
Preface

This book introduces the foundations of computer vision. The principal aim of
computer vision (also, called machine vision) is to reconstruct and interpret natural
scenes based on the content of images captured by various cameras (see, e.g.,
R. Szeliski [191]). Computer vision systems include such things as survey satellites,
robotic navigation systems, smart scanners, and remote sensing systems. In this
study of computer vision, the focus is on extracting useful information from images
(see, e.g., S. Prince [162]). Computer vision systems typically emulate human
visual perception. The hardware of choice in computer vision systems is some form
of digital camera, programmed to approximate visual perception. Hence, there are
close ties between computer vision, digital image processing, optics, photometry
and photonics (see, e.g., E. Stijns and H. Thienpont [188]).

From a computer vision perspective, photonics is the science of light in the
capture of visual scenes. Image processing is the study of digital image formation
(e.g., conversion of analogue optical sensor signals to digital signals), manipulation
(e.g., image filtering, denoising, cropping), feature extraction (e.g., pixel intensity,
gradient orientation, gradient magnitude, edge strength), description (e.g., image
edges and texture) and visualization (e.g., pixel intensity histograms). See, e.g., the
mathematical frameworks for image processing by B. Jähne [87] and S.G. Hoggar
[82], extending to a number of practitioner views of image processing provided,
for example, by M. Sonka and V. Hlavac and R. Boyle [186], W. Burger and
M.J. Burge [21], R.C. Gonzalez and R.E. Woods [58], R.C. Gonzalez and R.E.
Woods and S.L. Eddins [59], V. Hlavac [81], and C. Solomon and T. Breckon
[184]. This useful information provides the bedrock for the focal points of computer
visionists, namely, image object shapes and patterns that can be detected, analyzed
and classified (see, e.g., [142]). In effect, computer vision is the study of digital
image structures and patterns, which is a layer of image analysis above that of
image processing and photonics. Computer vision includes image processing and
photonics in its bag of tricks in its pursuit of image geometry and image region
patterns.

In addition, it is helpful to cultivate an intelligent systems view of digital images
with an eye to discovering hidden patterns such as repetitions of convex enclosures
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of image regions and embedded image structures such as clusters of points in image
regions of interest. The discovery of such structures is made possible by quantizers.
A quantizer restricts a set of values (usually continuous) to a discrete value. In its
simplest form in computer vision, a quantizer observes a particular target pixel
intensity and selects the nearest approximating values in the neighbourhood of the
target. The output of a quantizer is called a codebook by A. Gersho and R.M. Gray
[55, §5.1, p. 133] (see, also, S. Ramakrishnan, K. Rose and A. Gersho [164]).

In the context of image mesh overlays, the Gersho–Gray quantizer is replaced by
geometry-based quantizers. A geometry-based quantizer restricts an image region
to its shape contour and observes in an image a particular target object shape
contour, which is compared with other shape contours that have approximately the
same shape as the target. In the foundations of computer vision, geometry-based
quantizers observe and compare image regions with approximately the same
regions such as mesh maximal nucleus clusters (MNCs) compared with other
nucleus clusters. Amaximal nucleus cluster (MNCs) is a collection of image mesh
polygons surrounding a mesh polygon called the nucleus (see, e.g., J.F. Peters and
E. İnan on Edelsbrunner nerves in Voronoï tessellations of images [150]). An
image mesh nucleus is a mesh polygon that is the centre of a collection of adjacent
polygons. In effect, every mesh polygon is a nucleus of a cluster of polygons.
However, only one or more mesh nuclei are maximal.

A maximal image mesh nucleus is a mesh nucleus with the highest number of
adjacent polygons. MNCs are important in computer vision, since what we will call
a MNC contour approximates the shape of an underlying image object. A Voronoï
tessellation of an image is a tiling of the image with polygons. A Voronoï tessel-
lation of an image is also called a Voronoï mesh. A sample tiling of a musician
image in Fig. 0.1.1 is shown in Fig. 0.1.2. A sample nucleus of the musician image
tiling is shown in Fig. 0.2.1. The red dots inside each of the tiling polygons are
examples of Voronoï region (polygon) generating points. For more about this, see
Sect. 1.22.1. This musician mesh nucleus is the centre of a maximal nucleus cluster
shown in Fig. 0.2.2. This is the only MNC in the musician image mesh in Fig. 0.1.2.
This MNC is also an example of a Voronoï mesh nerve. The study of image MNCs
takes us to the threshold of image geometry and image object shape detection. For
more about this, see Sect. 1.22.2.

Each image tiling polygon is a convex hull of the interior and vertex pixels.
A convex hull of a set of image points is the smallest convex set of the set of points.
A set of image points A is a convex set, provided all of the points on every straight
line segment between any two points in the set A is contained in the set. In other
words, knowledge discovery is at the heart of computer vision. Both knowledge and
understanding of digital images can be used in the design of computer vision
systems. In vision system designs, there is a need to understand the composition
and structure of digital images as well as the methods used to analyze captured
images.

The focus of this volume is on the study of raster images. The sequel to this
volume will focus on vector images, which are composed of points (vectors), lines
and curves. The basic content of every raster image consists of pixels
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(e.g., distinguished pixels called sites or mesh generating points), edges (e.g.,
common, parallel, intersecting, convex, concave, straight, curved, connected,
unconnected), angles (e.g., vector angle, angle between vectors, pixel angle), image
geometry (e.g., Voronoï regions [141], Delaunay triangulations [140]), colour,
shape, and texture. Many problems in computer vision and scene analysis are
solved by finding the most probable values of certain hidden or unobserved image
variables and structures (see, e.g., P. Kohli and P.H.S. Torr [96]). Such structures
and variables include the topological neighbourhood of a pixel, convex hulls of sets
of pixels, nearness (and apartness) of image structures and pixel gradient distri-
butions as well as feature vectors that describe elements of captured scenes.

Other computer vision problems include image matching, feature selection,
optimal classifier design, image region measurement, interest point identification,
contour grouping, segmentation, registration, matching, recognition, image clus-
tering, pattern clustering in F. Escolono, P. Suau, B. Bonev [45] and in N. Paragios,
Y. Chen, O. Faugeras [138], landmark and point shape matching, image warping,

0.2.1: Musician mesh nucleus 0.2.2: Musician maximal nucleus cluster

Fig. 0.2 Maximal nucleus cluster on musician image

0.1.1: Muscian 0.1.2: Muscian tiling

Fig. 0.1 Voronoï tessellation of musician image
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shape gradients [138], false colouring, pixel labelling, edge detection, geometric
structure detection, topological neighbourhood detection, object recognition, and
image pattern recognition.

In computer vision, the focus is on the detection of the basic geometric structures
and object shapes commonly found in digital images. This leads into a study of the
basics of image processing and image analysis as well as vector space and com-
putational geometry views of images. The basics of image processing include
colour spaces, filtering, edge detection, spatial description and image texture.
Digital images are examples of Euclidean spaces (both 2D and 3D). Hence, vector
space views of digital images are a natural outcome of their basic character.
A digital image structure is basically a geometric or a visual topological structure.
Examples of image structures are image regions, line segments, generating points
(e.g. Lowe keypoints), set of pixels, neighbourhood of a pixel, half spaces, convex
sets of pixels and convex hulls of sets of image pixels. For example, such structures
can be viewed in terms of image regions nearest selected points or collections of
image regions with a specified range of diameters. An image region is a set of
image points (pixels) in the interior of a digital image. The diameter of any image
region is the maximum distance between a pair of points in the region). Such
structures can also be found in line segments connected between selected points to
form triangular regions in 2D and 3D images.

Such structures are also commonly found in 2D and 3D images in the inter-
section of closed half spaces to form either convex hulls of a set of points or what
G.M. Ziegler calls polytopes [221]. An image half space is the set of all points
either above or below a line. In all three cases, we obtain a regional view of digital
images. For more about polytopes, see Appendix B.15.

Every image region has a shape. Some region shapes are more interesting than
others. The interesting image region shapes are those containing objects of interest.
These regional views of images leads to various forms of image segmentations that
have practical value when it comes to recognizing objects in images. In addition,
detection of image region shapes of interest views lead to the discovery of image
patterns that transcend the study of texels in image processing. A texel is an image
region represented by an array of pixels. For more about shapes, see Appendix B.18
on shape and shape boundaries.

Image analysis focuses on various digital image measurements (e.g., pixel size,
pixel adjacency, pixel feature values, pixel neighbourhoods, pixel gradient, close-
ness of image neighbourhoods). Three standard region-based approaches in image
analysis are isodata thresholding (binarizing images), watershed segmentation
(computed using a distance map from foreground pixels to background regions),
and non-maximum suppression (finding local maxima by suppressing all pixels that
are less likely than their surrounding pixels) [212].

In image analysis, object and background pixels are associated with different
adjacencies (neighbourhoods) by T. Aberra [3]. There are three basic types of
neighbourhoods, namely, Rosenfeld adjacency neighbourhoods [171, 102],
Hausdorff neighbourhoods [74, 75] and descriptive neighbourhoods in J.F. Peters
[142] and in C.J. Henry [77, 76]. Using different geometries, an adjacency
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neighbourhood of a pixel is defined by the pixels adjacent to a given pixel. An
image Rosenfeld adjacency neighbourhood of a pixel p is a set of pixels that are
adjacent to p. Adjacency neighbourhoods are commonly used in edge detection in
digital images.

A Hausdorff neighbourhood of a point p is defined by finding all pixels whose
distance from p is less that a positive number r (called the neighbourhood radius).
A descriptive neighbourhood of a pixel p (denoted by N(img (x, y), r) is the set of
pixels with feature vectors that match or are similar to the feature vector that
describes img(x, y) (the neighbourhood ‘centre’ of a digital image img) and which
are within a prescribed radius r.

Unlike an adjacency neighbourhood, a descriptive neighbourhood can have
holes in it, i.e., pixels with feature vectors that do not match the neighbourhood
centre and are not part of the neighbourhood. Other types of descriptive neigh-
bourhoods are introduced in [142, Sect. 1.16, pp. 29–34].

The chapters in this book grew out of my notes for an undergraduate class in
Computer Vision taught over the past several years. Many topics in this book grew
out my discussions and exchanges with a number of researchers and others,
especially, S. Ramanna (those many shapes, especially in crystals), Anna Di
Concilio (those proximities, region-free geometry, and seascape shapes like those in
Fig. 0.3), Clara Guadagni (those flower nerve structures), Arturo Tozzi (those
Borsuk-Ulam Theorem insights and Gibson shapes, Avenarius shapes), Romy
Tozzi (remember 8, ∞), Zdzisław Pawlak (those shapes in paintings of the Polish
countryside), Lech Polkowski (those mereological, topological and rough set
structures), Piotr Artiemjew (those dragonfly wings), Giangiacomo Gerla (those tips
(points)–vertices–of UNISA courtyard triangles and spatial regions), Gerald Beer
(those moments in Som Naimpally’s life), Guiseppe Di Maio (those insights about
proximities), Somashekhar (Som) A. Naimpally (those topological structures),
Chris Henry (those colour spaces, colour shape sets), Macek Borkowski (those 3D
views of space), Homa Fashandi, Dan Lockery, Irakli Dochviri, Ebubekir İnan
(those nearness relations and near groups), Mehmet Ali Öztürk (those beautiful
algebraic structures), Mustafa Uçkun, Nick Friesen (those shapes of dwellings),
Özlem Umdu, Doungrat Chitcharoen, Çenker Sandoz (those Delaunay triangula-
tions), Surabi Tiwari (those many categories), Kyle Fedoruk (application of com-
puter vision: Subaru EyeSight®), Amir H. Meghdadi, Shabnam Shahfar, Andrew
Skowron (those proximities at Banacha), Alexander Yurkin, Marcin Wolksi (those
sheaves), Piotr Wasilewski, Leon Schilmoeler, Jerzy W. Grzymala-Busse (those
insights about rough sets and LATEX hints), Zbigniew Suraj (those many Petri nets),
Jarosław Stepaniuk, Witold Pedrycz, Robert Thomas (those shapes of tilings),
Marković G. oko (polyforms), Miroslaw Pawlak, Pradeepa Yahampath, Gabriel
Thomas, Anthony (Tony) Szturm, Sankar K. Pal, Dean McNeill, Guiseppe (Joe) Lo
Vetri, Witold Kinsner, Ken Ferens, David Schmidt (set theory), William Hankley
(time-based specification), Jack Lange (those chalkboard topological doodlings),
Irving Sussman (gold nuggets in theorems and proofs) and Brian Peters (those
fleeting glimpses of geometric shapes on the walls).
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A number of our department technologists have been very helpful, especially,
Mount-First Ng, Ken Biegun, Guy Jonatschick and Sinisa Janjic.

And many of my students have given important suggestions concerning topics
covered in this book, especially, Drew Barclay, Braden Cross, Binglin Li, Randima
Hettiarachchi, Enoch A-iyeh, Chidoteremndu (Chido) Chinonyelum Uchime,
D. Villar, K. Marcynuk, Muhammad Zubair Ahmad, and Armina Ebrahimi.

Chapter problems have been classified. Those problems that begin with are
the kind you can run with, and probably will not take much time to solve. Problems

that begin with are the kind you can probably solve in about the time it takes to
drink a cup of tea or coffee. The remaining problems will need varying lengths of
time to solve.

Winnipeg, Canada James F. Peters

Fig. 0.3 Seascape shapes along the coastline of Vietri, Italy
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