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Abstract. Autonomous navigation of quadcopters in unstructured
indoor environments is a major problem due to the difficulty of reli-
able position sensing. While outdoor applications can use GPS for reli-
able localization, working indoors will require the use of either laser
range finders or some other sensors. If the indoor scene is unknown to a
robot, the task of mapping new areas also becomes a necessity. The two
processes are combined and run together in a framework of Simultane-
ous Localization and Mapping (SLAM). Our work is focused on using
onboard cameras for the task of SLAM in an indoor scenario. Vision
based techniques that do not use time of flight methods like laser range
finders, have the potential to provide a low cost alternative framework for
navigation. In this work, localization using a monocular SLAM frame-
work on an unknown and unstructured scene, a cascaded position con-
troller along with a Luenberger observer which can combine the data of
Inertial sensors and vision based position to generate a complete veloc-
ity feedback for the system have been used. Sensor data fusion using
EKF (Extended Kalman Filter) have been performed for scale estima-
tion. The localization algorithm has been implemented on a quadcopter.
Finally hovering experiment has been performed in an indoor lab based
environment.
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1 Introduction

In recent years, quadcopters have gained a lot of popularity. There are numerous
commercial products already developed and being sold in the market. The highly
agile dynamics of a quadcopter allow it to easily takeoff and fly in any indoor or
outdoor scenario. People are using them commercially for photography and for
recording videos by mounting a camera on them. One of the major challenges in
the field of micro aerial vehicles is to make them completely autonomous: this
requires localization. In an outdoor environment it is possible to use GPS based
position feedback to fly over a particular trajectory. But GPS does not work
indoors and so while flying indoors, if no correction is provided by a manual
operator the quadcopter will drift in any random direction due to the absence
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of precise location information. This calls for using vision or lasers for localizing
the robot in an indoor environment.

Passive systems like VICON or active systems system like phoenix are very
popular choices for lab based environments. It has been shown in [1] that even
highly complex maneuvers and trajectory tracking can be done provided we have
a highly accurate position feedback system. However system relies on external
tracking hardware and is therefore limited to a lab environment.

For complete autonomy in indoor operations, it is necessary to implement
SLAM techniques onboard the system. This can also allow it to be able to
navigate through initially unknown terrains. Highly accurate SLAM with dense
mapping of the scene has been demonstrated in [2] where the authors have
used laser along with vision to generate a pointcloud of the environment. While
laser range finders provide highly accurate depth data they are generally heavy
and expensive. Hence there is a need for developing the SLAM framework by
using cameras as the primary sensors without using laser range finders. The
research on vision based SLAM is particularly important because it is believed
that this is how we humans explore our surroundings. Vision based sensors are
now extremely cheap, and hence developing a good algorithm for state estimation
can make a product commercially viable to the general public.

In order to stabilize a robot over any particular scene two methods have been
used IBVS (Image Based Visual Servoing) and PBVS (Position Based Visual
Servoing). IBVS has been used in [3], and it uses spherical image based error
in between the desired image and current image to directly generate control
signals. However, it requires knowledge of the desired scene beforehand and
hence is restricted to use with pre-defined markers and visual patterns. PBVS
on the other hand generates the current position feedback of the camera by
tracking certain inherent salient features in the scene. This method continuously
generates a sparse feature point map of the surroundings and simultaneously
performs localization with respect to it. To implement complete vision based
SLAM, Parallel Tracking and Mapping (PTAM) [4] which uses a single camera
has been the most popular choice. In the work in [5] the authors have used an AR
Drone platform for sending the camera stream wirelessly over a WiFi network
and implementing PTAM on an offboard laptop computer. In spite of delays
in transmission the authors have been able to successfully stabilize the Micro
Aerial Vehicle (MAV). The major disadvantage of using monocular camera based
algorithms is that the pose measurements are scaled with respect to the metric
measurements. To solve this problem work has been done on using stereo SLAM
for application to MAVs. A hybrid approach using a slow stereo camera set
along with fast PTAM based odometry has been presented in [6]. While PTAM
uses only one camera, with a stereo configuration it is also possible to obtain
accurate scale corrections and depth map estimation. In [7] the authors use a
bottom facing camera for velocity estimation using optical flow and a forward
facing stereo configuration for performing complete mapping and exploration.
In [8] two sets of stereo cameras have been used, in the front and the bottom
direction to provide complete state metric localization and mapping. Another
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technique for scale correction is to fuse the readings of vision with that of Inertial
sensors. In [9] the readings of vision based monocular sensor have been combined
with the readings of an IMU and Barometer to provide complete state feedback
to the system.

In more advanced work [10-12] the authors have demonstrated complete state
estimation by fusing the sensor readings of vision and IMU. The method does
not use any other sensor and can provide metric state feedback by estimating
the scale of the monocular SLAM system. However the system is very sensitive
to initial values of scale and can fail to converge if the initial estimate is outside
a certain bound. More recent work developed in 2014 include SVO (Semi-direct
Visual Odometry) [13] which is a highly efficient and fast open source monoc-
ular SLAM algorithm. This algorithm has the ability to work at almost 60 fps
on a computationally restricted onboard computer and even faster on consumer
grade laptops. It achieves this by directly operating on pixel intensities for match-
ing patches within different frames. This reduces the computational burden of
extracting feature points at every new frame making the visual system more
robust. This paper is mainly concerned with implementation of a vision based
hovering framework on a quadcopter. A Luenberger observer has been designed
which predicts the velocity using the accelerometer and the position feedback.
For localization, monocular SLAM algorithm SVO has been used which is an
open source package released for Robot Operating System (ROS) by [13]. This
is followed by experimental demonstration of hovering over particular waypoints
in 3D space.

The paper is organized as follows: sensors, observer & EKF are described
in Sect. 2. Experimental results are provided in Sect. 3. Section4 concludes the

paper.

2 Localization and Position Control in Unstructured
Environment

2.1 Hardware Description

Nayan quadcopter is used to perform experiment which is shown in Fig. 1.
Description of its components are mentioned in Table 1.

Table 1. Description of Nayan hardware platform

Component Description
Flight controller ARM Cortex M4 32 Bit 168 MHz CPU
Onboard computer | Odroid

Camera CMOS, Bluefox, 752 x 480
Ultrasonic sensors | Px4Flow

Battery LiPo, 5200 mAh

Propeller 11”7 x 4.5"

Weight 1.9Kg
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Fig. 1. Nayan quadcopter

2.2 Sensor Description

Inertial Measurement Unit. The IMU is the most crucial element of the
quadrotor and is used by the attitude controller for maintaining a desired orien-
tation. It consists of a gyroscope which measures the angular velocity in the body
frame and an accelerometer which measures acceleration in the body frame. The
Rotation matrix at any time is obtained by fusing the data of accelerometer with
that of the gyro. Ideally a gyro measures the angular velocity of the system and
is sufficient to estimate the orientation angles ¢, 6,1, given the initial estimate.
However there is a small bias in the angular velocity measurements which leads
to a drift in the attitude, thus calling the need for fusion. More details on the
working of Inertial navigation systems can be found at [14]. For this experiment
it is assumed that the attitude fusion has already been done in the LLP (Low
Level Processor) and we have been provided with the roll, pitch and yaw angles
in High Level Processor (HLP) where the custom user code runs. This is utilized
for obtaining the acceleration in the NED-b frame from the body frame. The
data of accelerometer is governed by the following equation:

z=Ri(a; —g) +b+n, (1)

where, z is the data measured by the accelerometer, RZ is the rotation matrix
from Inertial to Body frame, a; is the acceleration in the inertial frame, b is a
bias in the accelerometer, g is the acceleration of gravity, n, is noise in the sensor
readings. A very important assumption taken to simplify all sensor fusion steps
is that the yaw angle has been considered to be fixed. Under this assumption it
is necessary that the position feedback to the observer is the NED-body fixed
frame. This also leads to a simplified RZ matrix as the yaw term is not considered.
Hence after these assumptions the final equation for acceleration in the NED-B

frame is:
cosf sin@sin¢ cos¢sinb ||z, 0

Onedb = 0 cos ¢ —sing [z, |+| O (2)
—sinf sin ¢ cos O cos pcosb || z, 9.81
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where, ¢ & 0 are roll and pitch angle respectively. Note however that the above
acceleration is not bias free and needs to be corrected before being further used.

Ultrasonic Distance Sensor. An ultrasonic sensor calculates the distance to
an object by using time of flight data for a pulsed echo signal. In this experiment
a Px4Flow board has been used comprising of an inbuilt ultrasonic sensor which
provides direct metric measurements of the height of MAV from the ground. The
data is sampled at a frequency of 10 Hz from the sensor.

2.3 Luenberger Observer

The output from the ultrasonic sensors is a depth reading available at 10 Hz.
The VSLAM algorithm will also be able to give position coordinates at upto
25 Hz. The two are combined on the main computer and finally a metric position
update is provided to the position controller running on the HLP of the flight
controller. We also have the acceleration data coming in from the onboard IMU
at a high frequency. With these available sensor data a luenberger observer has
been designed similar to that used in [9,15]. Each of the z,y, z coordinates are
assumed to be an independent system with an order 3 state for each.

i 010] [z 0
il =001 |&|+ |1| ancas, (3)
by 000]| |b, 0

Y=[100] |4 (4)
b

Here, apeqp, is the acceleration in x axis which is taken as an input to this
system, while (z, Z,b,) are the states. Y is taken as the system output which in
our case is available to the flight controller from the main computer. The states
can similarly be defined for x, y and z. aneqp is obtained from Eq. 2. Based on the
above formulation a Luenberger observer is designed. For a system defined as:

& = Ax + Bu, Y =Cx

we have an observer, .
=A%+ Bu+ L(y — 9) (5)

The error e = = — & converges to zero provided the eigen values of the
matrix A — LC are all negative. Hence the values of the observer L are chosen
appropriately.

2.4 Kalman Filter for Metric Position Feedback

Position Feedback from SVO. The visual subsystem can be thought of as a
black box unit which ultimately gives the current pose as the feedback. In this
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experiment, only the position data has been used for controls while the IMU
which is more reliable for roll and pitch angles, is used for the attitudes.

Ty = —(F— 7o) (6)

where, 77, is the feedback coming from SVO, 7 is the actual 3D coordinate, rq
is position at which the visual system was initialized, A\ is some unknown scale
factor. This output is with respect to an inertial frame which is aligned with
the ENU-body frame at the initial point. At any time after initialization four
states from the VSLAM are taken (24, Yvi, 2vi, Yoi). These are first transformed
to get the position in the gravity aligned body fixed frame. In the final step the
position is transformed from the ENU (East North Up) coordinate system of
SVO to NED (North East Down) for the NED-Body-fixed frame in which the
control algorithm primarily works.

cosy sinvy 0
Fop = RY7y;, R =R.(1)) = | —sint costp 0
0 0 1

where, 9 is the yaw angle.
EKF Framework for Estimation of Static States. Since there are multiple

sensory inputs for the height of the quadcopter, a fusion step using EKF is
performed so as to estimate the static states A, zg. The different equations are:

z—z .
Zv:< )\U>+nva Zy = 2+ Ny, Z = Gpedvz + b+ 14 (7)
where, z, is the depth from vision sensors, z,, is the depth from ultrasonic sensors,
z is the position of the quadcopter on z axis. A, zg are the static states for the
VSLAM system, b is the static bias of the IMU. n,,n,,n, are Gaussian noise
with 0 mean and fixed variance. The state of the system at instant k is defined as

. T
Ty = [2 20X 2] (8)
Prediction
Tp1)k = Frap + Bu, P = FuPoiF + Vi

where,

1At 000

01 At00 .

Fr=100 100, By=[0At000]
00 010
00 001
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Update for VSLAM

1
Zp = ———(x 0)—=x 4)), v=2zy,—2
v $k+1|k(3)( k—i—l\k( ) k+1\k( )) v

1 T
Tht1)k(3)
0
0
(Trt16(0) = 111%(4))
Ii+11|k(3)

Hv,k—i-l -

)
S = Hupr1PeyipHe i1 + Wuo R = Py Hyps15™ "
Tpiilk+1 = Tryk + Ro, Pey1jkr1 = Proyije — BHu k1 Pegaje
Update for Ultrasonic Sensor
U= 2y = Tk+1|k
Hypsr=[10000]
S = Hypy1PopripHy g + Wa, R = PopypHupi15™"

Tpyilk+1 = Tryp + R, Priijk+1 = Progpe — BHuy k11 Ptk
where,
20000 032 0 0 0 0
01000 0 062 0 0 0
Pop= 1000300 |, Vi=|0 0 0042 0 0o |t
00040 0 O 0 0.003At 0
00 0 004 0 O 0 0 0.001A¢t

here, standard notations are used for EKF. Symbol hat is used to represent the
estimated parameter. W, is taken as 0.02, W, is taken as 0.1, At is taken as
0.02's which corresponds to the fact that the IMU update works at 50 Hz on the
system.

2.5 Velocity Feedback Based Controller

This controller assumes that the position feedback it receives is in the NED-
body frame. The controller used in this experiment is a cascaded PID controller.
It comprises of a velocity feedback loop and a position feedback. The velocity
feedback loop obtains the current velocity using the observer designed in Eq. 5.
The position feedback runs at a frequency of 50 Hz and it mainly generates the
desired velocity command for the inner velocity control loop.

€x = Tref — L, Eintgs = /ezdt
Ugref = Kpa:ez — Kz, + Kimeintgz
€vz = Ugref — Vz, Eintgvx = /evxdt

Arref = vawevw - Kdeanedbw + Ki'uweintng
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where, e, is the position error in z, e,, is the velocity error in z. In subscript ref
stands for reference, whereas hat is used to denote estimated parameter. a ey is
the acceleration in x. The final output of this controller is a desired azref. Gyrey
and a.rey are obtained in a similar fashion. The acceleration now needs to be
converted to a desired attitude angle and thrust. The small angle assumption is

taken U
. . . 1
iT=-g0, =99, i=g——

m

where U is the thrust. Hence the equations for desired attitude angles can now
be computed according to the inverse of the above relation.

¢d _ Ayref gd _ _azref

; Ty="To— Qzref
g

where
Uy = byo(023 + 022 + 022 + 23)

b is the thrust coefficient, {2 denotes the angular velocity of the respective
rotor. &, § and Z denote the accelerations in z, y and in z direction respectively.
m is the mass of the system. T,; and Ty represent the desired thrust and hovering
throttle respectively.

3 Experimental Results

In Fig.2(a), we have included a picture of a real time experiment in which
the quadcopter, safety net & pattern are marked. For experimenting indoors a
pattern was placed on the ground. The pattern is used to localize quadcopter
in a precise and robust manner using SVO. Features tracking using SVO is
shown in Fig.2(b). Natural features may or may not contain enough number
of strong point features, which can potentially lead to tracking failure. That
is why we have chosen an artificial pattern that is sufficiently rich in strong
point features. A safety net exists around the operational area to keep other
people safe in case of an accident. The entire code for this experiment runs on
the onboard systems. We have chosen the values of Kalman filter parameters
heuristically. Visual SLAM and Kalman state estimation run on the onboard
computer whereas the Luenberger observer and the position controller run on
the onboard HLP. The mavros driver is used to perform all required two way
communication between the main onboard computer and the flight controller. In
order to initiate the different ROS nodes running on the onboard computer, the
user remote logs into the system via a WiFi network. The different nodes are then
executed using ROS. There are five nodes running on the main onboard computer
while one node runs on the desktop computer and is used for viewing the debug
output of the VSLAM (Visual SLAM). The complete workflow and details of
various nodes on ROS network are given in Fig. 3 and Table 2 respectively.



Position Based Visual Control of the Hovering Quadcopter 23

Fig. 2. (a) Indoor lab setup with hovering experiment in autonomous mode. (b) Feature
tracking using SVO.
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Fig. 3. System overview & complete work flow.

Table 2. Various nodes on the ROS network.

Node

Purpose

Mavros

For communicating with the onboard flight controller

Cam_driver

For extracting and publishing camera data

Px4flow

For extracting and publishing data acquired from the px4flow sensor

SVO

For running the VSLAM algorithm

Sensor_fusion

Fusing depth data from visual and ultrasonic sensors

Image_view

For viewing the debug output of the visual SLAM
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Fig. 4. Hovering at fixed point (23,—37,144) in 3D space, blue point indicates the

target location. (Color figure online)
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Fig. 5. (a) Position error plots. (b) Attitude error plots.

We used Bluefox (CMOS, 752 x 480) camera in our experiment. Localiza-
tion using SVO is performed after camera calibration. For an experiment, the
manual operator performs the takeoff and the landing procedures. Even while
in autonomous flight, the operator must remain alert to take back control in
case of any random behavior or loss of track. Hovering at the fixed point is
shown in Fig. 4 while position and attitude error are given in Fig.5(a) and (b)
respectively. Error plots in Fig. 5(a) and (b) are taken from the controller inputs
and outputs respectively. The central objective to obtain autonomous hovering
without the help of any external positioning system like VICON. The video of
the experiment can be seen in https://youtu.be/L7imtmpw8mU.
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Conclusion

In this paper, vision based localization and mapping techniques have been
explored with application to a micro aerial vehicle. The SLAM based technique
has been found to perform good localization in unknown scenes. We have tested
this framework in indoor environment using vision based feedback to achieve a
hovering task. This work is useful to achieve waypoint navigation. Experimental
results have confirmed the potential of this framework.
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