
Chapter 2
Working with Pixels

Fig. 2.1 Lower versus Higher resolution image pixels

2.1 Picture Elements

A pixel (aka picture element) is an element at position (r, c) (row, column) in a dig-
ital image I . A pixel represents the smallest constituent element in a digital image.
Typically, each pixel in a raster image is represented by a tiny square called a raster
image tile. Raster image technology has its origins in the raster scan of cathode ray
tube (CRT) displays in which images are rendered line-by-line bymagnetically steer-
ing a focused electron beam. Usually, computer monitors have bitmapped displays

© Springer International Publishing AG 2017
J.F. Peters, Foundations of Computer Vision, Intelligent Systems
Reference Library 124, DOI 10.1007/978-3-319-52483-2_2

87

88 2 Working with Pixels

in which each screen pixel corresponds to its bit depth, i.e., number of pixels used
to render pixel colour channels.

By zooming in on (also, resample) an image at different magnification levels,
these tiny pixel squares become visible.

Example 2.1 Inspecting Raster Image Pixels.
Four views of a raster image are shown in Fig. 2.1:

1o Lower-left panel: hand-held camera with pixel inspection window:

. This is a movable window that makes it possible to inspect dif-
ferent parts of the image.

2o Upper-left panel: pixels (zoomed in at 800%) inside the inspection
window.

3o Lower-right panel: hand-held camera with pixel inspection window:

. This is a secondmovable window that makes it possible to inspect
different parts of the image.

4o Upper-left panel: pixels (zoomed in at 400%) inside the inspection
window.

See MScript A.10 in Appendix A.2.1 to experiment with other zoomed-in levels and
inspect pixels in other images. �

Example 2.2 Inspecting Raster Image Pixels.
Four views of a raster image are shown in Fig. 2.2:

1o Lower-right panel: hand-held camera with pixel inspection window:

. This is a secondmovable window that makes it possible to inspect
different parts of the image.

2o Upper-left panel: pixels (zoomed in at 100%) inside the inspection
window.

2.1 Picture Elements 89

Fig. 2.2 Zoom in at 100 and 800%, exhibiting colour image pixels

3o Lower-left panel: hand-held camera with pixel inspection window:

. This is a movable window that makes it possible to inspect dif-
ferent parts of the image.

4o Upper-left panel: pixels (zoomed in at 800%) inside the inspection
window.

See MScript A.10 in Appendix A.2.1 to experiment with other zoomed-in levels and
inspect pixels in other images. � �

Each colour or greyscale or binary image pixel carries with it several numerical
values. There are a number of cases to consider.

Binary image pixel values: 1 for a white pixel and 0 for a black pixel.
Greyscale image pixel values: Commonly 0–255, for the pixel greyscale inten-

sity. Each greyscale pixel value quantizes the magnitude of white light for a pixel.
RGB image pixel values: Each colour pixel value quantizes the magnitude of a

particular colour channel brightness for a pixel. A colour channel is particu-
lar colour component of an image and corresponds to a range of visible light
wavelengths. Each color pixel contains intensities for three colour channels. For

90 2 Working with Pixels

colour pixel with a bit depth equal to 8, we have the following range of intensity
(brightness) values for each colour channel.

Red: 0–255, for red pixel intensity (brightness).
Green: 0–255, for green pixel intensity (brightness).
Blue: 0–255, for blue pixel intensity (brightness).

Let I k(u, v) be the intensity of the k colour channel at camera image cell (u, v),Λ,
the set of wavelengths in the visible spectrum, pk0, a scaling factor, λ, a particular
wavelength, Eu,v(λ), the amount of incoming light at image cell (u, v), τ k(λ), the
filter transmittance for the k colour channel, and s(λ), the spectral responsivity
of a camera optical sensor. The final colour pixel value I k(u, v) is defined by

I k(u, v) = pk0

∫
Λ

Eu,v(λ)τ k(λ)s(λ)dλ.

In a typical RGB camera, k ∈ {r, g, b}. Recently, color pixel values have been
used extensively in image segmentation [135, Sect. 2.1, p. 666] and for visual
object tracking [32, Sect. 2.1, p. 666]. �

Separating and Modifying Colour Image Channels

Colour channel values can be separated and pixel values can bemodified.

2.2 Separating Colour Image Channels

It is a straightforward task to separate the colour channels in a raster colour image.
We illustrate this using notation from Matlab.

Image and Colour Channel Notation

Let img be a m × n colour image. In that case, the pixels in img can be accessed
in the following ways.

img(:,:) = pixel values in all rows and all columns in img.

img(r,:) = all pixel values in row r in img, 1 ≤ r ≤ m.

img(:,c) = all pixel values in column c in img, 1 ≤ c ≤ n.

img(:,:,1) = all red channel values in all rows and all columns in img.

img(:,:,2) = all green channel values in all rows and all columns in img.

img(:,:,3) = all blue channel values in all rows and all columns in img.

2.2 Separating Colour Image Channels 91

The notation img(:, :), img(r, :), img(:, c) can be used to inspect and change pixel
intensities in binary, greyscale or colour images.

Fig. 2.3 Sample colour image

Fig. 2.4 Separated and combined colour image channels

Example 2.3 Separating Colour Image Channel values.
A sample colour image is given in Fig. 2.3. Using the MScript A.11 in Appen-
dix A.2.1, the colour channels exhibited by Fig. 2.3 are separated and then recom-
bined in Fig. 2.4. �

92 2 Working with Pixels

2.3 Colour to Greyscale Conversion

Ideally, a colour channel value indicates the magnitude of the colour channel light
recorded by an optical sensor used in pixel formation of a colour image produced by
a digital camera. Let I be a colour image. It is possible to convert the colour image
I to a greyscale image Igr using the Matlab function rgb2gray(I).

Fig. 2.5 Colour to greyscale conversion

Fig. 2.6 Row of colour and greyscale leaf image intensities

Example 2.4 Figure 2.5 shows the result of converting a leaf colour image to a
greyscale image using MScript A.12 in Appendix A.2.3. Contrast between the two
forms of images becomes clearer when we zoom in on subimages of the original
image and its greyscale counterpart.

Colour Subimage
In this leaf image segment, there is a visible mixture various shades of greens.

2.3 Colour to Greyscale Conversion 93

Recall that shades of green are obtained bymixing yellow and blue. It is a straight-
forward task to verify that visible green in an image is rendered digitally with a
mixture of red and blue channel intensities.

Colour Subimage
In this leaf image segment, the original mixture various shades of greens is
replaced by a mixture of greys. The change from pixel color intensity to greyscale
intensity can be seen in the sample pixel values in Fig. 2.6. �

At pixel level, pixel modification can be carried out by replacing each pixel in a
colour or greyscale image I with either the average of the colour channel values or
maps of pixels values to real numbers using functions such as ln(x), exp(x) or with
a weighted sum of the colour channel values. For example, for a greyscale image
pixel Igr (x, y) at (x, y), the pixel intensity of Igr at (x, y) is

Igr (x, y) = αI (x, y, r) + β I (x, y, g) + γ I (x, y, b),

where the weighting coefficients α,β, γ approximate the perceptual response of the
human eye to the red, green and blue (r, g, b, respectively) colour band values.

There is aNTSC(NationalTransportationSafetyCommission) television standard
for greyscale image pixels such that

α = 0.2989,β = 0.5870, γ = 0.1140

In Matlab, we write

Igr (x, y) = α. ∗ I (x, y, 1) + β. ∗ I (x, y, 2) + γ. ∗ I (x, y, 3),

Problem 2.5 Given a colour image such as I = rainbow.jpg, do the following.

(step.1) Choose your own values for the weighting coefficients α,β, γ.
(step.2) Convert a column 30 pixels wide to greyscale intensities in image I . Call

the new image Igr .
(step.3) Display the resulting mixed colour-greyscale image Igr .
(step.4) K Use cpselect to compare the pixels in the 5 wide pixel column in I

and Igr . �

2.4 Algebraic Operations on Pixel Intensities

In this section, we consider various operations on image pixel intensities, resulting
in changes in visual appearance of the image. Let g be a digital image (either colour

94 2 Working with Pixels

or greyscale). Let k ∈ [0, 255]. Then new images i1, i2, i3, i4 are obtained using the
image variable in simple algebraic expressions.

Image Algebraic Expressions I .

i1 = g + g,

i2 = (0.5)(g + g),

i3 = (0.3)(g + g),

i4 =
(
g

(g

2

))
(0.2).

Fig. 2.7 Sample colour image

Fig. 2.8 Pixel value intensity changes induced by algebraic expressions I

2.4 Algebraic Operations on Pixel Intensities 95

Example 2.6 Algebraic Operations I on Images.
In algebraic operations I, notice that image g is added to itself. Various algebraic
expressions can be put together to modify the pixel values in an image. MScript A.13
inAppendixA.2.3 implements algebraic expressions I on the colour image in Fig. 2.7
to obtain the resulting images shown in Fig. 2.8. For example, the implementation
of g + g in the leftmost image i1 in Fig. 2.8 results in a brighter image (all the pixel
intensities in the cycle image g have been doubled). �

Let h be a colour image and use the following algebraic expressions to change
the pixel intensities in h.

Image Algebraic Expressions II .

i5 = h + 30,

i6 = h − (0.2)h,

i7 = |h − (0.2)(h + h)| ,
i8 = (0.2) (h + (0.5)(h + h)) .

Fig. 2.9 Sample colour image

Fig. 2.10 Pixel value intensity changes induced by algebraic expressions II

96 2 Working with Pixels

Example 2.7 Algebraic Operations II on Images.
In algebraic operations II, notice that 30 is added to each of the intensities in image
h. MScript A.14 in Appendix A.2.3 implements algebraic expressions II on the leaf
colour image in Fig. 2.9 to obtain the resulting images shown in Fig. 2.10. For
example, the implementation of (0.2) (h + (0.5)(h + h)) in the rightmost image in
Fig. 2.10 results in a brighter image (all the pixel intensities in the cycle image are
sharply increased). �

Let img be a colour image and use the following algebraic expressions to change
the pixel intensities in img.

Image Algebraic Expressions III .

i9 = (0.8)img(:, :, 1) decrease red channel intensities,
i10 = (0.9)img(:, :, 2) slightly decrease green channel intensities,

i11 = (0.5)img(:, :, 2) sharply decrease green channel intensities,

i12 = (16.5)img(:, :, 3) sharply increase blue channel intensities.

Fig. 2.11 Sample video frame image showing scene edges

Example 2.8 Algebraic Operations III on Images.
In algebraic operations III, notice that the pixel intensities in each colour channel are
decreased by varying amounts or increased by a huge amount (in the blue channel).
MScript A.15 in Appendix A.2.3 implements algebraic expressions III on the video
frame colour image in Fig. 2.11 to obtain the resulting images shown in Fig. 2.12. For

2.4 Algebraic Operations on Pixel Intensities 97

Fig. 2.12 Color channel pixel intensity changes induced by algebraic expressions III

example, the implementation of (16.5)img(:, :, 3) in the rightmost image in Fig. 2.12
results in a brighter blue channel image (all the blue pixel intensities in the video
frame image are sharply increased). �

2.13.1: Colour Array 2.13.2: Sq

Fig. 2.13 Sample Thai grocery shelves

Problem 2.9 Offline Video Frame Colour Channel Changes.
Use the approach to changing image channel intensities in MScript A.15 in Appen-
dix AA.2.3 as a template for offline video processing, do the following.

1o ® Using Matlab script A.8 in Appendix A.1.5 as a template for offline video
processing, change the red channel intensities in each video frame image. Hint:
Replace the lines of Voronoï tessellation code with lines to code in MScript A.15
to handle and display changes in the green channel of each video frame image.

98 2 Working with Pixels

2o Repeat Step 1 to change the green channel intensities in each video frame image.
3o Repeat Step 1 to change the blue channel intensities in each video frame image.

�
Problem 2.10 Real-Time Video Frame Colour Channel Changes.
Use the approach to changing image channel intensities in MScript A.15 in Appen-
dix A.2.3 as a template for real-time video processing, do the following.

1o K Using Matlab script A.9 in Appendix A.1.5 as a template for offline video
processing, change the red channel intensities in each video frame image. Hint:
Replace the lines of Voronoï tessellation code with lines to code in Matlab
script A.8 to handle and display changes in the green channel of each video
frame image in real-time.

2o Repeat Step 1 to change the green channel intensities in each video frame image
in real-time.

3o Repeat Step 1 to change the blue channel intensities in each video frame image
in real-time. �
Distinct images g and h can be added, provided the images are approximately

the same size. To combine pixel values in different images, it is necessary that the
distinct images I,� have the same dimensions. To get around this same-size images
problem, choose any n × m image img, which is the larger of two images and just
copy a second image onto an n × m array of 1s or 0s (call it copy). Then img and
copy can be combined in various ways.

Example 2.11 Combining Pixel Intensities Across Separate Images.
The images in Fig. 2.13 showing Thai grocery store shelves. These Thai shelf images
are both approximately 1.5MB. MScript A.16 in Appendix A.2.1 illustrates how to
combine pixel intensities in pairs of different images. Two Thai grocery shelf images
are combined in different ways is the first row of images in Fig. 2.14. The second row
of images in Fig. 2.14 are result of algebraic operations on just one of the original
images. �
Problem 2.12 Choose three different pairs of colour images g, h and do the follow-
ing.

1o ® In Image Algebraic Expressions I, replace g, g with g, h and display the
changed images using MScript A.16 in Appendix A.2.1.

2o Repeat Step 1 using the Image Algebraic Expressions II.
3o Repeat Step 1 using the Image Algebraic Expressions III. �

There are many other possibilities besides the constructed images I1, . . . , I12
using the Algebraic Operations I, II and III. For example, one can determine largest
red colour value in a selected image row r , using

[r, c] = max(g(row, :, 1)).

Using g(r, c), new images can be constructed bymodifying the red channel values
using a maximum red channel value.

2.4 Algebraic Operations on Pixel Intensities 99

Fig. 2.14 Combining image pixel values using thai.m

Example 2.13 Experiment with maximum pixel intensities.
Sample results using MScript A.17 in Appendix refApCh2Sec:PixelValueChanges
are shown in Fig. 2.15. This is an external view of themodified red channel intensities

Fig. 2.15 External colour view of max-modified red channel intensities

Fig. 2.16 Internal greyscale view of max-modified red channel intensities

100 2 Working with Pixels

obtained by adding a fraction of a maximum red channel intensity in the first row
of an image. Internally, a colour channel is just a greyscale image (not what we
would imagine). An internal view of the modified red channel intensities is shown
in Fig. 2.16. �

Internal View of Colour Image Channels

Internally, a colour image channel is viewed as a greyscale image.

Problem 2.14 ® Example 2.13 illustrates the addition of fractions of a maximum
red channel intensity. For three colour images your own choosing, do the following.

(step.1) Use themin instead ofmax function to find a minimum red channel value
for an entire colour image.

(step.2) Subtract a fraction of the maximum red channel intensity from each of
the original red channel intensities.

(step.3) Display the results both as colour images and greyscale images. �

Problem 2.15 ® Repeat the steps in Problem 2.14 using a minimum colour chan-
nel intensity. �

Finding Image Edges

The hardest thing of all is to find a black cat in a dark room, especially
if there is no cat.
—Confucius [114].

2.5 Pixel Selection Illustrated with Edge Pixel Selection

One of the commonest forms pixel selection is in the form of edge pixels. The basic
approach is to detect those pixels that are on edges in either in a greyscale image or
in a colour channel.

2.5 Pixel Selection Illustrated with Edge Pixel Selection 101

Fig. 2.17 Sample greyscale image edges

Briefly, to find edge pixels, we first find the gradient orientation (gradient angle)
of each image pixel, i.e., angle of the tangent to each pixel. Let img be a 2D image
and let img(x, y) be a pixel at location (x, y). Then the gradient angle ϕ of pixel
img(x, y) is found in the following way.

Gx = ∂img(x, y)

∂x
.

Gy = ∂img(x, y)

∂y
.

ϕ = tan−1Gy

Gx
= tan−1

(∂img(x,y)
∂y

∂img(x,y)
∂x

)
.

In Canny’s approach to edge pixel detection [24], each image is filtered to remove
noise, which has the visual effect of smoothing an image. After the gradient ori-
entation for each pixel is found, then a double threshold for an hysteresis interval
on orientation angles is introduced by Canny. The basic idea is to choose all pixels
with gradient orientations that fall within the hysteresis interval. Edge pixels that fall
within the selected hysteresis interval are called strong edge pixels. All edge pixels

102 2 Working with Pixels

with gradient angles outside the hysteresis interval are calledweak edge pixels. The
weak edge pixels are ignored.

Algorithm 7: Colour Channel Edges Selection
Input : Read digital image img.
/* Capture colour image channel edges. */ ;1
Output: img �−→ edgesR, edgesR, edgesR.
/* Capture red channel pixel intensities. */ ;2
gR �−→img(:, :, 1);3
/* Capture green channel pixel intensities. */ ;4
gG �−→img(:, :, 2);5
/* Capture blue channel pixel intensities. */ ;6
gB �−→img(:, :, 3);7
/* Capture blue channel pixel intensities. */ ;8
edge(gR,′ canny′) �−→ imgR;9
edge(gG,′ canny′) �−→ imgG;10
edge(gB,′ canny′) �−→ imgB;11
/* Map edge pixel intensities in each channel onto a black channel image bk. */ ;12
edgesR �−→cat (3, imgR, bk, bk);13
edgesG �−→cat (3, bk, imgG, bk);14
edgesG �−→cat (3, bk, bk, imgB);15
/* Capture modified black image embossed with channel edges. */ ;16
Display edgesR, edgesR, edgesR;17

Before we separate out the edges from each colour image channel, we consider
the conventional approach to separating greyscale image edges embossed as white
pixels on a binary image.

Example 2.16 Figure2.17 shows the result of finding the strong edge pixels in a
greyscale image derived from a colour image usingMScript A.18 in Appendix A.2.5.
The basic approach is to start by converting a colour image to a greyscale image.
If we ignore the location of each colour pixel, then a colour image is an example
of a 3D image. Mathematically, each pixel p in location (x, y) in a colour image
is described by a vector (x, y, r, g, b) in a 5-dimensional Euclidean space, where
r, g, b are the colour channel brightness (intensity) values of pixel p. Traditionally,
edge detection algorithms require a greyscale image, which is a 2D image in which
each pixel intensity is visually a shade of grey ranging from pure white to pure black.
After choosing the pixels in a colour channel, then any of the usual edge detection
methods can be used on the single colour channel pixels. In this example, we use the
edge detection method introduced by John Canny [24].

Here are some of the details.

2.5 Pixel Selection Illustrated with Edge Pixel Selection 103

Colour Subimage
In this cycle image segment, the combined RGB channel pixels are shown.

BW Subimage Edges
In this cycle BW image segment, white edge pixels on a binary subimage are
shown. �

The steps to follow in edge pixel detection in each of the colour channels are
given in Algorithm7. Notice the parallel between the conventional approach to pixel
edge detection and colour channel edge detection in Algorithm7. In both cases, edge
pixels (either in white or in colour) are embossed on a black image. Sample strong
edge pixels for the red channel of a cycle image are shown in Fig. 2.18.

Example 2.17 Figure 2.19 shows the result of finding the strong edge pixels in the
green channel of a colour image using MScript A.18 in Appendix A.2.5. The story
starts by selecting all of the pixels in a colour image. Traditionally, edge detection
algorithms require a greyscale image. The pixels in a single channel of a colour image
have the appearance of a typical 2D greyscale image, except that pixel intensities
are pixel colour brightness values in a single channel. After choosing the pixels in
a colour channel, then any of the usual edge detection methods can be used on the
single colour channel pixels. Here again, we use Canny’s edge detection method.

	 img = imread(′carCycle. j pg′); % select RGB image

	 gR = img(:, :, 1); % select red channel pixels

	 imgR = edge(gR,′ canny′); % select red channel pixels

Here are some of the details.

104 2 Working with Pixels

Fig. 2.18 Red channel cycle edges

Colour Channel Subimage
In this cycle image segment, only the green channel pixels are shown.

2.5 Pixel Selection Illustrated with Edge Pixel Selection 105

Fig. 2.19 Green channel edges

Colour Channel Subimage Edges
In this cycle image segment, the green channel edge pixels on the wheel subimage
are shown. �

It is possible to combine colour channel edge pixels on a black image.

Example 2.18 Figure 2.20 shows the result of combining the red channel and the
green channel edge pixels again using MScript A.18 in Appendix A.2.5. This is
accomplished in a straightforward fashion by concatenating the separate images,
namely, imgR (red channel edges), imgG (green channel edges) and a (entirely
black image).

Here are some of the details.

Binary Edges Subimage
In this cycle image segment, only the green channel pixels are shown.

106 2 Working with Pixels

Fig. 2.20 Red green channel cycle edges

Colour Channel Subimage Edges
In this cycle image segment, the red channel and green channel edge pixels on
the wheel subimage are shown. Notice that many yellow edges are included in
the RG edges. The yellow edge pixels are at the higher (brighter) ends of the
Canny hysteresis intervals used to identify strong edge pixels. An entirely different
situation will arise, if we consider either RB or GB edge pixels (see Problem 2.19)
(Fig. 2.21). �

2.5 Pixel Selection Illustrated with Edge Pixel Selection 107

Fig. 2.21 Red blue channel cycle edges

Problem 2.19 Combined Color Channel Edge Pixels.
Extending the approach to combining colour edge pixels in Example 2.18, do the
following:

1o ®Display a combination of the red channel and blue channel edges on a black
image. Hint: See how this is done in MScript A.18 in Appendix A.2.5.

2o ® Display a combination of the green channel and blue channel edges on a
black image.

3o K Display a combination of the red, green, and blue channel edges on a black
image. �

Problem 2.20 Offline Video Frame Colour Channel Edges.
Use the approach to changing image channel intensities in MScript A.18 in Appen-
dix A.2.5 as a template for offline video processing, do the following.

1o K Using Matlab script A.8 in Appendix A.1.5 as a template for offline video
processing, display the red channel edges in each video frame image. Hint:
Replace the lines of Voronoï tessellation code with lines to code in MScript A.18
to handle and display the red channel edges in each video frame image.

108 2 Working with Pixels

2o Repeat Step 1 to handle and display the green channel edges in each video frame
image.

3o Repeat Step 1 to handle and display the blue channel edges in each video frame
image.

4o K Using Matlab script A.8 in Appendix A.1.5 as a template for offline video
processing, display the combined red and green channel edges in each video
frame image. Hint: Replace the lines of Voronoï tessellation code with lines to
code in MScript A.18 to handle and display the combined red and green channel
edges in each video frame image.

5o Repeat Step 4 to handle and display the combined red and blue channel edges in
each video frame image.

6o Repeat Step 4 to handle and display the combined green and blue channel edges
in each video frame image. �

Problem 2.21 Offline Video Frame Combined Colour Channel Edges.
Write a script to display offline the combined RGB channel edges in each video
frame image. Do this for two different videos. �

Problem 2.22 Real-Time Video Frame Colour Channel Edges.
Use the approach to changing image channel intensities in MScript A.18 in Appen-
dix A.2.5 as a template for real-time video processing, do the following.

1o UsingMatlab scriptA.9 inAppendixA.1.5 as a template for offline video process-
ing, display the red channel edges in each video frame image.Hint: Replace the
lines of Voronoï tessellation codewith lines to code inMatlab script A.9 to handle
and display the red channel edges in each video frame image in real-time.

2o Repeat Step 1 to handle and display the green channel edges in each video frame
image.

3o Repeat Step 1 to handle and display the blue channel edges in each video frame
image.

4o K Using Matlab script A.8 in Appendix A.1.5 as a template for offline video
processing, display the combined red and green channel edges in each video
frame image. Hint: Replace the lines of Voronoï tessellation code with lines to
code in MScript A.18 to handle and display the combined red and green channel
edges in each video frame image in real-time.

5o Repeat Step 4 to handle and display the combined red and blue channel edges in
each video frame image in real-time.

6o Repeat Step 4 to handle and display the combined green and blue channel edges
in each video frame image in real-time. �

Problem 2.23 Real-Time Video Frame Combined Colour Channel Edges.
Write a script to display in real-time the combined RGB channel edges in each video
frame image. Do this for two different videos. �

2.6 Function-Based Image Pixel Value Changes 109

Algorithm 8: Log-Based Image Pixel Changes
Input : Read digital image img.
Output: img �−→ log(img).
gR �−→img(:, :, 1);1
/* Capture red channel pixel intensities. */ ;2
gG �−→img(:, :, 2);3
/* Capture green channel pixel intensities. */ ;4
gB �−→img(:, :, 3);5
/* Capture blue channel pixel intensities. */ ;6
log(gR) �−→ imgR;7
log(gG) �−→ imgG;8
log(gB) �−→ imgB;9
/* Map log of pixel intensities in each channel to a modified channel image. */ ;10
captureModi f ied Image �−→cat (3, imgR, imgG, imgB);11
/* Capture modified channel intensities in a single image. */ ;12
Display captureModi f ied Image;13

2.6 Function-Based Image Pixel Value Changes

This section briefly introduces an approach to modifying image pixel values using
various functions. We illustrate this approach using the natural log of pixel values
over an selected colour image channels. The steps to follow in modifying the each of
the channel intensities resulting from the log of each colour channel pixel intensity
are show in Algorithm8.

Example 2.24 Figure 2.22 shows the result of a log-based modification of channel
pixel intensities in a colour image using AlgorithmMScript A.19 in Appendix A.2.6.
Here are sample coding steps in the basic approach.

	 img = imread(′carCycle. j pg′); % select RGB image

	 gR = img(:, :, 1); % select red channel pixels

	 imgR = log(double(gR)); % find log of red channel edge pixel intensities

	 s f = 0.2; % scaling factor

	 imgR = (s f). ∗ log(double(gR)); % select lower edge pixel intensities

Here are some of the details.

110 2 Working with Pixels

Fig. 2.22 Sample image after log-based pixel intensity changes

Colour Subimage
In this colour image segment, only the front wheel is shown.

Log-Based Colour Subimage
In this colour image segment, the combined log-modified channel intensities are
shown. �

2.6 Function-Based Image Pixel Value Changes 111

Problem 2.25 Function-Based Colour Channel Intensity Modifications.
Select three colour images of your own choosing and do the following.

Fig. 2.23 Sample image after cosine-based pixel intensity changes

1o ®Compute the cosine of each colour channel intensity and produce four images
like ones in Fig. 2.23. Hint: Modify MScript A.19 in Appendix A.2.6 to get the
desired result.

2o Repeat the preceding step for two different choices of the scaling factor to adjust
the brightness of the modified images. For example, 0.2 is the scaling factor in
MScript A.19 and 1.8 is the scaling factor used to obtain the results in Fig. 2.23.

Problem 2.26 Colour Channel Edge Information Content.
Select three colour images of your own choosing and do the following.

1o KCompute the information content of each colour channel edge pixel intensity
and produce four images like ones in Fig. 2.23. Hint: Find the total number of
pixels in each image. Assume that the edge pixel intensities in the digital image
img are random. In addition, let the probability p(img(x, y)) = 1

x∗y for each
image intensity img(x, y) for a pixel with coordinates (x, y), 1 ≤ x ≤ m, 1 ≤
y ≤ n in an n×m image.1 Then, for each colour channel pixel intensity, compute
the colour channel edge pixel information content h(img(x, y, k)), k = 1, 2, 3
of an edge pixel defined by

h(img(x, y, k)) := log2

(
1

p(img(x, y, k)

)
(colour channel pixel info. content).

And, for each colour pixel edge intensity, compute the colour edge pixel infor-
mation content h(img(x, y)), 1 ≤ x ≤ m, 1 ≤ y ≤ n of an edge pixel defined
by

h(img(x, y)) := log2

(
1

p(img(x, y)

)
(pixel information content).

1Many other ways to compute the probability of a pixel intensity img(x, y) are possible. There is
a restriction:

n∗m∑
i=1

pi (img(r, c)) = 1, 1 ≤ r ≤ m, 1 ≤ c ≤ n.

112 2 Working with Pixels

2o Repeat the preceding steps for two different choices of the scaling factor to adjust
the brightness of the modified images. �

Problem 2.27 Colour Image Entropy and Its Modifications.
Select three colour images of your own choosing and do the following.

1o ® Give a formula for the Shannon entropy of a n × m colour image img.
2o ®Using the assumptions in Problem 2.26, write aMatlab orMathematica script

to compute and display the Shannon entropy of three colour images of your own
choosing.

3o KModify the Matlab script in Step 2 to do the following with the three colour
images of your own choosing.

3(a) Change the color image pixel intensities so that the entropy of the image
increases.

3(b) Change the color image pixel intensities so that the entropy of the image
decreases. �

2.7 Logical Operations on Images

The logical operations are not, and, or, and xor (exclusive or). This section introduces
the use of not, or, and xor (exclusive or) on image pixels. Later, it will be shown how
the and operation can be combined with what is known as thresholding to separate
the foreground from the background of images (see Sect. 2.8).

2.7.1 Complementing and Logical not of Pixel Intensities

For a greyscale image, the complement of the image makes dark areas lighter and
bright areas darker. For a binary image g, not (g) changes background (black) values
towhite and foreground (white) values to black. The not (g) produces the same results
as imcomplement (g).

Example 2.28 Mscript A.20 in Appendix A.2.7 illustrates changes in a greyscale
image in which the complement of each intensity is complemented and changes in a
binary image in which the logical not of each pixel intensity is computed. Figure2.24
shows two modifications every intensity in a greyscale image:

1o Complement of each greyscale pixel intensity. Notice how the photographer’s
coat is now mostly (not entirely) white and dull gray background areas become
very dark.

2o Addition of the maximum intensity to each greyscale pixel intensity. The result is
surprising, since it demonstrated the presence of blurred segments in the original
greyscale image.

2.7 Logical Operations on Images 113

Fig. 2.24 Sample complement and increased greyscale pixel intensities

Fig. 2.25 Sample complement and logically negated binary pixel intensities

Figure2.24 shows two modifications every intensity in a binary image:

3o Logical not of each greyscale pixel intensity. Notice how all black areas of the
binary become white and all white areas become black.

4o Complement of each binary pixel intensity. This produces the same result as the
complement of the binary image (Fig. 2.25). �

Table 2.1 XOR

x y xor(x,y)

0 0 0

0 1 1

1 0 1

1 1 0

2.7.2 Xor Operation on Pairs of Binary Images

To seewhat the xor operation does, consider Table 2.1,where x, y are pixel intensities
in a binary image. Table 2.1 is modelled after an exclusive or truth table. In Matlab,

114 2 Working with Pixels

2.26.1: Robots at start 2.26.2: Robots competing

Fig. 2.26 Sample colour images using robots.m

the exclusive or operation produces the following sample result on a pair of binary
images. To see what happens, consider the following pair of colour images.

% c o n s t r u c t i n g new images f rom o l d images u s i n g xo r
% i d e a f rom Solomon and Breckon , 2011
clc , close all , clear all

% What ’ s h a pp en i n g ?
g = imread (’race1.jpg’) ; h = imread (’race2.jpg’) ; % r e a d images
gbw = im2bw (g) ; hbw = im2bw (h) ; % c o n v e r t t o b i n a r y
check = xor (gbw , hbw) ;
subplot (1 , 3 , 1) , imshow (gbw) ; % d i s p l a y g
subplot (1 , 3 , 2) , imshow (hbw) ; % d i s p l a y h
subplot (1 , 3 , 3) , imshow (check) ; % d i s p l a y xo r (gbw , hbw)

Listing 2.1 Matlab code cars.m to produce Fig. 2.26.

Fig. 2.27 Sample xor images robots.m

Next, a pair of .png colour images in Fig. 2.26 are converted to binary images
(every pixel value is either 1 (white) or 0 (black) after applying the im2bw function
to each image. Then the xor function is applied (see Listing2.2) to the pair of binary
images to obtain the result shown in Fig. 2.27.

% c o n s t r u c t i n g new images f rom o l d images
close all
clear all

% What ’ s h a pp en i n g ?
%g = imr e ad (’ b i r d s 1 . jpg ’) ; h = imr e ad (’ b i r d s 2 . jpg ’) ; % r e a d png images
g = imread (’race1.jpg’) ; h = imread (’race2.jpg’) ; % r e a d png images
gbw = im2bw (g , 0 . 3) ; hbw = im2bw (h , 0 . 3) ; % c o n v e r t t o b i n a r y
check = xor (gbw , hbw) ; % xo r b i n a r y

i n t e n s i t i e s

2.7 Logical Operations on Images 115

figure ,
subplot (1 , 3 , 1) , imshow (gbw) ; % d i s p l a y gbw
subplot (1 , 3 , 2) , imshow (hbw) ; % d i s p l a y hbw
subplot (1 , 3 , 3) , imshow (check) ; % d i s p l a y xo r (gbw , hbw)

Listing 2.2 Matlab code to produce Fig. 2.27.

For the sake of completeness, the same experiment is performed on a pair of .jpg
colour images showing two different Thai grocery store displays. The interesting
thing here is seeing how the xor operation on the displays reveals movements of
similar items (bottles) from one display to the other (Fig. 2.28).

Fig. 2.28 Sample Thai Shelf images

% c o n s t r u c t i n g new images f rom o l d images
clc , clear all , close all % hou s e k e e p i n g
g = imread (’P9.jpg’) ; h = imread (’P7.jpg’) ; % r e a d j p g images
%
gbw = im2bw (g) ; hbw = im2bw (h) ; % c o n v e r t t o b i n a r y
check = xor (gbw , hbw) ; % xo r b i n a r y

i n t e n s i t i e s
subplot (1 , 3 , 1) , imshow (gbw) ; % d i s p l a y gbw
subplot (1 , 3 , 2) , imshow (hbw) ; % d i s p l a y hbw
subplot (1 , 3 , 3) , imshow (check) ; % d i s p l a y xo r (gbw , hbw)

Listing 2.3 Matlab code xor2.m to produce Fig. 2.29.

116 2 Working with Pixels

Fig. 2.29 Sample .png colour images

Fig. 2.30 Sample greyscale image thresholding

2.8 Separating Image Foreground From Background

Greyscale and colour images can be transformed into binary (black and white)
images, where the pixels in the foreground of an image are black and pixels in
the background of an image are white. The separation of image foreground from
background is accomplished using a technique called thresholding. The threshold-
ing method results in a binary image by changing each background pixel value to 0,
if a pixel value is below a threshold, and to 1, if a foreground pixel value is greater
than or equal to the threshold. Let th ∈ (0,∞] denote a threshold and let � denote
a greyscale image. Then

�(x, y) =
{
1, if �(x, y) > th,

0, otherwise.

% Th r e s h o l d i n g on g r e y s c a l e image
clc , clear all , close all % hou s e k e e p i n g
g = imread (’cameraman.tif’) ; % r e a d g r e y s c a l e image
h1 = im2bw (g , 0 . 1) ; % t h r e s h o l d = 0 . 1
h2 = im2bw (g , 0 . 4) ; % t h r e s h o l d = 0 . 5
h3 = im2bw (g , 0 . 6) ; % t h r e s h o l d = 0 . 5
subplot (1 , 4 , 1) , imshow (g) ; % d i s p l a y g r e y s c a l e image
subplot (1 , 4 , 2) , imshow (h1) ; % d i s p l a y t r a n s f o rm e d image
subplot (1 , 4 , 3) , imshow (h2) ; % d i s p l a y t r a n s f o rm e d image
subplot (1 , 4 , 4) , imshow (h3) ; % d i s p l a y t r a n s f o rm e d image

Listing 2.4 Matlab script to produce Fig. 2.30 using ex_greyth.m.

2.8 Separating Image Foreground From Background 117

Notice that th = 0.5works best in separating the cameraman from the background
(in fact, the background is no longer visible in Fig. 2.30 for th = 0.5). If there is
interest in isolating the foreground of a greyscale image, it is necessary to experiment
with different thresholds to obtain the best result. The code used to produce Fig. 2.30
is given in Listing2.4.

Problem 2.29 Reversing Greyscale Pixel Separation Process.
Partially reverse the thresholding process for a greyscale. Wherever there is a white
pixel in a thresholded image, change towhite the pixel in the corresponding greyscale
image. This reversal process will result in a greyscale where the foreground consists
of pixelswith varying intensities and the backgroundof the greyscale image is entirely
white. This reversal process will be important later, when feature extraction methods
are used based on varying pixel intensities. �

Separating the foreground from the background in colour images can either be
done uniformly (treating all three colour channels alike) or finely by thresholding
each colour channel individually. Sample results of the uniform separation approach
are shown in Fig. 2.31 using the code Listing2.5.

Fig. 2.31 Sample colour image thresholding

% Th r e s h o l d i n g a c o l o u r image
% What ’ s h a pp en i n g ?

g = imread (’rainbow.jpg’) ; % r e a d c o l o u r image
% g = imr e ad (’ p e n g u i n s . jpg ’) ; % r e a d c o l o u r image
h1 = im2bw (g , 0 . 1) ; % t h r e s h o l d = 0 . 1
h2 = im2bw (g , 0 . 4) ; % t h r e s h o l d = 0 . 4
h3 = im2bw (g , 0 . 5) ; % t h r e s h o l d = 0 . 5
subplot (1 , 4 , 1) , imshow (g) ; title (’Scottish shoreline’) ;
subplot (1 , 4 , 2) , imshow (h1) ; title (’th = 0.1’) ;
subplot (1 , 4 , 3) , imshow (h2) ; title (’th = 0.4’) ;
subplot (1 , 4 , 4) , imshow (h3) ; title (’th = 0.5’) ;

Listing 2.5 Matlab script to produce Fig. 2.31 using ex_2th.m.

Problem 2.30 Reversing Colour Pixel Separation Process.
Partially reverse the thresholding process for a colour image. Wherever there is a
white pixel in a thresholded colour image, change to white the pixel in the cor-
responding colour image. This reversal process will result in a colour where the
foreground consists of pixels with varying intensities for each colour channel for
each pixel and the background of the colour image is entirely white. This reversal
process will be important later, when feature extraction methods are used based on

118 2 Working with Pixels

varying pixel colour intensities. Common applications of this reversal process are
in signature forgery detection and camouflage detection in paintings and in satellite
images. �

Fig. 2.32 Sample colour image

2.9 Conjunction of Thresholded Colour Channels

Another useful technique in separating the foreground from the background in colour
images stems from an application of the logical and operation. The basic idea is to
threshold the pixel intensities in each colour channel and then experiment with the
conjunction of the resulting colour changes, either in pairs or the conjunction of all
three thresholded colour channels. Let � be a colour image, r, g, b colour channels
in �, and let r th, gth, bth denote thresholds on the red, green, blue colour channels,
respectively. Then

	 rbw = im2bw(�(:, :, r), r th); thresholded red channel,

	 gbw = im2bw(�(:, :, g), gth); thresholded green channel,

	 bbw = im2bw(�(:, :, b), bth); thresholded blue channel.

Then using the logical and operation, compute

2.9 Conjunction of Thresholded Colour Channels 119

	 arg = and(rbw, gbw); conjunction of r,g channels,

	 arb = and(gbw, bbw); conjunction of g,b channels,

	 agb = and(rbw, bbw); conjunction of r,b channels,

	 agb = and(and(rbw, gbw), bbw); conjunction of r,g,b channels.

The colour image in Fig. 2.32 is an example of macrophotography, showing a
closeup of grasshoppers.Macrophotography is closeup photography. Amacro lens
is capable of reproduction ratios greater than 1:1. The onscreen reproduction of a 1:1
macroimage results in a photograph greater than a lifesize image. Reproduction ratios
much greater than 1:1 is calledphotomicroscopy, usually accomplishedwith a stereo
zoom digital microscope. An application of the conjunction form of thresholding on
the macrophotograph of grasshoppers is shown in Fig. 2.33 using the sample code in
Listing2.6. Notice the best separation of the foreground from background is achieved
with a conjunction of the thresholded red and blue channels. This is not always the
case (see Problem 2.31).

	 agb = and(rbw, bbw); conjunction of r,b channels.

Fig. 2.33 Sample colour image thresholding with conjunction

% Th r e s h o l d i n g c o l o u r c h a n n e l s
clc , clear all , close all % hou s e k e e p i n g
g = imread (’carPoste.jpg’) ; % r e a d c o l o u r image
rth = 0 . 2 9 8 9 ; gth = 0 . 5 8 7 ; bth = 0 . 1 1 4 ; % NTSC we i g h t s
r = g (: , : , 1) ; gr = g (: , : , 2) ; b = g (: , : , 3) ; % c h a n n e l s
rbw = im2bw (r , rth) ; % t h r e s h o l d r
gbw = im2bw (gr , gth) ; % t h r e s h o l d g
bbw = im2bw (b , bth) ; % t h r e s h o l d b
o1 = and (rbw , gbw) ; o2 = and (gbw , bbw) ; o3 = and (rbw , bbw) ;
o4 = and (and (rbw , gbw) ,bbw) ;
subplot (1 , 4 , 1) ,imshow (o1) , title (’and(rbw,gbw)’) ;
subplot (1 , 4 , 2) ,imshow (o2) , title (’and(gbw,bbw)’) ;
subplot (1 , 4 , 3) ,imshow (o3) , title (’and(rbw,bbw)’) ;
subplot (1 , 4 , 4) ,imshow (o4) , title (’and(and(rbw,gbw),bbw)’) ;

Listing 2.6 Matlab script to produce Fig. 2.33 using ex_2th2.m.

Problem 2.31 Threshold and Conjunction Separation Process.
Use a combination of thresholding and conjunction on the colour channels for several
different colour images, starting with rainbow.jpg (Scottish rainbow) and seq4a.jpg
(hand). Do the following.

120 2 Working with Pixels

(and.1) Vary the weights for the thresholded rgb channels,
(and.2) Point out which conjunction of thresholded channels gives the best results.

The result will be best when there are more details in the foreground.
(and.3) For a particular colour image, explain why a particular conjunction of

colour channels works best.
(and.4) Besides the rainbow.jpg (Scottish rainbow) and seq4a.jpg (hand) images,

find a third colour image (your choice),where the conjunction of all thresh-
olded colour channels works best. �

Problem 2.32 Reversing Threshold and Conjunction Separation Process.
Partially reverse the thresholding-conjunction process for a colour image. Wherever
there is a white pixel in a binary image resulting from a conjunction of a combination
of thresholded colour channels, change to white the pixel in the corresponding colour
image. This reversal process will result in a colour where the foreground consists of
pixels with varying intensities for each colour channel for each foreground pixel and
the background of the colour image will be entirely white. �

The reversal process from the solutions of Problems 2.30 and 2.32 will also be
important later, when feature extraction methods are used based on varying pixel
colour intensities. Common applications of this reversal process are in signature
forgery detection and camouflage detection in paintings and in satellite images.

2.10 Improving Contrast in an Image

Image contrast can be improved by altering the dynamic range of an image. The
dynamic range of an image equals the difference between the smallest and largest
image pixel values. Transforms can be defined by altering the relation between the

Fig. 2.34 Dynamic range compression with eg_log1.m

2.10 Improving Contrast in an Image 121

dynamic range and the greyscale (colour) image pixel values. For example, an image
dynamic range can be altered by replacing each pixel value with its logarithm. Let
� denote an image. Then alter the pixel value at (x, y) using

�(x, y) = k loge(1 + (eσ − 1)�(x, y)), (2.1)

where (assuming 8 bit pixel values),

k = 255

loge(1 + max(�))
.

To simplify the implementation of Eq. (2.1), use the following technique to alter
all pixel values in �.

	 � = k. ∗ log(1 + im2double(�))

Next observe that, since � is a matrix, max(�) returns a row vector containing the
maximum pixel value from each column. To complete the implementation of k, use

	 k = mean((255)./ log(1 + max(�))).

The results of a number of different experiments in modifying the dynamic range
are shown in Fig. 2.34, using the code in Listing2.7.

% Compre s s i ng dynamic r a n g e o f an image
clc , clear all , close all % hou s e k e e p i n g
g = imread (’sig.jpg’) ; % Read i n image
subplot (2 , 3 , 1) , imshow (g) ; title (’original’) ;
g = rgb2gray (g) ;
subplot (2 , 3 , 2) , imshow (g) ; title (’rgb2gray(g)’) ;
g = im2double (g) ; % p i x e l v a l u e s −> doub l e
h = im2double (g) ; % p i x e l v a l u e s −> doub l e
k = (max (max (g))) . / (log (1 + max (max (g)))) ;
com1 = 1∗log (1 + h) ; % 1 s t c omp r e s s i o n
com2 = 2∗log (g + h) ; % 2nd c omp r e s s i o n
com3 = 5∗log (g + h) ; % 3 rd c omp r e s s i o n
com4 = k . ∗log (1 + h) ; % 4 t h c omp r e s s i o n
subplot (2 , 3 , 3) , imshow (com1) ; title (’1*log(1 + h)’) ;
subplot (2 , 3 , 4) , imshow (com2) ; title (’2*log(g + h)’) ;
subplot (2 , 3 , 5) , imshow (com3) ; title (’5*log(g + h)’) ;
subplot (2 , 3 , 6) , imshow (com4) ; title (’k.*log(1 + h)’) ;

Listing 2.7 Matlab script to produce Fig. 2.34 using eg_log1.m.

Notice that by increasing the value of the multiplier k, the overall brightness of the
image increases.2 The best result for the signature image is shown in the third image in
row 2 of Fig. 2.34, where 5.*log(g + h) is used on the image g. A less than satisfactory
result is obtained using k.*log(1 + im2double(g)). The logarithmic transform in
Eq. (2.1) induces a brightening of the foreground by spreading the foreground pixel
values over a wider range and a compression of the background pixel range. The

2Many thanks to Patrik Dahlström for pointing out the corrections in eg_log1.m.

122 2 Working with Pixels

narrowing of the background pixel range provides a sharper contrast between the
background and the foreground.

Problem 2.33 Let g denote either a greyscale or colour image. InMatlab, implement
Eq. (2.1) using (eσ − 1)g(x, y) instead of im2double(g) and show sample images
using several choices of σ. Use the cameraman image as well as the signature image
to show the results for different values of σ. �

Use the Matlab whos function to display the information about the current vari-
ables in the workspace, e.g., variables k and com4 in Listing2.7. Matlab constructs
the double data type in terms of the definition for double precision in IEEE Standard
754, i.e., double precision values require 64 bits (forMatlab, double is the default data
type for numbers). The im2double(g) function converts pixel intensities in image g
to type double.

2.11 Gamma Transform

An alternative to the logarithm approach in compressing the dynamic range of inten-
sities in an image, is the gamma (raise to a power) transform. Let I denote a digital
image, I (x, y) a pixel located at (x, y), k ∈ N (natural number 1, . . . ,∞), and
γ ∈ R

+ (positive reals). Basically, each pixel value is raised to a power using

I (x, y) = k (I (x, y))γ .

The constant k provides a means of scaling the transformed pixel values. Here are
rules-of-thumb for the choice of γ.

(rule.1) γ > 1: Increase contrast between high-value pixel values at the expense
of low-valued pixels.

(rule.2) γ < 1: Decrease contrast between high-value pixel values at the expense
of high-valued pixels.

% Gamma t r a n s f o rm
clc , clear all , close all % hou s e k e e p i n g
g = imread (’P9.jpg’) ; % r e a d image
% h = imr e ad (’ P7 . jpg ’) ; % r e a d image
g = im2double (g) ;
g1 = 2∗ (g . ^ (0 . 5)) ; g2 = 2∗ (g . ^ (1 . 5)) ; g3 = 2∗ (g . ^ (3 . 5)) ;
subplot (1 , 4 , 1) , imshow (g) ; % d i s p l a y g
title (’Thai shelves’) ;
subplot (1 , 4 , 2) , imshow (g1) ; % gamma = 0 . 5
title (’gamma = 0.5’) ;
subplot (1 , 4 , 3) , imshow (g2) ; % gamma = 1 . 5
title (’gamma = 1.5’) ;
subplot (1 , 4 , 4) , imshow (g3) ; % gamma = 3 . 5
title (’gamma = 3.5’) ;

Listing 2.8 Matlab script to produce Fig. 2.35 using myGamma.m.

2.12 Gamma Correction 123

Fig. 2.35 Gamma transformation of a Thai colour image

2.12 Gamma Correction

There is a nonlinear relationship between input voltage and output intensity in mon-
itor displays. This problem can be corrected by preprocessing image intensities with
an inverse gamma transform (also called inverse power law transform) using

gout =
(

g
1
γ

in

)γ+k

,

where gin is the input image and gout is the output image after gamma correction.
Gamma correction can be carried out using the Matlab imadjust function as shown
in gamma_adjust.m with sample results shown in Fig. 2.36. Unlike the results in
Fig. 2.35 with the gamma transform, the best result in Fig. 2.36 is obtained with a
lower γ value, namely, γ = 1.5 in Fig. 2.36 as opposed to γ = 3.5 in Fig. 2.35.

% Gamma c o r r e c t i o n t r a n s f o rm
clc , clear all , close all % hou s e k e e p i n g
g = imread (’P9.jpg’) ; % Tha i s h e l v e s image
%g = imr e ad (’ s i g . jpg ’) ; % Cu r r e n cy s i g n a t u r e
g = im2double (g) ;
g1 = imadjust (g , [0 1] , [0 1] , 0 . 5) ; % i n / ou r r a n g e [0 , 1]
g2 = imadjust (g , [0 1] , [0 1] , 1 . 5) ; % i n / ou r r a n g e [0 , 1]
g3 = imadjust (g , [0 1] , [0 1] , 3 . 8) ; % i n / ou r r a n g e [0 , 1]
subplot (1 , 4 , 1) , imshow (g) ; % d i s p l a y g

Fig. 2.36 Gamma correction of a Thai colour image

124 2 Working with Pixels

title (’Thai shelves’) ;
subplot (1 , 4 , 2) , imshow (g1) ; % gamma = 0 . 5
title (’gamma = 0.5’) ;
subplot (1 , 4 , 3) , imshow (g2) ; % gamma = 1 . 5
title (’gamma = 1.5’) ;
subplot (1 , 4 , 4) , imshow (g3) ; % gamma = 3 . 5
title (’gamma = 3.5’) ;

Listing 2.9 Matlab script to produce Fig. 2.36 using gamma_adjust.m.

Problem 2.34 ® Experiment with the currency signature in Fig. 2.34 using both
the gamma transform and inverse gamma transform. Which value of γ gives the best
result in each case? The best result will be the transformed image that has the clearest
signature.

http://www.springer.com/978-3-319-52481-8

	2 Working with Pixels
	2.1 Picture Elements
	2.2 Separating Colour Image Channels
	2.3 Colour to Greyscale Conversion
	2.4 Algebraic Operations on Pixel Intensities
	2.5 Pixel Selection Illustrated with Edge Pixel Selection
	2.6 Function-Based Image Pixel Value Changes
	2.7 Logical Operations on Images
	2.7.1 Complementing and Logical not of Pixel Intensities
	2.7.2 Xor Operation on Pairs of Binary Images

	2.8 Separating Image Foreground From Background
	2.9 Conjunction of Thresholded Colour Channels
	2.10 Improving Contrast in an Image
	2.11 Gamma Transform
	2.12 Gamma Correction

