Chapter 2
Theory of Integral Invariants

1 Various Properties of the Equations of Dynamics

Let F be a function of a double series of variables:

X1y X2+« Xny Y1,Y25 - -Yn

and of time 7.
Suppose that we have differential equations:

dx,idF dyliidF (1)
dt 7dyi7 dr dx,-'

Consider two infinitesimally close solutions of these equations:

X1, X2y« - Xny Y1, Y25 - - - Yns
x1+517x2+627"'xn+én7y1 N2+ 005 Ve 1y,

where the & and the 5 are small enough that their squares can be neglected.
The & and the 5 will then satisfy the linear differential equations:

df, d*F
Zdy dxk Zdy,-dyk”"’

)

which are the perturbation equations of equations (1) (first-order Taylor series
expansions).
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38 2 Theory of Integral Invariants

Let &, 1! be another solution of these linear equations such that:

d2
dr dy s Z ALY

d
m_ dedxkik dedy,

—n;, &; and add up all these

(2)

Multiply Eqs. (2) and (2'), respectively, by ', —&,
equations, the result is:

dg,  dn,
/ 1 /_l_ st
Z(nidt Pt ldt+€ >

d’F d’F d&’F d’F
_ / / / !
d’°F d2 d2
o !
ZZ( é"d dx My Jréékdxdx 4 ey >
or
d ! !
Ei P (i — &yl

or finally

niée = Em +myé — Emy+ .., &, — &, = const. (3)

This is a relation which connects the two arbitrary solutions of the linear

equations (2) to each other.
It is easy to find other analogous relations.
Consider for solutions of Eq. (2)

&, ¢.4.¢"
"

Mis M 151 -

Then consider the sum of the determinants:

&g g g
SO
i % ék gk ék 51(

Me M MMy

where the indices i and k vary from 1 to n. It can be verified without difficulty that

this sum is again a constant.
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More generally, if the sum of determinants is formed using 2p solutions of

Eq. (2):
)

01,0200

,(oq,ocz,...ap = 1,2,...n)

oMoy Sy - S Moy,

this sum will be a constant.

In particular, the determinant formed by the values of the 2n quantities £ and # in
2n solutions of Eq. (2) will be a constant.

Using these considerations it is possible to find a solution of Eq. (2) when an
integral of them is known and vice versa.

Suppose in fact that

Si=w, =P

is a specific solution of Eq. (2) and designate an arbitrary solution of the same
equations by &; and ;. We will then have:

Z &:B; — n;o = const.

which will be an integral of Eq. (2).
And the other-way-around, let

ZA,@ + ZB,-ni = const.
be an integral of Eq. (2), we will then have:
dA; dB;
e , A;
D ERDI NS [ Gt Y,
d’F d’F
— B; - -
hence by aligning terms:
dA; d’F d’F
= —A —8B
dr Zk: dydy; ¢ - Zk: dydy;

dB; d*F d*F
— = A By,
dr Xk: dodee Z dy;dyx

:O’

which shows that:

=B, n=-A

is a specific solution of Eq. (2).
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If now:
®(x;, y;, t) = const.

is an integral of Eq. (1), then
do do
fifi + E d—yini = const.

will be an integral of Eq. (2) and consequently:

_dd do

5i—d—yia n = dx;

will be a specific solution of these equations.
If ® = const. and ®; = const. are two integrals of Eq. (1), then we will have

Z dddd;, dddD, _ const
dx; dy;  dy; dx; ) .

1

This is Poisson’s theorem.
Consider the specific case where the x designate rectangular coordinates of n
spatial points; we will designate them using double index notation:

X1iy  X2iy,  X3i,

where the first index refers to the three rectangular coordinates and the second index
to the n material points. Let m; be the mass of material point i. We will then have:

d>xy  dV

m; =
" de2 doxy; ’

where V is the potential energy.
We will then have the equation for the conservation of energy:

m; (x>
F:Z?(d;’) —V = const.

Next set:

Yii = mj——

dt
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hence:
Vi
F= e = t. 4
o cons (4)
and
dxki - dF dyk,' _ dF (1/)
dr n dyki ’ dr - doxy; ’
Let:
X = Q(t), Y= mi(P;ci(t) (5)

be a solution of this Eq. (1") and another solution be:
X = Qu(t+h),  yu=mipy(t+h),

where 4 is an arbitrary constant.
By thinking of % as infinitesimal, a solution of Eq. (2") can be obtained which
correspond to (1') as Eq. (2) correspond to (1):

Vki " dv
= ho' (1) = h22 ;= hm;@ (1) = h—r
ikz (pkz( ) m; ’ Mii m (pkl( ) dxki
where & designates a very small constant factor which can be dropped when only
linear Eq. (2') are considered.
Knowing a solution:

of these equations, an integral can be deduced:

A dVv
——E — ¢ = const.
& = cons

But this same integral can be obtained very easily by differentiating the energy
conservation Eq. (4).

If the material points are free of any outside action, another solution can be
deduced from solution (5):

xii = @y(t) Fh+kt,  yi; = m@y (1) + mik,
X2i = P(1), Vai = mi@(t),
X3 = @3(1), Y3i = mifl’/si(f)a
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where h and k are arbitrary constants. By thinking of these constants as infinites-
imally small, we get two solutions of Eq. (2')

Ci=1L&Gi=8Gi=n;=ny=n3=0,
Cli = 1,80 = &3 =Ny = N3, = 0,y = m.

Thus two integrals of (2') can be obtained:

Zmi = const.,
i
Z’hil - Zmig'” = const.
i i

These integrals can also be obtained by differentiating the equations of motion of
the center of gravity:

Zm,-x]i = tZyn -+ const.,
i i
Zyu = const.
i

By rotating the solution (5) through an angle w around the z-axis, another
solution is obtained:

. Y1 .
X1i = @1; COS W — Py; SIN W, — = q)'ll-cos(l) - (P/zi sin w,
i
_ . Yoi ’
Xoj = @1; SINW + Pp; COS @, —— = @|; SINW + Py, COS W,
m;
_ Y3i
X3i = @3, — = @3-
m;

By regarding o as infinitesimally small, we find a solution of (2")

Cii = —X2, Ny = —Y2i,
&oi = X1i, Mai = Y1is
631' = 07 N3 = 07

and hence the integral for (2')

Z(xli’hi — y1i€ai — Xaiffy; + y2i€1;) = const.

1
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that can also be obtained by differentiating the integral of the areas from (1')

Z(xliyzi — X2iy1;) = const.

i

Now suppose that the function V is homogeneous and of degree —1 in x which is
the case in nature.

Equation (1') does not change when ¢ is multiplied by /4, the x by 4, and the y

by 47!, where / is an arbitrary constant. From the solution (4), the following
solution can be deduced:

) t 1 t
Xii = A"y (F) Vi = A mi(/’;a' <F>

If A is thought of as very close to unity, we will get the following results for the
solutions of Eq. (2')

i =201 — 3@y, Ny = —mi@l; — Imit ey,

or

(6)

Vki dv
S = 2xp5 — 3t;;, M = =Yk — 3[dx7ki’

and hence the following integral for Eq. (2'), which, unlike those which we have
considered up to here, cannot be obtained by differentiating a known integral of

Eq. (1):

Vil dV
2 i ki iSki) — 3f - i t.
E (2xxing + yriCi) h ( m dxki6k>:| + cons

2 Definitions of Integral Invariants

Consider a system of differential equations:

dx; X
dt - 1y
where X; is a given function of x|,x,, .. .x,. If we have:

F(x1,x2,...x,) = const.,

then this relationship is called an integral of the given equations. The left-hand side of
this relationship can be called an invariant because it is not altered when the x; are
increased by infinitesimal increases dx; compatible with the differential equations.
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Now let

/ / /
X]5 Xy, .. X,

be another solution of the same differential equations, such that we have:

dx/

1 !

s

where X! is a function formed with x|, x5, .. .x], as X; was formed with x,x2, .. .x,.
It is possible that there could be a relationship of the following form between the
2n quantities x and x’:

Fy (x1,%2, . . X, X, X5, .. X)) = const.

The left-hand side, F;, could also be called an invariant of our differential
equations, because instead of depending on a single solution of these equations, it
will depend on two solutions.

It can be assumed that x;,x,...x, represents the coordinates of a point in n
dimensional space and that the given differential equations define the laws of
motion of this point. If we think about the two solutions of these equations, there
are two different moving points, moving under a single law defined by our dif-
ferential equations. The invariant | will then be a function of the coordinates of
these two points and the invariant will retain its initial value during the motion of
these two points.

Similarly, instead of two moving points, three or even a large number of moving
points could obviously be considered.

Now assume that infinitely many moving points are being considered and that
the initial positions of these points form a specific arc of curve C in the n
dimensional space.

When we are given the initial position of a moving point and the differential
equations which define its laws of motion, the position of the point at an arbitrary
moment is then completely determined.

If we therefore know that our moving points, infinitely many, form an arc C at
the origin of time, we will know their positions at an arbitrary time ¢ and we will see
that the moving points at the moment ¢ form a new arc C' in the n dimensional
space. We therefore have an arc of curve which moves while changing shape
because its various points move according to the laws defined by the given dif-
ferential equations.

Now assume that during this motion and this deformation, the following integral:

/(Yldxl + Yadxy + .. .Y,dx,) = /Z Yidx;
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(where the Y are given functions of the x and which extends the entire length of the
curve) does not change value. This integral will again be an invariant for our
differential equations, no longer depending on one, two or three points, but on
infinitely many moving points. To indicate what its shape is, I will call it an integral
invariant.

Similarly it can be imagined that an integral of the following form:

/ v/ Z Yidox;doxg,

over the entire arc of the curve could remain invariant; this again would be an
integral invariant.

Integral invariants can also be imagined which are defined by double or multiple
integrals.

Imagine that we are considering a fluid in continuous motion such that the three
components X, Y, Z of the speed of an arbitrary molecule are given functions of the
three coordinates x, y, z of this molecule. Then it would be possible to state that the
laws of motion of an arbitrary fluid molecule are defined by the differential equations:

dx d d

_— = X’ —y = Yv7 —Z - Z
dr dr dr

It is known that the partial differential equation

dXerYeriZiO
de ' dy ' dz

expresses that the fluid is incompressible. Therefore assume that the functions
X, Y,Z satisty this equation and consider an ensemble of molecules occupying a
specific volume at the origin of time. The molecules will move, but because the
fluid is incompressible the volume that they occupy will remain unchanged. In other
words the volume, meaning the triple integral:

// dudydz

will be an integral invariant. More generally, if we consider the equations:

dxi_X
de 7'

and we have the relationship:

" dX;
2oay ="
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the nth order integral

/dxldxz. dx,

which I will continue to call the volume, will be an integral invariant.
This is what will happen in particular for the general equations of dynamics;
because on consideration of these equations:

d)Ci - dF dyi - dF

dr o dydr o dy

L))

dx; dy;

it is easy to see that

But as it relates to the general equations of dynamics, there is in addition to the
volume, another integral invariant that will be even more useful to us. We have in
fact seen that:

Z(éi"]; — &;) = const.

Which translated into our new language means that the double integral

ff

is an integral invariant, as I will prove below.

To express this result in another way, take the case of the n-body problem.

We will represent the state of the system of n bodies by the position of 3n points
in a plane. The abscissa of the first point will be the x of the first body and the
ordinate the projection on the x-axis of the momentum of this body; the abscissa of
the second point will be the y of the same body and the ordinate the projection on
the y-axis of its momentum and so on.

Imagine a double infinity of initial states of the system. A position of our 3n
points corresponds to each of them and if all of these states are considered, it will be
seen that the 3n points fill 3n plane areas.

If the system now moves according to the law of gravitational attraction the 3n
points which represent its state are also going to move; the plane areas that I just
defined are going to deform, but their sum will remain constant.

The theorem on the conservation of volume is just one consequence of the
preceding.

In the case of the n-body problem there is another integral invariant to which I
want to draw attention.



2 Definitions of Integral Invariants 47

Consider a single infinity of initial positions of the system which forms an arc of
curve in the 6n dimensional space. Let Cy and C; be the values of the constant of
total energy at two ends of this arc. I will demonstrate later that the expression

/Z(2xidyi + y:idx;) +3(Cy — Co)t

(where the integral is along the arc of the entire curve and where the time does
not enter if Cy = C;) is again an integral invariant; it is furthermore possible to
easily deduce the other integral invariants which were covered above.

We will state that an integral invariant is of first-order, second-order, ..., or of
nth order according to whether it is a single, double, ..., or n times integral.

Among the integral invariants we will distinguish the positive invariants that we
will define as follows.

The nth order integral invariant:

/deld)Q. ..dx,

will be a positive invariant in some domain, if M is a function of x;, x», . . .x,, which
remains positive, finite and one-to-one in this domain.

I still need to prove the various results which I just stated; this proof can be done
by a very simple calculation.

Let:

— X, ... — X, (1)

be a system of differential equations where Xi,X5,...X, are functions of
X1,X2,...X, such that:

dx; dXp dx,
dxl dx2 dxn

~0. 2)

Let there be a solution to this system of equations which depends on »n arbitrary
constants:

o1, 002, .. .0,

This solution will be written:

x1 =@ (t,00,0,...00),
X2 = @yt 0,00, .. .00),

Xn = q)n<ta 01, 02, .. -O(n)-
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It is a matter of demonstrating that the integral

J:/dxldxg...dxn:/AdaldaZ...dan

where
dxl dx2 dxn
doy doy  dey
dxl dX2 dxn
A=|doy day  doy
dvy dv,  dx,
do, do, do,

is a constant.
In fact we have:

dJ dA
E = /Edaldtxz. . .dO(n

and

dA
—=A+A 4. A,
a 1+ A+

where A is the determinant A in which the kth column

dy P
doy dodr
dx, . dzxk
— laced b
3% is replaced by doadi .
d)'Ck d2.xk
do, do,dt
But we have

dxy

—=X

dr ks

hence

d’x,  dX dv; | dXpdx, dX; dx,

dopdr — dvy doy | dn oy | d, do
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We deduce from that:

dX;
Ay =A—
k dxk )
hence
dJ
i /(AI + A+ - Ay)dogdop. . .day,

Xm dX2 an
_ [ (9% dA2 Adoydos. . .do, = 0.
J (@ e

Which was to be proved.
Now suppose that instead of the relation (2) we had:

dMX, dMX, dMX,

=0 2/
dx; dx; dx, @)

where M is an arbitrary function of xj,xs, .. .x,.
I state that:

J = /deld)cz. . .dxn = /MAdOCldOQ. . .dO(n

is a constant.
In fact we have:

dJ dM dA
= A=Z f M= .. da,.
dr /( dr + dt)dOCldOCZ do

It must be shown that:

dM dA
A—+M—=0.
dr + dr

In fact we have [because of Eq. (1)]

M M dM dMm
— =X —+X— 4 - X,—
dr Tay T an T dx,

and (according to what we just saw):

aA_ (W an o,
dr dx; dx, dx, '
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It therefore follows that:

M dA aMX,  dMX, dMX,
A R A . —0.
dr + dr ( dx; + dx, + dx, )

Which was to be proved.
Now move on to the equations of dynamics.

Let the equations be:

dx; dF dy; dr .
- Vi S i=1,2,...) (1)

dr dy dr dy
Let there be a solution containing two arbitrary constants o and f and written:

- @i(ﬂ%ﬁ)
yVi = l//i(tvavﬁ)'

I state that:
"~ (dx;dy;  dx;dy;
J= /(dxldyl +dxody, + - - - dx,dy,) = / <—— - ——)dfldﬁ
; dedf df da

is a constant.
It follows in fact that:

/Z Eridy  dyide Endy iy dudf
dido dB dzdﬂ do drdfda drdo dp '

It then follows:

d’x; d’°F dx; d’F dy,
drdo, zk: dy;dx; dor + zk: dy:dyy do’
d’x; d’F dx, d’F d
b a2 ddn dp
dedfp <~ dy;dx dp dy;dy, dfs
d2y,-__ZdF dy  — @F dy

drda dxdxk do A= ddye do

didf L drd df L ddyc df
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From that we conclude that:
Z dx;dy;  dy; dy;
drdedf  drdedf

_ZZ d’°F dox dy; d’°F dye dy; d’°F dx dx; d’F dxdyk
N dy;dx; da dﬁ dy;dy, do dﬁ do;dxg dor dﬁ dx;dyy dﬁ do

The right-hand side of the equation does not change on permuting « and f3, and
therefore we have:

Z Exidy; Py dy Z Ex; dy;  dyi dx;
drdeedf drdodf drdfda  drdfda /)’
This equality expresses that the quantity under the integral sign in the expression
for dJ/dt is zero and consequently that

o
dr

Which was to be proved.

It remains to consider the last of the integral invariants which comes up in the
case of the n-body problem.

Return to the equations of dynamics, but by setting:

F=T+U,
where T depends only on y and U only on x. Additionally, T is homogeneous and

second-degree and U homogeneous and —1 degree.
Take a solution

Xi = (Pi(tv O()v Yi = %(E OC)

which depends solely on a single arbitrary constant, o.
Consider the single integral:

/Z( >doc+3(C1 Co)t,

where C; and Cy are constant values of the function F at the ends of the arc along
which the integral is calculated.
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It follows that:

dridy; | dyidx; dy; | dx
i o d .
/Z< T T T e g )4 H3E ~ GO)

It follows that:

dr dy dy dr o dy’
d’x; S &¢T dye  dy _y PU dy
didor £~dydy, doo” drdor £~ dxidg doc

hence

del &t d dU dx; d’U dx,
D) F2 - S g L an 3(C1 - o)

dy dot dy,dyk do  dx; do "dx;dxy, d

But because of the homogeneous function theorem we have:

d’T dU
Z d,dyfdyk Z dxdxk T

hence

aJ dTdy, _dUdx
i 3 34y 43
/Z( dy,doch o d) a+3(Cr — Gy)

or
dJ
E = 3/(dT+dU) +3(C1 — C()).
However, according to the definition of C; and Cy we have

CO—Clz/dF:/(dT+dU).

It therefore follows that:

Which was to be proved.
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3 Transformation of Integral Invariants

Return to our differential equations:

dxl dXZ an
—_—X —_—X “ee _—)(n 1
dr b dt 2 ( )

and assume that we have:

d(MX,)  d(MX,) d(MX,)
o o T % )

such that the nth order integral

J= /deldxz. dx,

is an integral invariant.
Change variables by setting:

x1 =Y (21,22, - Zn),
X2 = Y,(21,225 - - -Zn),

3)
Xn = l//n(zlaz27 . -Zn)a

and call A the Jacobian determinant of the n functions  relative to the n variables z.
After the change of variables we will have:

J= /MAdmdzz...dzn.

If the invariant was positive before the change of variables, it will remain
positive after this change, provided that A is always positive, finite, and one-to-one.

Since by permuting two of the variables z, the sign of A changes; it will be
sufficient for us to assume that A always has the same sign or that it is never zero. It
will additionally always need to be finite and one-to-one. This will happen if the
change of variables (3) is bijective; meaning if, in the domain in consideration, the x
are one-to-one functions of z and the z one-to-one functions of x.

Thus after a bijective change of variables, the positive invariants remain positive.

Here is an interesting specific case:

Suppose that an integral of Eq. (1) is known:

F(x1,x2,...x,) = C.

Take for new variables both z, = C and also n — 1 other variables z;, 25, .. .Z,_1-
It will often happen that z;,zp,...z,—1 can be chosen such that this change of
variables is bijective in the domain in consideration.
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After the change of variables, Eq. (1) becomes:

le dZZ dZn -1 dZn
Bt == =Zy1, —2=27,=0, 4
dr b T dr ! dt )

where Z,,7,,...Z, | are known functions of zy,z;, .. .z,. If the constant C = z, is
regarded as a given of the problem, the equations are reduced to order n — 1 and are
written:

le o d dzn—l

22
— = 2 =7 ... =71, 4
dr by > dr ! ()

the functions Z now depend only on 7y, 22, . . .z,—1 because z, was replaced there by
its numeric value.
If there is a positive invariant of Eq. (1)

J = /deldxz...dxn,
then Eq. (4) will also have a positive invariant:
J = /,udzleZ. ..dz,_1dz,.

I now state that Eq. (4") which is of order n — 1 also have a positive integral
invariant which must be of order n — 1.
In fact, stating that J is an integral invariant amounts to stating that

d(uz d(uz d(uz,
(u 1)+ (Hz)_'_m (u ):0
dz dzp dz,
or because Z, is zero,
d(uz d(uz d(uz,_
(12) | W) | duza)
dz; dzp dz,—

which proves that the n — 1 order integral

/,udZ1dZ2- . ~danl

is an invariant for Eq. (4').

Up till now we have applied the changes of variables to the unknown functions
X1,X2, .. .X,, but we have kept time ¢# which is our independent variable. We are now
going to assume that we set:
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t=o(t)

and that we take #; as the new independent variable.
Equation (1) then become:

dxi / d(p dt .
X =X =X, — =1,2,... 5
dy ! dy dn < ") G)

If Eq. (1) has an nth order integral invariant
J = /deldxg. ..dx,

then it will be true that

which can be written

Which shows that
dr
M —dxdx,. . .dx,
/ qr e

is an integral invariant of Eq. (5).

For this transformation to be useful, it is necessary that 7 and ¢, be related such
that dr, /dr can be regarded as a known, finite, continuous, and one-to-one function
of x1,x,...%,.

Suppose for example that we take for new independent variable:

X, = 1.
It then follows that
dy
— =X,
dr
and Eq. (5) are written
dq  X; do X A1 Xy dxy

_ = = —=1

dr _Xn’ dr Xn7 dr X, ’ dr ’
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and they allow as integral invariant:
/MXndxldxz...dxn.

Similarly, if we take for new independent variable:
= @(Xl,XQ, .. .x,,),

where © is an arbitrary function of xj, x», .. .x,, the new integral invariant will be
written:

d® de® de
/ <dx1 1+dx2 2+ +dxn > 1dxp

It needs to be noted that the form and meaning of an integral invariant is changed
much more significantly when the independent variable called time is changed then
when the change of variables only involves the unknown functions xj,xs, .. .X,,
because then the laws of motion for the representative point P become completely
transformed.

Suppose n = 3 and consider x1, x», x3 as the spatial coordinates of a point P. The
equation:

O(x1,x2,x3) =0

will represent a surface. Consider an arbitrary portion of this surface and call this
portion of surface S.
I will also suppose that at all points on S:

de® de de
—X —X —X 0.
o 1+ ax 2+ s 3 F

It results from this that the portion of surface S is not tangent to any trajectory.
I will thus state that S is a contactless surface.

Let Py be a point on S; a trajectory passes through this point. If the extension of
this trajectory again crosses through S at a point P, I will state that P; is the
recurrence of Py. And in turn P; can have for recurrence P, which I will call the
second recurrence of Py and so on.

If a curve C traced on S is considered, the n recurrences of the various points of
this curve will form another curve C’ that I will call the nth recurrence of C. In the
same way, the area would be defined which is the nth recurrence of a given area
which is part of S.

That stated, let there be a portion of contactless surface S with the equation
® = 0; let C be a closed curve traced on this surface and delimiting an area A; let C’
and A’ be the first recurrences, and C" and A" be the nth recurrences of C and A.
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A trajectory passes through each of these points of C, and I extend this trajectory
from its first meeting with C to its meeting with C’. The family of these trajectories
will form a trajectory surface 7.

I consider the volume V delimited by the trajectory surface 7" and by the two
areas A and A’. Assume that there is a positive invariant:

J:/deldxzdx3.

I extend this invariant to the volume V and I state that dJ/dr is zero.
Let dw be an element of the surface S. Follow the normal to this element and on
doe
this normal take an infinitesimal length dn. Let ® + d—dn be the value of © at the
n

end of this length. If the normal was followed in the direction of increasing ®, then:

d®

— > 0.
dn

Set:
doe doe doe

—X —X —X
dx; 1+d)€2 2+d)€3 )

do =4,
dn
we will then have
%: /MHdco—/MHdw,
A A

where the first integral is extended to the area A’ and the second to the area A.

The integral
/ MHdw

retains the same value whether it is over the area A, or the area A’, or consequently
the area A". It is therefore an integral invariant of a specific kind which retains the
same value for an arbitrary area or for one of its recurrences.

These invariants are additionally positive, because by assumption M and H and,
as a consequence, MH are positive.

4 Using Integral Invariants

The following theorems are what make integral invariants interesting and we will
make frequent use of them.
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Above we defined stability by stating that the moving point P must remain at a
finite distance; sometimes it will be given a different meaning. For there to be
stability, after sufficiently long time the point P has to return if not to its initial
position then at least to a position as close to this initial position as desired.

This latter meaning is how Poisson understood stability. When he proved that, if
the second powers of the masses are considered, the major axes of the orbits do not
change, he only looked at establishing that the series expansion of these major axes
only contained periodic terms of the form sin o or cosas or mixed terms of the
form ¢ sinot or ¢ cos o, without including any secular term of the form ¢ or 2.
Which does not mean that the major axes can never exceed a specific value, because
a mixed term ¢ cos ot can grow beyond any limit; it only means that the major axes
will go back through their initial value infinitely many times.

Can all the solutions be stable, in the meaning of Poisson? Poisson did not think so,
because his proof expressly assumed that the mean motions are not commensurable;
the proof therefore does not apply to arbitrary initial conditions of the motion.

The existence of asymptotic solutions, which we will establish later, is sufficient to
show that if the initial position of the point P is chosen appropriately, then this point P
will not return infinitely many times as close to this initial position as desired.

But I propose to establish that, in one of the specific cases of the three-body
problem, the initial position of the point P can be chosen (and can be chosen
infinitely many ways) such that this point P returns as close to its initial position as
desired infinitely many times.

In other words, there will be infinitely many specific solutions to the problem
which will not be stable in the second sense of the word—that is, in the meaning of
Poisson; but, there will be infinitely many which are stable. I will add that the first
can be regarded as exceptional and later I will seek to understand the precise
meaning that I give to this word.

Assume n = 3 and consider x1,x», x3 as the spatial coordinates of a point P.

Theorem I Assume that the point P remains at a finite distance and that the
volume [ dxidx,dxs is an integral invariant; consider an arbitrary region ro,
however, small this region, there will be trajectories which will pass through it
infinitely many times.

In fact, since the point P remains at a finite distance, it will never leave a
bounded region R. I call V the volume of this region R.

Now imagine a very small region ry, I will call the volume of this region v.
A trajectory passes through each of the points of ry; this trajectory can be regarded
as the path followed by a point moving according to the law defined by our
differential equations. Therefore consider infinitely many moving points which at
time zero fill the region ry and which then move according to this law. At time t©
they will fill some region ry, at time 27 a region r,, etc. and at time nt a region 7,,.
I can assume that 7 is large enough and that ry is small enough so that ry and r; have
no point in common.

Since the volume is an integral invariant, these various regions rg, ri, . . .1, Will
have the same volume v. If these regions have no point in common, then the total
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volume would not be larger than nv; on the other hand all these regions are inside R
so the total volume is smaller than V. If therefore we have:

n> —,
1%

then it must be that at least two of our regions have a common portion. Let 7, and r,
be these two regions (g > p). If 1, and r, have a common portion, it is clear that r,
and r,_, will have to have a common portion.

More generally, if k regions having a common portion can be found, no point in
space could belong to more than & — 1 of the regions. The total volume occupied by
these regions would therefore be greater than nv/(k — 1). If therefore we have:

Vv
n>(k—-1)—,
v

then it must be possible to find k regions having a common portion. Let:

L S

be these regions. Then

705 Tpa—p1s> Fps—p1s + + Tpr—p:

will also have a common portion.

But, let us take up the question again from a different perspective. By analogy
with the nomenclature from the preceding section, we agree to state that the region
r,, is the nth recurrence of ry, and ry is the nth antecedent of r,,.

Suppose then that r, is the first of the successive recurrences which has a
common portion with ry. Let this common portion be ry; let s;, be the pth antecedent
of r{, which would also be part of ry because its pth recurrence is part of r,.

Then let r;, be the first of the recurrences of r; which has a common portion with
ry; let r be this common portion; its p;th antecedent will be part of r{, and con-
sequently of ro, and its p + p;th antecedent which I will call s, will be part of s;, and
consequently of ry.

Thus s will be part of ry and so will its pth and p;th recurrences.

And so on.

With rj we will form r{’ as we formed rj with r{, and r;, with ro; we will then
form rlY,...r3, . ...

I will assume that the first of the successive recurrences of r) which has a
common portion with 7)) is that of order p,.

I will call sj; the antecedent of 7}, of order p +p; +p2+...pp_i.
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Then si will be part of 79 and also of its n recurrences of order:

p,p+p,p+pi+p2,..p+p1i+p2+ - pa-r.

Additionally sf will be part of sf~!, st~ of si~2, etc.

There will then be points which belong at the same time to the regions
70,8, 50, - - -Se, 5" 1 ... ad infinitum. The set of these points will form a region
which could additionally reduce to one or several points.

Then the region ¢ will be part of ry and also of its recurrences of order p, p + py,
p+pi+pr...ptpi+p2+ - -pnp+pi+pr+t - pptpaii,... adinfinitum.

In other words, any trajectory coming from one of the points of ¢ will traverse
the region rq infinitely many times.

Which was to be proved.

Corollary It follows from the preceding that there exist infinitely many trajectories
which traverse the region ry infinitely many times; but there can exist others which
only traverse this region a finite number of times. I now propose to explain why the
latter trajectories can be regarded as exceptional.

Since this expression does not have any precise meaning in itself, I will need to
start by filling-in the definition.

We agree to state that the ratio of the probability that the initial position of the
moving point P belongs to a certain region ry to the probability that this initial
position belongs to another region r; is equal to the ratio of the volume of ry to the
volume of r;.

With the probabilities thus defined, I propose to establish that the probability is
zero that a trajectory coming from a point in ry does not traverse this region more
than k times, however large k is and however small the region ry is. This is what I
mean when I state that the trajectories which only traverse ry a finite number of
times are exceptional.

I assume that the initial position of the point P belongs to 7y and I propose to
calculate the probability that the trajectory coming from this point does not traverse
the region ry k+ 1 times from the epoch O to the epoch nt.

We have seen that if the volume v of ry is such that:

kV
n> —,
1%

then k + 1 regions can be found that I will call

Yo, Foyy -« oy

and which will have a common portion. If s,, is this common portion, let sy be its
antecedent of order o and designate the pth recurrence of sq by s),.
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I state that if the initial position of the point P belongs to s, then the trajectory
coming from this point will cross the region ry at least k4 1 times between the
epoch O to the epoch nr.

In fact, the moving point which describes this trajectory will be found in the
region s at epoch 0, in the region s, at epoch pt, and in the region s, at the epoch
nt. It will therefore necessarily traverse, between the epochs 0 and nt, the following
regions:

805 Soy—op_1 9 Sop—0y_ns + + Soy—op s S —oty » Soyy -

Now I state that all these regions are part of ry. In fact s, is part of ry by
definition; sy is part of ry because its axth recurrence s,, is part of r,,, and in general
Sq,—o,; 15 part of 7y because its «;th recurrence s, is part of r,.

Therefore the moving point will pass through the region ry at least k4 1 times.
Which was to be proved.

Now let gy be the portion of ry that does not belong either to sy or to any
analogous region, such that the trajectories originating from the various points of gy
do not traverse the region ry at least K+ 1 times between the epochs 0 and nt. Let
the volume of o be w.

The probability being sought, meaning the probability that our trajectory does
not traverse ry kK + 1 times between these two epochs will then be w/v.

Now, by assumption, no trajectory originating from oy traverses ry, and espe-
cially not gy, k+ 1 times between these two epochs. We then have:

kV
w< —
n

and our probability will be smaller than

kV
n’

However large k is and however small v is, n can always be taken large enough
such that this expression is as small as we want. Therefore, there is a null proba-
bility that our trajectory, which we know originates from a point in ry, does not
traverse this region more than k times since the epoch 0 until the epoch + oco.
Which was to be proved.

Extension of theorem 1. We assumed that:

1) n=3
(2) The volume is an integral invariant.
(3) The point P is constrained to remain within a finite distance.
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The theorem is still true if the volume is not an integral invariant, provided that
there exists an arbitrary positive invariant:

/ Mdx;dx,dxs.
It is still true if n > 3, if there is a positive invariant:
/ Mdxdx; - - - dx,

and if x1,x;, - - - x,, which are the coordinates of the point P in the n-dimensional
space, are constrained to remain finite.

But there is more.

Suppose that x1,x;, - - - x, are no longer constrained to remain finite but that the
positive integral invariant

/deldxg e-dx,

over the entire n-dimensional space has a finite value. The theorem will still be true.
Here is a case which will come up more frequently.
Assume that an integral of Eq. (1) is known

F(x1,x3," - x,) = const.

If F =const. is the general equation of a family of closed surfaces in n-
dimensional space, if, in other words, F is a one-to-one function which becomes
infinite when any one of the variables xi, x5, - - - x, stops being finite, it is clear that
X1,X2, -+ - X, will always remain finite, because F keeps a constant finite value; this
is therefore within the conditions of the statement of the theorem.

But suppose that the surfaces F' = const. are not closed; it could nonetheless turn
out that the positive integral invariant

/deldx2-~dx,,

has a finite value over all the families of values of x such that:
CI<F<(Cy;

the theorem will again be true.
This is what happens in particular in the following case.
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In G. W. Hill’s theory of the moon, in a first approximation he neglected the
parallax of the sun, the eccentricity of the sun and the inclination of the orbits; he
arrived at the following equations:

/
i—x:x’, C(lix—:Zn’y'—x S S W ,
: ! (¥ +2)°
d dy’
Oy Y e
(¥ +y2)°

which have the integral

_x/2_|_y/2_ m _%n/
o 2 x2+y2 2

2.2

F X~ = const.

and the integral invariant
/ dxdydx'dy’.

If we regard x, y, X', and y' as the coordinates of a point in four-dimensional
space, then the equation F' = const. represents a family of surfaces which are not
closed. But the integral invariant over all points included between two of these
surfaces is finite, as we will prove.

Theorem 1 is therefore still true; meaning that there exist trajectories which
traverse any region of the four-dimensional space, however small this region might
be, infinitely many times.

It remains to calculate the quadruple integral

J = / dxdydx'dy’,
where this integral is over all families of values such that
C] <F< Cz.

We change variables and transform our quadruple integral by setting:

X' =cos pvV2r, y =sin@v2r,
X = p cosw, y = p sinw;

this integral becomes:

J= /pdpdrda)d(p



64 2 Theory of Integral Invariants
and it also follows:

3
F=r-H_ En’zp2 cos’ m.

We need to first integrate over ¢ between the limits O and 2x, which gives:

J= Zn/pdpdrdw

and the integration must be over all families of values of p, r, and w which satisfy
the inequalities:

r>0,

3
r>Cy+ i ~n?p*cos® ,
p 2

3
r<Cy,+ i ~n"?p? cos® .
p 2
The following can be deduced from these inequalities:
3
o+l En’zp2 cos’ w > 0.
p

Regard p and w as polar coordinates of a point and construct the curve

3
Cy+ g + En’z,o2 cos>w = 0.

We will see that if C, is smaller than —1 (9n 11)*? this curve is composed of a
closed oval located entirely inside the circle

i
3n/2

p:

and of two infinite branches located entirely outside the circle.

The reader will be able to do this construction easily; if the reader experiences
any difficulty, I suggest they consult the original treatise of G.W. Hill in the
American Journal of Mathematics, volume 1.

From this G. W. Hill concluded that if the point p,  is inside this closed oval at
the beginning of time, it will always remain there and consequently p will always

remain smaller than {/u/3n"2. Thus if the parallax of the sun, its eccentricity, and
the inclinations are neglected, it will be possible to assign an upper limit to the
radius vector of the moon. In fact as it relates to the moon, the constant C, is

smaller than — 1 (9n/p0)*".
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I propose to supplement this remarkable result from G. W. Hill by showing that,
under these conditions, the moon would also experience stability in the meaning of
Poisson; by that I mean that, if the motion’s initial conditions are not exceptional,
the moon would return as close as one wants to its initial position infinitely many
times. That is why, as I explained above, I propose to prove that the integral J is
finite.

Since p is smaller than {/p/3n"2 and consequently bounded, the integral:

J= Zn/pdpdrdw

can only become infinite if r increases indefinitely, and » cannot become infinite in
light of the inequalities (1) unless p approaches zero.
Therefore set:

J=J+J"
where J' represents the integral over all families of values such that
r>0, p>py, CiI<F<GC (2)
and J” represents the integral over all families of values such that:
r>0, p<py, CI<F<C,. (3)

When the inequalities (2) are satisfied p cannot become zero; therefore » cannot
become infinite. Therefore the first integral, J' is finite.
Now examine J”. I can assume that p, was taken small enough that

a+tso.

Po

The inequalities F > C; and p <p, then lead to r > 0. We therefore need to
integrate over r between the limits:

3 3
C,+ H + —n’zp2 cos’w and C,+ K + —nlzp2 cos® o.
p 2 p 2

It then follows:

2n Po
J" =2n(C, — Cy) / dw/ pdp =272 p3(Cy — C)
0 0

J" is therefore finite and consequently also J.
Which was to be proved.
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K. Bohlin generalized the result of G. W. Hill in the following way. We consider
the following special case of the three-body problem. Let A be a body of mass
1 — u, B be a body of mass u, and C a body of infinitesimal mass. Imagine that the
two bodies A and B whose motion must be Keplerian, because it is not perturbed by
the mass C, trace out around their mutual center of gravity, assumed to be fixed,
two concentric circumferences, and that C moves in the plane of these two cir-
cumferences. I will take a constant distance AB as a unit of length, such that the
radii of these two circumferences are 1 — p and p. I will assume that the unit of time
has been selected such that the angular speed of the two points A and B on their
circumferences is equal to 1 (or that the Gaussian gravitational constant is equal to
1, which amounts to the same thing).

We next select two moving axes with their origin at the center of gravity of the
two masses A and B; the first of these axes will be the straight line AB and the
second will be perpendicular to the first.

The coordinates of A relative to these two axes are —u and 0; those of Bare 1 —
and 0; and those for C, I will call x and y; for the equations of motion I then have:

dr dx’_2,+dV+
a- " a Y Tt
dy , dy , dv
A “Z—=_2 -
AR P SN MR
by setting
l—p
V="
AC T BC

Additionally we have:
AC" = (x+ 1)’ +y*, BC = (x+u—1>+y
These equations have an integral:

_X12+y/2 B
2 2

F

and an integral invariant:

J= / dxdydx'dy’

K. Bohlin, in Acta Mathematica volume 10, generalized the result of G.W. Hill, by
showing that if the constant K has a suitable value (which we will assume) and if
the initial values of x and y are small enough, these quantities, x and y, will remain
bounded.
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I now propose to prove that the integral J over all families of values such that
K\ <F <K,

is finite; and from that we will be able to conclude, as we did above, that the
stability in the meaning of Poisson pertains again in this case.

If the constants K| and K, are suitably chosen, the theorem from K. Bohlin
shows that x and y will be bounded. As for x’ and y', it will not be possible for them
to become infinite unless V becomes infinite, meaning if AC approaches zero or if
BC approaches zero.

Then set:

J :]/+Jl/+1/ll7

where the integral J' is over all families of values such that:

—2 2 —2 2 1
Ki<F<K,, AC >p;, BC > pg, p0<§
the integral J” to all families of values such that:
T2 2  To R
K| <F<K,, AC <p, (hence BC™ > p0> ,
and the integral J” to all families of values such that:

K| <F <K, ﬁ2<p(2) (hence AC > pg) .

Since for none of the families of values over which the integral J' extends do AC
or BC become zero, this integral J' is finite.

Now examine the integral J”. I can assume that p, has been chosen small enough
such that:

17
M—FK] >0, ﬁ+K1>O.
Po Po

In this case (x> +?)/2 can vary between the bounds:

2 2 2 2

T l—p  p  x+y
d K+ Hy®

Aac et M Rt e Tt

= L2a

because the smaller of these two bounds is positive.
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Then set as above:

x/2+y/2
X =V2rcosp, y =+V2rsing, hencer= 5

the integral will become
J' = / dxdydrdo

and it will be necessary to integrate over ¢ between the bounds 0 and 27, and over r
between the bounds L; and L,; it will then become:

J" =2n(K, — K;) / dxdy.

The double integral [ dxdy will then need to be over all families of values such that

AC < p(z); it is therefore equal to np%; such that it becomes:
JN = 2n2p%(K2 — K])

J" is therefore finite, and so are J”’ and J.
Which was to be proved.

We therefore have to conclude that (if the initial conditions of motion are not
exceptional in the meaning given to this word in the corollary to theorem I) the third
body C will go back as close as one wants to its initial position infinitely many
times.

In the general case of the three-body problem, it can no longer be affirmed that it
will still be the same.

Theorem II Ifn = 3 and x1,x,, x3 represent the coordinates of a point in ordinary
space, and if there is a positive invariant, there cannot be a closed contactless
surface.

In fact let

J = /deldxde3

be a positive integral invariant. Assume that there is a closed and contactless
surface, having the equation

F(x1,x3,x3) = 0.

Let V be the volume delimited by this surface; we extend the invariant J to this
entire volume.
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Since the surface S is contactless, the expression:

dF  dF o dF
dg T e A

cannot become zero and consequently change sign; to be concrete, we will assume
that it is positive.

Let dw be a differential element of the surface S; take the normal to this element
from the side of increasing F’; take on this normal an infinitesimal segment dn. Let

%dn be the value of F at the end of this segment. We will then have:

dF

— > 0.
dn

since J is an invariant, we should have

o
dr
But we find
& f,dy T T o
dr dar ’
dn

The integral on the right-hand side, over the entire surface S, is positive because the
function within the integral sign is always positive.

We have arrived therefore at two contradictory results and we have to conclude
that a closed contactless surface cannot exist.

Extension of Theorem 11. 1t is easy to extend this theorem to the case of n > 3; to
do that it is sufficient to translate it into analytical language, because geometric
representation is no longer possible, and state:

If there is a positive integral invariant, there cannot exist a one-to-one function
F(x1,x2,---x,) which is positive, which becomes infinite each time one of the x
stops being finite and which is such that

dF dF dF dF
) € X+ - —X,
o o T

always has the same sign when F is zero.

To make the importance of this theorem understood, I will limit myself to
observing that it is a generalization of the one which I used for proving the legit-
imacy of Lindstedt’s beautiful method.

However, with a perspective to subsequent applications, I prefer to give it a little
bit different form by introducing into it a new concept: that of invariant curves.
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At the end of the previous section we had considered a portion of surface S,
defined by the equation

@(xl,xz,x3) =0
and such that for all points of S it holds that

doe doe doe
—X —X —X 0
an 1+ o, 2+ drs 3 >0,

such that S is a portion of contactless surface.

We have subsequently defined what was to be understood by the nth recurrence
of a point from S or by the nth recurrence of a curve or an area belonging to S.
I now understand and from now on I will understand the word recurrence in the
meaning of the previous section and not in the meaning used above in the proof of
Theorem L.

We have seen that if there is a positive invariant

// Mdx;dx,dxs,
/MHda)

which must be over all the elements dw of an area belonging to S and which has the
following properties:

there is also another integral

(1) The quantity under the integral sign, MH, is always positive.
(2) The integral has the same value for an arbitrary area belonging to S and for all
areas of its recurrences which exist.

With that stated, I will call nth order invariant curve any curve traced on S and
which coincides with its nth recurrence.

In most questions from dynamics, some very small parameters enter such that
one is naturally led to develop solutions following increasing powers of these
parameters. Such are the masses in celestial mechanics.

We will therefore imagine that our differential equations

depend on a parameter u. We will suppose that X, X,, X3 are given functions of
X1,Xx2,x3 and g which could be expanded in increasing powers of u and that u is
very small.
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Now consider an arbitrary function of y; I assume that this function approaches 0
when u approaches 0, such that the ratio of this function to y"* approaches a finite
limit. T will state that this function of u is a very small quantity of nth order.

It needs to be indicated that it is not necessary for it to be possible to expand this
function of u in powers of u.

With that established, let Ag and By be two points on a contactless surface S, and
let A; and B; be their recurrences. If the position of Ay and By depends on u
according to an arbitrary law, then so will the position of A; and B;. I am proposing
to prove the following lemmas:

Lemma I If a portion of contactless surface S passing through the point ay, by, co
is considered; if xo,y0,20 are coordinates of a point on S and if x1,y1,21 are
coordinates of its recurrence, then xi,y1,z1 are expandable in powers of xo —
ao, Yo — bo, zo — co and p provided that these quantities are sufficiently small.

I can always take for origin the point ag, by, cy such that

ap = bo =Cy) = 0.
If then

2= ¢(x,y)

is the equation of the surface S; this surface will pass through the origin O and one
will have:

»(0,0) = 0.

I will additionally assume that the function ¢(x, y) is mapping at all the points on
the portion of surface S considered. One trajectory passes through the origin O;
imagine that when p = O this trajectory crosses the surface S at time t = t at a point
P whose coordinates will be:

According to the terminology that we have adopted, when it is assumed that
u = 0, the point P will be the recurrence of the point O.

Now let xo, o, 2o be a point A very close to O and belonging to the surface S. If a
trajectory passes through this point A, and if it is assumed that u stops being zero
but remains very small, it will be seen that this trajectory will come, at an epoch ¢
only slightly different from 7, to cross the surface S at a point B very near P.

This point B, whose coordinates I will call x;,y;,z;, will according to our
terminology be the recurrence to the point A.

What I propose to prove is that x;, y;, z; are expandable in increasing powers of
X0,Y0,20 and p.
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In fact according to Theorem III from Sect. 2 of Chap. 1, if x, y, z are coordinates
at time ¢ of the moving point which describes the trajectory coming from point A
and if additionally xo, o, z0, # and ¢ — t are sufficiently small, then one will have:

x =Y (t— 7, 1, X0, 0, 20),
y =, (t — 1, 1, %0, Y0, 20), 4)
= Ws(t - Ta#aXO,)’OaZO),

where V, ¥, and /5 are series ordered in powers of t — 7, i, xp, yo and zo.
These series will reduce, respectively, to a, b, ¢ for

f—t=pu=x)=yo =2 =0.

Since ¢(x,y) is expandable in powers of x —a and y — b, if x —a and y — b are
small enough, we will also have:

(p(x,y) - lrb4([ - T,,U,X(),y(),Z()),

where , is a series with the same form as ¥, and 5.
We write that the point x,y, z is located on the surface S; we will have:

‘//3 = ‘p4 (5)
The relation (5) can be regarded as a relation between ¢ — 1, i, Xo, yo and zo, and
one can try to solve it for 7 — .
For:

t—t=p=x0=y0=2=0

this relation is satisfied because one has

According to a theorem by Cauchy, which we proved in one of the preceding
sections, one can draw ¢ — 7 from the relationship (5) in the following form:

f—TZO(,Ll,Xo,y(),Zo), (6)

where 0 is a series ordered in powers of u,xo,yo and zo.
The only exception would be if for

t—T:,u:xo:yo:Z():O
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it held that:

dy; _dy,
dr dr
Now this equation expresses that the trajectory starting from point O for u = 0 is
going to touch the surface S at point P.
But it can not be that way, because we will always assume that S is a contactless

surface or a portion of contactless surface.
In Eq. (4) we replace r — 7 by 0 and x,y,z by x1,y1,2z1; it follows:

= ®1(,u7x07y0720)7
y1 = Oa(u, X0, Y0, 20),
z1 = O3(1, X0, Y0,20);

where ®, ®, and O3 are expanded in powers of p,x,yo and zg.
Which was to be proved.

Lemma II [f the distance between two points Ay and By belonging to a portion of
the contactless surface S is a very small quantity of order n, then so will the
distance between their recurrences A and By.

In fact, let a;, ay, az be the coordinates of a fixed point Py from S very near Ag
and By; and let a}, d}, d; be the coordinates of its recurrence P;.

Let x1,x2,x3; x|, X5, X5 ¥1,¥2,¥3; and y},¥5, 5 be the coordinates of Ag, Ay, By
and B;.

According to Lemma I x| — d/,x, — d,x; — d} are expandable in increasing
powers of x| — aj,x, — ap,x3 — a3z and p.

The expression for y| —d|,y, —d5,y; — a4 as a function of y; —aj,y, —
a,y3 — az and p will obviously be the same as that for x| — a},x, — a5, x; — d} as
a function of x; — a;,xy — az,x3 — a3 and p.

From that we conclude that it is possible to write:

(X3 — y3)F3,
(x3 — y3)F3, (7)
( y3)F§/,

X =y = = y)Fi+ (o —n)F+

Xy — ¥y = (x1 —y1)F| + (x2 —)’2)F§ +

Xy — ¥y = (x1 — y1)F{ + (x2 — y2)Fy +
where the F are series expanded in powers of:

W, X1 — ay,Xp — az, X3 —asz,yy —dady,y2 — dz,y3 — as.

The quantities F, F,,, etc. are finite; therefore if x; — y;, x, — y», and x3 — y3 are
very small quantities of order n, then x| — y|, x; — ¥5, and x§ — y4 will be also.
Which was to be proved.
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Theorem III Let AJ(AMBB be an invariant curve, such that A; and B, are the
recurrences of A and B. I assume that the arcs AA|, and BB are very small
(approach O with u) but that their curvature is finite.

I assume that this invariant curve and the position of points A and B depend on
according to an arbitrary law. I assume that there exists a positive integral invariant.
If the distance AB is very small of nth order, and the distance AA; is not very small
of nth order, the arc AA, crosses the arc BB;.

I can always join the points A and B by curve AB located entirely on the portion
of contactless surface S and for which the total length is the same order of mag-
nitude as the distance AB meaning a very small quantity of nth order. Let A;B; be
an arc of curve which is the recurrence of AB, it will thus be very small of nth order
according to Lemma II.

Now here are the various scenarios that are conceivable:

Scenario 1. The two arcs AA; and BB, cross. I propose to establish that this is the
actual scenario.

Scenario 2. The quadrilateral AA BB is such that the four arcs which are its sides
have no other point in common than the four corners A, A;, B, and B;. This is the
case from Fig. 1.

Scenario 3. The two arcs AB and A|B; cross. This is the case from Fig. 2.
Scenario 4. One of the arcs AB or A;B; crosses one of the arcs AA; or BB;; but the
arcs AA; and BB; do not cross nor do the two arcs AB and AB;.

If there is a positive invariant, then according to the preceding section there will

exist a certain integral
/ MHdw

all the elements of which will be positive and which will have to have the same
value for the area ABB{MA and for its recurrence AA|B;MA.

Fig. 1 The corners are the
only common points of the
four arcs




4 Using Integral Invariants 75

Fig. 2 The two arcs AB and
AB; cross

This integral over the area
ABA|B; = AA|B{MA — ABB1MA

must therefore be zero and as all the elements of the integral are positive, the
arrangement cannot be that from Fig. 1 where the area ABA|B) is convex.

The second scenario must therefore be rejected.

In fact in the triangle ADA;, the distances AD and A;D are very small of nth
order because they are smaller than the arcs AD and A; D, which are smaller than the
arcs AB or A1B; which are of nth order. Furthermore it holds that:

AA; <AD+AD.

The distance AA; would therefore be a very small quantity of nth order which is
contrary to the statement of the theorem.

The third scenario must therefore be rejected.

I state that the fourth scenario cannot be accepted either. Assume in fact for
example that the arc AB crosses the arc AA; at a point A’. Let ANA’ be the portion of
the arc AB which goes from A to A’; let APA’ be the portion of arc AA; which goes
from A to A’.

I state that the arc ANA’B can be replaced by the arc APA’B; and that the new arc
APA’B will be a very small quantity of nth order like the primitive arc ANA’B.

In fact the arc ANA’ is smaller than AB and it is therefore of nth order;

the distance AA’ is therefore itself of nth order; the arc APA’ is smaller than AA,
which is very small—meaning it approaches 0 with p; the arc APA’ is therefore very
small and its curvature is finite; therefore a bound can be assigned to the ratio of the
arc APA’ to its chord AA’; this ratio is finite and AA’ is of nth order; therefore APA’
is of nth order, which was to be proved.

Furthermore the new arc APA’B no longer crosses the arc AA; and it only has a
common portion APA’ with it.

This falls back on the second scenario which was already rejected.
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The first scenario is therefore the only one acceptable and the theorem is
therefore proved.

Remark In the statement of the theorem we have assumed that the arcs AA; and
BB, are very small and that there curvature is finite. In reality we have only made
use of this assumption for showing that if the chord AA’ is very small of nth order, it
is the same for the arc APA’.

The theorem will therefore still be true even if the arc AA; is no longer very
small and its curvature finite, provided that it is possible to assign an upper bound to
the ratio of an arbitrary arc (which is part of AA; or BB;) to its chord.



2 Springer
http://www.springer.com/978-3-319-52898-4

The Three-Body Problem and the Equations of
Dynamics

Poincaré's Foundational Work on Dynamical Systems
Theory

Poincaré, H.

2017, XX, 248 p. 9 illus., Hardcover

ISBM: 978-3-319-52898-4



	2 Theory of Integral Invariants
	1 Various Properties of the Equations of Dynamics
	2 Definitions of Integral Invariants
	3 Transformation of Integral Invariants
	4 Using Integral Invariants


