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Abstract This paper develops an asymptotic method based on averaging and large
deviations to study the transient stability of a noisy three-machine power system net-
work. We study the dynamics of these nonlinear oscillators (swing equations) as ran-
dom perturbations of two-dimensional periodically driven Hamiltonian systems. The
phase space for periodically driven nonlinear oscillators consists of many resonance
zones. It is well known that, as the strengths of periodic excitation and damping go to
zero, the measure of the set of initial conditions which lead to capture in a resonance
zone goes to zero. In this paper we study the effect of weak noise on the escape from
a resonance zone and obtain the large-deviation rate function for the escape. The
primary goal is to show that the behavior of oscillators in the resonance zone can be
adequately described by the (slow) evolution of the Hamiltonian, for which simple
analytical results can be obtained, and then apply these results to study the transient
stability margin of power system with stochastic loads. The classical swing equa-
tions of a power system of three interconnected generators with non-zero damping
and small noise is considered as a nontrivial example to derive the “exit time” ana-
lytically. This work may play an important role in designing and upgrading existing
electrical power system networks.
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1 Introduction

The problem, a three-machine power system network, considered in this paper brings
together three interesting topics in dynamical systems. Namely, resonances in two-
frequency nonlinear systems, where at some moment of time due to nonlinear effects,
a linear dependence of frequencies with integer coefficients occurs, giving rise to res-
onance surfaces; domains of attraction, which are formed in the presence of small
dissipation when most of the resonant periodic orbits disappear except for a few sta-
ble limit cycles with their distinct set of initial conditions that are captured into res-
onance; and finally large deviations, which provide the asymptotic behavior of rare
event probabilities, transition pathways, and transition rates in stable systems with
small noise. The subtleties of these interactions between noise and nonlinearities are
explored in a canonical way by combining the ideas from dynamical systems, homog-
enization methods and large deviations to develop a general collection of new math-
ematical techniques. Depending on the time-scale of the rapidly-oscillating periodic
dynamics and the strength of the noise, there are two different limits, namely homog-
enization and large deviations. There is a tug a war between these two scales and
we make use of the asymptotic methods that combine homogenization with large
deviation [1] to discover a common geometric structure in the phase space and to
determine the effects of noisy perturbations on the passage of trajectories through
the resonance zones based on the energy barrier heights.

In principal, an infinite number of resonance domains exist, but for two-frequency
systems resonance surfaces do not cross each other and the influence of each reso-
nance can be studied separately using a slow angle. At the resonance, a trajectory of
the fast systems or the non-resonant angles fills the torus of the lower dimension and
these non-resonant angles can be averaged out. In the presence of small dissipation,
centers become (stable or unstable) foci, while families of periodic orbits disappear,
possibly giving rise to (stable or unstable) limit cycles. Homoclinic and heteroclinic
orbits also in general disappear. In light of the above discussion, the intention of this
paper is to study the effect of weak noise on the escape from a resonance zone. When
the noise is very weak and so large deviations from the corresponding determinis-
tic system occur with very low probability. The phase space for the corresponding
deterministic system consists of many resonance zones in which some trajectories
of the deterministic system can get “trapped”. The rate at which noise facilitates the
“escape” from resonance is the subject of this paper. Our goal is to understand a gen-
eral collection of mathematical techniques which can be applied to and understood
through one specific physically-motivated problem. In this paper we deal with swing
equations of a 3-machine system to derive the “critical clearing time” analytically.

Problems related to large deviations for stochastic processes have attracted the
attention of many physicists and engineers in recent years. For example, in many
devices, failure occurs either the first time the response oversteps a particular thresh-
old, as when a vibrating relay contact first touches the frame and shorts out, or due
to an accumulation of many small damages inflicted in the duration of the device,
as occurs in wear and fatigue. The exit problem is an example of such problems,
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where most probable transition pathways and the mean transition time 7 are useful
in determining the direction of failure propagation after the onset of instability.

The transition rate from one stable regime to another along a certain path pro-
vides valuable information regarding the time available for mitigating the cascade of
failures. The large deviation theory provides the methods to find transition pathways
and transition rates in stable systems with small noise. The most probable transi-
tion pathways are governed by a first order Hamilton-Jacobi type of equation. In
the multidimensional non-gradient vector field case (even in R?) explicit solutions
cannot be obtained in general for the well-known Pontryagin-Witt equation or the
HJB equation. However, taking advantage of the fact the Hamiltonian of the unper-
turbed system evolves slowly (under small perturbations), the Hamiltonian structure
is made use of to identify a reduced one-dimensional equation for the evolution of the
Hamiltonian 7, by averaging the fast dynamics (stochastic averaging). Hence, the
escape from the domain of attraction of stable equilibrium points and limit cycles in
phase-space can be studied analytically. We present a method based upon an approx-
imation of the Hamiltonian (energy envelope) of the oscillator response as a one-
dimensional Markov process, governed either by an appropriate diffusion equation
or a one dimensional HIB equation depending on the strength of the noise. For the
homogenized nonlinear system, the transition (hopping) rate calculation is based on
the energy barrier heights (the maximum load) between local attractors.

The content of this paper is organized as follows. Swing equations of multi-
machine system are discussed in Sect.2. Making use of several assumptions 3-
machine equations are modeled as a one degree of freedom periodically driven non-
linear oscillator. The reduction technique detailed in Sect. 2, uses the Hamiltonian
structure of the unperturbed system. In Sect. 3 we zoom in to a resonance zone and
make a change of variables in order to derive simpler equations that describe the
dynamics in the resonance zone. In Sect. 3.1 we consider the deterministic dynam-
ics in the resonance zone and state the well known problem of capture into resonance
and identify a variable .72 whose value can be used to indicate capture. In Sect. 4
we study the rate of escape from a resonance zone. We achieve this by threading
together ideas from averaging and large deviations to derive a large deviation princi-
ple for 7. It will be shown that the trajectories of the oscillator trickle down close
to the bottom of the potential wells. The stochastic dynamics at the bottom of the
potential well is not discussed in this paper due to lack of space.

2 Swing Equations with Non-zero Damping
and Small Noise

Transient stability in power systems is concerned with the ability of power systems
to maintain synchronism in coupled swing dynamics when subject to a severe distur-
bance. Due to network complexity, power system stability can be divided into smaller
areas that include generator rotor angles, frequency and voltage stabilities. We
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analyze a system of n classical swing equations for a simple power system (related
to synchronous generator rotor swing angle) [2]:

Op = Wy — Wg,

) n
iy = (5o | [Pl — ) + T — Gk - Z ELEY,;cos(0; — 6, +6) | »
2H, P

where the rotor angle of machine k is 6, and w; denotes the angular velocity of the
rotor k. The parameters are constants, wy represents system reference frequency, Hy,
inertial moment of machine k, f,, damping coefficient of machine %, 7, mechani-
cal torque driving machine k, E,, terminal voltage of machine k, G, due to the real
power load at machine k. The magnitudes and angles Y,; = ¥, and 6,; = 6, deter-
mine the transfer admittance between machines k and i:

Gy +jBij =Y, exp’yki .

If we assume that resistive loads are located only at the generator buses (i.e. are
included in the conductances Gy, ), then the transfer admittances are purely imaginary
and 0; = 7 (so G; =0 fori # kand ¥; = By,).

Assume that mechanical torque produced equals power absorbed by the loads, so

n
> T — GuE; =0.
k=1

Denote by M, := ?, P =T, — GkkE]%, C,; := E E;Y,;, and introduce small
R

noise in the power term,
n
e P K~ > I 2 D
P, =P, +&"6.m(D), where Py =T,,—GuE,, Z P, =0,
k=1

0 < e < 1,k > 0, and x; s are modeled as white noise processes. We assume symme-

try of transfer admittance between machines, so Cy; = Cy forj # k, j,k=1,...,n.
Finally, we also assume proportional damping, i.e. f, = pM,, where damping ratio
pis equal for all k = 1, ..., n. Then, the equations of motion are [2]:
o = W, — wp, (1a)
o) - L —pM, (w —a))+P—iC sin(6, — 8;) + €6 (1b)
k M, K@ R k ki k — 9 KM | -

i#k
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2.1 Coordinate Change

We first describe the dynamics in collective variables that are averages of individ-
ual variables, which are well known in power grid stability analysis as the COA
(Center-of-Angle) or COI (Center-of-Inertia) variables. Consider new coordinates
(6;,@,) that are perturbations of (6,,,) from the centers-of-angle and -inertia,

1 n 1 n . n 1 n 1 n
<ﬁ Zk:l Mkék’ﬁzkzl Mka)k>, Where M p— Zk:l Mk' (M Zk:l Mkék’ﬁzkzl
M ka)k) can be obtained by integrating (1). The perturbation coordinates are

- 1 e £ L s
B 1= = e bt ;Mkwk(O) i ; ak/o e Py (s)ds, (2a)
. 1 % 1—e P
b =6 = o D M,5,(0) - i Y M,a,(0)
k=1 k=1
r t K
€ ~ —pB(s—r)
+ wpt — — drds. 2b
Wp M,Z;Gk/o[)e N (r)drds (2b)

The corresponding equations of motion are

'3 . Pk ! ij ~ ~
Go=an =B+ =Y HsinG, - 5) + e55m,, 3
k= O Wy = =fiy, M, #ZkMk sin(6y, — 6;) + " 6,1, 3)

where 1, = [1,(0), 1,(?), ... ,n,(O]", and

tn (g -%) ifi=k
UkGR . (O-k)l= ~ i .

FA
—— else
M

Using (2), we can check that the sum of the angles and angular momenta pertur-
bations are

D M, =) M5, =0. )
k=1 k=1

2.2 3-Machine Setting

Consider the n = 3 case. Using the fact that the sum of angles perturbation is zero,
(4), we can eliminate one of the k = 1, 2, 3 degrees of freedom. Arbitrarily, we elim-
inate 6,. We end up with a 2-degree-of-freedom system:
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Fig. 1 Heuristic
representation of 3-machine
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O
M3
Sl=a~)1,
cf)l=—ﬁd)l+i—&sin 1+Aﬁ 51+%53 —&sin(51—5~3)+5’“0’1n,
M, M, M, M, M, '
53:&)3,
a33=—ﬁcb3+§—&sin(53—51)—%sin %51+ 1+% 5y ) +€5oym,.
My M M, M, M, t

Consider the n = 3 case. As in [3], we assume that (see Fig. 1)

« inertia of machines 1 and 2 are larger than that of machine 3:

M, M, _
Ml :?, Mzz?, Ml,Mz,M3~O(1),
 coupling of machine 1 with 2 is larger than the coupling of machines 1 and 2 with
3:

Cro= S2. £1).Cpp. Coy ~ O(1), and
2= 12, C13, Co3 ~ O(1), an
 loads of machines 1 and 2 are larger than that of machine 3
P, P, - .
P=—,P,=—, P,,P,,P;~0(Q1).
€

Using the above scaling and assuming small damping, f = £, we have

e

1 = @y,

@) = —ef@, + a; — cppsin ([1 + p,16, + £4303) — ecy3sin (6, — 63) + oy,
&)
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53 = (1)3,
C’(L)3 = _Eﬁd)3 + 0(3 - C31 Sin (53 - 51) - C32 Sil‘l (MISI + [1 + 5/43]53) + 6K0-3nt,
(6)
along with &, = —p, 8, — £ 436, where
Ml M3 Pl P3
l’ll - > M3 = +9 al - ’ a?, )
2 M, M, M,
C12 C13 Cl3 C23

Cio ._ﬁ’ Ci3 .= V, C3q = V, Czp = V
1 1 3 3

If e =0, then (51, @,) given by (5) is independent of (53, @5), with equilibrium

(67, @) given by
I 1 .1 f %
(5*,w*)=<—sm <—>,0>.
o [1+ 4] C1p

We will assume that 6, is a small perturbation from &7, i.e.

with initial conditions 6,(0) = 57 + £6,,, and 5,(0) = £b,,. The behavior of &, can
be studied by considering small perturbations of 6, in (5) about zero, with initial
conditions &, and &, (in other words, shift the initial condition for §; by —6* and
study small perturbations about zero: For ¢ < 1, we replace 5 1(#) with eél(t) in (5),

with initial conditions & (O) =&b 1(0) = 5510 and 6 0) = 55 0) = 5610)
Taylor expanding the &, terms in (5) about zero and keeplng only the leading
order terms, we have the following second order ODE:

651 +ezﬂc§1 +ecpll +p16, — %£3c12[1 + /41]/435 5y + -+ €%c13c08(8)6, = 0.

We asymptotically expand & | as
5,(t) = u(t) + ey (1) + €2R(t) + O(€%),

with (u(0), i(0)) = (510, 5,0), (w(0),y(0)) = (R(0), R(0)) = (0,0) and substitute this
expansion into the preceding ODE. Collecting terms by orders of €, we have a set
of ODEs of orders ¢, €2, €3, ... At order €, u is an undamped, unforced oscillator.
Assuming c,, #; > 0, the squared natural frequency c¢;,[1 + p;]is > 0, so

5,0V
u(?) = sin(vt + @), where v :=+/c,[l+pu), @ :=tan"’ <51—°) (7
10
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Therefore,

5,(t) = & + esin(vt + @) + 2w (1) + €°R(D) + O(eY), (8)
where y and R satisfy the higher order equations. Substituting (8) into (6), we have
a single-degree-of-freedom system in (05, @;) along with the higher order equations
for y and R. Discarding the higher order deterministic terms and rewriting (65, @)

as (67, w?), (6) becomes

ds; = widt

dot = [—csin(6" — r) + a3)| dit — € [a + c3, p36 cos(8¢ + p,57)| dt
+e [613 sin(vt + @) cos(5; — 67) — ¢z sin(vt + @) cos(5; + /415;‘)] dt
+ O(eH)dt + e“odW,,

where W is a Wiener process, and ¢ and r are such that
_ S Sk : _ s Sk : S
CCOST = C13C080, + €35 COS(16]), cSInr = cy38in6] — c3; 8in(p6;),

The Hamiltonian associated with the unperturbed system is

H(S,w) := %aﬂ —az8—ccos(§—r) = %wz + U(6). 9)

3 Dynamics Close to a Resonance Zone: Capture
into Resonance

Let (1, @) be action angle variables and assume
I'=1(5,w), @ = @6, ),
o0 =0(, ), o= o, p)
can be written. The system (9) with € = 0 can be written as
=0, @ = Q). (10)
Suppose we want to study the dynamics of the system (9) close to m:n resonance.
We then consider dynamics in the region where / is close to the resonant value /,

defined by
m&(1,) = nv.
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Here r is short for resonance m:n. For notational convenience we use 2, = £2(1,) # 0
and Q/ = d—“?| 1=, etc. Without loss of generality we have taken a; = ea and ¢ = 1.

We also rename a number of variables § = 6 — r,r + ;67 = 7),r = 6 = 73,¢3, =
¢,, €13 = ¢; and define

26,0,0) = = [fo— a + ¢, 13(6 + r) cos(6 + 7,)|
+ [cl cos(6 + 1,) — ¢y cos(d + 1 )] sin(vt + @),

def 0(/)(5 )

®.0) = 8:(6,,0)

3. 9.0) =

def 0I(6, @
(a )82(5 w,0)

3(1.p).al, (/J) 5(1.p).w(l.0)

Let I¥ = I(67, @), @ = @(6;,w?) and define the slow angle and resonant fre-
quency

n n
v i= @ — EQ,, Q, 1= —v.

where 6, evolves according to df, = vdt. Then, using Ito formula we get

-

12K 201
dVl}/+2 ™
(1‘w+’0) 2

Jawi = (QUD) = 2)di + €87 vy + ~0,,0,)dt

1 9?
dW + - 2 21( Zdle/
3 W,+ 9) ]

dIf = eFU,we + 26,,60)d + ¥ - o

bl

U wi+20,)

(11)
dt,

UEwE+20,)

0
+eko X
9>

de, = vdt

Since we are interested in the dynamics close to the resonance / = I, and (1, y)
are slow variables, we make a change of variables in order to derive simpler equa-
tions that describe the dynamics in the resonance zone. Substituting the following
standard [4] space and time scaling

gdif 1 3 dif £ edif
h = —Us ~-1), 7 Ve 0, =0, /e (12)

t \/z l/\/g r

into the above equations and Taylor-expanding in powers of \/Z about /,, we get,
with higher order terms subsumed in R

13 13 w2 0l 3 13
dht = Fdt + /e F'hedt + € oMt RS dt + R dW,, (13)
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Ay = Qhedr + e <Q;’%(hf)2 + (B)dt + RS dt + RS AW, (14)

dos = var, (15

\/g

where / indicates differentiation w.r.t / and all terms (except R) are evaluated at
. v+ %9;,95). When x > 1, the higher order terms are R ~ O(¢) and R ~

O 1), fori = 1,2.

3.1 Capture into Resonance

From (13)—(15) it is clear that 67 and ¢¢ evolve at a faster rate than A and y’}t“'.
Hence we average out the fast variable 6. For this purpose define an averaging oper-
ator () as follows: for a function f periodic in # with period 2mz we define (f) =

1 2mnr

= Jo f(@)dg. Note that the functions 6 — .,y + %0, 0)and 6 — G,y +

20, 0) are periodic in @ with period 2mzx. To clearly indicate the dependence of the
énorresponding averaged function on y, we denote the averaged functions by (F(y))
and (G(y)).

For the analysis in this section, we neglect the stochastic term. To this end, in
(13)—(15) lets set o = 0, ignore higher order terms R and perform averaging w.r.t 6.
Then we get

<dh>=< (BW) + Vel W) > a 16

1 1L A2
dy Qh+ \/E(EQF "2+ (GWy)))
General structure of the averaged terms are, for % e 2zt

(FW)) = =PI, +J, costmy /n), (F W) = —p +J cosmy/n),  (17)
() = —%J; sin(my /n),  (18)

For % €272t +1
(Fw)) = =PI, + J,.cos(my /n) + J, sin(my /n) (19)

(&' (W) = =f + J. cosmy /n) + I/ sinmy /n) (20)
(O()) = =1, sinmy /n) + 1] cos(my /) 1)
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where the method to obtain the above (17)—(21) and the quantities J,, and J,. is dis-
cussed in [1, 5] and in the appendix. We can restrict ourselves to the case of % €2zt
as the structure of the equations for = € 2Z* + 1 is qualitatively equivalent.

We can study (16) as a perturbati(l;n of a Hamiltonian system

dn'\ _ ((BW))
() (%)
with the Hamiltonian
14
Ay, h) = %Q’hz— / (FW))dy. (23)
0

Such Hamiltonians typically occur in resonant problems and (23) represents a “pen-
dulum” under the action of an external torque [4, 6]. Note that (22) has fixed point
only if

Bl < 1,. 24)

The fixed points are given by

I
e

Bl
cos(my /n) = 7 h

c

There are many y which satisfy the above equation. Typical phase portrait (with
Q; > 0) for (16) is shown in the Fig. 2. The saddle (sd) and center (sk) fixed point
pairs (i.e. the homoclinic orbit of the saddle encloses the center) for (22) can be easily
obtained. All the fixed points have & = 0. Recall the definitions (25). Note that 47 = 0
means / = [, i.e. the system is exactly at resonance. The Fig. 2 shows a finite region
around /2 = 0. In terms of / coordinates this region is a neighborhood of /.. of a width
of order \/g This is called a resonance zone.

A trajectory which starts at the top of the Fig.2 (A > 0) but not in the narrow
neck region would reach the bottom of the figure (k < 0), i.e. the trajectory ‘passes’
through the resonance zone. A trajectory which starts at the top of the Fig. 2 (h > 0)
in the narrow neck region enters the region A and is trapped there. Lets call the region
A as ‘trap zone’.

For (16) the region marked A (in Fig. 2) is a trap—the trajectories originating in
A cannot exit from it at all. However, when o # 0, the noise facilitates the escape.
We want to study how the noise facilitates the escape from the trap zone.

We denote by 77|, the value of .7 evaluated at one saddle fixed point of (22)
and denote by 7|, the value of .7 evaluated at the corresponding center fixed
point of (22).
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Fig.2 Typical phase

portrait for (16) with £/ > 0.

Abscissa is y and ordinate is

h. The system cannot leave

the region A in the absence A A A
of noise. The measure of the . . o
set of initial conditions that

lead to trap in A is small

4 Stochastic Dynamics Close to a Resonance Zone:
Casex > 1

To see the fluctuations of 77 (yA/f, ht), we need to look on an even longer O(1 / \/2)
time scale. Hence we redefine the &, {7, ¢ process using the following space and time

scaling

1 .
W=— 1), P=yh, 0 =0, (25)
£

\/_

After doing a Taylor-expansion about /,, we get, with higher order terms subsumed

inR

dht = %%dt F N+ o S dW, £ R dr+ R AW, (26)
€ p) ’ '
dipe = %Q;hfdt + <Q;’%(hf)2 + Gi)dt + R+ R AW, 27
13

dos = Lvar, ()
£

where / indicates differentiation w.r.t / and all terms (except R) are evaluated at
{(,, l//;f + %0; 7). When « > 1, the higher order terms are R ~ 0(\/§) and Ef{f ~
O V2, fori=1,2.

Since the system (26)—(28) (after averaging @) can be seen as a perturbation of
the Hamiltonian system (22); to the system (26)—(28) we adjoin JZ7* := S (y*, k),
where 7 is defined in (23). The evolution of 77 can be obtained by applying Ito
formula as

dA; = L-Q;hf(% —(F)dr + <(~Q£%' - <%>1Q§')(hf)2 - <%>@5>dt (29)
\/g 2

+e o 2L aw, + R di + R aw,,
r aqz °t t
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where arguments for §, (), ©, % are suppressed; and R are higher order terms.
2

Since (§ — (F)) = 0, H* evolves even slowly compared to (W*, h?).

Since our goal is to study the escape from the region marked A we set the initial
conditions to (26)—(27) in this region. In terms of Jf; ¢ this amounts to specifying that
A lies in between' 7|, and | ;. When o = 0 the behaviour of .JZ* is to reach
|y When o # 0 the noise facilitates the escape. A good indicator of whether
escape occurred is ¢ > |, in the case? £/ > 0. Further, ¢ could be a bit
greater than J¢| ; and still be in the small neck region which still leads to capture.
Let 7, be the value for which we can be sure that escape occured if 77, > J7,. Then
|4 differs from JZ, by a very small amount that goes to zero as € — 0. Keeping
these caveats in mind, we still study the probability with which ¢ exceeds 77|,
in presence of noise. However such transition is extremely unlikely because of the
smallness of the noise. Hence, our intention is to obtain a large deviation principle
for the 7 process.

4.1 Large Deviations Principle (LDP) for 5¢*

We employ the technique described in [7, 8] to obtain the rate function governing
the probability of rare events of JZ*. Averaging would be of help in this regard:
because 7 evolves slowly compared to (1’/)1E h;) we can average out the fast (e ht)
dynamics. For this purpose define an averaging operator A as follows:

Definition 1 For a function f of (7, h), the averaged function A[f] is given by

Z(h)
ALFI(h) = %h) /0 F@@0). h(o)ds

07 hz_a%’

where ({7 (?), h(?)) is the solution of the Hamiltonian system u’} == o with

H(W,h) = § and T(Y) is the time-period of the solution. The § is restricted to be in
between J7 |, and J7|,,; outside these values the orbit of the Hamiltonian system
is not closed and the time-period is not defined.

Since } is restricted to be in between .77°|;, and JZ|,; we define a stopping time
e :=inf{r >0 : J* is not in between 7| and 77|, }. 30)

More precisely, if 2/ > 0 then e* :=inf{r >0 : J* > | ,} and if Q < 0 then
e i=inf{r >0 : I <H|,}.

Vg > Ay if Q> 0and |y < | if Q) <0.
2If 2/ < 0 then a good indicator is ¢ < | .
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Following the standard techniques, first we derive the LDP for the random vari-
able JZ* . where S is governed by (29) with the initial condition 7% at t = 0.

T Ane¢

Define |
def _ .
g;%(p) = b log [E% eXp (52(k—1)p%/\e‘> ’ @3

where the expectation [E ,, indicates that the process JF starts at J7). Let

def . .
87.4,(P) = lim g7 . (p). (32)

Then 77, . has LDP with rate function

Ve (6) = sup <pf) - gw@), (33)
pe

for b in between 7|, and 7|,. So, now we evaluate g;. #,P)- The idea of using
averaging for obtaining large-deviation principle is implemented in, for example,
[1, 7, 8].

Theorem 1 (Lingala et al. [1]) Ler <7, (r, 0) be defined by

0
VA, (§,6) = / (5 +20.6)~ (@) ) .
0 m

Define
= _ 2,012 AN
B(B) = B, (5) + B,(B), £ = 0(Q)*A K (h a—) >] :
92
where?
B, =-Q'A Kﬂl% + Q’h2a—£fl>] ,
r r ay/
B, = A [((@F - (@320 - (6)].
Then
The . 1 The .
s =p oty [ B L [ zdoa e
0 0

3In B, the term (< F) should be interpreted as the average w.r.t @ of the function 6 —
@ OF +20.0).
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where f)t is simulated according to

db, = (%(fm +p5<f;,>>dr, by = A, (35)

and e is defined by
=inf{r> 0 : B, is not in between A\, and H| ;).

Proof See [1]. O

Theorem 2 The rate functional on the path space is

B 2
s =} [ G2

SJor x € C([0,T],R ) absolutely continuous where R ,, is the set of real numbers
lying in between €|y and 7| ,.

Proof See [1]. O

4.2 Evaluation of B and E in Theorem 1

Using :—;2 = ;7113% = é% and that at the resonance (q%) = 1,0, we have that
2( /)2
B, =0, B,=-PRAAR], and == TAW] (36)

r

4.3 Escape from the Trap Zone

Since we are interested in the escape from the trap zone (region A in the Fig. 2),
we need to consider the probabilities Pyole® <1] where ¢ is defined in (30) and §°

indicates that the initial condition is such that 7 = 0. We restrict to the case that

50 lies between 7|, and |,
Define

7(t,9%,9) :=inf{S,,(x) : x € C([0,1],R ), x(0) = §°, x(¢) = B}, 37)
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for §°, § lying in between 57|, and 57| ,. Applying* Theorem 4.1.2 and remarks
following it in [9], we have

: 2(k—1) I3 i (VI
lgr&e logPyole® < 1] = min VYt Yy, Ay,

The function ¥ satisfies the Hamilton-Jacobi equation (see Eq.4.1.11 in [9]):

0¥ (15°.6) VHY) | 1 e (97680 ) _
T+§B(h)a—h+5“(h)< a6 ) =0,
7 (t,5°, 9% = 0.

Solution could not be found explicitly. However, it can be solved by numerical meth-
ods.
Define the quasipotential
V(H) = inf(Sy,7,(0) 1 x € CUT. T,1LR ), Ty < Ty, X(T)) = H#. x(Ty) = h}. (38)

Then, Theorem 4.4.1 of [9] shows that the mean exit time satisfies

lim e VlogEglef] = =7 (A |,
for any §° between 77|, and 7| ;. The function ¥ (§) satisfies

v
B2 + 420

o7 (h)

2
T > =0, V(AN =0,

which can be easily solved to give

_ " 28Oy, _ 280
HOEE /m Z0) Y= 2y O Al (39)

In particular the following gives a measure of difficulty of escape from the trap zone:

209,
V(H\0) = W(%Iw = K\ g)- (40)

#This application should be taken in a heuristic sense. In the problem considered in Theorem 4.1.2
of [9] the vector field does not vary with . However, in the problem considered in this paper we
are averaging an oscillating vector field to get simple equation for .7 only in the limit as ¢ — 0.
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The above can be evaluated to be

20 (n/m VI1-=]x)? )i
—5( /) g ycos gl + e 2 TIXE) P
02| [x

V(A |5d) =
Since the function in the brackets is monotonically decreasing in |y|, it can be
deduced that for a fixed f, ¥ (J¢|,,) is monotonically increasing in |J,|, i.e. the
higher the strength of periodic excitations the more difficult the escape from the trap.
For a fixed J,, 7' (77|,;) has a unique maximum as a function of f. As f increases to
l;—’l, V(A |,,) decreases to 0, because the area of the trap zone decreases to zero. As

p decreases to 0, ¥ (J|,,) also decreases to zero—this behaviour is not intuitive.
Hence, for a fixed strength of periodic excitations, both high and low damping makes
the escape easier—intermediate values of damping makes the escape difficult.

4.4 Post Escape from the Trap

Immediately outside the trap region A, the deterministic dynamics alone is enough
to take the system out of the resonance zone (see Fig.2). Since the noise is small,
getting re-trapped is a rare event, i.e. the system moves out of the resonance zone
quickly. Once outside the resonance zone, full-averaging i.e. averaging w.r.t (¢, 6)
can be done. The full-averaged system shows that damping results in a decrease of
I with time. However as I decreases the system might enter a different resonance
zone—from results of [6] we know that the measure of the set of initial conditions
which get trapped is small. Those that get trapped, escape at a rate governed by the
large-deviations principle obtained above. In such fashion the system evolves until
it reaches close to (6, w) = (xnx + r,0), i.e. the bottom of the wells in the potential
U of (9).

Note that we have not analysed the behaviour near the homoclinic orbit. So, the
description in the above paragraph is valid for those trajectories which start within
the region bounded by the homoclinic orbit of the original unperturbed hamiltonian.
However, the analysis in previous sections is valid also for the resonance zones that
lie outside the region bound by the homoclinic orbit.

If the action at the bottom of the well I}, :=I|s_,,,1,o=0 15 such that (1) is in
resonance with v, then interesting dynamics occurs. Such a situation is discussed in
[10] in an attempt to explain phase-flip of electrons in external fields. Due to page
limits the dynamics when v & 20(J,) are not presented here.
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5 Conclusion

The full United States power grid presents a high dimensional complex network for
which any attempt at analytical analysis is near impossible. However there are many
important examples of lower dimensional systems governed by key system dynamics
that present a rich dynamic behavior that can be studied in order to provide insight
into the phenomena that occur on much larger scales.

The model presented in [3] is an example of a fundamental unit that is often
studied in power system theory, that is, three interconnected synchronous machines.
This paper offers an analytical method to characterize the stability of a resonant
equilibrium mode of operation that such a network may find itself in dependent on
initial conditions.

Understanding the effect on stability that random fluctuations on the grid have—
caused both by load (consumers) and generation (renewable energy inputs)—is a dif-
ficult problem and one that has garnered interest in recent years due to the increased
penetration of renewable sources on the grid. The first section of this paper pre-
sented a formulation that enabled a three machine system with load fluctuations to
be reduced to the study of a one-dimensional, two degree of freedom problem with
small periodic fluctuations. An explicit analytical method that allows us to under-
stand the relationship between the stability of the system and these random fluctu-
ations by quantifying the dependence of minimum action to escape, damping, and
periodic excitation is presented. It is seen that there are a number of modes of oper-
ation that will lead to optimal (higher) escape times and thus increased stability of
the resonant fixed point.

Acknowledgements The authors acknowledges the support of the AFOSR under grant number
FA9550-16-1-0390 and PSERC.

Appendix: Calculation of J, and J, in (19)—(21)

The reduced order system with € = 0 with ¢ = 1 are the equations for a non-linear
pendulum. The pendulum has two modes of motion dependent on total system
energy. When H € (—1, 1) the system is described by oscillatory solutions. Denoting
k as the elliptic modulus we have [5]

H=2k-1

With K = K(k) and E = E(k) being complete elliptic integrals of first and second
kind respectively,

1(k) = [%[E ~(K*=DK]l, Q=m2K, ¢=28 1)
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The oscillating displacement and velocity in terms of the angle variable ¢ are

5((p)=2arcsin(k5n(2K—‘p)), w(p) = 2kCn (ZK"’) 2K
T

T

We have that

U, o, %(u/ — @) = (a — po — u3¢5(q,(@) + r)cos(q, (@) + ;) +
¢ Sin(%(w — @) cos(q, (@) + Ty) — p1¢ sin(%(w — #)) c0s(q, (@) + 7)q>(@).

2nm

Noting that 2,711 SU, v + 20,6)do = 2— o 8 e, %(y/ — @))dg due to the
resonance COIldlthl‘l Even though it is natural to choose 6, as the fast variable for
multi-phase averaging, in order to simplify the averaging of certain elliptic functions

in the expressions & and ® ¢ is used as the fast angle for multi-phase averaging. We

can evaluate the more tractable form % o FU, @, —(l// @®))d@ which gives

2mn

m 3 6]ﬁ . (m
<%(Ir’(p7 ;(W_(P))> ﬂl +A <K3k> 1+q% SII](;“U) 1{%622*4—1}

m

3 2 .
T m qr m
-A, | — (—) cos(— )1
2 <K3k> n 1= q_Z'zxn n v {;EZ+}

3
~ T an . m
- A — sm(—w)l "
<K3k> L 4qs n {;ezz +1}

< [ m\? qr m
+A2 <ﬁ(> (;) o COS(;I]/) 1{%EZ+}+C€’

]—qu

def
where [, = % ((k2 - DK+ E ) is the resonant value of the action, % represents the
contribution due to the term (g, (@) cos(q,; (@) + 7,)g,(¢)), which can be argued to
be negligible, and

< 2K > A 4kC, A 4kC 4kC,y
=exp|——), = COS 7, = sin 7,,
q P I T 52 2 2T 50 2
~ ~ 4ku,C

_ 4k €y _ 1~2
A = S COS Ty, A, = o sSin 7,.

J. and J are the coefficients of the cos(%y/) and sin(%y/) terms. Neglecting the
sin(%y/) terms means m:n is even, this can be done without loss of generality.
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