Making Computer Science Attractive to High
School Girls with Computational Thinking
Approaches: A Case Study

Oshani Seneviratne

Abstract Computational thinking is a fundamental skill that extends beyond
computer science. Conceptually it involves logic, algorithms, patterns, abstrac-
tion, and evaluation. The approach for developing a computational mind-set may
involve experimenting, creating, debugging, and collaborating. Due to certain
implicit biases and societal and cultural factors, girls may not be exposed to these
computational thinking concepts and approaches. This has resulted in a decrease
in the number of women in computer science since the 1980s. This chapter sum-
marizes some of the challenges faced when teaching introductory computer sci-
ence to high school girls and the approaches taken to overcome those challenges.

Keywords Gender issues ® Computational thinking techniques

Introduction

Gender gap in computer science is a much-studied topic in the recent years (Margolis
& Fisher, 2003). According to a report titled “Why So Few?” (Hill, Corbett, &
Rose, 2010), only a very small percentage of girls, around 0.4 %, entering college
intend to major in computer science, and women only made up 14 % of all com-
puter science graduates, down from 36 % in 1984. In a 2009 poll of young people
aged 8—17, only 5 % of girls had said they were interested in an engineering career.
Another recent poll found that while 74 % of college-bound boys aged 13—17 said
that computer science or computing would be a good college major for them, only
a 32 % of their female peers said the same (Association for Computing Machinery;
WGBH Educational Foundation, 2009). It has also been shown that, from early
adolescence, girls express less interest in math or science careers than boys do
(Lapan, Adams, Turner, & Hinkelman, 2000; Turner, 2008). Even girls and women
who excel in mathematics often do not want to pursue computer science or any

O. Seneviratne (D<)
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: oshani @csail.mit.edu

© Springer International Publishing AG 2017 21
P.J. Rich, C.B. Hodges (eds.), Emerging Research, Practice, and Policy on

Computational Thinking, Educational Communications and Technology: Issues

and Innovations, DOI 10.1007/978-3-319-52691-1_2



22 O. Seneviratne

other STEM fields. Given these disparities, there are many academic programs at
various institutions that are trying to address the problem head on and break the
glass ceilings in which women may be discouraged in pursuing a career in computer
science.

The MIT Women’s Technology Program (WTP)! is a program that has been run-
ning since 2002 with the goal of attracting more high school girls to engineering and
computer science. WTP facilitates a rigorous residential summer program for high
achieving college bound girls who are either high school juniors or seniors from all
over the USA who did not have any prior exposure to computer science. The hall-
mark of the program is that, it introduces the concepts in a hands-on team-based
format with a focus on problem solving. The program has daily lectures, labs with
fun team-based projects, and several hours of homework. There are no grades for
WTP because the program encourages students to go outside their comfort zones
and not worry about a perfect score or making mistakes. During my doctoral studies
at MIT, I was very fortunate to teach computer science through WTP to high school
girls. The teaching staff included myself who was the main instructor responsible
for preparing and delivering all the material, and tutors who help the students during
the labs and their homework. The tutors are typically advanced undergraduate stu-
dents who are majoring in computer science.

Before the summer program began, it was my responsibility, as the instructor, to
prepare the curriculum for basics of computer science with comprehensive exam-
ples, mini quizzes, and projects the students can try out. Learning in WTP is sup-
posed to be incremental, where the lessons would build up from the previous day.
The curriculum covered basic syntax for programming in Python, control struc-
tures, functions, object-oriented programming, data structures, algorithms, and
recursion. Students were expected to complete challenging conceptual exercises,
daily programming assignments, and a final project.

Despite all the preparations we took, when the program started, the teaching staff
realized that the students’ perception towards computer science needs to be changed
to instill a computational thinking mind-set before going ahead with the lessons.
The high school girls were previously exposed to concepts such as patterns and
abstraction through high school level math and science courses. However, we
noticed that some of the students had difficulty in applying such skills they already
had to learning basics of computer science theory.

The reasons were twofold: (1) gender-based stereotypes and (2) learning subject
matter they were not exposed to before. Although the first issue is only applicable to
girls, the second issue is equally applicable to both genders. The following sections
illustrate the above-mentioned issues in depth along with the approaches we took to
overcome those challenges.

"http://wtp.mit.edu/.



Making Computer Science Attractive to High School Girls with Computational... 23

Overcoming the Gender Stereotypes

Overcoming Implicit Gender Bias

As the teaching staff, it was our duty to encourage a supportive community spirit of
learning together (Johnson & Johnson, 1987), so that the learning process will not
be overwhelming to the students during the fast-paced short summer course. So, in
this spirit of learning together, we facilitated a classroom discussion on what com-
puter science meant to the students at the beginning of the course. We asked few
open-ended questions like: “Who has met a computer scientist/programmer?”,
“What do you think computer scientists do?”, etc. Based on some of the answers, it
was clear that some of the students had certain implicit gender stereotypes. A family
member, an older friend, or a friend of a friend was “into computers,” but many of
them were male, and it seemed as if the students would most certainly equate these
people they knew to asocial geeks who keep to themselves typing all day in dark
basements and do not see the light of day. As for what they think the computer sci-
entists do, most of the students (rightfully) had the impression that computer sci-
ence meant coming up with code, but they didn’t equate that to solving problems.

As explained in the “Blindspot” (Banaji & Greenwald, 2013) even among indi-
viduals who actively reject gender stereotypes, implicit bias can be common. This
bias not only affects individuals’ attitudes toward others but may also influence their
own interest in math and science topics. This indirectly hinders a girl’s computational
thinking skills. Not only would a girl more likely to associate computer science with
men than with women, but she may also encounter negative opinions for women in
such “masculine” positions. It was shown that as early as elementary school, children
are aware of these stereotypes and can express stereotypical beliefs about which sci-
ence courses are suitable for females and males (Joyce & Farenga, 2000). Furthermore,
girls and young women have been found to be aware of, and negatively affected by,
the stereotypical image of a scientist as a man (Luce et al., 2008). Even looking at my
own (the author’s) career path as a computer scientist and of my very few female
peers, I can see that women face a particular set of difficulties when they are in a
male-majority field. The presence of female role models can be hard to come by
when you’re one of the only girls in your computer science class.

No Need for Self-Inflicted High Standards

Studies have shown that girls hold themselves to a higher standard in subjects like
math (Correll, 2004). Because of this, girls are less likely to believe that they will
succeed in a STEM field such as computer science, and therefore, are less likely to
express interest in a career in computer science. In a study done in 2005, it was
found that gender differences in self-confidence in STEM subjects begin in middle
school and increase in high school and college, with girls reporting less confidence



24 O. Seneviratne

than boys do in their math and science ability (Pajares, 2005). In part, boys develop
greater confidence in STEM through experience developing relevant skills, and girls
may lose the opportunity to develop such skills due to their vulnerability in losing
confidence in STEM areas.

However, WTP was a level playing field, because all the students were girls.
Plus, WTP did not emphasize on grades, but rather on learning in a collaborative
environment. So, since none of the girls had the pressure to hold themselves to high
standards, we encouraged them to be very confident about their abilities, ask ques-
tions, and learn from each other.

Female Role Models

As mentioned above, computer science has a bad image among girls, or they were
not confident in the skills they already had. Thus, it was clear that we had to address
the stereotypes the students associated with computer science. A study reported an
increase in girls’ interest in computer science and engineering after the girls were
exposed to a 20-min narrative delivered by a computer-generated female agent
describing the lives of female engineers and the benefits of computer science and
engineering careers (Plant, Baylor, Doerr, & Rosenberg-Kima, 2009). Therefore,
getting to know female computer scientists who can potentially be the girls’ role
models can be a huge boost to the girls’ self-confidence and increase their interest
in the field.

Thus, we decided to get the girls exposed to as many female role models as pos-
sible during the program. Unlike in their high school environments, during the sum-
mer long program, the students already had lot of access to female role models. The
staff members of WTP including the tutors were all female, and the girls felt espe-
cially connected to the tutors since they were only few years senior to them. We
made sure that the students felt comfortable talking to anybody in the staff during
the classroom sessions, during programming labs, and during after-hours in which
they completed their homework. Problem solving is an iterative process (Wing,
2006), and acquiring the skills needed to solve or debug a solution to a problem can
take a long time or maybe even impossible if the proper support structures are not
present, and the students may be discouraged early on and do not develop an inter-
est. This is especially important since the students really need to come out of their
comfort zones and experiment with the unknown in order to fix an error in their
program. For a novice this can be very intimidating, and thus having access to peo-
ple who can help them can be very beneficial. The students should not be in a posi-
tion to give up the entire field if they were not able to correctly write their first
program, or debug their code, or do not understand something that can be useful in
figuring out the underlying basic CS concepts.

Interacting with women who use computer science in their professional lives
gives them an idea of something to go after besides an endless string of code.
Therefore, we organized a lunch series throughout the duration of the program and



Making Computer Science Attractive to High School Girls with Computational... 25

invited successful female computer scientists, professors, engineers from the indus-
try, and female CS Ph.D. students at MIT, to talk to the high school girls informally
about how they first got into computer science and what they are passionate about
other than computer science. Most of the speakers were working to solve some very
interesting challenges such as finding cures for diseases like cancer, tackling global
warming, developing renewable energy sources, developing robots to help the
elderly, working on speech synthesis, and understanding the origins of the universe,
to name a few. In fact few of the guests did not even identify themselves as computer
scientists as their day-to-day work was in some other field such as physics or chem-
istry. However, they all were influenced by computer science at some point in their
lives. Many of the guests had very interesting hobbies, including playing musical
instruments, hosting shows on the local radio station, running marathons, and even
performing in dance and music festivals! They all had very interesting stories to
share about how they got interested in the field and how computer science has
helped in their day-to-day lives. After hearing these stories, the girls had several role
models to look up to, and most of them later indicated in their WTP exit surveys that
this experience positively changed their attitudes toward computer science.

Emphasizing the Importance of Female Presence in Science
and Technology Innovation

We also wanted to make it clear to the students that computer science is now a dis-
cipline that is playing a key role in invention and creation across all sorts of disci-
plines from biological science to film and animation. This expansion of the field of
computer science and how critical it is across all disciplines increasingly makes it
more meaningful to study computer science and related technologies. As computers
have become integrated into other disciplines like digital media, including music
and film, the geek image has shifted from that of a socially isolated person to include
a chic geek image where it can be cool to know about computers. So, the students’
perception towards computer science as just “coding” is no longer applicable. Thus,
the “geek” image is improving. Movements such as the “#ILookLikeAnEngineer”
and “#ILookLikeAProgrammer” hashtag on social media introduce women who
contribute to the society in meaningful ways as computer scientists and engineers
(Guynn, 2015).

In the classroom, we discussed some examples of the dangers of not having
enough female participation in technical roles. For example, some early voice-
recognition systems were calibrated to typical male voices. As a result, women’s
voices were literally unheard. Many of the computer games were designed to cater
to young males, and it would be difficult to find games that are equally amenable to
both genders. Similar cases are found in many other industries. For instance, a pre-
dominantly male group of engineers tailored the first generation of automotive
airbags to adult male bodies, resulting in avoidable deaths for women and children



26 O. Seneviratne

(Margolis & Fisher, 2003). Discussing such imbalances in gender in fields that are
near and dear to our lives can be detrimental to our society, and the students seem to
understand the broader implications. With a more diverse workforce that includes
equal participation from women, scientific and technological products, services,
and solutions are likely to be better designed.

Effective Teaching Methodologies

Show and Tell

We wanted to teach the students that programming isn’t just about using a particular
language. The 1972 Turing award winner Edsger Dijkstra had once said “teaching
code to programmers is like teaching how to use telescopes to astronomers” (Haines,
1993). The syntax is vitally important but utterly trivial. Therefore, to help the stu-
dents understand that computer science is not about typing at the computer all day,
or learning some esoteric programming language, we utilized several props in the
classroom to convey the message that a computer language is merely a tool. We
brought in things like a canvas and a paintbrush to the classroom. Just as these are
tools for an artist to paint an imagery that was conceptualized in her mind, the com-
puter is a tool to either express an idea or solve a problem that will be difficult
without the tool (i.e., the computer). This kind of “show and tell” approach was very
effective throughout the program, as it was very exciting to have physical objects
that would not normally belong in a computer science lecture room.

Classroom Discussions

Since many of the concepts in computer science cannot be easily demonstrated
using the above-mentioned show and tell approach, we thought of filling in the gap
with the day-to-day activities the students engage in using computers. For example,
for the very first lesson where algorithms were introduced, we asked the students to
get into groups and discuss what things they do in their day-to-day activities that use
a computer, what kind of things are easy for a computer to do but hard for a human
to do, and vice versa. The students came up with examples such as “web search,”
“email,” and “Facebook.” Going by their interest areas, we tried to explain how
computer scientists have made those services work. Search engines such as Google
use algorithms to put a set of search results into order, so that more often than not
the result we’re looking for is at the top of the front page. Likewise, the Facebook
news feed is derived from our friends’ status updates and other activity, but it only
shows that activity which the algorithm thinks we will be most interested in seeing.
The recommendations we get from Amazon, Netflix, and eBay are algorithmically



Making Computer Science Attractive to High School Girls with Computational... 27

generated, based in part on what other people are interested in. Given the extent to
which so much of our lives are affected by algorithms, we iterated the importance
of learning algorithms, so that they can also create a novel algorithm that can help
solve a problem.

Based on some of the initial answers we got, we realized that the students
thought computers are only those devices that have screens, keyboards, and mice
in addition to the microprocessor, memory, etc. They did not know other household
devices that they had access to, such as calculators, smartphones, cars, and
Roombas as “computers”. Therefore, we wanted to illustrate the ubiquity of com-
puter science. The calculator app on our smartphones is able to perform complex
calculations that would take a normal human a considerable amount of time to
compute, the GPS in our cars is able to tell us directions, and there are other such
examples where the computing capabilities that are already readily available to the
students are easily overlooked: Computers in our cars help us with cruise control
and to display information based on the inputs to its sensors; Roombas in our
houses clean the floor in an autonomous manner without any human intervention
whatsoever; gaming consoles are able to load the programs and respond to the
inputs from the joysticks or even use our body movements in the case of innova-
tions like Kinect.

Discussion on these everyday-computing devices proved to be a very good exer-
cise and a good entry point to explain what computer programs are capable of. All
such devices that have a computer inside need to be programmed using an algo-
rithm. Even a simple application such as the calculator needs the user to understand
and interpret the problem before the calculator can help out with the arithmetic.

Examples First, Theory Later

Some research studies have found that men outscore women by a medium to large
margin in the area of spatial skills, specifically on measures of mental rotation
(Linn & Petersen, 1985) (Voyer, Voyer, & Bryden, 1995). Well-developed three-
dimensional spatial-visualization skills are a must for subfields of computer sci-
ence such as robotics and computer graphics. However, studies have found that
spatial skills are not innate but developed (Sorby & Baartmans, 2000). Lego
Mindstorms where students can take things apart and put them back together
again and do visual block programming can greatly help develop these essential
spatial skills. In our experience, many computer science programs often focus on
technical aspects of programming early in the curriculum with a strong focus on
theory and without much focus on the applications of the concepts. This can be a
deterrent to students, who may be interested in broader, multidisciplinary applica-
tions. Thus, during the course of WTP, we always made it a point to talk about the
applications; no matter how trivial they might be related to the topic, the students
are learning.



28 O. Seneviratne

Teaching Algorithms

When delivering the lessons beyond these introductory concepts, we always made
it a point to start the lecture with a fun activity related to the lesson. For example,
to illustrate what an algorithm is like and how they can get started to conceptualize
algorithms, we asked a volunteer to explain how to write a program to make a pea-
nut butter and jelly sandwich. We brought the ingredients necessary to make the
sandwich to the class; and a staff member was acting as the computer, and the
volunteer was the programmer. The student volunteer had to give the staff member
the exact steps as to how to make the sandwich. The end goal was the delicious
sandwich.

The instructions have to be “programmed” in a certain order, and if it is not in the
desired order, the computer (i.e., the staff member) will not perform the actions. For
example, if the student said, “spread jelly on bread,” and at that time the jelly jar was
not open, the staff member will not perform any activity since the jelly was not
reachable. Instead, the staff member will make a funny face to indicate the error.
Once the student realized the mistake and mentioned “open jelly jar” before “spread
jelly on bread,” the staff member would perform the activities, and the volunteer got
the peanut butter and jelly sandwich as reward. Even though this was a very simple
example, students enjoyed this exercise very much, and they really got the idea that
writing a program is like writing a recipe and can be very relatable to the activities
we perform in our day-to-day lives.

Teaching Loops and Conditionals

Another such activity involved marching as a preamble to loops and conditionals,
where a student had to follow a path through the classroom to reach a certain desti-
nation based on the instructions given. Then the class was asked to come up with the
pseudocode to illustrate what the student volunteer performed. This resulted in a
very engaging atmosphere, where students were able to conceptualize the program,
and also were able to discuss their code in a collective manner.

Teaching Functions

We had the most interesting set of challenges when teaching functions. Some of the
popular mistakes that students made were confusing the “return” statement with
“print” (in python), not understanding that a function remembers where it came
from and goes back there when it is done, and that a function can be used to encap-
sulate blocks of code. Many of these concepts were a bit abstract for many of the
students. With an example involving dessert recipes, we were able to illustrate that;
for example, a chef can delegate different parts of a dessert (say, tiramisu()) to other
worker chefs. These worker chefs can act as routines that create subparts of the



Making Computer Science Attractive to High School Girls with Computational... 29

dessert like ladyfingers() and cream(). If the chef wants to make another dessert
such as ice cream() or parfait(), she can call the same cream() function that was
used in tiramisu(). Although it was tempting to introduce things like stacks when
teaching functions, we thought that it may be a bit too overwhelming for these
beginner level students at WTP. It should be introduced only at an advanced level
or if a student questions about the inner workings of function calls.

Teaching Sorting

For the lesson on sorting, going with the same approach of a fun activity before
class, we asked several students to line up and asked the rest of the class to come up
with a way to order them according to their height. To our surprise, the students
came up with bubble and selection sort algorithms by themselves! We also utilized
online videos available on different sort techniques before diving into the nuts and
bolts of implementing the algorithms. Visuals are powerful tools in the classroom,
and there is no better way to teach such abstract concepts.

Live Examples

In order to complete the homework assignments, the students had to use Linux
machines. But many of them were not familiar with the operating system. Therefore,
the teaching staff decided to do a live demonstration of the system. The staff mem-
ber would perform something, and the students were expected to follow. We also did
a live debugging session during class, highlighting the instructor’s thought process
that went in to fixing the problem and also showing how to use the tools that are at
the disposal to them.

Let’s Build a Game!

While many parents often worry about recreational “screen time”, some educators
now believe that gaming could be a way to get girls interested in coding and even
to increase the numbers of girls in computer science. Therefore, we decided to
have the students implement a Tetris game for the final project. Even though the
task of implementing a game seems daunting, most of the components that were
already required were completed in previous lab sessions. However, since the proj-
ect may seem overly ambitious especially given all the difficulties some of the
students were having during the previous lab sessions, we told them to work in
pairs for the project. All the groups had a working game in the end and had time to
play with it in class. Pretty much all of them were excited to have the working
product in the end.



30 O. Seneviratne
Results

Through several classroom activities, we managed to teach some of the core prin-
ciples of computational thinking that many of the girls already knew by intuition:
Logic is essential for predicting and analyzing things we want to be computed,
algorithms to make steps and rules about executing an idea, decomposition to break-
ing down a problem to manageable chunks, patterns for spotting and using similari-
ties, abstraction for removing unnecessary details from a given problem and
generalizing to fit a broader class of problems, and, finally, evaluation to verify
whether the solution worked for a given problem or not (Wing, 2006).

Since the start of MIT WTP in 2002, over 500 students have participated in the
program so far. According to the WTP Director and WTP-EECS Track Coordinator,
Cynthia Skier, of the 431 students who have participated in WTP over the years,
over 64 % are in a field of engineering or computer science, while another 21 % are
in math or science fields. Furthermore, the numbers from the 2015 cohort show
increased enthusiasm in computer science toward the end of the program. The stu-
dents were asked about their perception toward computer science and STEM in
general, both before and after the commencement of WTP. The percentage of stu-
dents definitely planning to take college classes in computer science moved from 38
% before starting WTP to 80 % after completing WTP. 60 % listed CS as a probable
college major in the exit surveys, which was a 50 % increase over the numbers in
the entrance surveys. Some of the answers to qualitative questions in the exit survey
indicated that the students got a better understanding and a better outlook on CS
after the program. Many students liked the lunch series where we brought in female
role models to talk to the students, the activities conducted before the lessons, and
the final project where the students had to build a functioning computer game.

This upward trend in girls’ interest in computer science is evident at the national
level as well. In 2013 girls only made up 18.5 % of A.P. computer science test takers
nationwide?. In three states, no girls took the test at all. During the recent years,
these numbers have been growing steadily. In 2014 25 % of the A.P. computer sci-
ence test takers were female?, and in 2015 that number increased to 27%*. While
these numbers are not representative of the population, many efforts by educators
and nonprofit organizations seem to have made positive impact in making computer
science attractive to girls. Over the years, WTP has produced many shining stars
who were equipped with the necessary computational thinking skills. One of the
best examples is Tamara Broderick, who in 2002 completed WTP as a high school
student and in 2015 returned to MIT as an assistant professor®.

2http://research.collegeboard.org/programs/ap/data/participation/ap-2015.
3http://research.collegeboard.org/programs/ap/data/archived/ap-2014.
“http://research.collegeboard.org/programs/ap/data/participation/ap-2015.
Shttps://www.eecs.mit.edu/news-events/media/tamara-broderick-woman-technology.



Making Computer Science Attractive to High School Girls with Computational... 31

Conclusion

Utilizing computational thinking approaches coupled with strong role models can
especially be useful for getting young girls interested in computer science. It is our
belief that girls are easily discouraged from computer science due to many reasons
that are not related to their personal capabilities. Even though the girls have many
computational thinking skills, they are either not aware of them or hold themselves
to very high standards.

From our experience with WTP, the approaches to instill computational thinking
in high school girls who have not been exposed to computer science previously are
numerous: First, the students should be guided in an encouraging manner with men-
torship, fun activities, and ample computer science related exercises. Second, they
should be encouraged to tinker with a solution by iterating and playing around with
multiple solutions ready to throw away any solution if needed. Third, the debugging
process should be mastered, where the focus is to find and fix the errors introduced
from the creation and tinkering processes, without getting frustrated or losing sight
of the end goal. Thus, a collaborative and supportive environment with plenty of
guidance can help gain the necessary skills to think like a computer scientist and
achieve one’s full potential.

References

Association for Computing Machinery; WGBH Educational Foundation (2009). New Image for
Computing Report.

Banaji, M. R., & Greenwald, A. G. (2013). Blindspot: Hidden biases of good people. New York:
Delacorte Press.

Correll, S. J. (2004). Constraints into preferences: Gender, status, and emerging career aspirations.
American Sociological Review, 69, 93.

Guynn, J. (2015). #ILookLikeAnEngineer challenges stereotypes. USA TODAY Published: August
4,2015, http://www.usatoday.com/story/tech/2015/08/03/isis-wenger-tech-sexism-stereotypes-
ilooklikeanenginer/31088413/.

Haines, M. D. (1993). Distributed runtime support for task and data management. Ph.D. Dissertation,
Colorado State University.

Hill, C., Corbett, C., & Rose, A. S. (2010). Why so few? Women in science, technology, engineer-
ing, and mathematics. Washington, DC: AAUW.

Johnson, D. W., & Johnson, R. T. (1987). Learning together and alone: Cooperative, competitive,
and individualistic learning. Englewood Cliffs, NJ: Prentice-Hall.

Joyce, B. A., & Farenga, S. J. (2000). Young girls in science: Academic ability, perceptions and
future participation in science. Roeper Review, 22, 261.

Lapan, R. T., Adams, A., Turner, S., & Hinkelman, J. M. (2000). Seventh graders’ vocational inter-
est and efficacy expectation patterns. Journal of Career Development, 26, 215.

Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial
ability: A meta-analysis. Child Development, 56, 1479.

Luce, S. A., Servon, C., Sherbin, L. J., Shiller, L., Sosnovich, P., & Sumberg, E. (2008). The athena
factor: Reversing the brain drain in science, engineering and technology. Harvard Business
Review Research Report.



32 O. Seneviratne

Margolis, J., & Fisher, A. (2003). Unlocking the clubhouse. Cambridge, MA: MIT.

Pajares, F. (2005). Gender differences in mathematics self-efficacy beliefs. In Gender differences
in mathematics: An integrative psychological approach. New York: Cambridge University
Press.

Plant, E. A, Baylor, A. L., Doerr, C. E., & Rosenberg-Kima, R. B. (2009). Changing middleschool
students’ attitudes and performance regarding engineering with computerbased social models.
Computers and Education, 53, 209.

Sorby, S. A., & Baartmans, B. J. (2000). The development and assessment of a course for enhanc-
ing the 3-D spatial visualization skills of first year engineering students. Journal of Engineering
Education, 89, 301.

Turner, S. L. (2008). Gender differences in Holland vocational personality types: Implications for
school counselors. Professional School Counseling, 11,317.

Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A
meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49, 33-35.



2 Springer
http://www.springer.com/978-3-319-52690-4

Emerging Research, Practice, and Policy on
Computational Thinking

Rich, P.; Hodges, C.B. (Eds.)

2017, 04, 413 p. 60 illus., 41 illus. in color., Hardcower
ISBN: 978-3-319-52690-4



