a more general notation by defining the column vectors z; = (1, z;1, 22, - - ., Zq)’
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and 8 = (Bo, B1, . ... B¢)’, where ’ denotes transpose, so (2.1) can be written in the
alternate form

xr = Bo +,3th1+"'+,8qth+Wt:,3'Zz+Wt' (2.2)

where w, ~ iid N(0,02). As in the previous example, OLS estimation finds the
coeflicient vector 8 that minimizes the error sum of squares

n n
Q=) w =) (=B 23)
1=1 1=1
with respect to B, B1, . . ., By. This minimization can be accomplished by differen-

tiating (2.3) with respect to the vector S8 or by using the properties of projections.
Either way, the solution must satisfy 7" (x; — B'z:)z) = 0. This procedure gives the

normal equations
n n
(Z ztz,’) B=> ux. (2.4)
=1 =1

If 3.7, z:z; is non-singular, the least squares estimate of 3 is

n -1 n
ﬁA = (Z thtl) Z ¢ Xt
=1 =1
The minimized error sum of squares (2.3), denoted SSE, can be written as
n
SSE = Z(xt -B'z) (2.5)
=1

The ordinary least squares estimators are unbiased, i.e., E(ﬁ) = B, and have the
smallest variance within the class of linear unbiased estimators.

If the errors w, are normally distributed, ,3 is also the maximum likelihood
estimator for 8 and is normally distributed with

cov(f) = o2 C, (2.6)
where X
C= (Z z,z;) @.7)
1=1
is a convenient notation. An unbiased estimator for the variance o2, is
SSE
52 =MSE = ————, (2.8)
n—(q+1)
where M SE denotes the mean squared error. Under the normal assumption,
(= Bi=B) (2.9)

swCii
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Table 2.1. Analysis of variance for regression

Source df Sum of squares Mean square F
2l q-r SSR = SSE, - SSE ~ MSR=SSR/(q—r) F=23R
Error n—(g+1) SSE MSE =SSE/(n—q—-1)

has the t-distribution with n— (g + 1) degrees of freedom; ¢;; denotes the i-th diagonal
element of C, as defined in (2.7). This result is often used for individual tests of the
null hypothesis Hy: g; =0fori=1,...,q.

Various competing models are often of interest to isolate or select the best subset of
independent variables. Suppose a proposed model specifies that only a subset r < g
independent variables, say, z; 1., = {21, 22, .- ., 2} is influencing the dependent
variable x;. The reduced model is

Xe = Bo+ Bz + o+ Brzer + Wi (2.10)

where 1, 8o, - . ., B are a subset of coeflicients of the original g variables.

The null hypothesis in this case is Ho: 8,41 = -+ = B; = 0. We can test the
reduced model (2.10) against the full model (2.2) by comparing the error sums of
squares under the two models using the F-statistic

_ (SSE, - SSE)/(g—r) _MSR
~ SSE/(n-g-1)  MSE’

@2.11)

where SSE, is the error sum of squares under the reduced model (2.10). Note that
SSE, > SSE because the full model has more parameters. If Hy: 8,41 = -+ = 8, =0
is true, then SSE, ~ SSE because the estimates of those s will be close to 0. Hence,
we do not believe Hy if SSR = SSE, — SSE is big. Under the null hypothesis, (2.11)
has a central F-distribution with g — r and n — g — 1 degrees of freedom when (2.10)
is the correct model.

These results are often summarized in an Analysis of Variance (ANOVA) table as
given in Table 2.1 for this particular case. The difference in the numerator is often
called the regression sum of squares (SSR). The null hypothesis is rejected at level a
if F > F:__qr_l (@), the 1 — a percentile of the F distribution with g — r numerator and
n — g — 1 denominator degrees of freedom.

A special case of interest is the null hypothesis Hy: 81 = --- = B, = 0. In this
case r = 0, and the model in (2.10) becomes

xt:ﬁ()'i'wt.

We may measure the proportion of variation accounted for by all the variables using
R = SSEy — SSE
SSEy ’

where the residual sum of squares under the reduced model is

2.12)

(x, — %)%, (2.13)
1

SSEy =

n
=
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In this case SSE| is the sum of squared deviations from the mean ¥ and is otherwise
known as the adjusted total sum of squares. The measure R? is called the coefficient
of determination.

The techniques discussed in the previous paragraph can be used to test various
models against one another using the F test given in (2.11). These tests have been
used in the past in a stepwise manner, where variables are added or deleted when the
values from the F-test either exceed or fail to exceed some predetermined levels. The
procedure, called stepwise multiple regression, is useful in arriving at a set of useful
variables. An alternative is to focus on a procedure for model selection that does not
proceed sequentially, but simply evaluates each model on its own merits. Suppose
we consider a normal regression model with k coefficients and denote the maximum
likelihood estimator for the variance as

SSE(k)

A2:
k n

(2.14)
where SSE(k) denotes the residual sum of squares under the model with k regression
coefficients. Then, Akaike [1-3] suggested measuring the goodness of fit for this
particular model by balancing the error of the fit against the number of parameters in
the model; we define the following.!

Definition 2.1 Akaike’s Information Criterion (AIC)

2
AIC = log &2 + "7 2% (2.15)
n

where 0 ]f is given by (2.14) and k is the number of parameters in the model.

The value of k yielding the minimum AIC specifies the best model. The idea is
roughly that minimizing 6',3 would be a reasonable objective, except that it decreases
monotonically as k increases. Therefore, we ought to penalize the error variance by a
term proportional to the number of parameters. The choice for the penalty term given
by (2.15) is not the only one, and a considerable literature is available advocating
different penalty terms. A corrected form, suggested by Sugiura [196], and expanded
by Hurvich and Tsai [100], can be based on small-sample distributional results for
the linear regression model (details are provided in Problem 2.4 and Problem 2.5).
The corrected form is defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

n+k

AlCc = log 6',3 + P
n—k—

(2.16)

! Formally, AIC is defined as —2 log Ly + 2k where Ly, is the maximized likelihood and k is the number
of parameters in the model. For the normal regression problem, AIC can be reduced to the form given
by (2.15). AIC is an estimate of the Kullback-Leibler discrepancy between a true model and a candidate
model; see Problem 2.4 and Problem 2.5 for further details.
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where 6’,3 is given by (2.14), k is the number of parameters in the model, and n is
the sample size.

We may also derive a correction term based on Bayesian arguments, as in Schwarz
[175], which leads to the following.

Definition 2.3 Bayesian Information Criterion (BIC)

k1
BIC = log 62 + —=2", (2.17)
n

using the same notation as in Definition 2.2.

BIC is also called the Schwarz Information Criterion (SIC); see also Rissanen
[166] for an approach yielding the same statistic based on a minimum description
length argument. Notice that the penalty term in BIC is much larger than in AIC,
consequently, BIC tends to choose smaller models. Various simulation studies have
tended to verify that BIC does well at getting the correct order in large samples,
whereas AICc tends to be superior in smaller samples where the relative number
of parameters is large; see McQuarrie and Tsai [138] for detailed comparisons. In
fitting regression models, two measures that have been used in the past are adjusted
R-squared, which is essentially sfv, and Mallows C,,, Mallows [133], which we do
not consider in this context.

Example 2.2 Pollution, Temperature and Mortality

The data shown in Fig. 2.2 are extracted series from a study by Shumway et al. [183]
of the possible effects of temperature and pollution on weekly mortality in Los
Angeles County. Note the strong seasonal components in all of the series, corre-
sponding to winter-summer variations and the downward trend in the cardiovascular
mortality over the 10-year period.

A scatterplot matrix, shown in Fig. 2.3, indicates a possible linear relation
between mortality and the pollutant particulates and a possible relation to tempera-
ture. Note the curvilinear shape of the temperature mortality curve, indicating that
higher temperatures as well as lower temperatures are associated with increases in
cardiovascular mortality.

Based on the scatterplot matrix, we entertain, tentatively, four models where
M, denotes cardiovascular mortality, 7; denotes temperature and P, denotes the
particulate levels. They are

M; = Bo + Bit + wy (2.18)
M =Bo+ it + (T —T.)+w (2.19)
M, = o+ pit + Bo(Ty = T.) + B3(T, = T.)* + w, (2.20)
M; = Bo+ it + Bo(Ty = T.) + B3(Ty = T.)* + BaPy + w; 2.21)

where we adjust temperature for its mean, 7. = 74.26, to avoid collinearity prob-
lems. It is clear that (2.18) is a trend only model, (2.19) is linear temperature, (2.20)
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Fig. 2.2. Average weekly cardiovascular mortality (fop), temperature (middle) and particulate
pollution (bottom) in Los Angeles County. There are 508 six-day smoothed averages obtained
by filtering daily values over the 10 year period 1970-1979

Table 2.2. Summary statistics for mortality models

Model SSE df MSE R? AIC BIC

k
(2.18) 2 40,020 506 79.0 .21 5.38 5.40
(2.19) 3 31,413 505 622 .38 5.14 5.17
4
5

(2.20) 27,985 504 555 .45 5.03 5.07
(2.21) 20,508 503 40.8 .60 4.72 4.77

is curvilinear temperature and (2.21) is curvilinear temperature and pollution. We
summarize some of the statistics given for this particular case in Table 2.2.

We note that each model does substantially better than the one before it and that
the model including temperature, temperature squared, and particulates does the
best, accounting for some 60% of the variability and with the best value for AIC
and BIC (because of the large sample size, AIC and AICc are nearly the same).
Note that one can compare any two models using the residual sums of squares
and (2.11). Hence, a model with only trend could be compared to the full model,
Ho: 8> = B3 =4 =0,using g =4,r = 1,n = 508, and



52 2 Time Series Regression and Exploratory Data Analysis

130

T
110

Mortality L
o
-8
-8
R
S -
8 -
8 -
Temperature
2 o °
o |
© o
8 -
o
) ) =]

60

Particulates B

T T T T T
70 80 90 100 110 120 130 20 40 60 80 100

Fig. 2.3. Scatterplot matrix showing relations between mortality, temperature, and pollution

(40,020 - 20,508)/3
20,508/503
which exceeds F3 503(.001) = 5.51. We obtain the best prediction model,

M, = 2831.5 — 1.396( 10/t — .472( 032)(T; — 74.26)
+.023003)(T; — 74.26)* + .255(019)Ps,

for mortality, where the standard errors, computed from (2.6)—(2.8), are given in
parentheses. As expected, a negative trend is present in time as well as a negative
coefficient for adjusted temperature. The quadratic effect of temperature can clearly
be seen in the scatterplots of Fig. 2.3. Pollution weights positively and can be
interpreted as the incremental contribution to daily deaths per unit of particulate
pollution. It would still be essential to check the residuals w, = M, — M, for
autocorrelation (of which there is a substantial amount), but we defer this question
to Sect. 3.8 when we discuss regression with correlated errors.

Below is the R code to plot the series, display the scatterplot matrix, fit the final
regression model (2.21), and compute the corresponding values of AIC, AICc and
BIC.2 Finally, the use of na.action in Im() is to retain the time series attributes for
the residuals and fitted values.

F3503 = =160,

2 The easiest way to extract AIC and BIC from an Im() run in R is to use the command AIC() or
BIC(). Our definitions differ from R by terms that do not change from model to model. In the example,
we show how to obtain (2.15) and (2.17) from the R output. It is more difficult to obtain AICc.
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par(mfrow=c(3,1)) # plot the data

plot(cmort, main="Cardiovascular Mortality", xlab="", ylab="")
plot(tempr, main="Temperature", xlab="", ylab="")

plot(part, main="Particulates", xlab="", ylab="")

dev.new() # open a new graphic device

ts.plot(cmort, tempr,part, col=1:3) # all on same plot (not shown)
dev.new()

pairs(cbind(Mortality=cmort, Temperature=tempr, Particulates=part))

temp = tempr-mean(tempr) # center temperature

temp2 = temp*2

trend = time(cmort) # time

fit = Im(cmort~ trend + temp + temp2 + part, na.action=NULL)
summary (fit) # regression results

summary (aov(fit)) # ANOVA table (compare to next line)
summary (aov(lm(cmort~cbind(trend, temp, temp2, part)))) # Table 2.1
num = length(cmort) # sample size

AIC(fit)/num - log(2*pi) # AIC
BIC(fit)/num - log(2*pi) # BIC
(AICc = log(sum(resid(fit)*2)/num) + (num+5)/(num-5-2)) # AICc

As previously mentioned, it is possible to include lagged variables in time series
regression models and we will continue to discuss this type of problem throughout
the text. This concept is explored further in Problem 2.2 and Problem 2.10. The
following is a simple example of lagged regression.

Example 2.3 Regression With Lagged Variables
In Example 1.28, we discovered that the Southern Oscillation Index (SOI) measured
at time ¢ — 6 months is associated with the Recruitment series at time ¢, indicating
that the SOI leads the Recruitment series by six months. Although there is evidence
that the relationship is not linear (this is discussed further in Example 2.8 and
Example 2.9), consider the following regression,

Ry = Bo + B1St-6 + Wr, (2.22)

where R, denotes Recruitment for month ¢ and S;_¢ denotes SOI six months
prior. Assuming the w, sequence is white, the fitted model is

R, = 65.79 — 44.28(,.75S, 6 (2.23)

with &, = 22.5 on 445 degrees of freedom. This result indicates the strong pre-

dictive ability of SOI for Recruitment six months in advance. Of course, it is still

essential to check the model assumptions, but again we defer this until later.
Performing lagged regression in R is a little difficult because the series must be

aligned prior to running the regression. The easiest way to do this is to create a data

frame (that we call fish) using ts.intersect, which aligns the lagged series.

fish = ts.intersect(rec, soil6=lag(soi,-6), dframe=TRUE)

summary(fitl <- Im(rec~soil6, data=fish, na.action=NULL))

The headache of aligning the lagged series can be avoided by using the R package

dynlm, which must be downloaded and installed.

library(dynlm)
summary(fit2 <- dynlm(rec~ L(s0i,6)))
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We note that fit2 is similar to the fit1 object, but the time series attributes are
retained without any additional commands.

2.2 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary so that averaging
lagged products over time, as in the previous section, will be a sensible thing to
do. With time series data, it is the dependence between the values of the series that
is important to measure; we must, at least, be able to estimate autocorrelations with
precision. It would be difficult to measure that dependence if the dependence structure
is not regular or is changing at every time point. Hence, to achieve any meaningful
statistical analysis of time series data, it will be crucial that, if nothing else, the mean
and the autocovariance functions satisfy the conditions of stationarity (for at least
some reasonable stretch of time) stated in Definition 1.7. Often, this is not the case,
and we will mention some methods in this section for playing down the effects of
nonstationarity so the stationary properties of the series may be studied.

A number of our examples came from clearly nonstationary series. The Johnson &
Johnson series in Fig. 1.1 has a mean that increases exponentially over time, and the
increase in the magnitude of the fluctuations around this trend causes changes in
the covariance function; the variance of the process, for example, clearly increases
as one progresses over the length of the series. Also, the global temperature series
shown in Fig. 1.2 contains some evidence of a trend over time; human-induced global
warming advocates seize on this as empirical evidence to advance the hypothesis that
temperatures are increasing.

Perhaps the easiest form of nonstationarity to work with is the trend stationary
model wherein the process has stationary behavior around a trend. We may write this
type of model as

Xe = M + Yt (2.24)

where x; are the observations, u, denotes the trend, and y, is a stationary process.
Quite often, strong trend will obscure the behavior of the stationary process, y;, as
we shall see in numerous examples. Hence, there is some advantage to removing the
trend as a first step in an exploratory analysis of such time series. The steps involved
are to obtain a reasonable estimate of the trend component, say [, and then work
with the residuals

P =x— fs. (2.25)

Example 2.4 Detrending Chicken Prices
Here we suppose the model is of the form of (2.24),

Xt = Mr + Yr,

where, as we suggested in the analysis of the chicken price data presented in
Example 2.1, a straight line might be useful for detrending the data; i.e.,
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Fig. 2.4. Detrended (top) and differenced (botfom) chicken price series. The original data are
shown in Fig. 2.1

M =Bo+ it
In that example, we estimated the trend using ordinary least squares and found
Ay =-7131+3.59¢

where we are using ¢ instead of z; for time. Figure 2.1 shows the data with the
estimated trend line superimposed. To obtain the detrended series we simply subtract
[, from the observations, x;, to obtain the detrended series?3

$r =x +7131 - 3.591.

The top graph of Fig. 2.4 shows the detrended series. Figure 2.5 shows the ACF
of the original data (top panel) as well as the ACF of the detrended data (middle
panel).

In Example 1.11 and the corresponding Fig. 1.10 we saw that a random walk
might also be a good model for trend. That is, rather than modeling trend as fixed (as
in Example 2.4), we might model trend as a stochastic component using the random
walk with drift model,

My =0+ fi—1 + Wy, (2.26)
where w; is white noise and is independent of y,. If the appropriate model is (2.24),
then differencing the data, x;, yields a stationary process; that is,

3 Because the error term, y;, is not assumed to be iid, the reader may feel that weighted least squares is
called for in this case. The problem is, we do not know the behavior of y; and that is precisely what
we are trying to assess at this stage. A notable result by Grenander and Rosenblatt [82, Ch 7], however,
is that under mild conditions on y;, for polynomial regression or periodic regression, asymptotically,
ordinary least squares is equivalent to weighted least squares with regard to efficiency.
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X = X1 = (e + Ye) = (He—1 + Y1) (2.27)
=0+Wr+ Y — Yi-1-

It is easy to show z; = y; — y;_1 is stationary using Chap. 1.1. That is, because y; is
stationary,

Yz(h) = coV(2r4hs 2t) = COV(Yith = Yeth-1> Ve = Yi-1)
= 2'}’y(h) - Vy(h +1) - '}’y(h -1)

is independent of time; we leave it as an exercise (Problem 2.7) to show that x; — x,_;
in (2.27) is stationary.

One advantage of differencing over detrending to remove trend is that no param-
eters are estimated in the differencing operation. One disadvantage, however, is that
differencing does not yield an estimate of the stationary process y; as can be seen
in (2.27). If an estimate of y; is essential, then detrending may be more appropriate. If
the goal is to coerce the data to stationarity, then differencing may be more appropri-
ate. Differencing is also a viable tool if the trend is fixed, as in Example 2.4. That is,
e.g., if y; = Bo + B t in the model (2.24), differencing the data produces stationarity
(see Problem 2.6):

Xp = X1 = (r +¥e) = (Me—1 +ye1) = B1+ Y — Vi1

Because differencing plays a central role in time series analysis, it receives its
own notation. The first difference is denoted as

th =Xt — Xt—1- (228)

As we have seen, the first difference eliminates a linear trend. A second difference,
that is, the difference of (2.28), can eliminate a quadratic trend, and so on. In order
to define higher differences, we need a variation in notation that we will use often in
our discussion of ARIMA models in Chap. 3.

Definition 2.4 We define the backshift operator by
Bx; = xi
and extend it to powers B*>x; = B(Bx;) = Bx;_1 = x;_2, and so on. Thus,

B*x, = x,_k. (2.29)

The idea of an inverse operator can also be given if we require B~'B = 1, so that
_ p-1 _ p-1
Xt = B th - B Xt—1-

That is, B~ is the forward-shift operator. In addition, it is clear that we may
rewrite (2.28) as
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Fig. 2.5. Sample ACFs of chicken prices (top), and of the detrended (middle) and the differenced
(bottom) series. Compare the top plot with the sample ACF of a straight line: ac£(1:100)

Vx; = (1 = B)x, (2.30)
and we may extend the notion further. For example, the second difference becomes
V2x, = (1= B)x; = (1 = 2B+ B*)x; = x; — 2,1 + Xy» (2.31)

by the linearity of the operator. To check, just take the difference of the first difference
V(Vx) = V(x = x-1) = (6 = x-1) = (-1 = X1-2)

Definition 2.5 Differences of order d are defined as
v =(1-B), (2.32)

where we may expand the operator (1 — B)¢ algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.

The first difference (2.28) is an example of a linear filter applied to eliminate a
trend. Other filters, formed by averaging values near x;, can produce adjusted series
that eliminate other kinds of unwanted fluctuations, as in Chap. 4. The differencing
technique is an important component of the ARIMA model of Box and Jenkins [30]
(see also Box et al. [31]), to be discussed in Chap. 3.
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Example 2.5 Differencing Chicken Prices
The first difference of the chicken prices series, also shown in Fig. 2.4, produces
different results than removing trend by detrending via regression. For example,
the differenced series does not contain the long (five-year) cycle we observe in the
detrended series. The ACF of this series is also shown in Fig. 2.5. In this case,
the differenced series exhibits an annual cycle that was obscured in the original or
detrended data.
The R code to reproduce Figs. 2.4 and 2.5 is as follows.

fit = Im(chicken~time(chicken), na.action=NULL) # regress chicken on time
par (mfrow=c(2,1))

plot(resid(fit), type="o", main="detrended")

plot(diff(chicken), type="o0", main="first difference")

par(mfrow=c(3,1)) # plot ACFs

acf(chicken, 48, main="chicken")

acf(resid(fit), 48, main="detrended")

acf(diff(chicken), 48, main="first difference")

Example 2.6 Differencing Global Temperature
The global temperature series shown in Fig. 1.2 appears to behave more as a
random walk than a trend stationary series. Hence, rather than detrend the data, it
would be more appropriate to use differencing to coerce it into stationarity. The
detrended data are shown in Fig. 2.6 along with the corresponding sample ACF.
In this case it appears that the differenced process shows minimal autocorrelation,
which may imply the global temperature series is nearly a random walk with drift.
It is interesting to note that if the series is a random walk with drift, the mean of the
differenced series, which is an estimate of the drift, is about .008, or an increase of
about one degree centigrade per 100 years.

The R code to reproduce Figs. 2.4 and 2.5 is as follows.

par (mfrow=c(2,1))
plot(diff(globtemp), type="o")

mean(diff(globtemp)) # drift estimate = .008
acf(diff(gtemp), 48)

An alternative to differencing is a less-severe operation that still assumes station-
arity of the underlying time series. This alternative, called fractional differencing,
extends the notion of the difference operator (2.32) to fractional powers —.5 < d < .5,
which still define stationary processes. Granger and Joyeux [79] and Hosking [97]
introduced long memory time series, which corresponds to the case when 0 < d < .5.
This model is often used for environmental time series arising in hydrology. We will
discuss long memory processes in more detail in Sect. 5.1. Often, obvious aberra-
tions are present that can contribute nonstationary as well as nonlinear behavior in
observed time series. In such cases, transformations may be useful to equalize the
variability over the length of a single series. A particularly useful transformation is

v = log x;, (2.33)

which tends to suppress larger fluctuations that occur over portions of the series where
the underlying values are larger. Other possibilities are power transformations in the
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Fig. 2.6. Differenced global temperature series and its sample ACF

Box—Cox family of the form

fet=n/a azo,

= 2.34
o {log X A1=0. (239
Methods for choosing the power A are available (see Johnson and Wichern [106, §4.71)
but we do not pursue them here. Often, transformations are also used to improve the
approximation to normality or to improve linearity in predicting the value of one
series from another.

Example 2.7 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the spring melting
seasons, which can be reconstructed yearly over a period ranging from the time
deglaciation began in New England (about 12,600 years ago) to the time it ended
(about 6,000 years ago). Such sedimentary deposits, called varves, can be used as
proxies for paleoclimatic parameters, such as temperature, because, in a warm year,
more sand and silt are deposited from the receding glacier. Figure 2.7 shows the
thicknesses of the yearly varves collected from one location in Massachusetts for
634 years, beginning 11,834 years ago. For further information, see Shumway and
Verosub [185]. Because the variation in thicknesses increases in proportion to the
amount deposited, a logarithmic transformation could remove the nonstationarity
observable in the variance as a function of time. Figure 2.7 shows the original and
transformed varves, and it is clear that this improvement has occurred. We may also
plot the histogram of the original and transformed data, as in Problem 2.8, to argue
that the approximation to normality is improved. The ordinary first differences (2.30)
are also computed in Problem 2.8, and we note that the first differences have a
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Fig. 2.7. Glacial varve thicknesses (top) from Massachusetts for n = 634 years compared with
log transformed thicknesses (bottom)

significant negative correlation at lag 2 = 1. Later, in Chap. 5, we will show
that perhaps the varve series has long memory and will propose using fractional
differencing. Figure 2.7 was generated in R as follows:

par (mfrow=c(2,1))
plot(varve, main="varve", ylab="")
plot(log(varve), main="log(varve)", ylab="" )

Next, we consider another preliminary data processing technique that is used for
the purpose of visualizing the relations between series at different lags, namely, scat-
terplot matrices. In the definition of the ACF, we are essentially interested in relations
between x, and x;_j; the autocorrelation function tells us whether a substantial linear
relation exists between the series and its own lagged values. The ACF gives a profile
of the linear correlation at all possible lags and shows which values of % lead to the
best predictability. The restriction of this idea to linear predictability, however, may
mask a possible nonlinear relation between current values, x;, and past values, x;_,.
This idea extends to two series where one may be interested in examining scatterplots
of y; versus x;_

Example 2.8 Scatterplot Matrices, SOI and Recruitment
To check for nonlinear relations of this form, it is convenient to display a lagged
scatterplot matrix, as in Fig. 2.8, that displays values of the SOI, S;, on the vertical
axis plotted against S,_;, on the horizontal axis. The sample autocorrelations are
displayed in the upper right-hand corner and superimposed on the scatterplots
are locally weighted scatterplot smoothing (lowess) lines that can be used to help
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Fig. 2.8. Scatterplot matrix relating current SOI values, S;, to past SOI values, S;_j,, at lags
h=1,2,...,12. The values in the upper right corner are the sample autocorrelations and the
lines are a lowess fit

discover any nonlinearities. We discuss smoothing in the next section, but for now,
think of lowess as a robust method for fitting local regression.

In Fig. 2.8, we notice that the lowess fits are approximately linear, so that the
sample autocorrelations are meaningful. Also, we see strong positive linear relations
atlags h = 1,2, 11, 12, that is, between S; and S;_1, S;—2, St—11, S¢—12, and a negative
linear relation at lags & = 6, 7. These results match up well with peaks noticed in
the ACF in Fig. 1.16.

Similarly, we might want to look at values of one series, say Recruitment,
denoted R, plotted against another series at various lags, say the SOI, S;_;, to
look for possible nonlinear relations between the two series. Because, for example,
we might wish to predict the Recruitment series, R;, from current or past values
of the SOI series, S;_, for h = 0, 1,2, ... it would be worthwhile to examine the
scatterplot matrix. Figure 2.9 shows the lagged scatterplot of the Recruitment series
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Fig. 2.9. Scatterplot matrix of the Recruitment series, R;, on the vertical axis plotted against
the SOI series, S;_j,, on the horizontal axis atlags & = 0, 1, .. ., 8. The values in the upper right
corner are the sample cross-correlations and the lines are a lowess fit

R; on the vertical axis plotted against the SOI index S;_j on the horizontal axis. In
addition, the figure exhibits the sample cross-correlations as well as lowess fits.

Figure 2.9 shows a fairly strong nonlinear relationship between Recruitment,
R;, and the SOI series at S;_s, St—¢, St—7, S¢—3, indicating the SOI series tends to lead
the Recruitment series and the coefficients are negative, implying that increases
in the SOI lead to decreases in the Recruitment. The nonlinearity observed in
the scatterplots (with the help of the superimposed lowess fits) indicates that the
behavior between Recruitment and the SOI is different for positive values of SOI
than for negative values of SOI.

Simple scatterplot matrices for one series can be obtained in R using the
lag.plot command. Figures 2.8 and 2.9 may be reproduced using the following
scripts provided with astsa:

lagl.plot(soi, 12) # Fig. 2.8
lag2.plot(soi, rec, 8) # Fig. 2.9



2.2 Exploratory Data Analysis 63

rec
0 20 40 60 80
| | |

soiL6

Fig. 2.10. Display for Example 2.9: Plot of Recruitment (R;) vs SOI lagged 6 months (S;_¢)
with the fitted values of the regression as points (+) and a lowess fit (—)

Example 2.9 Regression with Lagged Variables (cont)
In Example 2.3 we regressed Recruitment on lagged SOI,

Ry = Bo + B1St-6 + wr.
However, in Example 2.8, we saw that the relationship is nonlinear and different

when SOI is positive or negative. In this case, we may consider adding a dummy
variable to account for this change. In particular, we fit the model

Ry = Bo+ B1Si-6 + BoDi—6 + B3D: 6 St—6 + Wy,

where D; is a dummy variable that is 0 if S; < 0 and 1 otherwise. This means that

Bo + B1Si-6 + w; if S; ¢ <0,
(Bo + B2) + (B1+ B3)Si—6 +w; if S;620.

The result of the fit is given in the R code below. Figure 2.10 shows R; vs S;_¢ with
the fitted values of the regression and a lowess fit superimposed. The piecewise
regression fit is similar to the lowess fit, but we note that the residuals are not white
noise (see the code below). This is followed up in Example 3.45.

dummy = ifelse(soi<®, 0, 1)

fish = ts.intersect(rec, soil6=lag(soi,-6), dL6=lag(dummy,-6), dframe=TRUE)
summary(fit <- lm(rec~ soil6*dL6, data=fish, na.action=NULL))

t =

Coefficients:

Estimate Std.Error t.value
(Intercept) 74.479 2.865 25.998
soil6 -15.358 7.401 -2.075
dL6 -1.139 3.711 -0.307
soil6:dL6 -51.244 9.523 -5.381

Residual standard error: 21.84 on 443 degrees of freedom
Multiple R-squared: 0.4024
F-statistic: 99.43 on 3 and 443 DF
attach(fish)
plot(soil6, rec)
lines(lowess(soil6, rec), col=4, lwd=2)
points(soil6, fitted(fit), pch='+', col=2)
plot(resid(fit)) # not shown ...
acf(resid(fit)) # ... but obviously not noise
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As a final exploratory tool, we discuss assessing periodic behavior in time series
data using regression analysis. In Example 1.12, we briefly discussed the problem of
identifying cyclic or periodic signals in time series. A number of the time series we
have seen so far exhibit periodic behavior. For example, the data from the pollution
study example shown in Fig. 2.2 exhibit strong yearly cycles. The Johnson & Johnson
data shown in Fig. 1.1 make one cycle every year (four quarters) on top of an
increasing trend and the speech data in Fig. 1.2 is highly repetitive. The monthly
SOI and Recruitment series in Fig. 1.6 show strong yearly cycles, which obscures the
slower El Nifio cycle.

Example 2.10 Using Regression to Discover a Signal in Noise
In Example 1.12, we generated n = 500 observations from the model

x; = AcosQrwt + @) + wy, (2.35)

where w = 1/50, A = 2, ¢ = .6m, and 0, = 5; the data are shown on the bottom
panel of Fig. 1.11. At this point we assume the frequency of oscillation w = 1/50
is known, but A and ¢ are unknown parameters. In this case the parameters appear
in (2.35) in a nonlinear way, so we use a trigonometric identity* and write

Acos(2rwt + ¢) = B cos2rwt) + B sin(2rwt),

where 8] = Acos(¢) and B, = —Assin(¢). Now the model (2.35) can be written in
the usual linear regression form given by (no intercept term is needed here)

x; = By cos(2nt/50) + By sin(27t/50) + wy. (2.36)

Using linear regression, we find ﬁl = —.74(33), ,@2 = —1.99(33) with &, = 5.18;
the values in parentheses are the standard errors. We note the actual values of the
coeflicients for this example are ) = 2cos(.6r) = —.62, and B, = —2sin(.67) =
—1.90. It is clear that we are able to detect the signal in the noise using regression,
even though the signal-to-noise ratio is small. Figure 2.11 shows data generated
by (2.35) with the fitted line superimposed.

To reproduce the analysis and Fig. 2.11 in R, use the following:

set.seed(90210) # so you can reproduce these results
X = 2%cos(2*pi*1:500/50 + .6%pi) + rnorm(500,0,5)
z1 = cos(2*pi*1:500/50)

z2 = sin(2*pi*1:500/50)
summary (fit <- 1lm(x~0+zl1l+z2)) # zero to exclude the intercept

Coefficients:

Estimate Std. Error t value
z1l -0.7442 0.3274 -2.273
z2 -1.9949 0.3274 -6.093

Residual standard error: 5.177 on 498 degrees of freedom
par (mfrow=c(2,1))
plot.ts(x)
plot.ts(x, col=8, ylab=expressionChat(x)))
lines(fitted(fit), col=2)

We will discuss this and related approaches in more detail in Chap. 4.

4 cos(a + B) = cos(a) cos(B) F sin(a) sin(B3).
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Fig. 2.11. Data generated by (2.35) [fop] and the fitted line superimposed on the data [bottom]

2.3 Smoothing in the Time Series Context

In Sect. 1.2, we introduced the concept of filtering or smoothing a time series, and
in Example 1.9, we discussed using a moving average to smooth white noise. This
method is useful in discovering certain traits in a time series, such as long-term trend
and seasonal components. In particular, if x, represents the observations, then

m; = Z ajXi_j, (2.37)

where a; = a_; > 0 and Zj?:_ « @; = 1 is a symmetric moving average of the data.

Example 2.11 Moving Average Smoother
For example, Fig. 2.12 shows the monthly SOI series discussed in Example 1.5
smoothed using (2.37) with weights ap = as; = - -+ = ass = 1/12,and a.¢ = 1/24;
k = 6. This particular method removes (filters out) the obvious annual temperature
cycle and helps emphasize the El Nifio cycle. To reproduce Fig. 2.12 in R:
wgts = c(.5, rep(1,11), .5)/12
soif = filter(soi, sides=2, filter=wgts)
plot(soi)
lines(soif, lwd=2, col=4)
par(fig = c(.65, 1, .65, 1), new = TRUE) # the insert
nwgts = c(rep(0,20), wgts, rep(0,20))
plot(nwgts, type="1", ylim = c(-.02,.1), xaxt='n', yaxt='n', ann=FALSE)

Although the moving average smoother does a good job in highlighting the El
Nifio effect, it might be considered too choppy. We can obtain a smoother fit using
the normal distribution for the weights, instead of boxcar-type weights of (2.37).
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Fig. 2.12. Moving average smoother of SOI. The insert shows the shape of the moving average
(“boxcar”) kernel [not drawn to scale] described in (2.39)
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Fig. 2.13. Kernel smoother of SOI. The insert shows the shape of the normal kernel [not drawn
to scale]

Example 2.12 Kernel Smoothing
Kernel smoothing is a moving average smoother that uses a weight function, or
kernel, to average the observations. Figure 2.13 shows kernel smoothing of the SOI
series, where m; is now

m; = Z wi(t)x;, (2.38)
i=1

where

wi(t) = K () / 27:11{(%1‘) (2.39)

are the weights and K(-) is a kernel function. This estimator, which was originally
explored by Parzen [148] and Rosenblatt [170], is often called the Nadaraya—
Watson estimator (Watson [207]). In this example, and typically, the normal kernel,
K(z) = \/% exp(—z2/2), is used.
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Fig. 2.14. Locally weighted scatterplot smoothers (lowess) of the SOI series

To implement this in R, use the ksmooth function where a bandwidth can be
chosen. The wider the bandwidth, b, the smoother the result. From the R ksmooth
help file: The kernels are scaled so that their quartiles (viewed as probability densities) are
at + 0.25xbandwidth. For the standard normal distribution, the quartiles are +.674.
In our case, we are smoothing over time, which is of the form #/12 for the SOI time
series. In Fig. 2.13, we used the value of b = 1 to correspond to approximately
smoothing a little over one year. Figure 2.13 can be reproduced in R as follows.
plot(soi)
lines(ksmooth(time(soi), soi, "normal"”, bandwidth=1), lwd=2, col=4)
par(fig = c(.65, 1, .65, 1), new = TRUE) # the insert
gauss = function(x) { 1/sqrt(2*pi) * exp(-(x*2)/2) }

x = seq(from = -3, to = 3, by = 0.001)
plot(x, gauss(x), type ="1", ylim=c(-.02,.45), xaxt="n', yaxt='n', ann=FALSE)

Example 2.13 Lowess
Another approach to smoothing a time plot is nearest neighbor regression. The
technique is based on k-nearest neighbors regression, wherein one uses only the
data {x;,_2, ..., Xs, ..., Xs1k/2} to predict x; via regression, and then sets m; = %;.

Lowess is a method of smoothing that is rather complex, but the basic idea is
close to nearest neighbor regression. Figure 2.14 shows smoothing of SOI using
the R function lowess (see Cleveland [42]). First, a certain proportion of nearest
neighbors to x; are included in a weighting scheme; values closer to x; in time get
more weight. Then, a robust weighted regression is used to predict x; and obtain
the smoothed values m;. The larger the fraction of nearest neighbors included, the
smoother the fit will be. In Fig. 2.14, one smoother uses 5% of the data to obtain
an estimate of the El Nifio cycle of the data.

In addition, a (negative) trend in SOI would indicate the long-term warming of
the Pacific Ocean. To investigate this, we used lowess with the default smoother
span of £=2/3 of the data. Figure 2.14 can be reproduced in R as follows.
plot(soi)

lines(lowess(soi, f=.05), lwd=2, col=4) # El1 Nino cycle
lines(lowess(soi), 1lty=2, lwd=2, col=2) # trend (with default span)
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Fig. 2.15. Smoothing splines fit to the SOI series

Example 2.14 Smoothing Splines
An obvious way to smooth data would be to fit a polynomial regression in terms of
time. For example, a cubic polynomial would have x; = m, + w, where

2 3
m; = Bo + P1t + Bat” + P31,

We could then fit m, via ordinary least squares.

An extension of polynomial regression is to first divide time ¢t = 1,.. ., n, into
kintervals, [to = 1,11], [t1 + 1, 2], .. ., [tk=1 + 1, tx = n]; the values 1o, 11, . . ., ty are
called knots. Then, in each interval, one fits a polynomial regression, typically the
order is 3, and this is called cubic splines.

A related method is smoothing splines, which minimizes a compromise between
the fit and the degree of smoothness given by

Z [x, — m > + A / (m)? dt, (2.40)
=1

where m; is a cubic spline with a knot at each ¢ and primes denote differentiation.
The degree of smoothness is controlled by A4 > 0.

Think of taking a long drive where m; is the position of your car at time ¢. In
this case, m;’ is instantaneous acceleration/deceleration, and f (m")2dt is a measure
of the total amount of acceleration and deceleration on your trip. A smooth drive
would be one where a constant velocity, is maintained (i.e., m;” = 0). A choppy
ride would be when the driver is constantly accelerating and decelerating, such as
beginning drivers tend to do.

If A = 0, we don’t care how choppy the ride is, and this leads to m; = x;, the
data, which are not smooth. If 1 = oo, we insist on no acceleration or deceleration
(m;’ = 0); in this case, our drive must be at constant velocity, m; = ¢ + vt, and
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Fig. 2.16. Smooth of mortality as a function of temperature using lowess

consequently very smooth. Thus, A is seen as a trade-off between linear regression
(completely smooth) and the data itself (no smoothness). The larger the value of A,
the smoother the fit.

InR, the smoothing parameter is called spar and it is monotonically related to 4;
type ?smooth.spline to view the help file for details. Figure 2.15 shows smoothing
spline fits on the SOI series using spar=.5 to emphasize the El Nifio cycle, and
spar=1 to emphasize the trend. The figure can be reproduced in R as follows.

plot(soi)
lines(smooth.spline(time(soi), soi, spar=.5), lwd=2, col=4)
lines(smooth.spline(time(soi), soi, spar= 1), 1lty=2, lwd=2, col=2)

Example 2.15 Smoothing One Series as a Function of Another
In addition to smoothing time plots, smoothing techniques can be applied to smooth-
ing a time series as a function of another time series. We have already seen this
idea used in Example 2.8 when we used lowess to visualize the nonlinear relation-
ship between Recruitment and SOI at various lags. In this example, we smooth
the scatterplot of two contemporaneously measured time series, mortality as a
function of temperature. In Example 2.2, we discovered a nonlinear relationship
between mortality and temperature. Continuing along these lines, Fig. 2.16 show
a scatterplot of mortality, M,, and temperature, 7;, along with M; smoothed as a
function of 7; using lowess. Note that mortality increases at extreme temperatures,
but in an asymmetric way; mortality is higher at colder temperatures than at hotter
temperatures. The minimum mortality rate seems to occur at approximately 83° F.
Figure 2.16 can be reproduced in R as follows using the defaults.

plot(tempr, cmort, xlab="Temperature", ylab="Mortality")
lines(lowess(tempr, cmort))
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Problems

Sect. 2.1

2.1 A Structural Model For the Johnson & Johnson data, say y;, shown in Fig. 1.1,
let x; = log(y,). In this problem, we are going to fit a special type of structural model,
x; = T; + S; + N; where T, is a trend component, S; is a seasonal component, and N,
is noise. In our case, time 7 is in quarters (1960.00, 1960.25, . . .) so one unit of time
is a year.

(a) Fit the regression model
x = Bt +a1010) + 202(t) + a303(1) + asQa(t) + wy

N—— N——
trend seasonal noise

where Q;(¢) = 1 if time ¢ corresponds to quarter i = 1,2, 3,4, and zero otherwise.
The Q;(¢)’s are called indicator variables. We will assume for now that w; is a
Gaussian white noise sequence. Hint: Detailed code is given in Code R.4, the last
example of Sect. R.4.

(b) If the model is correct, what is the estimated average annual increase in the logged
earnings per share?

(c) If the model is correct, does the average logged earnings rate increase or decrease
from the third quarter to the fourth quarter? And, by what percentage does it
increase or decrease?

(d) What happens if you include an intercept term in the model in (a)? Explain why
there was a problem.

(e) Graph the data, x;, and superimpose the fitted values, say %,, on the graph.
Examine the residuals, x; — %, and state your conclusions. Does it appear that the
model fits the data well (do the residuals look white)?

2.2 For the mortality data examined in Example 2.2:

(a) Add another component to the regression in (2.21) that accounts for the particulate
count four weeks prior; that is, add P,_4 to the regression in (2.21). State your
conclusion.

(b) Draw a scatterplot matrix of My, T;, P; and P;_4 and then calculate the pairwise
correlations between the series. Compare the relationship between M; and P,
versus M; and P;_4.

2.3 In this problem, we explore the difference between a random walk and a trend
stationary process.

(a) Generate four series that are random walk with drift, (1.4), of length n = 100
with § = .01 and o, = 1. Call the data x, for = 1, ..., 100. Fit the regression
Xx; = fBt + w; using least squares. Plot the data, the true mean function (i.e.,
u; = .017) and the fitted line, £; = 1, on the same graph. Hint: The following R
code may be useful.
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par (mfrow=c(2,2), mar=c(2.5,2.5,0,0)+.5, mgp=c(1.6,.6,0)) # set up
for (i in 1:4){

x = ts(cumsum(rnorm(100,.01,1))) # data

regx = lm(x~0+time(x), na.action=NULL) # regression

plot(x, ylab='Random Walk w Drift') # plots

abline(a=0, b=.01, col=2, 1lty=2) # true mean (red - dashed)
abline(regx, col=4) # fitted line (blue - solid)

}

(b) Generate four series of length n = 100 that are linear trend plus noise, say
vy = .01¢ + w,, where ¢ and w; are as in part (a). Fit the regression y, = 8t + w;
using least squares. Plot the data, the true mean function (i.e., y; = .01¢) and the
fitted line, ¥, = ﬁ t, on the same graph.

(c) Comment (what did you learn from this assignment).

2.4 Kullback-Leibler Information Given the random n X 1 vector y, we define the
information for discriminating between two densities in the same family, indexed by
a parameter 6, say f(y;61) and f(y;6,), as

f(y;601)
f(y;62)

where E; denotes expectation with respect to the density determined by 6;. For the
Gaussian regression model, the parameters are 6 = (8’, ). Show that

1(6156,) = n"' Ey log

(2.41)

1{o? o? 1 -B)Z'Z(B -
0'2 0'2 na’2

2.5 Model Selection Both selection criteria (2.15) and (2.16) are derived from
information theoretic arguments, based on the well-known Kullback-Leibler discrim-
ination information numbers (see Kullback and Leibler [122], Kullback [123]). We
give an argument due to Hurvich and Tsai [100]. We think of the measure (2.42) as
measuring the discrepancy between the two densities, characterized by the parameter
values 6] = (B],0%) and 6 = (B}, 0})’. Now, if the true value of the parameter
vector is 61, we argue that the best model would be one that minimizes the dis-
crepancy between the theoretical value and the sample, say 1(6; 6). Because 6, will
not be known, Hurvich and Tsai [100] considered finding an unbiased estimator for
Ei[1(B1, 0'12; B.5%)], where

A 1{o? o2 1 (8 —ﬁA)/Z'Z(ﬂl _,é)
e e

and 8 is a k X 1 regression vector. Show that

n+k

e I 2.43
n—k-2 ( )

. 1
Ei[I(B1, 07 8.07)] = E(" logo? + Ej log 6% +

using the distributional properties of the regression coefficients and error variance. An
unbiased estimator for E; log &% is log 5%. Hence, we have shown that the expectation
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of the above discrimination information is as claimed. As models with differing
dimensions k are considered, only the second and third terms in (2.43) will vary and
we only need unbiased estimators for those two terms. This gives the form of AICc
quoted in (2.16) in the chapter. You will need the two distributional results

ne? B-B)Z'ZB-P) _ »

5~ Xn-k and > Xi
oy oy

The two quantities are distributed independently as chi-squared distributions with the
indicated degrees of freedom. If x ~ y2, E(1/x) = 1/(n - 2).

Sect. 2.2

2.6 Consider a process consisting of a linear trend with an additive noise term con-
sisting of independent random variables w, with zero means and variances o2, that
is,

X = o + it + wy,

where By, 81 are fixed constants.

(a) Prove x; is nonstationary.

(b) Prove that the first difference series Vx; = x; — x,_ is stationary by finding its
mean and autocovariance function.

(c) Repeat part (b) if w; is replaced by a general stationary process, say y;, with mean
function u, and autocovariance function yy(%).

2.7 Show (2.27) is stationary.

2.8 The glacial varve record plotted in Fig. 2.7 exhibits some nonstationarity that can
be improved by transforming to logarithms and some additional nonstationarity that
can be corrected by differencing the logarithms.

(a) Argue that the glacial varves series, say x;, exhibits heteroscedasticity by com-
puting the sample variance over the first half and the second half of the data.
Argue that the transformation y, = log x, stabilizes the variance over the series.
Plot the histograms of x; and y, to see whether the approximation to normality is
improved by transforming the data.

(b) Plot the series y;. Do any time intervals, of the order 100 years, exist where
one can observe behavior comparable to that observed in the global temperature
records in Fig. 1.2?

(c) Examine the sample ACF of y, and comment.

(d) Compute the difference u; = y, — y;,—1, examine its time plot and sample ACF,
and argue that differencing the logged varve data produces a reasonably stationary
series. Can you think of a practical interpretation for u,? Hint: Recall Footnote 2.
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(e) Based on the sample ACF of the differenced transformed series computed in
(c), argue that a generalization of the model given by Example 1.26 might be
reasonable. Assume

Uy = U+ wp + 60w,y

is stationary when the inputs w, are assumed independent with mean O and
variance o-2. Show that

a2(1+6% ifh=0,
Yu(h) =46 02 if h = 1,
0 if || > 1.

(f) Based on part (e), use p, (1) and the estimate of the variance of u,, 9,,(0), to derive
estimates of # and o-2. This is an application of the method of moments from
classical statistics, where estimators of the parameters are derived by equating
sample moments to theoretical moments.

2.9 In this problem, we will explore the periodic nature of S;, the SOI series displayed
in Fig. 1.5.

(a) Detrend the series by fitting a regression of S; on time ¢. Is there a significant
trend in the sea surface temperature? Comment.

(b) Calculate the periodogram for the detrended series obtained in part (a). Identify
the frequencies of the two main peaks (with an obvious one at the frequency of
one cycle every 12 months). What is the probable El Nifio cycle indicated by the
minor peak?

Sect. 2.3

2.10 Consider the two weekly time series oil and gas. The oil series is in dollars per
barrel, while the gas series is in cents per gallon.

(a) Plot the data on the same graph. Which of the simulated series displayed in
Sect. 1.2 do these series most resemble? Do you believe the series are stationary
(explain your answer)?

(b) In economics, it is often the percentage change in price (termed growth rate or
return), rather than the absolute price change, that is important. Argue that a
transformation of the form y, = V log x; might be applied to the data, where x; is
the oil or gas price series. Hint: Recall Footnote 2.

(c) Transform the data as described in part (b), plot the data on the same graph, look
at the sample ACFs of the transformed data, and comment.

(d) Plot the CCF of the transformed data and comment The small, but significant
values when gas leads oil might be considered as feedback.

(e) Exhibit scatterplots of the oil and gas growth rate series for up to three weeks
of lead time of oil prices; include a nonparametric smoother in each plot and
comment on the results (e.g., Are there outliers? Are the relationships linear?).
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(f) There have been a number of studies questioning whether gasoline prices respond
more quickly when oil prices are rising than when oil prices are falling (‘“asymme-
try”’). We will attempt to explore this question here with simple lagged regression;
we will ignore some obvious problems such as outliers and autocorrelated errors,
so this will not be a definitive analysis. Let G; and O; denote the gas and oil
growth rates.

(i) Fit the regression (and comment on the results)
G; = a1 + azly + B10; + B20r-1 + wr,

where I; = 1if O; > 0 and O otherwise (/; is the indicator of no growth or
positive growth in oil price). Hint:

poil = diff(log(oil))
pgas = diff(log(gas))
indi = ifelse(poil < 0, 0, 1)

mess = ts.intersect(pgas, poil, poill = lag(poil,-1), indi)
summary(fit <- lm(pgas~ poil + poillL + indi, data=mess))

(ii) What is the fitted model when there is negative growth in oil price at time
t? What is the fitted model when there is no or positive growth in oil price?
Do these results support the asymmetry hypothesis?

(iii) Analyze the residuals from the fit and comment.

2.11 Use two different smoothing techniques described in Sect. 2.3 to estimate the
trend in the global temperature series globtemp. Comment.
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