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Abstract This paper develops an asymptotic method based on averaging and large

deviations to study the transient stability of a noisy three-machine power system net-

work. We study the dynamics of these nonlinear oscillators (swing equations) as ran-

dom perturbations of two-dimensional periodically driven Hamiltonian systems. The

phase space for periodically driven nonlinear oscillators consists of many resonance

zones. It is well known that, as the strengths of periodic excitation and damping go to

zero, the measure of the set of initial conditions which lead to capture in a resonance
zone goes to zero. In this paper we study the effect of weak noise on the escape from

a resonance zone and obtain the large-deviation rate function for the escape. The

primary goal is to show that the behavior of oscillators in the resonance zone can be

adequately described by the (slow) evolution of the Hamiltonian, for which simple

analytical results can be obtained, and then apply these results to study the transient

stability margin of power system with stochastic loads. The classical swing equa-

tions of a power system of three interconnected generators with non-zero damping

and small noise is considered as a nontrivial example to derive the “exit time” ana-

lytically. This work may play an important role in designing and upgrading existing

electrical power system networks.
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1 Introduction

The problem, a three-machine power system network, considered in this paper brings

together three interesting topics in dynamical systems. Namely, resonances in two-

frequency nonlinear systems, where at some moment of time due to nonlinear effects,

a linear dependence of frequencies with integer coefficients occurs, giving rise to res-

onance surfaces; domains of attraction, which are formed in the presence of small

dissipation when most of the resonant periodic orbits disappear except for a few sta-

ble limit cycles with their distinct set of initial conditions that are captured into res-

onance; and finally large deviations, which provide the asymptotic behavior of rare

event probabilities, transition pathways, and transition rates in stable systems with

small noise. The subtleties of these interactions between noise and nonlinearities are

explored in a canonical way by combining the ideas from dynamical systems, homog-
enization methods and large deviations to develop a general collection of new math-

ematical techniques. Depending on the time-scale of the rapidly-oscillating periodic

dynamics and the strength of the noise, there are two different limits, namely homog-

enization and large deviations. There is a tug a war between these two scales and

we make use of the asymptotic methods that combine homogenization with large

deviation [1] to discover a common geometric structure in the phase space and to

determine the effects of noisy perturbations on the passage of trajectories through

the resonance zones based on the energy barrier heights.

In principal, an infinite number of resonance domains exist, but for two-frequency

systems resonance surfaces do not cross each other and the influence of each reso-

nance can be studied separately using a slow angle. At the resonance, a trajectory of

the fast systems or the non-resonant angles fills the torus of the lower dimension and

these non-resonant angles can be averaged out. In the presence of small dissipation,

centers become (stable or unstable) foci, while families of periodic orbits disappear,

possibly giving rise to (stable or unstable) limit cycles. Homoclinic and heteroclinic

orbits also in general disappear. In light of the above discussion, the intention of this

paper is to study the effect of weak noise on the escape from a resonance zone. When

the noise is very weak and so large deviations from the corresponding determinis-

tic system occur with very low probability. The phase space for the corresponding

deterministic system consists of many resonance zones in which some trajectories

of the deterministic system can get “trapped”. The rate at which noise facilitates the

“escape” from resonance is the subject of this paper. Our goal is to understand a gen-

eral collection of mathematical techniques which can be applied to and understood

through one specific physically-motivated problem. In this paper we deal with swing

equations of a 3-machine system to derive the “critical clearing time” analytically.

Problems related to large deviations for stochastic processes have attracted the

attention of many physicists and engineers in recent years. For example, in many

devices, failure occurs either the first time the response oversteps a particular thresh-

old, as when a vibrating relay contact first touches the frame and shorts out, or due

to an accumulation of many small damages inflicted in the duration of the device,

as occurs in wear and fatigue. The exit problem is an example of such problems,
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where most probable transition pathways and the mean transition time 𝜏 are useful

in determining the direction of failure propagation after the onset of instability.

The transition rate from one stable regime to another along a certain path pro-

vides valuable information regarding the time available for mitigating the cascade of

failures. The large deviation theory provides the methods to find transition pathways

and transition rates in stable systems with small noise. The most probable transi-

tion pathways are governed by a first order Hamilton-Jacobi type of equation. In

the multidimensional non-gradient vector field case (even in ℝ2
) explicit solutions

cannot be obtained in general for the well-known Pontryagin-Witt equation or the

HJB equation. However, taking advantage of the fact the Hamiltonian of the unper-

turbed system evolves slowly (under small perturbations), the Hamiltonian structure

is made use of to identify a reduced one-dimensional equation for the evolution of the

Hamiltonian H , by averaging the fast dynamics (stochastic averaging). Hence, the

escape from the domain of attraction of stable equilibrium points and limit cycles in

phase-space can be studied analytically. We present a method based upon an approx-

imation of the Hamiltonian (energy envelope) of the oscillator response as a one-

dimensional Markov process, governed either by an appropriate diffusion equation

or a one dimensional HJB equation depending on the strength of the noise. For the

homogenized nonlinear system, the transition (hopping) rate calculation is based on

the energy barrier heights (the maximum load) between local attractors.

The content of this paper is organized as follows. Swing equations of multi-

machine system are discussed in Sect. 2. Making use of several assumptions 3-

machine equations are modeled as a one degree of freedom periodically driven non-

linear oscillator. The reduction technique detailed in Sect. 2, uses the Hamiltonian

structure of the unperturbed system. In Sect. 3 we zoom in to a resonance zone and

make a change of variables in order to derive simpler equations that describe the

dynamics in the resonance zone. In Sect. 3.1 we consider the deterministic dynam-

ics in the resonance zone and state the well known problem of capture into resonance

and identify a variable H whose value can be used to indicate capture. In Sect. 4

we study the rate of escape from a resonance zone. We achieve this by threading

together ideas from averaging and large deviations to derive a large deviation princi-

ple for H . It will be shown that the trajectories of the oscillator trickle down close

to the bottom of the potential wells. The stochastic dynamics at the bottom of the

potential well is not discussed in this paper due to lack of space.

2 Swing Equations with Non-zero Damping
and Small Noise

Transient stability in power systems is concerned with the ability of power systems

to maintain synchronism in coupled swing dynamics when subject to a severe distur-

bance. Due to network complexity, power system stability can be divided into smaller

areas that include generator rotor angles, frequency and voltage stabilities. We
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analyze a system of n classical swing equations for a simple power system (related

to synchronous generator rotor swing angle) [2]:

̇
𝛿k = 𝜔k − 𝜔R,

𝜔̇k =
(

𝜔R

2Hk

)[
−𝛽k(𝜔k − 𝜔R) + Tmk − GkkE2

k −
n∑
i≠k

EkEiYki cos(𝜃ki − 𝛿k + 𝛿i)

]
,

where the rotor angle of machine k is 𝛿k and 𝜔k denotes the angular velocity of the

rotor k. The parameters are constants, 𝜔R represents system reference frequency, Hk,

inertial moment of machine k, 𝛽k, damping coefficient of machine k, Tmk, mechani-

cal torque driving machine k, Ek, terminal voltage of machine k, Gkk, due to the real

power load at machine k. The magnitudes and angles Yki = Yik and 𝜃ki = 𝜃ik deter-

mine the transfer admittance between machines k and i:

Gki + jBij = Yki expj𝜃ki .

If we assume that resistive loads are located only at the generator buses (i.e. are

included in the conductancesGkk), then the transfer admittances are purely imaginary

and 𝜃kj =
𝜋

2
(so Gkj = 0 for i ≠ k and Yki = Bki).

Assume that mechanical torque produced equals power absorbed by the loads, so

n∑
k=1

Tmk − GkkE2
k = 0.

Denote by Mk ∶=
2Hk

𝜔R
, ̄Pk ∶= Tmk − GkkE2

k , Cki ∶= EkEiYki, and introduce small

noise in the power term,

Pk ∶= ̄Pk + 𝜀
𝜅

𝜎̃k𝜂k(t), where ̄PK = Tmk − GkkE2
k ,

n∑
k=1

̄Pk = 0,

0 < 𝜀 ≪ 1, 𝜅 > 0, and 𝜂ks are modeled as white noise processes. We assume symme-

try of transfer admittance between machines, so Ckj = Cjk for j ≠ k, j, k = 1,… , n.

Finally, we also assume proportional damping, i.e. 𝛽k = 𝛽Mk, where damping ratio

𝛽 is equal for all k = 1,… , n. Then, the equations of motion are [2]:

̇
𝛿k = 𝜔k − 𝜔R, (1a)

𝜔̇k =
1
Mk

[
−𝛽Mk(𝜔k − 𝜔R) + ̄Pk −

n∑
i≠k

Cki sin(𝛿k − 𝛿i) + 𝜀
𝜅

𝜎̃k𝜂k

]
. (1b)
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2.1 Coordinate Change

We first describe the dynamics in collective variables that are averages of individ-

ual variables, which are well known in power grid stability analysis as the COA

(Center-of-Angle) or COI (Center-of-Inertia) variables. Consider new coordinates

( ̃𝛿k, 𝜔̃k) that are perturbations of (𝛿k, 𝜔k) from the centers-of-angle and -inertia,(
1
M

∑n
k=1 Mk𝛿k,

1
M

∑n
k=1 Mk𝜔k

)
, where M ∶=

∑n
k=1 Mk.

(
1
M

∑n
k=1 Mk𝛿k,

1
M

∑n
k=1

Mk𝜔k
)

can be obtained by integrating (1). The perturbation coordinates are

𝜔̃k ∶= 𝜔k −
1
M
e−𝛽t

n∑
k=1

Mk𝜔k(0) −
𝜀
𝜅

M

n∑
k=1

𝜎̃k ∫

t

0
e−𝛽(t−s)𝜂k(s)ds, (2a)

̃
𝛿k ∶= 𝛿k −

1
M

n∑
k=1

Mk𝛿k(0) −
1 − e−𝛽t
𝛽M

n∑
k=1

Mk𝜔k(0)

+ 𝜔Rt −
𝜀
𝜅

M

n∑
k=1

𝜎̃k ∫

t

0 ∫

s

0
e−𝛽(s−r)𝜂k(r)drds. (2b)

The corresponding equations of motion are

̇̃
𝛿k = 𝜔̃k, ̇̃𝜔k = −𝛽𝜔̃k +

̄Pk

Mk
−

n∑
i≠k

Ckj

Mk
sin( ̃𝛿k − ̃

𝛿i) + 𝜀
𝜅

𝜎̃k𝜂t, (3)

where 𝜂t = [𝜂1(t), 𝜂2(t),… , 𝜂n(t)]T , and

𝜎k ∈ ℝ1×n
, (𝜎k)i =

{
𝜎̃i

(
1
Mi

− 1
M

)
if i = k,

− 𝜎̃i

M
else

.

Using (2), we can check that the sum of the angles and angular momenta pertur-

bations are

n∑
k=1

Mk𝜔̃k =
n∑

k=1
Mk

̃
𝛿k = 0. (4)

2.2 3-Machine Setting

Consider the n = 3 case. Using the fact that the sum of angles perturbation is zero,

(4), we can eliminate one of the k = 1, 2, 3 degrees of freedom. Arbitrarily, we elim-

inate ̃
𝛿2. We end up with a 2-degree-of-freedom system:
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Fig. 1 Heuristic

representation of 3-machine

scaling

̇̃
𝛿1 = 𝜔̃1,

̇̃𝜔1 = −𝛽𝜔̃1 +
̄P1
M1

−
C12
M1

sin
([

1 +
M1
M2

]
̃
𝛿1 +

M3
M2

̃
𝛿3

)
−

C13
M1

sin( ̃𝛿1 − ̃
𝛿3) + 𝜀

𝜅

𝜎1𝜂t,

̇̃
𝛿3 = 𝜔̃3,

̇̃𝜔3 = −𝛽𝜔̃3 +
̄P3
M3

−
C13
M3

sin( ̃𝛿3 − ̃
𝛿1) −

C23
M3

sin
(
M1
M2

̃
𝛿1 +

[
1 +

M3
M2

]
̃
𝛿3

)
+ 𝜀

𝜅

𝜎3𝜂t.

Consider the n = 3 case. As in [3], we assume that (see Fig. 1)

∙ inertia of machines 1 and 2 are larger than that of machine 3:

M1 =
̄M1
𝜀

, M2 =
̄M2
𝜀

,
̄M1, ̄M2,M3 ∼ O(1),

∙ coupling of machine 1 with 2 is larger than the coupling of machines 1 and 2 with

3:

C12 =
̄C12
𝜀

,
̄C12,C13,C23 ∼ O(1), and

∙ loads of machines 1 and 2 are larger than that of machine 3

P1 =
̄P1
𝜀

, P2 =
̄P2
𝜀

,
̄P1, ̄P2,P3 ∼ O(1).

Using the above scaling and assuming small damping, 𝛽 = 𝜀𝛽, we have

̇̃
𝛿1 = 𝜔̃1,

̇̃𝜔1 = −𝜀𝛽𝜔̃1 + 𝛼1 − c12 sin
(
[1 + 𝜇1] ̃𝛿1 + 𝜀𝜇3 ̃𝛿3

)
− 𝜀c13 sin

(
̃
𝛿1 − ̃

𝛿3
)
+ 𝜀

𝜅

𝜎1𝜂t,
(5)
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̇̃
𝛿3 = 𝜔̃3,

̇̃𝜔3 = −𝜀𝛽𝜔̃3 + 𝛼3 − c31 sin
(
̃
𝛿3 − ̃

𝛿1
)
− c32 sin

(
𝜇1 ̃𝛿1 + [1 + 𝜀𝜇3] ̃𝛿3

)
+ 𝜀

𝜅

𝜎3𝜂t,
(6)

along with ̃
𝛿2 = −𝜇1 ̃𝛿2 − 𝜀𝜇3 ̃𝛿3, where

𝜇1 ∶=
̄M1
̄M2

, 𝜇3 ∶=
M3
̄M2

, 𝛼1 ∶=
̄P1
M1

, 𝛼3 ∶=
̄P3
M3

,

c12 ∶=
̄C12
M1

, c13 ∶=
C13
M1

, c31 ∶=
C13
M3

, c32 ∶=
C23
M3

.

If 𝜀 ≡ 0, then ( ̃𝛿1, 𝜔̃1) given by (5) is independent of ( ̃𝛿3, 𝜔̃3), with equilibrium

( ̃𝛿∗1 , 𝜔̃
∗
1) given by

( ̃𝛿∗1 , 𝜔̃
∗
1) =

(
1

[1 + 𝜇1]
sin−1

(
𝛼1
c12

)
, 0
)
.

We will assume that ̃
𝛿1 is a small perturbation from ̃

𝛿
∗
1 , i.e.

̃
𝛿1(t) = ̃

𝛿
∗
1 + 𝜀

̂
𝛿1(t),

with initial conditions ̃
𝛿1(0) = ̃

𝛿
∗
1 + 𝜀

̃
𝛿10, and

̇̃
𝛿1(0) = 𝜀

̇̃
𝛿10. The behavior of ̂

𝛿1 can

be studied by considering small perturbations of ̃
𝛿1 in (5) about zero, with initial

conditions ̃
𝛿10 and

̇̃
𝛿10 (in other words, shift the initial condition for ̃

𝛿1 by − ̃
𝛿
∗
1 and

study small perturbations about zero: For 𝜀 ≪ 1, we replace ̃
𝛿1(t) with 𝜀

̂
𝛿1(t) in (5),

with initial conditions ̃
𝛿1(0) = 𝜀

̂
𝛿1(0) = 𝜀

̃
𝛿10 and

̇̃
𝛿1(0) = 𝜀

̇
̂
𝛿1(0) = 𝜀

̇̃
𝛿10).

Taylor expanding the ̃
𝛿1 terms in (5) about zero and keeping only the leading

order terms, we have the following second order ODE:

𝜀
̈
̂
𝛿1 + 𝜀

2
𝛽
̇
̂
𝛿1 + 𝜀c12[1 + 𝜇1] ̂𝛿1 −

1
2
𝜀
3c12[1 + 𝜇1]𝜇2

3
̃
𝛿
2
3
̂
𝛿1 +⋯ + 𝜀

2c13 cos( ̃𝛿3) ̂𝛿1 = 0.

We asymptotically expand ̂
𝛿1 as

̂
𝛿1(t) = u(t) + 𝜀𝜓(t) + 𝜀

2R(t) + O(𝜀3),

with (u(0), u̇(0)) = ( ̃𝛿10, ̇̃𝛿10), (𝜓(0), 𝜓̇(0)) = (R(0), ̇R(0)) = (0, 0) and substitute this

expansion into the preceding ODE. Collecting terms by orders of 𝜀, we have a set

of ODEs of orders 𝜀, 𝜀
2
, 𝜀

3
,… At order 𝜀, u is an undamped, unforced oscillator.

Assuming c12, 𝜇1 > 0, the squared natural frequency c12[1 + 𝜇1] is > 0, so

u(t) = sin(𝜈t + 𝜑), where 𝜈 ∶=
√
c12[1 + 𝜇1], 𝜑 ∶= tan−1

(
̃
𝛿10𝜈

̇̃
𝛿10

)
. (7)
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Therefore,

̃
𝛿1(t) = ̃

𝛿
∗
1 + 𝜀 sin(𝜈t + 𝜑) + 𝜀

2
𝜓(t) + 𝜀

3R(t) + O(𝜀4), (8)

where 𝜓 and R satisfy the higher order equations. Substituting (8) into (6), we have

a single-degree-of-freedom system in ( ̃𝛿3, 𝜔̃3) along with the higher order equations

for 𝜓 and R. Discarding the higher order deterministic terms and rewriting ( ̃𝛿3, 𝜔̃3)
as (𝛿𝜀t , 𝜔

𝜀

t ), (6) becomes

d𝛿𝜀t = 𝜔
𝜀

t dt
d𝜔𝜀

t =
[
−c sin(𝛿𝜀t − r) + 𝛼3)

]
dt − 𝜀

[
𝛽𝜔

𝜀

t + c32 𝜇3𝛿
𝜀

t cos(𝛿
𝜀

t + 𝜇1𝛿
∗
1 )
]
dt

+ 𝜀

[
c13 sin(𝜈t + 𝜑) cos(𝛿𝜀t − 𝛿

∗
1 ) − c32𝜇1 sin(𝜈t + 𝜑) cos(𝛿𝜀t + 𝜇1𝛿

∗
1 )
]
dt

+ O(𝜀2)dt + 𝜀
𝜅

𝜎dWt,

where W is a Wiener process, and c and r are such that

c cos r = c13 cos ̃𝛿∗1 + c32 cos(𝜇1 ̃𝛿
∗
1 ), c sin r = c13 sin ̃

𝛿
∗
1 − c32 sin(𝜇1 ̃𝛿

∗
1 ),

The Hamiltonian associated with the unperturbed system is

H(𝛿, 𝜔) ∶= 1
2
𝜔
2 − 𝛼3𝛿 − c cos (𝛿 − r) = 1

2
𝜔
2 + U(𝛿). (9)

3 Dynamics Close to a Resonance Zone: Capture
into Resonance

Let (I, 𝜑) be action angle variables and assume

I = I(𝛿, 𝜔), 𝜑 = 𝜑(𝛿, 𝜔),

𝛿 = 𝛿(I, 𝜑), 𝜔 = 𝜔(I, 𝜑)

can be written. The system (9) with 𝜀 = 0 can be written as

̇I = 0, 𝜑̇ = 𝛺(I). (10)

Suppose we want to study the dynamics of the system (9) close to m:n resonance.

We then consider dynamics in the region where I is close to the resonant value Ir
defined by

m𝛺(Ir) = n𝜈.
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Here r is short for resonance m:n. For notational convenience we use𝛺r = 𝛺(Ir) ≠ 0
and 𝛺

′
r =

𝜕𝛺

𝜕I
||I=Ir etc. Without loss of generality we have taken 𝛼3 = 𝜀𝛼 and c = 1.

We also rename a number of variables 𝛿 = 𝛿
old − r, r + 𝜇1𝛿

∗
1 = 𝜏1, r − 𝛿

∗
1 = 𝜏2, c32 =

c2, c13 = c1 and define

g2(𝛿, 𝜔, 𝜃)
def
= −

[
𝛽𝜔 − 𝛼 + c2 𝜇3(𝛿 + r) cos(𝛿 + 𝜏1)

]
+
[
c1 cos(𝛿 + 𝜏2) − c2𝜇1 cos(𝛿 + 𝜏1)

]
sin(𝜈t + 𝜑),

𝔉(I, 𝜑, 𝜃)
def
= 𝜕I(𝛿, 𝜔)

𝜕𝜔

g2(𝛿, 𝜔, 𝜃)
||||𝛿(I,𝜑),𝜔(I,𝜑),𝔊(I, 𝜑, 𝜃)

def
= 𝜕𝜑(𝛿, 𝜔)

𝜕𝜔

g2(𝛿, 𝜔, 𝜃)
||||𝛿(I,𝜑),𝜔(I,𝜑).

Let I𝜀t = I(𝛿𝜀t , 𝜔
𝜀

t ), 𝜑
𝜀

t = 𝜑(𝛿𝜀t , 𝜔
𝜀

t ) and define the slow angle and resonant fre-

quency

𝜓
𝜀

t ∶= 𝜑
𝜀

t −
n
m
𝜃t, 𝛺r ∶=

n
m
𝜈.

where 𝜃t evolves according to d𝜃t = 𝜈dt. Then, using Ito formula we get

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dI𝜀t = 𝜀𝔉(I𝜀t , 𝜓
𝜀

t +
n
m
𝜃t, 𝜃t)dt + 𝜀

𝜅
𝜎

𝜕I
𝜕q2

||||(I𝜀t , 𝜓𝜀

t +
n
m
𝜃t)

dWt +
1
2
𝜀
2𝜅
𝜎
2 𝜕

2I
𝜕
2q2

||||(I𝜀t ,𝜓𝜀

t +
n
m
𝜃t)

dt,

d𝜓𝜀

t = (𝛺(I𝜀t ) −𝛺r)dt + 𝜀𝔊(I𝜀t , 𝜓
𝜀

t +
n
m
𝜃t, 𝜃t)dt

+𝜀𝜅𝜎 𝜕𝜓

𝜕q2

||||(I𝜀t ,𝜓𝜀

t +
n
m
𝜃t)

dWt +
1
2
𝜀
2𝜅
𝜎
2 𝜕

2
𝜓

𝜕
2q2

||||(I𝜀t ,𝜓𝜀

t +
n
m
𝜃t)

dt,

d𝜃t = 𝜈dt

(11)

Since we are interested in the dynamics close to the resonance I = Ir and (I, 𝜓)
are slow variables, we make a change of variables in order to derive simpler equa-

tions that describe the dynamics in the resonance zone. Substituting the following

standard [4] space and time scaling

h𝜀t
def
= 1√

𝜀

(I𝜀
t∕
√
𝜀

− Ir), 𝜓̂
𝜀

t
def
= 𝜓

𝜀

t∕
√
𝜀

, 𝜃
𝜀

t
def
= 𝜃t∕

√
𝜀
, (12)

into the above equations and Taylor-expanding in powers of

√
𝜀 about Ir, we get,

with higher order terms subsumed in ℜ

dh𝜀t = 𝔉dt +
√
𝜀𝔉′h𝜀t dt + 𝜀

𝜅− 3
4 𝜎

𝜕I
𝜕q2

dWt +ℜ𝜀

1,tdt + ̂ℜ𝜀

1,tdWt, (13)
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d𝜓̂𝜀

t = 𝛺
′
rh

𝜀

t dt +
√
𝜀

(
𝛺

′′
r
1
2
(h𝜀t )

2 +𝔊
)
dt +ℜ𝜀

2,tdt + ̂ℜ𝜀

2,tdWt, (14)

d𝜃𝜀t =
1√
𝜀

𝜈dt, (15)

where ′ indicates differentiation w.r.t I and all terms (except ℜ) are evaluated at

(Ir, 𝜓̂𝜀

t +
n
m
𝜃
𝜀

t , 𝜃
𝜀

t ). When 𝜅 ≥ 1, the higher order terms are ℜ𝜀

i ∼ O(𝜀) and ̂ℜ𝜀

i ∼

O(𝜀𝜅−
1
4 ), for i = 1, 2.

3.1 Capture into Resonance

From (13)–(15) it is clear that 𝜃
𝜀

t and 𝜑
𝜀

t evolve at a faster rate than h𝜀t and 𝜓̂
𝜀

t .

Hence we average out the fast variable 𝜃. For this purpose define an averaging oper-

ator ⟨⟩ as follows: for a function f periodic in 𝜃 with period 2m𝜋 we define ⟨f ⟩ =
1

2m𝜋
∫

2m𝜋
0 f (𝜃)d𝜑. Note that the functions 𝜃 ↦ 𝔉(Ir, 𝜓 + n

m
𝜃, 𝜃) and 𝜃 ↦ 𝔊(Ir, 𝜓 +

n
m
𝜃, 𝜃) are periodic in 𝜃 with period 2m𝜋. To clearly indicate the dependence of the

corresponding averaged function on 𝜓 , we denote the averaged functions by ⟨𝔉(𝜓)⟩
and ⟨𝔊(𝜓)⟩.

For the analysis in this section, we neglect the stochastic term. To this end, in

(13)–(15) lets set 𝜎 = 0, ignore higher order terms ℜ and perform averaging w.r.t 𝜃.

Then we get

(
dh
d𝜓

)
=

( ⟨𝔉(𝜓)⟩ +√
𝜀⟨𝔉′(𝜓)⟩h

𝛺
′
rh +

√
𝜀( 1

2
𝛺

′′
r h

2 + ⟨𝔊(𝜓)⟩)
)
dt, (16)

General structure of the averaged terms are, for
m
n
∈ 2Z+

⟨𝔉(𝜓)⟩ = −𝛽Ir + Jc cos(m𝜓∕n), ⟨𝔉′(𝜓)⟩ = −𝛽 + J′c cos(m𝜓∕n), (17)

⟨𝔊(𝜓)⟩ = − n
m
J′c sin(m𝜓∕n), (18)

For
m
n
∈ 2Z+ + 1

⟨𝔉(𝜓)⟩ = −𝛽Ir + Jc cos(m𝜓∕n) + Js sin(m𝜓∕n) (19)

⟨𝔉′(𝜓)⟩ = −𝛽 + J′c cos(m𝜓∕n) + J′s sin(m𝜓∕n) (20)

⟨𝔊(𝜓)⟩ = − n
m
J′c sin(m𝜓∕n) + n

m
J′s cos(m𝜓∕n) (21)
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where the method to obtain the above (17)–(21) and the quantities Js, and Jc is dis-

cussed in [1, 5] and in the appendix. We can restrict ourselves to the case of
m
n
∈ 2Z+

as the structure of the equations for
m
n
∈ 2Z+ + 1 is qualitatively equivalent.

We can study (16) as a perturbation of a Hamiltonian system

(
dh
d𝜓

)
=

(⟨𝔉(𝜓)⟩
𝛺

′
rh

)
dt, (22)

with the Hamiltonian

H (𝜓, h) = 1
2
𝛺

′h2 −
∫

𝜓

0
⟨𝔉(𝜓)⟩d𝜓. (23)

Such Hamiltonians typically occur in resonant problems and (23) represents a “pen-

dulum” under the action of an external torque [4, 6]. Note that (22) has fixed point

only if

𝛽Ir ≤ |Jc|. (24)

The fixed points are given by

cos(m𝜓∕n) ≈
𝛽Ir
Jc

, h = 0.

There are many 𝜓 which satisfy the above equation. Typical phase portrait (with

𝛺
′
r > 0) for (16) is shown in the Fig. 2. The saddle (sd) and center (sk) fixed point

pairs (i.e. the homoclinic orbit of the saddle encloses the center) for (22) can be easily

obtained. All the fixed points have h = 0. Recall the definitions (25). Note that h = 0
means I = Ir, i.e. the system is exactly at resonance. The Fig. 2 shows a finite region

around h = 0. In terms of I coordinates this region is a neighborhood of Ir of a width

of order

√
𝜀. This is called a resonance zone.

A trajectory which starts at the top of the Fig. 2 (h > 0) but not in the narrow

neck region would reach the bottom of the figure (h < 0), i.e. the trajectory ‘passes’

through the resonance zone. A trajectory which starts at the top of the Fig. 2 (h > 0)

in the narrow neck region enters the region A and is trapped there. Lets call the region

A as ‘trap zone’.

For (16) the region marked A (in Fig. 2) is a trap—the trajectories originating in

A cannot exit from it at all. However, when 𝜎 ≠ 0, the noise facilitates the escape.

We want to study how the noise facilitates the escape from the trap zone.

We denote by H |sd the value of H evaluated at one saddle fixed point of (22)

and denote by H |sk the value of H evaluated at the corresponding center fixed

point of (22).
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Fig. 2 Typical phase

portrait for (16) with 𝛺
′
r > 0.

Abscissa is 𝜓 and ordinate is

h. The system cannot leave

the region A in the absence

of noise. The measure of the

set of initial conditions that

lead to trap in A is small

4 Stochastic Dynamics Close to a Resonance Zone:
Case 𝜿 > 𝟏

To see the fluctuations of H (𝜓̂𝜀

t , h
𝜀

t ), we need to look on an even longer O(1∕
√
𝜀)

time scale. Hence we redefine the h, 𝜓̂ , 𝜑 process using the following space and time

scaling

h𝜀t =
1√
𝜀

(I𝜀t∕𝜀 − Ir), 𝜓̂
𝜀

t = 𝜓
𝜀

t∕𝜀, 𝜃
𝜀

t = 𝜃t∕𝜀. (25)

After doing a Taylor-expansion about Ir, we get, with higher order terms subsumed

in ℜ

dh𝜀t =
1√
𝜀

𝔉dt +𝔉′h𝜀t dt + 𝜀
𝜅−1

𝜎

𝜕I
𝜕q2

dWt +ℜ𝜀

1,tdt + ̂ℜ𝜀

1,tdWt, (26)

d𝜓̂𝜀

t = 1√
𝜀

𝛺
′
rh

𝜀

t dt +
(
𝛺

′′
r
1
2
(h𝜀t )

2 +𝔊
)
dt +ℜ𝜀

2,tdt + ̂ℜ𝜀

2,tdWt, (27)

d𝜃𝜀t =
1
𝜀

𝜈dt, (28)

where ′ indicates differentiation w.r.t I and all terms (except ℜ) are evaluated at

(Ir, 𝜓̂𝜀

t +
n
m
𝜃
𝜀

t , 𝜃
𝜀

t ). When 𝜅 ≥ 1, the higher order terms are ℜ𝜀

i ∼ O(
√
𝜀) and ̂ℜ𝜀

i ∼
O(𝜀𝜅−1∕2), for i = 1, 2.

Since the system (26)–(28) (after averaging 𝜑) can be seen as a perturbation of

the Hamiltonian system (22); to the system (26)–(28) we adjoin H 𝜀

t ∶= H (𝜓̂𝜀

t , h
𝜀

t ),
where H is defined in (23). The evolution of H 𝜀

t can be obtained by applying Ito

formula as

dH 𝜀

t = 1√
𝜀

𝛺
′
rh

𝜀

t (𝔉 − ⟨𝔉⟩)dt +
(
(𝛺′

r𝔉
′ − ⟨𝔉⟩1

2
𝛺

′′
r )(h

𝜀

t )
2 − ⟨𝔉⟩𝔊

)
dt (29)

+𝜀𝜅−1𝜎𝛺′
rh

𝜀

t
𝜕I
𝜕q2

dWt +ℜ𝜀

3,tdt + ̂ℜ𝜀

3,tdWt,
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where arguments for 𝔉, ⟨𝔉⟩, 𝔊,
𝜕I
𝜕q2

are suppressed; and ℜ are higher order terms.

Since ⟨𝔉 − ⟨𝔉⟩⟩ = 0, H 𝜀

t evolves even slowly compared to (𝜓̂𝜀

t , h
𝜀

t ).
Since our goal is to study the escape from the region marked A we set the initial

conditions to (26)–(27) in this region. In terms ofH 𝜀

t this amounts to specifying that

H 𝜀

0 lies in between
1 H |sk and H |sd. When 𝜎 = 0 the behaviour of H 𝜀

t is to reach

H |sk. When 𝜎 ≠ 0 the noise facilitates the escape. A good indicator of whether

escape occurred is H 𝜀

t ≥ H |sd in the case
2
𝛺

′
r > 0. Further, H 𝜀

t could be a bit

greater than H |sd and still be in the small neck region which still leads to capture.

Let H∗ be the value for which we can be sure that escape occured if H 𝜀

t ≥ H∗. Then

H |sd differs from H∗ by a very small amount that goes to zero as 𝜀 → 0. Keeping

these caveats in mind, we still study the probability with which H 𝜀

t exceeds H |sd
in presence of noise. However such transition is extremely unlikely because of the

smallness of the noise. Hence, our intention is to obtain a large deviation principle

for the H 𝜀

t process.

4.1 Large Deviations Principle (LDP) for H 𝜺

We employ the technique described in [7, 8] to obtain the rate function governing

the probability of rare events of H 𝜀

t . Averaging would be of help in this regard:

because H 𝜀

t evolves slowly compared to (𝜓̂𝜀

t , h
𝜀

t ) we can average out the fast (𝜓̂𝜀

t , h
𝜀

t )
dynamics. For this purpose define an averaging operator 𝔸 as follows:

Definition 1 For a function f of (𝜓̂ , h), the averaged function 𝔸[f ] is given by

𝔸[f ](𝔥) = 1
𝔗(𝔥) ∫

𝔗(𝔥)

0
f (𝜓̂(t), h(t))dt

where (𝜓̂(t), h(t)) is the solution of the Hamiltonian system ̇
𝜓̂ = 𝜕H

𝜕h
,
̇h = − 𝜕H

𝜕𝜓̂

with

H (𝜓̂ , h) = 𝔥 and 𝔗(𝔥) is the time-period of the solution. The 𝔥 is restricted to be in

between H |sk and H |sd; outside these values the orbit of the Hamiltonian system

is not closed and the time-period is not defined.

Since 𝔥 is restricted to be in between H |sk and H |sd we define a stopping time

𝔢𝜀 ∶= inf{t > 0 ∶ H 𝜀

t is not in between H |sk and H |sd}. (30)

More precisely, if 𝛺
′
r > 0 then 𝔢𝜀 ∶= inf{t > 0 ∶ H 𝜀

t ≥ H |sd} and if 𝛺
′
r < 0 then

𝔢𝜀 ∶= inf{t > 0 ∶ H 𝜀

t ≤ H |sd}.

1H |sd > H |sk if 𝛺
′
r > 0 and H |sd < H |sk if 𝛺

′
r < 0.

2
If 𝛺

′
r < 0 then a good indicator is H 𝜀

t ≤ H |sd .
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Following the standard techniques, first we derive the LDP for the random vari-

able H 𝜀

T∧𝔢𝜀 where H is governed by (29) with the initial condition H0 at t = 0.

Define

g𝜀T ,H0
(p)

def
= 𝜀

2(𝜅−1) log𝔼H0
exp

( 1
𝜀
2(k−1) pH

𝜀

T∧𝔢𝜀

)
, (31)

where the expectation 𝔼H0
indicates that the process H 𝜀

starts at H0. Let

gT ,H0
(p)

def
= lim

𝜀→0
g𝜀T ,H0

(p). (32)

Then H 𝜀

T∧𝔢𝜀 has LDP with rate function

VT ,H0
(𝔥)

def
= sup

p∈ℝ

(
p𝔥 − gT ,H0

(p)
)
, (33)

for 𝔥 in between H |sk and H |sd. So, now we evaluate gT ,H0
(p). The idea of using

averaging for obtaining large-deviation principle is implemented in, for example,

[1, 7, 8].

Theorem 1 (Lingala et al. [1]) Let A1(𝜓̂ , 𝜃) be defined by

𝜈A1(𝜓̂ , 𝜃) =
∫

𝜃

0

(
𝔉(𝜓̂ + n

m
̃
𝜃,

̃
𝜃) − ⟨𝔉(𝜓̂)⟩) d ̃𝜃.

Define

𝔅(𝔥) = 𝔅1(𝔥) +𝔅2(𝔥), 𝛯 = 𝜎
2(𝛺′

r)
2𝔸

[⟨(
h𝜀t

𝜕I
𝜕q2

)2
⟩]

,

where3

𝔅1 = −𝛺′
r𝔸

[⟨
A1𝔉 +𝛺

′
rh

2 𝜕A1

𝜕𝜓̂

⟩]
,

𝔅2 = 𝔸
[⟨

(𝛺′
r𝔉

′ − ⟨𝔉⟩1
2
𝛺

′′
r )(h

𝜀

t )
2 − ⟨𝔉⟩𝔊⟩]

.

Then

gT ,H0
(p) = pH0 + p

∫

T∧𝔢

0
𝔅( ̂𝔥t)dt +

1
2
p2

∫

T∧𝔢

0
𝛯( ̂𝔥t)dt (34)

3
In 𝔅1 the term ⟨A1𝔉⟩ should be interpreted as the average w.r.t 𝜃 of the function 𝜃 ↦
A1(𝜓̂ , 𝜃)𝔉(𝜓̂ + n

m
𝜃, 𝜃).
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where ̂𝔥t is simulated according to

d ̂𝔥t =
(
𝔅( ̂𝔥t) + p𝛯( ̂𝔥t)

)
dt, ̂𝔥0 = H0, (35)

and 𝔢 is defined by

𝔢 ∶= inf{t > 0 ∶ ̂𝔥𝔢 is not in between H |sk andH |sd}.
Proof See [1]. □

Theorem 2 The rate functional on the path space is

S0T (x) =
1
2 ∫

T

0

(ẋt −𝔅(xt))2

𝛯(xt)
dt.

for x ∈ C([0,T],ℝH ) absolutely continuous where ℝH is the set of real numbers
lying in between H |sk andH |sd.
Proof See [1]. □

4.2 Evaluation of𝕭 and 𝜩 in Theorem 1

Using
𝜕I
𝜕q2

= 𝜕I
𝜕H

𝜕H
𝜕q2

= 1
𝛺

q2 and that at the resonance ⟨q22⟩ = Ir𝛺r we have that

𝔅1 ≡ 0, 𝔅2 = −𝛽𝛺′
r𝔸[h

2], and 𝛯 =
𝜎
2(𝛺′

r)
2Ir

𝛺r
𝔸[h2]. (36)

4.3 Escape from the Trap Zone

Since we are interested in the escape from the trap zone (region A in the Fig. 2),

we need to consider the probabilities ℙ𝔥0 [𝔢𝜀 ≤ t] where 𝔢𝜀 is defined in (30) and 𝔥0

indicates that the initial condition is such that H 𝜀

0 = 𝔥0. We restrict to the case that

𝔥0 lies between H |sk and H |sd.

Define

V (t, 𝔥0, 𝔥) ∶= inf{S0t(x) ∶ x ∈ C([0, t],ℝH ), x(0) = 𝔥0, x(t) = 𝔥}, (37)
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for 𝔥0, 𝔥 lying in between H |sk and H |sd. Applying
4

Theorem 4.1.2 and remarks

following it in [9], we have

lim
𝜀→0

𝜀
2(𝜅−1) logℙ𝔥0 [𝔢𝜀 ≤ t] = − min

0≤s≤t
V (t, 𝔥0,H |sd).

The function V satisfies the Hamilton-Jacobi equation (see Eq. 4.1.11 in [9]):

⎧⎪⎨⎪⎩
𝜕V (t,𝔥0,𝔥)

𝜕t
+𝔅(𝔥) 𝜕V (t,𝔥0,𝔥)

𝜕𝔥
+ 1

2
𝛯(𝔥)

(
𝜕V (t,𝔥0,𝔥)

𝜕𝔥

)2
= 0,

V (t, 𝔥0, 𝔥0) = 0.

Solution could not be found explicitly. However, it can be solved by numerical meth-

ods.

Define the quasipotential

V (𝔥) ∶= inf{ST1T2 (x) ∶ x ∈ C([T1,T2],ℝH ), T1 ≤ T2, x(T1) = H |sk, x(T2) = 𝔥}. (38)

Then, Theorem 4.4.1 of [9] shows that the mean exit time satisfies

lim
𝜀→0

𝜀
2(𝜅−1) log𝔼𝔥0 [𝔢𝜀] = −V (H |sd),

for any 𝔥0 between H |sd and H |sk. The function V (𝔥) satisfies

𝔅(𝔥)
𝜕V (𝔥)
𝜕𝔥

+ 1
2
𝛯(𝔥)

(
𝜕V (𝔥)
𝜕𝔥

)2

= 0, V (H |sk) = 0,

which can be easily solved to give

V (𝔥) = −
∫

𝔥

H |sk
2𝔅(y)
𝛯(y)

dy =
2𝛽𝛺r

𝜎
2
𝛺

′
rIr

(𝔥 −H |sk). (39)

In particular the following gives a measure of difficulty of escape from the trap zone:

V (H |sd) = 2𝛽𝛺r

𝜎
2
𝛺

′
rIr

(H |sd −H |sk). (40)

4
This application should be taken in a heuristic sense. In the problem considered in Theorem 4.1.2

of [9] the vector field does not vary with 𝜀. However, in the problem considered in this paper we

are averaging an oscillating vector field to get simple equation for H only in the limit as 𝜀 → 0.



Random Perturbations of a Three-Machine Power System Network 29

The above can be evaluated to be

V (H |sd) = 2𝛺r(n∕m)
𝜎
2|𝛺′

r| 𝛽
2

(
−2 cos−1 |𝜒| + 𝜋 + 2

√
1 − |𝜒|2
|𝜒|

)
, 𝜒 ∶=

𝛽Ir
Jc

.

Since the function in the brackets is monotonically decreasing in |𝜒|, it can be

deduced that for a fixed 𝛽, V (H |sd) is monotonically increasing in |Jc|, i.e. the

higher the strength of periodic excitations the more difficult the escape from the trap.

For a fixed Jr, V (H |sd) has a unique maximum as a function of 𝛽. As 𝛽 increases to|Jr|
Ir

, V (H |sd) decreases to 0, because the area of the trap zone decreases to zero. As

𝛽 decreases to 0, V (H |sd) also decreases to zero—this behaviour is not intuitive.

Hence, for a fixed strength of periodic excitations, both high and low damping makes

the escape easier—intermediate values of damping makes the escape difficult.

4.4 Post Escape from the Trap

Immediately outside the trap region A, the deterministic dynamics alone is enough

to take the system out of the resonance zone (see Fig. 2). Since the noise is small,

getting re-trapped is a rare event, i.e. the system moves out of the resonance zone

quickly. Once outside the resonance zone, full-averaging i.e. averaging w.r.t (𝜑, 𝜃)
can be done. The full-averaged system shows that damping results in a decrease of

I with time. However as I decreases the system might enter a different resonance

zone—from results of [6] we know that the measure of the set of initial conditions

which get trapped is small. Those that get trapped, escape at a rate governed by the

large-deviations principle obtained above. In such fashion the system evolves until

it reaches close to (𝛿, 𝜔) = (±n𝜋 + r, 0), i.e. the bottom of the wells in the potential

U of (9).

Note that we have not analysed the behaviour near the homoclinic orbit. So, the

description in the above paragraph is valid for those trajectories which start within

the region bounded by the homoclinic orbit of the original unperturbed hamiltonian.

However, the analysis in previous sections is valid also for the resonance zones that

lie outside the region bound by the homoclinic orbit.

If the action at the bottom of the well Ib ∶= I|
𝛿=±n𝜋+r,𝜔=0 is such that 𝛺(Ib) is in

resonance with 𝜈, then interesting dynamics occurs. Such a situation is discussed in

[10] in an attempt to explain phase-flip of electrons in external fields. Due to page

limits the dynamics when 𝜈 ≈ 2𝛺(Ib) are not presented here.
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5 Conclusion

The full United States power grid presents a high dimensional complex network for

which any attempt at analytical analysis is near impossible. However there are many

important examples of lower dimensional systems governed by key system dynamics

that present a rich dynamic behavior that can be studied in order to provide insight

into the phenomena that occur on much larger scales.

The model presented in [3] is an example of a fundamental unit that is often

studied in power system theory, that is, three interconnected synchronous machines.

This paper offers an analytical method to characterize the stability of a resonant

equilibrium mode of operation that such a network may find itself in dependent on

initial conditions.

Understanding the effect on stability that random fluctuations on the grid have—

caused both by load (consumers) and generation (renewable energy inputs)—is a dif-

ficult problem and one that has garnered interest in recent years due to the increased

penetration of renewable sources on the grid. The first section of this paper pre-

sented a formulation that enabled a three machine system with load fluctuations to

be reduced to the study of a one-dimensional, two degree of freedom problem with

small periodic fluctuations. An explicit analytical method that allows us to under-

stand the relationship between the stability of the system and these random fluctu-

ations by quantifying the dependence of minimum action to escape, damping, and

periodic excitation is presented. It is seen that there are a number of modes of oper-

ation that will lead to optimal (higher) escape times and thus increased stability of

the resonant fixed point.
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Appendix: Calculation of Js and Jc in (19)–(21)

The reduced order system with 𝜀 = 0 with c = 1 are the equations for a non-linear

pendulum. The pendulum has two modes of motion dependent on total system

energy. When H ∈ (−1, 1) the system is described by oscillatory solutions. Denoting

k as the elliptic modulus we have [5]

H = 2k2 − 1

With K = K(k) and E = E(k) being complete elliptic integrals of first and second

kind respectively,

I(k) = [ 8
𝜋

[E − (k2 − 1)K], 𝛺 = 𝜋2K, 𝜑̇ = 𝛺 (41)
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The oscillating displacement and velocity in terms of the angle variable 𝜑 are

𝛿(𝜑) = 2 arcsin(kSn(2K𝜑
𝜋

)), 𝜔(𝜑) = 2kCn(2K𝜑
𝜋

) ⋅ 2K
𝜋

We have that

𝔉(I, 𝜑, m
n
(𝜓 − 𝜑)) = (𝛼 − 𝛽𝜔 − 𝜇3c2(q1(𝜑) + r) cos(q1(𝜑) + 𝜏1) +

c1 sin(
m
n
(𝜓 − 𝜑)) cos(q1(𝜑) + 𝜏2) − 𝜇1c2 sin(

m
n
(𝜓 − 𝜑)) cos(q1(𝜑) + 𝜏1))q2(𝜑).

Noting that
1

2m𝜋
∫

2m𝜋
0 𝔉(I, 𝜓 + n

m
𝜃, 𝜃)d𝜃 = 1

2n𝜋
∫

2n𝜋
0 𝔉(I, 𝜑, m

n
(𝜓 − 𝜑))d𝜑 due to the

resonance condition. Even though it is natural to choose 𝜃t as the fast variable for

multi-phase averaging, in order to simplify the averaging of certain elliptic functions

in the expressions 𝔉 and 𝔊 𝜑 is used as the fast angle for multi-phase averaging. We

can evaluate the more tractable form
1

2n𝜋
∫

2n𝜋
0 𝔉(I, 𝜑, m

n
(𝜓 − 𝜑))d𝜑 which gives

⟨
𝔉(Ir, 𝜑,

m
n
(𝜓 − 𝜑))

⟩
= 𝛽 Ir + A1

(
𝜋
3

K3k

)
q

m
2n

1 + q
m
n

sin
(m
n
𝜓

)
𝟏{ m

n
∈2Z++1

}

− A2

(
𝜋
3

K3k

)(m
n

)2 q
m
n

1 − q
2m
n

cos
(m
n
𝜓

)
𝟏{ m

n
∈Z+

}

− ̃A1

(
𝜋
3

K3k

)
q

m
2n

1 + q
m
n

sin
(m
n
𝜓

)
𝟏{ m

n
∈2Z++1

}

+ ̃A2

(
𝜋
3

K3k

)(m
n

)2 q
m
n

1 − q
2m
n

cos
(m
n
𝜓

)
𝟏{ m

n
∈Z+

} + C ,

where Ir
def
= 8

𝜋n

(
(k2 − 1)K + E

)
is the resonant value of the action, C represents the

contribution due to the term ⟨q1(𝜑) cos(q1(𝜑) + 𝜏1)q2(𝜑)⟩, which can be argued to

be negligible, and

q = exp

(
− 𝜋K′

K

)
, A1 =

4kC1

2n𝜋2 cos 𝜏2, A2 =
4kC1

2n𝜋2 sin 𝜏2,

̃A1 = 4k𝜇1C1
2n𝜋2 cos 𝜏1, ̃A2 =

4k𝜇1C2

2n𝜋2 sin 𝜏2.

𝐉𝐜 and 𝐉𝐬 are the coefficients of the cos(m
n
𝜓) and sin(m

n
𝜓) terms. Neglecting the

sin(m
n
𝜓) terms means m:n is even, this can be done without loss of generality.
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