
Chapter 2
Theory of Integral Invariants

1 Various Properties of the Equations of Dynamics

Let F be a function of a double series of variables:

x1; x2; . . .xn; y1; y2; . . .yn

and of time t.
Suppose that we have differential equations:

dxi
dt

¼ dF
dyi

;
dyi
dt

¼ � dF
dxi

: ð1Þ

Consider two infinitesimally close solutions of these equations:

x1; x2; . . .xn; y1; y2; . . .yn;

x1 þ n1; x2 þ n2; . . .xn þ nn; y1 þ g1; y2 þ g2; . . .yn þ gn;

where the n and the g are small enough that their squares can be neglected.
The n and the g will then satisfy the linear differential equations:

dni
dt

¼
X
k

d2F
dyidxk

nk þ
X
k

d2F
dyidyk

gk;

dgi
dt

¼ �
X
k

d2F
dxidxk

nk �
X
k

d2F
dxidyk

gk;

ð2Þ

which are the perturbation equations of equations (1) (first-order Taylor series
expansions).
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Let n0i; g
0
i be another solution of these linear equations such that:

dn0i
dt

¼
X
k

d2F
dyidxk

n0k þ
X
k

d2F
dyidyk

g0k;

dg0i
dt

¼ �
X
k

d2F
dxidxk

n0k �
X
k

d2F
dxidyk

g0k:
ð20Þ

Multiply Eqs. (2) and (2′), respectively, by g0i;�n0i;�gi; ni and add up all these
equations, the result is:

X
i

g0i
dni
dt

� n0i
dgi
dt

� gi
dn0i
dt

þ ni
dg0i
dt

� �

¼
X
i

X
k

nkg
0
i
d2F
dyidxk

þ gkg
0
i
d2F
dyidyk

þ nkn
0
i
d2F
dxidxk

þ gkn
0
i
d2F
dxidyk

� �

�
X
i

X
k

gin
0
k

d2F
dyidxk

þ gig
0
k

d2F
dyidyk

þ nin
0
k

d2F
dxidxk

þ nig
0
k

d2F
dxidyk

� �

or X
i

d
dt

g0ini � n0igi
� � ¼ 0

or finally

g01n1 � n01g1 þ g02n2 � n02g2 þ . . .g0nnn � n0ngn ¼ const: ð3Þ

This is a relation which connects the two arbitrary solutions of the linear
equations (2) to each other.

It is easy to find other analogous relations.
Consider for solutions of Eq. (2)

ni; n
0
i; n

00
i ; n

000
i

gi; g
0
i; g

00
i ; g

000
i :

Then consider the sum of the determinants:

X
i

X
k

ni n0i n00i n000i
gi g0i g00i g000i
nk n0k n00k n000k
gk g0k g00k g000k

��������

��������
;

where the indices i and k vary from 1 to n. It can be verified without difficulty that
this sum is again a constant.
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More generally, if the sum of determinants is formed using 2p solutions of
Eq. (2): X

a1;a2;...ap

na1ga1na2ga2 . . .napgap

��� ���; a1; a2; . . .ap ¼ 1; 2; . . .n
� �

this sum will be a constant.
In particular, the determinant formed by the values of the 2n quantities n and g in

2n solutions of Eq. (2) will be a constant.
Using these considerations it is possible to find a solution of Eq. (2) when an

integral of them is known and vice versa.
Suppose in fact that

ni ¼ ai; gi ¼ bi

is a specific solution of Eq. (2) and designate an arbitrary solution of the same
equations by ni and gi. We will then have:X

nibi � giai ¼ const:

which will be an integral of Eq. (2).
And the other-way-around, letX

Aini þ
X

Bigi ¼ const:

be an integral of Eq. (2), we will then have:

X
i

dAi

dt
ni þ

X
i

dBi

dt
gi þ

X
i

Ai

X
k

d2F
dyidxk

nk þ
X
k

d2F
dyidyk

gk

" #

�
X
i

Bi

X
k

d2F
dxidxk

nk þ
X
k

d2F
dxidyk

gk

" #
¼ 0;

hence by aligning terms:

dAi

dt
¼

X
k

d2F
dyidxk

Ak þ
X
k

d2F
dyidyk

Bk;

dBi

dt
¼ �

X
k

d2F
dxidxk

Ak �
X
k

d2F
dyidyk

Bk;

which shows that:

ni ¼ Bi; gi ¼ �Ai

is a specific solution of Eq. (2).

1 Various Properties of the Equations of Dynamics 39



If now:

U xi; yi; tð Þ ¼ const:

is an integral of Eq. (1), then

X dU
dxi

ni þ
X dU

dyi
gi ¼ const:

will be an integral of Eq. (2) and consequently:

ni ¼
dU
dyi

; gi ¼ � dU
dxi

will be a specific solution of these equations.
If U ¼ const: and U1 ¼ const: are two integrals of Eq. (1), then we will have

X dU
dxi

dU1

dyi
� dU

dyi

dU1

dxi

� �
¼ const:

This is Poisson’s theorem.
Consider the specific case where the x designate rectangular coordinates of n

spatial points; we will designate them using double index notation:

x1i; x2i; x3i ;

where the first index refers to the three rectangular coordinates and the second index
to the n material points. Let mi be the mass of material point i. We will then have:

mi
d2xki
dt2

¼ dV
dxki

;

where V is the potential energy.
We will then have the equation for the conservation of energy:

F ¼
Xmi

2
dxki
dt

� �2

�V ¼ const:

Next set:

yki ¼ mi
dxki
dt
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hence:

F ¼
X y2ki

2mi
� V ¼ const: ð4Þ

and

dxki
dt

¼ dF
dyki

;
dyki
dt

¼ � dF
dxki

: ð10Þ

Let:

xki ¼ uki tð Þ; yki ¼ miu
0
ki tð Þ ð5Þ

be a solution of this Eq. (1′) and another solution be:

xki ¼ uki tþ hð Þ; yki ¼ miu
0
ki tþ hð Þ;

where h is an arbitrary constant.
By thinking of h as infinitesimal, a solution of Eq. (2′) can be obtained which

correspond to (1′) as Eq. (2) correspond to (1):

nki ¼ hu0
ki tð Þ ¼ h

yki
mi

; gki ¼ hmiu
00
ki tð Þ ¼ h

dV
dxki

;

where h designates a very small constant factor which can be dropped when only
linear Eq. (2′) are considered.

Knowing a solution:

n ¼ y
m
; g ¼ dV

dx

of these equations, an integral can be deduced:

X yg
m

�
X dV

dx
n ¼ const:

But this same integral can be obtained very easily by differentiating the energy
conservation Eq. (4).

If the material points are free of any outside action, another solution can be
deduced from solution (5):

x1i ¼ u1i tð Þþ hþ kt; y1i ¼ miu0
1i tð Þþmik;

x2i ¼ u2i tð Þ; y2i ¼ miu0
2i tð Þ;

x3i ¼ u3i tð Þ; y3i ¼ miu0
3i tð Þ;
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where h and k are arbitrary constants. By thinking of these constants as infinites-
imally small, we get two solutions of Eq. (2′)

n1i ¼ 1; n2i ¼ n3i ¼ g1i ¼ g2i ¼ g3i ¼ 0;
n1i ¼ t; n2i ¼ n3i ¼ g2i ¼ g3i ¼ 0; g1i ¼ mi:

Thus two integrals of (2′) can be obtained:X
i

g1i ¼ const:;

X
i

g1it �
X
i

min1i ¼ const:

These integrals can also be obtained by differentiating the equations of motion of
the center of gravity: X

i

mix1i ¼ t
X
i

y1i þ const:;

X
i

y1i ¼ const:

By rotating the solution (5) through an angle x around the z-axis, another
solution is obtained:

x1i ¼ u1i cosx� u2i sinx;
y1i
mi

¼ u0
1i cosx� u0

2i sinx;

x2i ¼ u1i sinxþu2i cosx;
y2i
mi

¼ u0
1i sinxþu0

2i cosx;

x3i ¼ u3i;
y3i
mi

¼ u0
3i:

By regarding x as infinitesimally small, we find a solution of (2′)

n1i ¼ �x2i; g1i ¼ �y2i;
n2i ¼ x1i; g2i ¼ y1i;
n3i ¼ 0; g3i ¼ 0;

and hence the integral for (2′)X
i

x1ig2i � y1in2i � x2ig1i þ y2in1ið Þ ¼ const:
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that can also be obtained by differentiating the integral of the areas from (1′)X
i

x1iy2i � x2iy1ið Þ ¼ const:

Now suppose that the function V is homogeneous and of degree �1 in x which is
the case in nature.

Equation (1′) does not change when t is multiplied by k3, the x by k2, and the y
by k�1, where k is an arbitrary constant. From the solution (4), the following
solution can be deduced:

xki ¼ k2uki
t

k3

� �
yki ¼ k�1miu

0
ki

t

k3

� �
:

If k is thought of as very close to unity, we will get the following results for the
solutions of Eq. (2′)

nki ¼ 2uki � 3tu0
ki; gki ¼ �miu

0
ki � 3mitu

00
ki;

or

nki ¼ 2xki � 3t
yki
mi

; gki ¼ �yki � 3t
dV
dxki

; ð6Þ

and hence the following integral for Eq. (2′), which, unlike those which we have
considered up to here, cannot be obtained by differentiating a known integral of
Eq. (1′): X

2xkigki þ ykinkið Þ ¼ 3t
X ykigki

mi
� dV
dxki

nki

� �	 

þ const:

2 Definitions of Integral Invariants

Consider a system of differential equations:

dxi
dt

¼ Xi;

where Xi is a given function of x1; x2; . . .xn. If we have:

F x1; x2; . . .xnð Þ ¼ const:;

then this relationship is called an integral of the given equations. The left-hand side of
this relationship can be called an invariant because it is not altered when the xi are
increased by infinitesimal increases dxi compatible with the differential equations.
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Now let

x01; x
0
2; . . .x

0
n

be another solution of the same differential equations, such that we have:

dx0i
dt

¼ X 0
i

where X 0
i is a function formed with x01; x

0
2; . . .x

0
n as Xi was formed with x1; x2; . . .xn.

It is possible that there could be a relationship of the following form between the
2n quantities x and x0:

F1 x1; x2; . . .xn; x
0
1; x

0
2; . . .x

0
n

� � ¼ const:

The left-hand side, F1, could also be called an invariant of our differential
equations, because instead of depending on a single solution of these equations, it
will depend on two solutions.

It can be assumed that x1; x2; . . .xn represents the coordinates of a point in n
dimensional space and that the given differential equations define the laws of
motion of this point. If we think about the two solutions of these equations, there
are two different moving points, moving under a single law defined by our dif-
ferential equations. The invariant F1 will then be a function of the coordinates of
these two points and the invariant will retain its initial value during the motion of
these two points.

Similarly, instead of two moving points, three or even a large number of moving
points could obviously be considered.

Now assume that infinitely many moving points are being considered and that
the initial positions of these points form a specific arc of curve C in the n
dimensional space.

When we are given the initial position of a moving point and the differential
equations which define its laws of motion, the position of the point at an arbitrary
moment is then completely determined.

If we therefore know that our moving points, infinitely many, form an arc C at
the origin of time, we will know their positions at an arbitrary time t and we will see
that the moving points at the moment t form a new arc C0 in the n dimensional
space. We therefore have an arc of curve which moves while changing shape
because its various points move according to the laws defined by the given dif-
ferential equations.

Now assume that during this motion and this deformation, the following integral:Z
Y1dx1 þ Y2dx2 þ . . .Yndxnð Þ ¼

Z X
Yidxi
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(where the Y are given functions of the x and which extends the entire length of the
curve) does not change value. This integral will again be an invariant for our
differential equations, no longer depending on one, two or three points, but on
infinitely many moving points. To indicate what its shape is, I will call it an integral
invariant.

Similarly it can be imagined that an integral of the following form:Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Yikdxidxk

q
;

over the entire arc of the curve could remain invariant; this again would be an
integral invariant.

Integral invariants can also be imagined which are defined by double or multiple
integrals.

Imagine that we are considering a fluid in continuous motion such that the three
components X; Y ; Z of the speed of an arbitrary molecule are given functions of the
three coordinates x; y; z of this molecule. Then it would be possible to state that the
laws of motion of an arbitrary fluid molecule are defined by the differential equations:

dx
dt

¼ X;
dy
dt

¼ Y ;
dz
dt

¼ Z:

It is known that the partial differential equation

dX
dx

þ dY
dy

þ dZ
dz

¼ 0

expresses that the fluid is incompressible. Therefore assume that the functions
X; Y ; Z satisfy this equation and consider an ensemble of molecules occupying a
specific volume at the origin of time. The molecules will move, but because the
fluid is incompressible the volume that they occupy will remain unchanged. In other
words the volume, meaning the triple integral:ZZZ

dxdydz

will be an integral invariant. More generally, if we consider the equations:

dxi
dt

¼ Xi ði ¼ 1; 2; . . .nÞ

and we have the relationship:

Xn
i¼1

dXi

dxi
¼ 0;
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the nth order integral Z
dx1dx2. . .dxn

which I will continue to call the volume, will be an integral invariant.
This is what will happen in particular for the general equations of dynamics;

because on consideration of these equations:

dxi
dt

¼ dF
dyi

;
dyi
dt

¼ � dF
dxi

;

it is easy to see that

X d
dF
dyi

� �
dxi

þ
X d � dF

dxi

� �
dyi

¼ 0

But as it relates to the general equations of dynamics, there is in addition to the
volume, another integral invariant that will be even more useful to us. We have in
fact seen that: X

nig
0
i � n0igi

� � ¼ const:

Which translated into our new language means that the double integralZZ X
i

dxidyi

is an integral invariant, as I will prove below.
To express this result in another way, take the case of the n-body problem.
We will represent the state of the system of n bodies by the position of 3n points

in a plane. The abscissa of the first point will be the x of the first body and the
ordinate the projection on the x-axis of the momentum of this body; the abscissa of
the second point will be the y of the same body and the ordinate the projection on
the y-axis of its momentum and so on.

Imagine a double infinity of initial states of the system. A position of our 3n
points corresponds to each of them and if all of these states are considered, it will be
seen that the 3n points fill 3n plane areas.

If the system now moves according to the law of gravitational attraction the 3n
points which represent its state are also going to move; the plane areas that I just
defined are going to deform, but their sum will remain constant.

The theorem on the conservation of volume is just one consequence of the
preceding.

In the case of the n-body problem there is another integral invariant to which I
want to draw attention.
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Consider a single infinity of initial positions of the system which forms an arc of
curve in the 6n dimensional space. Let C0 and C1 be the values of the constant of
total energy at two ends of this arc. I will demonstrate later that the expressionZ X

2xidyi þ yidxið Þþ 3 C1 � C0ð Þt

(where the integral is along the arc of the entire curve and where the time does
not enter if C0 ¼ C1) is again an integral invariant; it is furthermore possible to
easily deduce the other integral invariants which were covered above.

We will state that an integral invariant is of first-order, second-order, …, or of
nth order according to whether it is a single, double, …, or n times integral.

Among the integral invariants we will distinguish the positive invariants that we
will define as follows.

The nth order integral invariant:Z
Mdx1dx2. . .dxn

will be a positive invariant in some domain, if M is a function of x1; x2; . . .xn which
remains positive, finite and one-to-one in this domain.

I still need to prove the various results which I just stated; this proof can be done
by a very simple calculation.

Let:

dx1
dt

¼ X1;
dx2
dt

¼ X2; . . .
dxn
dt

¼ Xn ð1Þ

be a system of differential equations where X1;X2; . . .Xn are functions of
x1; x2; . . .xn such that:

dX1

dx1
þ dX2

dx2
þ � � � dXn

dxn
¼ 0: ð2Þ

Let there be a solution to this system of equations which depends on n arbitrary
constants:

a1; a2; . . .an:

This solution will be written:

x1 ¼ u1 t; a1; a2; . . .anð Þ;
x2 ¼ u2 t; a1; a2; . . .anð Þ;

..

.

xn ¼ un t; a1; a2; . . .anð Þ:
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It is a matter of demonstrating that the integral

J ¼
Z

dx1dx2. . .dxn ¼
Z

Dda1da2. . .dan

where

D ¼

dx1
da1

dx2
da1

� � � dxn
da1

dx1
da2

dx2
da2

� � � dxn
da2

..

. ..
. . .

. ..
.

dx1
dan

dx2
dan

� � � dxn
dan

��������������

��������������
is a constant.

In fact we have:

dJ
dt

¼
Z

dD
dt

da1da2. . .dan

and

dD
dt

¼ D1 þD2 þ . . .Dn;

where Dk is the determinant D in which the kth column

dxk
da1

d2xk
da1dt

dxk
da2

is replaced by
d2xk
da2dt

..

. ..
.

dxk
dan

d2xk
dandt

:

But we have

dxk
dt

¼ Xk;

hence

d2xk
daidt

¼ dXk

dx1

dx1
dai

þ dXk

dx2

dx2
dai

þ . . .
dXk

dxn

dxn
dai

:
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We deduce from that:

Dk ¼ D
dXk

dxk
;

hence

dJ
dt

¼
Z

D1 þD2 þ � � �Dnð Þda1da2. . .dan

¼
Z

dX1

dx1
þ dX2

dx2
þ � � � dXn

dxn

� �
Dda1da2. . .dan ¼ 0:

Which was to be proved.
Now suppose that instead of the relation (2) we had:

dMX1

dx1
þ dMX2

dx2
þ � � � dMXn

dxn
¼ 0 ð20Þ

where M is an arbitrary function of x1; x2; . . .xn.
I state that:

J ¼
Z

Mdx1dx2. . .dxn ¼
Z

MDda1da2. . .dan

is a constant.
In fact we have:

dJ
dt

¼
Z

D
dM
dt

þM
dD
dt

� �
da1da2. . .dan:

It must be shown that:

D
dM
dt

þM
dD
dt

¼ 0:

In fact we have [because of Eq. (1)]

dM
dt

¼ X1
dM
dx1

þX2
dM
dx2

þ � � �Xn
dM
dxn

and (according to what we just saw):

dD
dt

¼ D
dX1

dx1
þ dX2

dx2
þ � � � dXn

dxn

� �
:
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It therefore follows that:

D
dM
dt

þM
dD
dt

¼ D
dMX1

dx1
þ dMX2

dx2
þ � � � dMXn

dxn

� �
¼ 0:

Which was to be proved.
Now move on to the equations of dynamics.
Let the equations be:

dxi
dt

¼ dF
dyi

;
dyi
dt

¼ � dF
dxi

: ði ¼ 1; 2; . . .nÞ ð10Þ

Let there be a solution containing two arbitrary constants a and b and written:

xi ¼ uiðt; a; bÞ
yi ¼ wi t; a; bð Þ:

I state that:

J ¼
Z

dx1dy1 þ dx2dy2 þ � � � dxndynð Þ ¼
Z Xn

i¼1

dxi
da

dyi
db

� dxi
db

dyi
da

� �
dadb

is a constant.
It follows in fact that:

dJ
dt

¼
Z X d2xi

dtda
dyi
db

þ d2yi
dtdb

dxi
da

� d2xi
dtdb

dyi
da

� d2yi
dtda

dxi
db

� �
dadb:

It then follows:

d2xi
dtda

¼
X
k

d2F
dyidxk

dxk
da

þ
X
k

d2F
dyidyk

dyk
da

;

d2xi
dtdb

¼
X
k

d2F
dyidxk

dxk
db

þ
X
k

d2F
dyidyk

dyk
db

;

d2yi
dtda

¼ �
X
k

d2F
dxidxk

dxk
da

�
X
k

d2F
dxidyk

dyk
da

;

d2yi
dtdb

¼ �
X
k

d2F
dxidxk

dxk
db

�
X
k

d2F
dxidyk

dyk
db

:
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From that we conclude that:

X d2xi
dtda

dyi
db

� d2yi
dtda

dxi
db

� �

¼
X X d2F

dyidxk

dxk
da

dyi
db

þ d2F
dyidyk

dyk
da

dyi
db

þ d2F
dxidxk

dxk
da

dxi
db

þ d2F
dxidyk

dxi
db

dyk
da

� �
:

The right-hand side of the equation does not change on permuting a and b, and
therefore we have:

X d2xi
dtda

dyi
db

� d2yi
dtda

dxi
db

� �
¼

X d2xi
dtdb

dyi
da

� d2yi
dtdb

dxi
da

� �
:

This equality expresses that the quantity under the integral sign in the expression
for dJ=dt is zero and consequently that

dJ
dt

¼ 0:

Which was to be proved.
It remains to consider the last of the integral invariants which comes up in the

case of the n-body problem.
Return to the equations of dynamics, but by setting:

F ¼ T þU;

where T depends only on y and U only on x. Additionally, T is homogeneous and
second-degree and U homogeneous and −1 degree.

Take a solution

xi ¼ ui t; að Þ; yi ¼ wi t; að Þ

which depends solely on a single arbitrary constant, a.
Consider the single integral:

J ¼
Z X

2xi
dyi
da

þ yi
dxi
da

� �
daþ 3 C1 � C0ð Þt;

where C1 and C0 are constant values of the function F at the ends of the arc along
which the integral is calculated.
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It follows that:

dJ
dt

¼
Z X

2
dxi
dt

dyi
da

þ dyi
dt

dxi
da

þ 2xi
d2yi
dtda

þ yi
d2xi
dtda

� �
daþ 3 C1 � C0ð Þ:

It follows that:

dxi
dt

¼ dF
dyi

¼ dT
dyi

;
dyi
dt

¼ � dU
dxi

;

d2xi
dtda

¼
X
k

d2T
dyidyk

dyk
da

;
d2yi
dtda

¼ �
X
k

d2U
dxidxk

dxk
da

;

hence

dJ
dt

¼
Z XX

2
dT
dyi

dyi
da

þ yi
d2T
dyidyk

dyk
da

� dU
dxi

dxi
da

� 2xi
d2U
dxidxk

dxk
da

� �
daþ 3 C1 � C0ð Þ:

But because of the homogeneous function theorem we have:

X
i

yi
d2T
dyidyk

¼ dT
dyk

;
X
i

xi
d2U
dxidxk

¼ �2
dU
dxk

;

hence

dJ
dt

¼
Z X

3
dT
dyi

dyi
da

þ 3
dU
dxi

dxi
da

� �
daþ 3 C1 � C0ð Þ

or

dJ
dt

¼ 3
Z

dT þ dUð Þþ 3 C1 � C0ð Þ:

However, according to the definition of C1 and C0 we have

C0 � C1 ¼
Z

dF ¼
Z

dT þ dUð Þ:

It therefore follows that:

dJ
dt

¼ 0:

Which was to be proved.
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3 Transformation of Integral Invariants

Return to our differential equations:

dx1
dt

¼ X1;
dx2
dt

¼ X2; . . .
dxn
dt

¼ Xn ð1Þ

and assume that we have:

d MX1ð Þ
dx1

þ d MX2ð Þ
dx2

þ � � � d MXnð Þ
dxn

¼ 0; ð2Þ

such that the nth order integral

J ¼
Z

Mdx1dx2. . .dxn

is an integral invariant.
Change variables by setting:

x1 ¼ w1 z1; z2; . . .znð Þ;
x2 ¼ w2 z1; z2; . . .znð Þ;

..

.

xn ¼ wn z1; z2; . . .znð Þ;
ð3Þ

and call D the Jacobian determinant of the n functions w relative to the n variables z.
After the change of variables we will have:

J ¼
Z

MDdz1dz2. . .dzn:

If the invariant was positive before the change of variables, it will remain
positive after this change, provided that D is always positive, finite, and one-to-one.

Since by permuting two of the variables z, the sign of D changes; it will be
sufficient for us to assume that D always has the same sign or that it is never zero. It
will additionally always need to be finite and one-to-one. This will happen if the
change of variables (3) is bijective; meaning if, in the domain in consideration, the x
are one-to-one functions of z and the z one-to-one functions of x.

Thus after a bijective change of variables, the positive invariants remain positive.
Here is an interesting specific case:
Suppose that an integral of Eq. (1) is known:

F x1; x2; . . .xnð Þ ¼ C:

Take for new variables both zn ¼ C and also n� 1 other variables z1; z2; . . .zn�1.
It will often happen that z1; z2; . . .zn�1 can be chosen such that this change of
variables is bijective in the domain in consideration.
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After the change of variables, Eq. (1) becomes:

dz1
dt

¼ Z1;
dZ2
dt

¼ z2; . . .
dzn�1

dt
¼ Zn�1;

dzn
dt

¼ Zn ¼ 0; ð4Þ

where Z1; Z2; . . .Zn�1 are known functions of z1; z2; . . .zn. If the constant C ¼ zn is
regarded as a given of the problem, the equations are reduced to order n� 1 and are
written:

dz1
dt

¼ Z1;
dz2
dt

¼ Z2; . . .
dzn�1

dt
¼ Zn�1; ð40Þ

the functions Z now depend only on z1; z2; . . .zn�1 because zn was replaced there by
its numeric value.

If there is a positive invariant of Eq. (1)

J ¼
Z

Mdx1dx2. . .dxn;

then Eq. (4) will also have a positive invariant:

J ¼
Z

ldz1dz2. . .dzn�1dzn:

I now state that Eq. (4′) which is of order n� 1 also have a positive integral
invariant which must be of order n� 1.

In fact, stating that J is an integral invariant amounts to stating that

d lZ1ð Þ
dz1

þ d lZ2ð Þ
dz2

þ � � � d lZnð Þ
dzn

¼ 0

or because Zn is zero,

d lZ1ð Þ
dz1

þ d lZ2ð Þ
dz2

þ � � � d lZn�1ð Þ
dzn�1

¼ 0;

which proves that the n� 1 order integralZ
ldz1dz2. . .dzn�1

is an invariant for Eq. (4′).
Up till now we have applied the changes of variables to the unknown functions

x1; x2; . . .xn, but we have kept time t which is our independent variable. We are now
going to assume that we set:
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t ¼ u t1ð Þ

and that we take t1 as the new independent variable.
Equation (1) then become:

dxi
dt1

¼ X 0
i ¼ Xi

du
dt1

¼ Xi
dt
dt1

ði ¼ 1; 2; . . .nÞ ð5Þ

If Eq. (1) has an nth order integral invariant

J ¼
Z

Mdx1dx2. . .dxn

then it will be true that

X d
dxi

MXið Þ ¼ 0;

which can be written

X d
dxi

M
dt1
dt

X 0
i

� �
¼ 0:

Which shows that Z
M

dt1
dt

dx1dx2. . .dxn

is an integral invariant of Eq. (5).
For this transformation to be useful, it is necessary that t and t1 be related such

that dt1=dt can be regarded as a known, finite, continuous, and one-to-one function
of x1; x2; . . .xn.

Suppose for example that we take for new independent variable:

xn ¼ t1:

It then follows that

dt1
dt

¼ Xn

and Eq. (5) are written

dx1
dt1

¼ X1

Xn
;

dx2
dt1

¼ X2

Xn
; . . .

dxn�1

dt1
¼ Xn�1

Xn
;

dxn
dt1

¼ 1;
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and they allow as integral invariant:Z
MXndx1dx2. . .dxn:

Similarly, if we take for new independent variable:

t1 ¼ H x1; x2; . . .xnð Þ;

where H is an arbitrary function of x1; x2; . . .xn, the new integral invariant will be
written:

Z
M

dH
dx1

X1 þ dH
dx2

X2 þ � � � þ dH
dxn

Xn

� �
dx1dx2. . .dxn:

It needs to be noted that the form and meaning of an integral invariant is changed
much more significantly when the independent variable called time is changed then
when the change of variables only involves the unknown functions x1; x2; . . .xn,
because then the laws of motion for the representative point P become completely
transformed.

Suppose n ¼ 3 and consider x1; x2; x3 as the spatial coordinates of a point P. The
equation:

H x1; x2; x3ð Þ ¼ 0

will represent a surface. Consider an arbitrary portion of this surface and call this
portion of surface S.

I will also suppose that at all points on S:

dH
dx1

X1 þ dH
dx2

X2 þ dH
dx3

X3 6¼ 0:

It results from this that the portion of surface S is not tangent to any trajectory.
I will thus state that S is a contactless surface.

Let P0 be a point on S; a trajectory passes through this point. If the extension of
this trajectory again crosses through S at a point P1, I will state that P1 is the
recurrence of P0. And in turn P1 can have for recurrence P2 which I will call the
second recurrence of P0 and so on.

If a curve C traced on S is considered, the n recurrences of the various points of
this curve will form another curve C0 that I will call the nth recurrence of C. In the
same way, the area would be defined which is the nth recurrence of a given area
which is part of S.

That stated, let there be a portion of contactless surface S with the equation
H ¼ 0; let C be a closed curve traced on this surface and delimiting an area A; let C0

and A0 be the first recurrences, and Cn and An be the nth recurrences of C and A.
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A trajectory passes through each of these points of C, and I extend this trajectory
from its first meeting with C to its meeting with C0. The family of these trajectories
will form a trajectory surface T .

I consider the volume V delimited by the trajectory surface T and by the two
areas A and A0. Assume that there is a positive invariant:

J ¼
Z

Mdx1dx2dx3:

I extend this invariant to the volume V and I state that dJ=dt is zero.
Let dx be an element of the surface S. Follow the normal to this element and on

this normal take an infinitesimal length dn. Let Hþ dH
dn

dn be the value of H at the

end of this length. If the normal was followed in the direction of increasing H, then:

dH
dn

[ 0:

Set:

dH
dx1

X1 þ dH
dx2

X2 þ dH
dx3

X3

dh
dn

¼ H;

we will then have
dJ
dt

¼
Z
A0

MHdx�
Z
A

MHdx;

where the first integral is extended to the area A0 and the second to the area A.
The integral Z

MHdx

retains the same value whether it is over the area A, or the area A0, or consequently
the area An. It is therefore an integral invariant of a specific kind which retains the
same value for an arbitrary area or for one of its recurrences.

These invariants are additionally positive, because by assumption M and H and,
as a consequence, MH are positive.

4 Using Integral Invariants

The following theorems are what make integral invariants interesting and we will
make frequent use of them.
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Above we defined stability by stating that the moving point P must remain at a
finite distance; sometimes it will be given a different meaning. For there to be
stability, after sufficiently long time the point P has to return if not to its initial
position then at least to a position as close to this initial position as desired.

This latter meaning is how Poisson understood stability. When he proved that, if
the second powers of the masses are considered, the major axes of the orbits do not
change, he only looked at establishing that the series expansion of these major axes
only contained periodic terms of the form sin at or cos at or mixed terms of the
form t sin at or t cos at, without including any secular term of the form t or t2.
Which does not mean that the major axes can never exceed a specific value, because
a mixed term t cos at can grow beyond any limit; it only means that the major axes
will go back through their initial value infinitely many times.

Can all the solutions be stable, in the meaning of Poisson? Poisson did not think so,
because his proof expressly assumed that the mean motions are not commensurable;
the proof therefore does not apply to arbitrary initial conditions of the motion.

The existence of asymptotic solutions, which we will establish later, is sufficient to
show that if the initial position of the point P is chosen appropriately, then this point P
will not return infinitely many times as close to this initial position as desired.

But I propose to establish that, in one of the specific cases of the three-body
problem, the initial position of the point P can be chosen (and can be chosen
infinitely many ways) such that this point P returns as close to its initial position as
desired infinitely many times.

In other words, there will be infinitely many specific solutions to the problem
which will not be stable in the second sense of the word—that is, in the meaning of
Poisson; but, there will be infinitely many which are stable. I will add that the first
can be regarded as exceptional and later I will seek to understand the precise
meaning that I give to this word.

Assume n ¼ 3 and consider x1; x2; x3 as the spatial coordinates of a point P.

Theorem I Assume that the point P remains at a finite distance and that the
volume

R
dx1dx2dx3 is an integral invariant; consider an arbitrary region r0,

however, small this region, there will be trajectories which will pass through it
infinitely many times.

In fact, since the point P remains at a finite distance, it will never leave a
bounded region R. I call V the volume of this region R.

Now imagine a very small region r0, I will call the volume of this region v.
A trajectory passes through each of the points of r0; this trajectory can be regarded
as the path followed by a point moving according to the law defined by our
differential equations. Therefore consider infinitely many moving points which at
time zero fill the region r0 and which then move according to this law. At time s
they will fill some region r1, at time 2s a region r2, etc. and at time ns a region rn.
I can assume that s is large enough and that r0 is small enough so that r0 and r1 have
no point in common.

Since the volume is an integral invariant, these various regions r0; r1; . . .rn will
have the same volume v. If these regions have no point in common, then the total
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volume would not be larger than nv; on the other hand all these regions are inside R
so the total volume is smaller than V . If therefore we have:

n[
V
v
;

then it must be that at least two of our regions have a common portion. Let rp and rq
be these two regions (q[ p). If rp and rq have a common portion, it is clear that r0
and rq�p will have to have a common portion.

More generally, if k regions having a common portion can be found, no point in
space could belong to more than k � 1 of the regions. The total volume occupied by
these regions would therefore be greater than nv=ðk � 1Þ. If therefore we have:

n[ k � 1ð ÞV
v
;

then it must be possible to find k regions having a common portion. Let:

rp1 ; rp2 ; . . .rpk

be these regions. Then

r0; rp2�p1 ; rp3�p1 ; . . .rpk�p1

will also have a common portion.
But, let us take up the question again from a different perspective. By analogy

with the nomenclature from the preceding section, we agree to state that the region
rn is the nth recurrence of r0, and r0 is the nth antecedent of rn.

Suppose then that rp is the first of the successive recurrences which has a
common portion with r0. Let this common portion be r00; let s

0
0 be the pth antecedent

of r00 which would also be part of r0 because its pth recurrence is part of rp.
Then let r0p1 be the first of the recurrences of r

0
0 which has a common portion with

r00; let r
00
0 be this common portion; its p1th antecedent will be part of r00 and con-

sequently of r0, and its pþ p1th antecedent which I will call s000 will be part of s
0
0 and

consequently of r0.
Thus s000 will be part of r0 and so will its pth and p1th recurrences.
And so on.
With r000 we will form r0000 as we formed r000 with r00 and r00 with r0; we will then

form rIV0 ; . . .rn0 ; . . ..
I will assume that the first of the successive recurrences of rno which has a

common portion with rno is that of order pn.
I will call sn0 the antecedent of rno of order pþ p1 þ p2 þ . . .pn�1.

4 Using Integral Invariants 59



Then sn0 will be part of r0 and also of its n recurrences of order:

p; pþ p1; pþ p1 þ p2; . . .pþ p1 þ p2 þ � � � pn�1:

Additionally sn0 will be part of sn�1
0 , sn�1

0 of sn�2
0 , etc.

There will then be points which belong at the same time to the regions
r0; s00; s

00
0 ; . . .s

n
0; s

nþ 1
o ; . . . ad infinitum. The set of these points will form a region r

which could additionally reduce to one or several points.
Then the region r will be part of r0 and also of its recurrences of order p, pþ p1,

pþ p1 þ p2; . . ., pþ p1 þ p2 þ � � � pn, pþ p1 þ p2 þ � � � pn þ pnþ 1; . . . ad infinitum.
In other words, any trajectory coming from one of the points of r will traverse

the region r0 infinitely many times.
Which was to be proved.

Corollary It follows from the preceding that there exist infinitely many trajectories
which traverse the region r0 infinitely many times; but there can exist others which
only traverse this region a finite number of times. I now propose to explain why the
latter trajectories can be regarded as exceptional.

Since this expression does not have any precise meaning in itself, I will need to
start by filling-in the definition.

We agree to state that the ratio of the probability that the initial position of the
moving point P belongs to a certain region r0 to the probability that this initial
position belongs to another region r00 is equal to the ratio of the volume of r0 to the
volume of r00.

With the probabilities thus defined, I propose to establish that the probability is
zero that a trajectory coming from a point in r0 does not traverse this region more
than k times, however large k is and however small the region r0 is. This is what I
mean when I state that the trajectories which only traverse r0 a finite number of
times are exceptional.

I assume that the initial position of the point P belongs to r0 and I propose to
calculate the probability that the trajectory coming from this point does not traverse
the region r0 kþ 1 times from the epoch O to the epoch ns.

We have seen that if the volume v of r0 is such that:

n[
kV
v
;

then kþ 1 regions can be found that I will call

r0; ra1 ; . . .rak

and which will have a common portion. If sak is this common portion, let s0 be its
antecedent of order ak and designate the pth recurrence of s0 by sp.
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I state that if the initial position of the point P belongs to s0, then the trajectory
coming from this point will cross the region r0 at least kþ 1 times between the
epoch 0 to the epoch ns.

In fact, the moving point which describes this trajectory will be found in the
region s0 at epoch 0, in the region sp at epoch ps, and in the region sn at the epoch
ns. It will therefore necessarily traverse, between the epochs 0 and ns, the following
regions:

s0; sak�ak�1 ; sak�ak�2 ; . . .sak�a2 ; sak�a1 ; sak :

Now I state that all these regions are part of r0. In fact sak is part of r0 by
definition; s0 is part of r0 because its akth recurrence sak is part of rak , and in general
sak�ai is part of r0 because its aith recurrence sak is part of rai .

Therefore the moving point will pass through the region r0 at least kþ 1 times.
Which was to be proved.

Now let r0 be the portion of r0 that does not belong either to s0 or to any
analogous region, such that the trajectories originating from the various points of r0
do not traverse the region r0 at least kþ 1 times between the epochs 0 and ns. Let
the volume of r0 be w.

The probability being sought, meaning the probability that our trajectory does
not traverse r0 kþ 1 times between these two epochs will then be w=v.

Now, by assumption, no trajectory originating from r0 traverses r0, and espe-
cially not r0, kþ 1 times between these two epochs. We then have:

w\
kV
n

and our probability will be smaller than

kV
nv

:

However large k is and however small v is, n can always be taken large enough
such that this expression is as small as we want. Therefore, there is a null proba-
bility that our trajectory, which we know originates from a point in r0, does not
traverse this region more than k times since the epoch 0 until the epoch þ1.
Which was to be proved.

Extension of theorem I. We assumed that:

(1) n ¼ 3
(2) The volume is an integral invariant.
(3) The point P is constrained to remain within a finite distance.
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The theorem is still true if the volume is not an integral invariant, provided that
there exists an arbitrary positive invariant:Z

Mdx1dx2dx3:

It is still true if n[ 3, if there is a positive invariant:Z
Mdx1dx2 � � � dxn

and if x1; x2; � � � xn, which are the coordinates of the point P in the n-dimensional
space, are constrained to remain finite.

But there is more.
Suppose that x1; x2; � � � xn are no longer constrained to remain finite but that the

positive integral invariant Z
Mdx1dx2 � � � dxn

over the entire n-dimensional space has a finite value. The theorem will still be true.
Here is a case which will come up more frequently.
Assume that an integral of Eq. (1) is known

F x1; x2; � � � xnð Þ ¼ const:

If F ¼ const: is the general equation of a family of closed surfaces in n-
dimensional space, if, in other words, F is a one-to-one function which becomes
infinite when any one of the variables x1; x2; � � � xn stops being finite, it is clear that
x1; x2; � � � xn will always remain finite, because F keeps a constant finite value; this
is therefore within the conditions of the statement of the theorem.

But suppose that the surfaces F ¼ const: are not closed; it could nonetheless turn
out that the positive integral invariantZ

Mdx1dx2 � � � dxn

has a finite value over all the families of values of x such that:

C1\F\C2;

the theorem will again be true.
This is what happens in particular in the following case.
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In G. W. Hill’s theory of the moon, in a first approximation he neglected the
parallax of the sun, the eccentricity of the sun and the inclination of the orbits; he
arrived at the following equations:

dx
dt

¼ x0;
dx0

dt
¼ 2n0y0 � x

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2ð Þ3

q � 3n02

0
B@

1
CA;

dy
dt

¼ y0;
dy0

dt
¼ �2n0x0 � lyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2ð Þ3
q ;

which have the integral

F ¼ x02 þ y02

2
� lffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � 3

2
n02x2 ¼ const:

and the integral invariant Z
dxdydx0dy0:

If we regard x, y, x0, and y0 as the coordinates of a point in four-dimensional
space, then the equation F ¼ const: represents a family of surfaces which are not
closed. But the integral invariant over all points included between two of these
surfaces is finite, as we will prove.

Theorem I is therefore still true; meaning that there exist trajectories which
traverse any region of the four-dimensional space, however small this region might
be, infinitely many times.

It remains to calculate the quadruple integral

J ¼
Z

dxdydx0dy0;

where this integral is over all families of values such that

C1\F\C2:

We change variables and transform our quadruple integral by setting:

x0 ¼ cosu
ffiffiffiffiffi
2r

p
; y0 ¼ sinu

ffiffiffiffiffi
2r

p
;

x ¼ q cosx; y ¼ q sinx;

this integral becomes:

J ¼
Z

qdqdrdxdu
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and it also follows:

F ¼ r � l
q
� 3
2
n02q2 cos2 x:

We need to first integrate over u between the limits 0 and 2p, which gives:

J ¼ 2p
Z

qdqdrdx

and the integration must be over all families of values of q, r, and x which satisfy
the inequalities:

r[ 0;

r[C1 þ l
q
þ 3

2
n02q2 cos2 x;

r\C2 þ l
q
þ 3

2
n02q2 cos2 x:

ð1Þ

The following can be deduced from these inequalities:

C2 þ l
q
þ 3

2
n02q2 cos2 x[ 0:

Regard q and x as polar coordinates of a point and construct the curve

C2 þ l
q
þ 3

2
n02q2 cos2 x ¼ 0:

We will see that if C2 is smaller than � 1
2 9n0lð Þ2=3 this curve is composed of a

closed oval located entirely inside the circle

q ¼
ffiffiffiffiffiffiffiffi
l

3n02
3

r

and of two infinite branches located entirely outside the circle.
The reader will be able to do this construction easily; if the reader experiences

any difficulty, I suggest they consult the original treatise of G.W. Hill in the
American Journal of Mathematics, volume 1.

From this G. W. Hill concluded that if the point q;x is inside this closed oval at
the beginning of time, it will always remain there and consequently q will always
remain smaller than

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l=3n023

p
. Thus if the parallax of the sun, its eccentricity, and

the inclinations are neglected, it will be possible to assign an upper limit to the
radius vector of the moon. In fact as it relates to the moon, the constant C2 is

smaller than � 1
2 9n0lð Þ2=3.
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I propose to supplement this remarkable result from G. W. Hill by showing that,
under these conditions, the moon would also experience stability in the meaning of
Poisson; by that I mean that, if the motion’s initial conditions are not exceptional,
the moon would return as close as one wants to its initial position infinitely many
times. That is why, as I explained above, I propose to prove that the integral J is
finite.

Since q is smaller than
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l=3n023

p
and consequently bounded, the integral:

J ¼ 2p
Z

qdqdrdx

can only become infinite if r increases indefinitely, and r cannot become infinite in
light of the inequalities (1) unless q approaches zero.

Therefore set:

J ¼ J 0 þ J 00;

where J 0 represents the integral over all families of values such that

r[ 0; q[ q0; C1\F\C2 ð2Þ

and J 00 represents the integral over all families of values such that:

r[ 0; q\q0; C1\F\C2: ð3Þ

When the inequalities (2) are satisfied q cannot become zero; therefore r cannot
become infinite. Therefore the first integral, J 0 is finite.

Now examine J 00. I can assume that q0 was taken small enough that

C1 þ l
q0

[ 0:

The inequalities F[C1 and q\q0 then lead to r[ 0. We therefore need to
integrate over r between the limits:

C1 þ l
q
þ 3

2
n02q2 cos2 x and C2 þ l

q
þ 3

2
n02q2 cos2 x:

It then follows:

J 00 ¼ 2p C2 � C1ð Þ
Z2p
0

dx
Zq0
0

qdq ¼ 2p2q20 C2 � C1ð Þ

J 00 is therefore finite and consequently also J.
Which was to be proved.
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K. Bohlin generalized the result of G. W. Hill in the following way. We consider
the following special case of the three-body problem. Let A be a body of mass
1� l, B be a body of mass l, and C a body of infinitesimal mass. Imagine that the
two bodies A and B whose motion must be Keplerian, because it is not perturbed by
the mass C, trace out around their mutual center of gravity, assumed to be fixed,
two concentric circumferences, and that C moves in the plane of these two cir-
cumferences. I will take a constant distance AB as a unit of length, such that the
radii of these two circumferences are 1� l and l. I will assume that the unit of time
has been selected such that the angular speed of the two points A and B on their
circumferences is equal to 1 (or that the Gaussian gravitational constant is equal to
1, which amounts to the same thing).

We next select two moving axes with their origin at the center of gravity of the
two masses A and B; the first of these axes will be the straight line AB and the
second will be perpendicular to the first.

The coordinates of A relative to these two axes are�l and 0; those of B are 1� l
and 0; and those for C, I will call x and y; for the equations of motion I then have:

dx
dt

¼ x0;
dx0

dt
¼ 2y0 þ dV

dx
þ x;

dy
dt

¼ y0;
dy
dt

¼ �2x0 þ dV
dy

þ y;

by setting

V ¼ 1� l
AC

þ l
BC

:

Additionally we have:

AC
2 ¼ ðxþ lÞ2 þ y2; BC

2 ¼ ðxþ l� 1Þ2 þ y2

These equations have an integral:

F ¼ x02 þ y02

2
� V � x2 þ y2

2
¼ K

and an integral invariant:

J ¼
Z

dxdydx0dy0

K. Bohlin, in Acta Mathematica volume 10, generalized the result of G.W. Hill, by
showing that if the constant K has a suitable value (which we will assume) and if
the initial values of x and y are small enough, these quantities, x and y, will remain
bounded.
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I now propose to prove that the integral J over all families of values such that

K1\F\K2

is finite; and from that we will be able to conclude, as we did above, that the
stability in the meaning of Poisson pertains again in this case.

If the constants K1 and K2 are suitably chosen, the theorem from K. Bohlin
shows that x and y will be bounded. As for x0 and y0, it will not be possible for them
to become infinite unless V becomes infinite, meaning if AC approaches zero or if
BC approaches zero.

Then set:

J ¼ J 0 þ J 00 þ J 000;

where the integral J 0 is over all families of values such that:

K1\F\K2; AC
2 [ q20; BC

2 [ q20; q0\
1
2

� �

the integral J 00 to all families of values such that:

K1\F\K2; AC
2\q20; hence BC

2 [ q20

� 

;

and the integral J 000 to all families of values such that:

K1\F\K2; BC
2\q20 hence AC

2 [ q20

� 

:

Since for none of the families of values over which the integral J 0 extends do AC
or BC become zero, this integral J 0 is finite.

Now examine the integral J 00. I can assume that q0 has been chosen small enough
such that:

1� l
q0

þK1 [ 0;
l
q0

þK1 [ 0:

In this case x02 þ y02ð Þ=2 can vary between the bounds:

L1 ¼ K1 þ 1� l
AC

þ l
BC

þ x2 þ y2

2
and K2 þ 1� l

AC
þ l

BC
þ x2 þ y2

2
¼ L2;

because the smaller of these two bounds is positive.
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Then set as above:

x0 ¼
ffiffiffiffiffi
2r

p
cosu; y0 ¼

ffiffiffiffiffi
2r

p
sinu; hence r ¼ x02 þ y02

2
;

the integral will become

J 00 ¼
Z

dxdydrdu

and it will be necessary to integrate over u between the bounds 0 and 2p, and over r
between the bounds L1 and L2; it will then become:

J 00 ¼ 2p K2 � K1ð Þ
Z

dxdy:

The double integral
R
dxdy will then need to be over all families of values such that

AC
2\q20; it is therefore equal to pq20; such that it becomes:

J 00 ¼ 2p2q20 K2 � K1ð Þ:

J 00 is therefore finite, and so are J 000 and J.
Which was to be proved.

We therefore have to conclude that (if the initial conditions of motion are not
exceptional in the meaning given to this word in the corollary to theorem I) the third
body C will go back as close as one wants to its initial position infinitely many
times.

In the general case of the three-body problem, it can no longer be affirmed that it
will still be the same.

Theorem II If n ¼ 3 and x1; x2; x3 represent the coordinates of a point in ordinary
space, and if there is a positive invariant, there cannot be a closed contactless
surface.

In fact let

J ¼
Z

Mdx1dx2dx3

be a positive integral invariant. Assume that there is a closed and contactless
surface, having the equation

F x1; x2; x3ð Þ ¼ 0:

Let V be the volume delimited by this surface; we extend the invariant J to this
entire volume.
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Since the surface S is contactless, the expression:

dF
dx1

X1 þ dF
dx2

X2 þ dF
dx3

X3

cannot become zero and consequently change sign; to be concrete, we will assume
that it is positive.

Let dx be a differential element of the surface S; take the normal to this element
from the side of increasing F; take on this normal an infinitesimal segment dn. Let
dF
dn dn be the value of F at the end of this segment. We will then have:

dF
dn

[ 0:

since J is an invariant, we should have

dJ
dt

¼ 0:

But we find

dJ
dt

¼
Z

M

dF
dx1

X1 þ dF
dx2

X2 þ dF
dx3

X3

dF
dn

dx:

The integral on the right-hand side, over the entire surface S, is positive because the
function within the integral sign is always positive.

We have arrived therefore at two contradictory results and we have to conclude
that a closed contactless surface cannot exist.

Extension of Theorem II. It is easy to extend this theorem to the case of n[ 3; to
do that it is sufficient to translate it into analytical language, because geometric
representation is no longer possible, and state:

If there is a positive integral invariant, there cannot exist a one-to-one function
Fðx1; x2; � � � xnÞ which is positive, which becomes infinite each time one of the x
stops being finite and which is such that

dF
dt

¼ dF
dx1

X1 þ dF
dx2

X2 þ � � � dF
dxn

Xn

always has the same sign when F is zero.
To make the importance of this theorem understood, I will limit myself to

observing that it is a generalization of the one which I used for proving the legit-
imacy of Lindstedt’s beautiful method.

However, with a perspective to subsequent applications, I prefer to give it a little
bit different form by introducing into it a new concept: that of invariant curves.

4 Using Integral Invariants 69



At the end of the previous section we had considered a portion of surface S,
defined by the equation

H x1; x2; x3ð Þ ¼ 0

and such that for all points of S it holds that

dH
dx1

X1 þ dH
dx2

X2 þ dH
dx3

X3 [ 0;

such that S is a portion of contactless surface.
We have subsequently defined what was to be understood by the nth recurrence

of a point from S or by the nth recurrence of a curve or an area belonging to S.
I now understand and from now on I will understand the word recurrence in the
meaning of the previous section and not in the meaning used above in the proof of
Theorem I.

We have seen that if there is a positive invariantZZZ
Mdx1dx2dx3;

there is also another integral Z
MHdx

which must be over all the elements dx of an area belonging to S and which has the
following properties:

(1) The quantity under the integral sign, MH, is always positive.
(2) The integral has the same value for an arbitrary area belonging to S and for all

areas of its recurrences which exist.

With that stated, I will call nth order invariant curve any curve traced on S and
which coincides with its nth recurrence.

In most questions from dynamics, some very small parameters enter such that
one is naturally led to develop solutions following increasing powers of these
parameters. Such are the masses in celestial mechanics.

We will therefore imagine that our differential equations

dx1
dt

¼ X1;
dx2
dt

¼ X2;
dx3
dt

¼ X3

depend on a parameter l. We will suppose that X1;X2;X3 are given functions of
x1; x2; x3 and l which could be expanded in increasing powers of l and that l is
very small.

70 2 Theory of Integral Invariants



Now consider an arbitrary function of l; I assume that this function approaches 0
when l approaches 0, such that the ratio of this function to ln approaches a finite
limit. I will state that this function of l is a very small quantity of nth order.

It needs to be indicated that it is not necessary for it to be possible to expand this
function of l in powers of l.

With that established, let A0 and B0 be two points on a contactless surface S, and
let A1 and B1 be their recurrences. If the position of A0 and B0 depends on l
according to an arbitrary law, then so will the position of A1 and B1. I am proposing
to prove the following lemmas:

Lemma I If a portion of contactless surface S passing through the point a0; b0; c0
is considered; if x0; y0; z0 are coordinates of a point on S and if x1; y1; z1 are
coordinates of its recurrence, then x1; y1; z1 are expandable in powers of x0 �
a0; y0 � b0; z0 � c0 and l provided that these quantities are sufficiently small.

I can always take for origin the point a0; b0; c0 such that

a0 ¼ b0 ¼ c0 ¼ 0:

If then

z ¼ u x; yð Þ

is the equation of the surface S; this surface will pass through the origin O and one
will have:

u 0; 0ð Þ ¼ 0:

I will additionally assume that the function u x; yð Þ is mapping at all the points on
the portion of surface S considered. One trajectory passes through the origin O;
imagine that when l ¼ 0 this trajectory crosses the surface S at time t ¼ s at a point
P whose coordinates will be:

x ¼ a; y ¼ b; z ¼ c

According to the terminology that we have adopted, when it is assumed that
l ¼ 0, the point P will be the recurrence of the point O.

Now let x0; y0; z0 be a point A very close to O and belonging to the surface S. If a
trajectory passes through this point A, and if it is assumed that l stops being zero
but remains very small, it will be seen that this trajectory will come, at an epoch t
only slightly different from s, to cross the surface S at a point B very near P.

This point B, whose coordinates I will call x1; y1; z1, will according to our
terminology be the recurrence to the point A.

What I propose to prove is that x1; y1; z1 are expandable in increasing powers of
x0; y0; z0 and l.
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In fact according to Theorem III from Sect. 2 of Chap. 1, if x; y; z are coordinates
at time t of the moving point which describes the trajectory coming from point A
and if additionally x0; y0; z0; l and t � s are sufficiently small, then one will have:

x ¼ w1 t � s; l; x0; y0; z0ð Þ;
y ¼ w2 t � s; l; x0; y0; z0ð Þ;
z ¼ w3 t � s; l; x0; y0; z0ð Þ;

ð4Þ

where w1;w2 and w3 are series ordered in powers of t � s; l; x0; y0 and z0.
These series will reduce, respectively, to a; b; c for

t � s ¼ l ¼ x0 ¼ y0 ¼ z0 ¼ 0:

Since u x; yð Þ is expandable in powers of x� a and y� b, if x� a and y� b are
small enough, we will also have:

u x; yð Þ ¼ w4 t � s; l; x0; y0; z0ð Þ;

where w4 is a series with the same form as w1;w2 and w3.
We write that the point x; y; z is located on the surface S; we will have:

w3 ¼ w4 ð5Þ

The relation (5) can be regarded as a relation between t � s;l; x0; y0 and z0, and
one can try to solve it for t � s.

For:

t � s ¼ l ¼ x0 ¼ y0 ¼ z0 ¼ 0

this relation is satisfied because one has

w3 ¼ w4 ¼ 0:

According to a theorem by Cauchy, which we proved in one of the preceding
sections, one can draw t � s from the relationship (5) in the following form:

t � s ¼ h l; x0; y0; z0ð Þ; ð6Þ

where h is a series ordered in powers of l; x0; y0 and z0.
The only exception would be if for

t � s ¼ l ¼ x0 ¼ y0 ¼ z0 ¼ 0

72 2 Theory of Integral Invariants



it held that:

dw3

dt
¼ dw4

dt
:

Now this equation expresses that the trajectory starting from point O for l ¼ 0 is
going to touch the surface S at point P.

But it can not be that way, because we will always assume that S is a contactless
surface or a portion of contactless surface.

In Eq. (4) we replace t � s by h and x; y; z by x1; y1; z1; it follows:

x1 ¼ H1 l; x0; y0; z0ð Þ;
y1 ¼ H2 l; x0; y0; z0ð Þ;
z1 ¼ H3 l; x0; y0; z0ð Þ;

where H1;H2 and H3 are expanded in powers of l; x0; y0 and z0.
Which was to be proved.

Lemma II If the distance between two points A0 and B0 belonging to a portion of
the contactless surface S is a very small quantity of order n, then so will the
distance between their recurrences A1 and B1.

In fact, let a1; a2; a3 be the coordinates of a fixed point P0 from S very near A0

and B0; and let a01; a
0
2; a

0
3 be the coordinates of its recurrence P1.

Let x1; x2; x3; x01; x
0
2; x

0
3; y1; y2; y3; and y01; y

0
2; y

0
3 be the coordinates of A0;A1;B0

and B1.
According to Lemma I x01 � a01; x

0
2 � a02; x

0
3 � a03 are expandable in increasing

powers of x1 � a1; x2 � a2; x3 � a3 and l.
The expression for y01 � a01; y

0
2 � a02; y

0
3 � a03 as a function of y1 � a1; y2 �

a2; y3 � a3 and l will obviously be the same as that for x01 � a01; x
0
2 � a02; x

0
3 � a03 as

a function of x1 � a1; x2 � a2; x3 � a3 and l.
From that we conclude that it is possible to write:

x01 � y01 ¼ x1 � y1ð ÞF1 þ x2 � y2ð ÞF2 þ x3 � y3ð ÞF3;

x02 � y02 ¼ x1 � y1ð ÞF0
1 þ x2 � y2ð ÞF0

2 þ x3 � y3ð ÞF0
3;

x03 � y03 ¼ x1 � y1ð ÞF00
1 þ x2 � y2ð ÞF00

2 þ x3 � y3ð ÞF00
3 ;

ð7Þ

where the F are series expanded in powers of:

l; x1 � a1; x2 � a2; x3 � a3; y1 � a1; y2 � a2; y3 � a3:

The quantities F1;F2;, etc. are finite; therefore if x1 � y1; x2 � y2, and x3 � y3 are
very small quantities of order n, then x01 � y01; x

0
2 � y02, and x03 � y03 will be also.

Which was to be proved.
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Theorem III Let A1AMB1B be an invariant curve, such that A1 and B1 are the
recurrences of A and B. I assume that the arcs AA1 and BB1 are very small
(approach 0 with l) but that their curvature is finite.

I assume that this invariant curve and the position of points A and B depend on l
according to an arbitrary law. I assume that there exists a positive integral invariant.
If the distance AB is very small of nth order, and the distance AA1 is not very small
of nth order, the arc AA1 crosses the arc BB1.

I can always join the points A and B by curve AB located entirely on the portion
of contactless surface S and for which the total length is the same order of mag-
nitude as the distance AB meaning a very small quantity of nth order. Let A1B1 be
an arc of curve which is the recurrence of AB, it will thus be very small of nth order
according to Lemma II.

Now here are the various scenarios that are conceivable:

Scenario 1. The two arcs AA1 and BB1 cross. I propose to establish that this is the
actual scenario.
Scenario 2. The quadrilateral AA1B1B is such that the four arcs which are its sides
have no other point in common than the four corners A, A1, B, and B1. This is the
case from Fig. 1.
Scenario 3. The two arcs AB and A1B1 cross. This is the case from Fig. 2.
Scenario 4. One of the arcs AB or A1B1 crosses one of the arcs AA1 or BB1; but the
arcs AA1 and BB1 do not cross nor do the two arcs AB and A1B1.

If there is a positive invariant, then according to the preceding section there will
exist a certain integral Z

MHdx

all the elements of which will be positive and which will have to have the same
value for the area ABB1MA and for its recurrence AA1B1MA.

Fig. 1 The corners are the
only common points of the
four arcs

74 2 Theory of Integral Invariants



This integral over the area

ABA1B1 ¼ AA1B1MA� ABB1MA

must therefore be zero and as all the elements of the integral are positive, the
arrangement cannot be that from Fig. 1 where the area ABA1B1 is convex.

The second scenario must therefore be rejected.
In fact in the triangle ADA1, the distances AD and A1D are very small of nth

order because they are smaller than the arcs AD and A1D, which are smaller than the
arcs AB or A1B1 which are of nth order. Furthermore it holds that:

AA1\ADþA1D:

The distance AA1 would therefore be a very small quantity of nth order which is
contrary to the statement of the theorem.

The third scenario must therefore be rejected.
I state that the fourth scenario cannot be accepted either. Assume in fact for

example that the arc AB crosses the arc AA1 at a point A0. Let ANA0 be the portion of
the arc AB which goes from A to A0; let APA0 be the portion of arc AA1 which goes
from A to A0.

I state that the arc ANA0B can be replaced by the arc APA0B; and that the new arc
APA0B will be a very small quantity of nth order like the primitive arc ANA0B.

In fact the arc ANA0 is smaller than AB and it is therefore of nth order;
the distance AA0 is therefore itself of nth order; the arc APA0 is smaller than AA1

which is very small—meaning it approaches 0 with l; the arc APA0 is therefore very
small and its curvature is finite; therefore a bound can be assigned to the ratio of the
arc APA0 to its chord AA0; this ratio is finite and AA0 is of nth order; therefore APA0

is of nth order, which was to be proved.
Furthermore the new arc APA0B no longer crosses the arc AA1 and it only has a

common portion APA0 with it.
This falls back on the second scenario which was already rejected.

Fig. 2 The two arcs AB and
A1B1 cross
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The first scenario is therefore the only one acceptable and the theorem is
therefore proved.

Remark In the statement of the theorem we have assumed that the arcs AA1 and
BB1 are very small and that there curvature is finite. In reality we have only made
use of this assumption for showing that if the chord AA0 is very small of nth order, it
is the same for the arc APA0.

The theorem will therefore still be true even if the arc AA1 is no longer very
small and its curvature finite, provided that it is possible to assign an upper bound to
the ratio of an arbitrary arc (which is part of AA1 or BB1) to its chord.
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