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Abstract. Information granules are conceptual entities using which experi-
mental data are conveniently described and in the sequel their processing is
realized at the higher level of abstraction. The central problem is concerned with
the design of information granules. We advocate that a principle of justifiable
granularity can be used as a sound vehicle to construct information granules so
that they are (i) experimentally justifiable and (ii) semantically sound. We
elaborate on the algorithmic details when forming information granules of
type-1 and type-2. It is also stressed that the construction of information granule
realized in this way follows a general paradigm of elevation of type of infor-
mation granule, say numeric data (regarded as information granules of type-0)
give rise to information granule of type-1 while experimental evidence coming
as information granules of type-1 leads to the emergence of a single information
granule of type-2. We discuss their direct applications to the area of system
modeling, in particular showing how type-n information granules are used in the
augmentation of numeric models.

Keywords: Granular computing + Information granules - Type and order of
information granules * Principle of justifiable granularity - Coverage * Specificity

1 Introduction

Information granules are omnipresent. They are regarded as a synonym of abstraction.
They support ways of problem solving through problem decomposition. Information
granularity is central to perception and reasoning about complex systems. It also
become essential to numerous pursuits in the realm of analysis and design of intelligent
systems. Granular Computing forms a general conceptual umbrella, which embraces
the well-known constructs including fuzzy sets, rough, sets, intervals and probabilities.

The ultimate objective of the study is to focus on the concepts, roles, and design of
information granules of higher type and higher order. We offer a motivation behind the
emergence of information granules of higher type. As of now, they become quite
visible in the form of type-2 fuzzy sets — these constructs form the current direction of
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intensive research in fuzzy sets, especially at its applied side. Several ways of forming
(designing) information granules are outlined; it is demonstrated that clustering arises
as a general way of transforming data into clusters (information granules). Another
alternative comes in the form of the principle of justifiable granularity, which
emphasizes a formation of information granules as a result of an aggregation of
available experimental evidence and quantification of its diversity.

The structure of the paper reflects a top-down organization of the overall material.
To make the study self-contained, we start with an exposure of the essential prereq-
uisites (Sect. 2). In Sect. 3, we discuss main ways of building information granules;
here the proposed taxonomy embraces a suite of key methods. Section 4 elaborates on
the essence of information granules of higher type and higher order. We present them
both in terms of their conceptual underpinnings and compelling motivating arguments
as well as discuss ways of their construction. In Sect. 5, we focus on the direct usage of
such information granules; it is advocated that the higher type of information granu-
larity is associated with the realization of models, in particular fuzzy models, of
increased experimental relevance.

2 Information Granules and Granular Computing: Essential
Prerequisites

Information granules forming the Granular Computing are conceptual entities that
support all processing realized in this environment. For the completeness of the study,
we briefly recall some principles behind this paradigm.

2.1 Agenda of Granular Computing

Information granules are intuitively appealing and convincing constructs, which play a
pivotal role in human cognitive and decision-making activities. We perceive complex
phenomena by organizing existing knowledge along with available experimental evi-
dence and structuring them in a form of some meaningful, semantically sound entities.
In the sequel, such entities become central to all ensuing processes of describing the
world, reasoning about the surrounding environment and supporting various decision-
making activities. The term information granularity itself has emerged in different
contexts and numerous areas of application. It carries various meanings. One can refer
to Artificial Intelligence in which case information granularity is central to a way of
problem solving through problem decomposition where various subtasks could be
formed and solved individually. In general, as stressed by Zadeh [20], by information
granule one regards a collection of elements drawn together by their closeness (re-
semblance, proximity, functionality, etc.) articulated in terms of some useful spatial,
temporal, or functional relationships. In a nutshell as advocated in [9-13, 18], Granular
Computing is about representing, constructing, processing, and communicating infor-
mation granules.

We can refer here to some areas, which deliver compelling evidence as to the nature
of underlying processing and interpretation in which information granules play a
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pivotal role. The applications include image processing, processing and interpretation of
time series, granulation of time, design of software systems. Information granules are
examples of abstractions. As such, they naturally give rise to hierarchical structures: the
same problem or system can be perceived from different viewpoints and at different
levels of specificity (detail) depending on the complexity of the problem, available
computing resources, and particular needs and tasks to be addressed. A hierarchy of
information granules is inherently visible in processing of information granules. The
level of detail (which is represented in terms of the size of information granules) becomes
an essential facet facilitating a way a hierarchical processing of information positioned at
different levels of hierarchy and indexed by the size of information granules.

Such commonly encountered and simple examples presented above are convincing
enough to highlight several essential features:

(a) information granules are the key components of knowledge representation and
processing,

(b) the level of granularity of information granules (their size, to be more descriptive)
becomes crucial to the problem description and an overall strategy of problem
solving,

(c) hierarchies of information granules support an important aspect of perception of
phenomena and deliver a tangible way of dealing with complexity by focusing on
the most essential facets of the problem and,

(d) there is no universal level of granularity of information; the size of granules
becomes problem-oriented and user dependent.

2.2 The Landscape of Information Granules

There are numerous well-known formal settings in which information granules can be
expressed and processed. Here we identify several commonly encountered conceptual
and algorithmic platform:

Sets (intervals) realize a concept of abstraction by introducing a notion of dichot-
omy: we admit element to belong to a given information granule or to be excluded from
it. Along with set theory comes a well-developed discipline of interval analysis.
Alternatively to an enumeration of elements belonging to a given set, sets are described
by characteristic functions taking on values in {0,1}.

Fuzzy sets provide an important conceptual and algorithmic generalization of sets.
By admitting partial membership of an element to a given information granule we bring
an important feature which makes the concept to be in rapport with reality. It helps
working with the notions where the principle of dichotomy is neither justified nor
advantageous. The description of fuzzy sets is realized in terms of membership func-
tions taking on values in the unit interval. Formally, a fuzzy set A is described by a
membership function mapping the elements of a universe X to the unit interval [0,1].

Shadowed sets [15] offer an interesting description of information granules by dis-
tinguishing among elements, which fully belong to the concept, are excluded from it and
whose belongingness is completely unknown. Formally, these information granules are
described as a mapping X: X — {1, 0, [0,1]} where the elements with the membership
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quantified as the entire [0,cccl] interval are used to describe a shadow of the construct.
Given the nature of the mapping here, shadowed sets can be sought as a granular
description of fuzzy sets where the shadow is used to localize unknown membership
values, which in fuzzy sets are distributed over the entire universe of discourse. Note that
the shadow produces non-numeric descriptors of membership grades.

Probability-oriented information granules are expressed in the form of some
probability density functions or probability functions. They capture a collection of
elements resulting from some experiment. In virtue of the concept of probability, the
granularity of information becomes a manifestation of occurrence of some elements.
For instance, each element of a set comes with a probability density function truncated
to [0,1], which quantifies a degree of membership to the information granule.

Rough sets [7, 8] emphasize a roughness of description of a given concept X when
being realized in terms of the indiscernibility relation provided in advance. The
roughness of the description of X is manifested in terms of its lower and upper
approximations of the resulting rough set.

2.3 Key Characterization of Information Granules

Information granules as being more general constructs as numeric entities, require a
prudent characterization so that their nature can be fully captured. There are two main
characteristics that are considered here.

Coverage
The concept of coverage of information granule, cov(.) is discussed with regard to
some experimental data existing in R", that is{x|, X5,..., xy}. As the name itself

stipulates, coverage is concerned with an ability of information granule to represent
(cover) these data. In general, the larger number of data is being “covered”, the higher
the coverage of the information granule. Formally, the coverage can be sought as a
non-decreasing function of the number of data that are represented by the given
information granule A. Depending upon the nature of information granule, the defi-
nition of cov(A) can be properly refined. For instance, when dealing with a multidi-
mensional interval (hypercube) A, cov(A) in its normalized form is related with the
normalized cardinality of the data belonging to A, cov(A) = - card{x|x; € A}. For
fuzzy sets, the coverage is realized as a G-count of A, where we combine the degrees of

N
membership of x to A, cov(A) =% > A(x).
k=1

Specificity

Intuitively, the specificity relates to a level of abstraction conveyed by the information
granules. The higher the specificity, the lower the level of abstraction. The mono-
tonicity property holds: if for the two information granules A and B one has A C
B (when the inclusion relationship itself is articulated according to the formalism in
which A and B have been formalized) then specificity, sp(.), [16] satisfies the following
inequality: sp(A) > sp(B). Furthermore for a degenerated information granule com-
prising a single element x, we have a boundary condition sp({x(}) = 1. In case of a
one-dimensional interval information granules, one can contemplate expressing
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specificity on a basis of the length of the interval, say sp(A) = exp(—length(A));
obviously the boundary condition specified above holds here. If the range range of the
data is available (it could be easily determined), say, then sp(A) = 1- |b-a|/length
(range) where A = [a, b], range = [mingx;, maxgx].

The realizations of the above definitions can be augmented by some parameters to
offer some additional flexibility. It is intuitively apparent that these two characteristics
are associated: the increase in one of then implies a decrease in another: an information
granule that “covers” a lot of data cannot be overly specific and vice versa. This is not
surprising at all: higher coverage relates to the increasing level of abstraction whereas
higher specificity is about more details being captured by the corresponding infor-
mation granule.

3 Design of Information Granules

Before information granules can be used, they need to be constructed. There is an
urgent need to build to come up with an efficient way of forming them to reflect the
existing experimental evidence and some predefined requirement. Here we recall two
categories of methods. Clustering is the one of them. Clustering techniques transform
data into a finite number of information granules. The second class of methods involves
the principle of justifiable granularity, which directly dwells on the characteristics of
information granules (coverage and specificity) and builds an information granule,
which offers an optimization of these characteristics.

3.1 Fuzzy C-Means — Some Brief Focused Insights

Objective function-based clustering is sought as one of the vehicles to develop infor-
mation granules [1, 17]. In what follows, we briefly recall the essence of the method
and elaborate on the format of the results. We consider a collection of n-dimensional
numeric data zj, 25, ..., Zy. A formation of information granules is realized by mini-
mizing an objective function expressing a spread of data around prototypes (centroids)

c N
Q=" "l —wilP (1)

i=1 k=1

where ¢ stands for the number of clusters (information granules). The description of the
clusters is provided in the form of a family of prototypes vy, v», .., v.. defined in the data
space and a partition matrix U = [uy], i =1, 2..., c; k= 1,2,..., N, m > 1. It is worth
noting that the above-stated objective function is the same as being used in the Fuzzy
C-Means (FCM) [1] however in the context of our discussion one could consider other
forms of information granules. Note that in the FCM algorithm, the individual rows of
the partition matrix are discrete membership functions of the information granules
expressed by means of fuzzy sets. In this case, the parameter m standing in the above
expression is referred to as a fuzzification coefficient. If one considers sets rather than
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fuzzy sets, one arrives at the Boolean partition matrix and the method comes as the
K-Means algorithm. There are generalizations of the method engaging fuzzy sets of
type-2 [2] or rough sets [5, 6].

There are two fundamental design issues that are inherently associated with fuzzy
clustering (and clustering, in general) that is (a) a choice of the number of clusters and a
selection of the value of the fuzzification coefficient (m), and (b) evaluation of the
quality of the constructed clusters and interpretation of results. This task, which is
highly relevant when dealing with the optimization of the parameters of the clustering
algorithm, implies the usefulness of the clustering results used afterwards in fuzzy
modeling and fuzzy classification. Various cluster validity indexes [17, 19] are used to
assess the suitability of fuzzy clusters. Different cluster validity indexes can lead to
quite distinct results. This is not surprising as each cluster validity index comes with
some underlying rationale and in this way prefers a certain structure of clusters (and
their ensuing number). On the other hand, a reconstruction criterion [14], emphasizes
the quality of clusters being sought as information granules. The criterion is concerned
with the evaluation of the quality of information granules (clusters) to describe the data.
In essence, one described the available data in terms of information granules (clusters)
and then using this characterization decodes (de-granulates) the original data. This
transformation, referred to as a granulation-degranulation process leads to inevitable
loses which are quantified in terms of a reconstruction error. The value of the error
becomes minimized by optimizing the values of the key parameters of the clustering
method (such as the fuzzification coefficient m and the number of clusters ¢). Crucial to
the discovery of the structure is the data is a data space in which the clustering takes
place.

3.2 The Principle of Justifiable Granularity

The principle of justifiable granularity [10, 12] delivers a comprehensive conceptual
and algorithmic setting to develop an information granule. The principle is general as it
shows a way of forming information granule without being restricted to certain for-
malism in which information granularity is expressed and a way experimental evidence
using which this information granule comes from. For illustrative purposes, we con-
sider a simple scenario. Let us denote one-dimensional numeric data of interest (for
which an information granule is to be formed) by Z = {z;, 25, ..., Zy}. Denote the
largest and the smallest element in Z by z,i, and z,,,4,, respectively. On a basis of Z we
are form an information granule A so that it attempts to satisfy two intuitively
requirements of coverage and specificity. The first one implies that the information
granule is justifiable, viz. it embraces (covers) as many elements of Z as possible. The
second one is to assure that the constructed information granule exhibits a well-defined
semantics by being specific enough. For instance, when constructing a fuzzy set, say a
one with a triangular membership function, we start with a numeric representative of Z,
say a mean or a modal value (denoted here by m) and then separately determine the
lower bound (a) and the upper bound (b). In case of an interval A, we start with a modal
value and then determine the lower and upper bound, Fig. 1.
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(a) (b)

Fig. 1. Formation of information granules with the use of the principle of justifiable granularity:
(a) triangular membership function, (b) interval (characteristic function). The design is realized
by moving around the bounds @ and b so that a certain optimization criterion is maximized

The construction of the bounds is realized in the same manner for the lower and
upper bound so in what follows we describe only a way of optimizing the upper bound
(b). The coverage criterion is expressed as follows

cov(A) = Z flz) (2)

2%z €[m,b]

where f is a decreasing linear portion of the membership function. For an interval
(set) form of A, the coverage is expressed as a normalized count of the number of data
included in the interval [m, b],

cov(A) = card{z|z € [m,b]} (3)

The above coverage requirement states that we reward the inclusion of z; in A. The
specificity sp(A) is realized as one of those specified in the previous section. As we
intend to maximize coverage and specificity and these two criteria are in conflict, an
optimal value of b is the one, which maximizes the product of the two requirements

Q(b) = cov(A) * sp(A)! (4)

Furthermore the optimization performance index is augmented by an additional
parameter v used in the determination of the specificity criterion, sp(A)” and assuming
non-negative values. It helps control an impact of the specificity in the formation of the
information granule. The higher the value of 7y, the more essential the impact of
specificity on A becomes. If y is set to zero, the only criterion of interest is the
coverage. Higher values of y underline the importance of specificity as a resulting
A gets more specific. The result of optimization comes in the form b, = arg max,
Q(b). The optimization of the lower bound of the fuzzy set (a) is carried out in an
analogous way as above yielding a,, = arg Max Q(a).

Several observations are worth making here. First, the approach exhibits a general
character and the principle is applicable to any formalism of information granules; here
we just highlighted the case of sets and fuzzy sets. Second, it is visible that a single
information granule represents a collection of many experimental data in a compact
form.
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4 Higher Type and Higher Order Information Granules

Information granules we discussed so far come with an inherent numeric description:
intervals are described by two numeric bounds (a and b), fuzzy sets are described by
numeric membership functions, probability functions (probability density functions)
are numeric mappings. One may argue whether such a request is meaningful and does
not create any restriction. In particular, with regard to fuzzy sets, this was a point of a
visible criticism in the past: what is fuzzy about fuzzy sets? Obviously, the same issue
could be formulated with respect to sets or probabilities. There are some interesting
generalizations of information granules in which this type of requirement can be
relaxed. This gives rise to the concept of information granules of type-2, type-3, and
type-n, in general etc. The other direction of generalization deals with the nature of the
space over which information granules are formed, which leads to information granules
of higher order.

4.1 Higher Type Information Granules

By information granules of higher type (2™ type and n™ type, in general) we mean
granules in the description of whose we use information granules rather than numeric
entities. For instance, in case of type-2 fuzzy sets we are concerned with information
granules- fuzzy sets whose membership functions are granular. As a result, we can talk
about interval-valued fuzzy sets, fuzzy fuzzy sets (or fuzzy® sets, for brief), proba-
bilistic sets, uncertain probability, and alike. The grades of belongingness are then
intervals in [0,1], fuzzy sets with support in [0,1], probability functions truncated to
[0,1], etc. In case of type-2 intervals we have intervals whose bounds are not numbers
but information granules and as such can be expressed in the form of intervals
themselves, fuzzy sets, rough sets or probability density functions. Information gran-
ules have been encountered in numerous studies reported in the literature; in particular
stemming from the area of fuzzy clustering in which fuzzy clusters of type-2 have been
investigated [2] or they are used to better characterize a structure in the data and could
be based upon the existing clusters. Fuzzy sets and interval-valued fuzzy sets form an
intensive direction of research producing a number of approaches, algorithms, and
application studies.

The development of information granules of higher type can be formed on a basis
of information granules of lower type. The principle of justifiable granularity plays here
a pivotal role as it realizes an elevation of type of information granularity. Refer to the
discussion in the previous section. We started with experimental evidence formed by a
collection of numeric data (viz. information granules of type-0) and form a single
information granule of type-1. There is an apparent effect of elevation of the type of
information granularity. If the available experimental evidence comes as information
granules of type-1 then the result becomes an information granule of type-2. Likewise,
if we start with a collection of type-2 information granules forming experimental
evidence, the result becomes an information granule of type-3, etc. In particular, the
principle of justifiable granularity can be regarded as a vehicle to construct type-2 fuzzy
sets.
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4.2 Higher Order Information Granules

Information granules, which are defined in the space (universe of discourse) whose
elements are individual items, are called information granules of order-1. If the space
itself is formed as a collection of information granules then any information granule
defined over a space of information granules is referred to as information granules of
order-2. The constructs could formed recursively thus forming information granules of
order-3, 4, etc. It is worth noting that one can envision information granules of higher
order and higher type.

The four alternatives that might arise here are displayed below, see Fig. 2. They
capture the semantics of the resulting constructs.

type-1 type-2
: A: X — P([0,1
order-1 A: X —[0,1] ,4./1/—>Fg0 IB
X={x,x,.1} ‘ g
n X ={r,v,,..x}
A:A—-10,]1] A4:4— 7(0,1])
order-2 A={R.R...R) A: A~ F([0,1])
A={R.R,..R}

Fig. 2. Examples of four categories of information granules of type-2 and order-2; P, F- families
of intervals and fuzzy sets, respectively; A = {R;, R,, ..., R.}- a collection of reference
information granules

5 Selected Application Areas

In this section, we elaborate on several applications of information granules of higher
type and higher order.

5.1 Fuzzy Modeling

The involvement of fuzzy sets of higher type, in particular type-2 fuzzy sets and
interval-valued fuzzy sets have triggered a new direction in fuzzy modeling. A general
motivation behind these models relates with the elevated generality of the concepts of
fuzzy sets of higher type, which translates into a higher flexibility of type-2 fuzzy
models. While this argument is valid, there are a number of ongoing challenges. This
concerns an increase of complexity of the development schemes of such fuzzy models.
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A significantly larger number of their parameters (in comparison with the previously
considered fuzzy models) require more elaborate estimation mechanisms. This has
immediately resulted in essential optimization challenges (which owing to the
engagement of more advance population-based optimization tools have been overcome
to some extent but at expense of intensive computing). At the end, type-2 fuzzy models
are assessed as numeric constructs with the chain of transformations: type reduction
(from type-2 to type-1) followed by defuzzification (reduction from type-1 to type-0
information granules, viz. numbers) thus resulting in a numeric construct.

Ironically, in spite of all significant progress being observed, fuzzy models seem to
start losing identity, which was more articulated and visible at the very early days of
fuzzy sets. While one may argue otherwise, there is a visible identity crisis: at the end
of the day fuzzy models have been predominantly perceived and evaluated as numeric
constructs with the quality expressed at numeric level (through accuracy measures).

5.2 Embedding Fuzzy Models: A Granular Parameter Space Approach

The concept of the granular models form a generalization of numeric models no matter
what their architecture and a way of their construction are. In this sense, the concep-
tualization offered here are of general nature. They also hold for any formalism of
information granules. A numeric model M, constructed on a basis of a collection of
training data (x;, targety), x; € R" and target;, € R comes with a collection of its
parameters @,y Where a € R”. Quite commonly, the estimation of the parameters is
realized by minimizing a certain performance index Q (say, a sum of squared error
between target;, and M(x,)), namely aqp = arg Min, Q(a). To compensate for inevi-
table errors of the model (as the values of the index Q are never equal identically to
zero), we make the parameters of the model information granules, resulting in a vector of
information granules A = [A; A,... A,] built around original numeric values of the
parameters a. In other words, the fuzzy model is embedded in the granular parameter
space. The elements of the vector a are generalized, the model becomes granular and
subsequently the results produced by them are information granules. Formally speaking,
we have

— granulation of parameters of the model A = G(a) where G stands for the mecha-
nisms of forming information granules, viz. building an information granule around
the numeric parameter

— result of the granular model for any x producing the corresponding information
granule Y, Y = M (x, A) = G(My(x)) = My(x, G(a)).

Information granulation is regarded as an essential design asset [10]. By making the
results of the model granular (and more abstract in this manner), we realize a better
alignment of G(M,) with the data. Intuitively, we envision that the output of the
granular model “covers” the corresponding target. Formally, let cov(target, Y) denote a
certain coverage predicate (either Boolean or multivalued) quantifying an extent to
which target is included (covered) in Y.

The design asset is supplied in the form of a certain allowable level of information
granularity € which is a certain non-negative parameter being provided in advance.
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We allocate (distribute) the design asset across the parameters of the model so that the
coverage measure is maximized while the overall level of information granularity
serves as a constraint to be satisfied when allocating information granularity across the

P
model, namely Y ¢ = e The constraint-based optimization problem reads as follows
i—1

N

Y,
slglffs,, ; cov(target;, € Yx)

subject to

P
Zai: eand ¢ >0 (5)
i=1

The monotonicity property of the coverage measure is obvious: the higher the
values of e, the higher the resulting coverage. Hence the coverage is a non-decreasing
function of «.

Along with the coverage criterion, one can also consider the specificity of the
produced information granules. It is a non-increasing function of e. The more general
form of the optimization problem can be established by engaging the two criteria
leading to the two-objective optimization problem. The problem can be re-structured in
the following form in which the objective function is a product of the coverage and
specificity-determine optimal allocation of information granularity [g; &,,..., €,] so that
the coverage and specificity criteria become maximized.

Plotting these two characteristics in the coverage—specificity coordinates offers a
useful visual display of the nature of the granular model and possible behavior of the
behavior of the granular model as well as the original model. There are different
patterns of the changes between coverage and specificity. The curve may exhibit a
monotonic change with regard to the changes in e and could be approximated by some
linear function. There might be some regions of some slow changes of the specificity
with the increase of coverage with some points at which there is a substantial drop of
the specificity values. A careful inspection of these characteristics helps determine a
suitable value of € — any further increase beyond this limit might not be beneficial as no
significant gain of coverage is observed however the drop in the specificity compro-
mises the quality of the granular model.

The global behavior of the granular model can be assessed in a global fashion by
computing an area under curve (AUC) of the coverage-specificity curve. Obviously, the
higher the AUC value, the better the granular model. The AUC value can be treated as
an indicator of the global performance of the original numeric model produced when
assessing granular constructs built on their basis. For instance, the quality of the
original numeric models M, and M;’ could differ quite marginally but the corre-
sponding values of their AUC could vary quite substantially by telling apart these two
models. For instance, two neural networks of quite similar topology may exhibit similar
performance however when forming their granular generalizations, those could differ
quite substantially in terms of the resulting values of the AUC.
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As to the allocation of information granularity, the maximized coverage can be
realized with regard to various alternatives as far as the data are concerned: (a) the use
of the same training data as originally used in the construction of the model, (b) use the
testing data, and (c) usage of some auxiliary data.

5.3 Granular Input Spaces in Fuzzy Modeling

The underlying rationale behind emergence of granular input spaces deals with an
ability to capture and formalize the problem at the higher level of abstraction by
adopting a granular view of the input space in which supporting system modeling and
model construction are located. Granulation of input spaces is well motivated and often
implied by the computing economy or a flexibility and convenience they offer to they
offer when capturing the. Here we would like to highlight some illustrative examples,
especially those commonly visible in some temporal or spatial domains.

Granular input spaces deliver an important, unique, and efficient design setting for
the construction and usage of fuzzy models: (i) information granulation of a large
number of data (in case of streams of data) leads to a far smaller and semantically
sound entities facilitating and accelerating the design of fuzzy models, and (ii) the
results of fuzzy modeling are conveyed at a suitable level of specificity suitable for
solving a given problem. In the sequel, information granules used to construct a model,
viz. a mapping between input and output information granules.

5.4 Rule-Based Models and Their Augmentation with Schemes
of Allocation of Information Granularity

Functional rules (Takagi-Sugeno format of the conditional statements) link any input
space with the corresponding local model whose relevance is confided to the region of
the input space determined by the fuzzy set standing in the input space (A;). The local
character of the conclusion makes an overall development of the fuzzy model well
justified: we fully adhere to the modular modeling of complex relationships. The local
models (conclusions) could vary in their diversity; in particular local models in the
form of constant functions (m;) are of interest

- if xis A; thenyis m; (6)

These models are equivalent to those produced by the Mamdani-like rules with a
weighted scheme of decoding (defuzzification). There has been a plethora of design
approaches to the construction of rule-based models, cf. [3, 4].

Information granularity emerges in fuzzy models in several ways by being present
in the condition parts of the rules, their conclusion parts and both. In a concise way, we
can describe this in the following way (below the symbol G(.) underlines the granular
expansion of the fuzzy set construct abstracted from their detailed numeric realization
or a granular expansion of the numeric mapping).
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(1) Information granularity associated with the conditions of the rules. We consider
the rules coming in the format

- if G(A;) then f; (7)

where G(4;) is the information granule forming the condition part of the i-th rule.
An example of the rule coming in this format is the one where the condition is
described in terms of a certain interval-valued fuzzy set or type-2 fuzzy set, G
(A

(1) Information granularity associated with the conclusion part of the rules. Here
the rules take on the following form

- if xis A; then G(f;) (8)

with G(f;) being the granular local function. The numeric mapping f; is made
more abstract by admitting their parameters being information granules. For
instance, instead of the numeric linear function f;, we consider G(f;) where G(f;)
is endowed with parameters regarded as intervals or fuzzy numbers. In this way,
we have fi{(Ao, Ay, ..., A,) = A + Ajxy + ... Ajx, with the algebraic operations
carried out on information granules (in particular adhering to the algebra of fuzzy
numbers).

(iii) Information granularity associated with the condition and conclusion parts of
the rules. This forms a general version of the granular model and subsumes the
two situations listed above. The rules read now as follows

- if G(A;)then G(f)) 9)

The augmented expression for the computations of the output of the model
generalizes the expression used in the description of the fuzzy models (8). We
have

Y= (Gx) 9 G() (10)
i;Dl

where the algebraic operations shown in circles © and @ reflect that the arguments are
information granules instead of numbers (say, fuzzy numbers). The detailed calcula-
tions depend upon the formalism of information granules being considered. Let us
stress that Y is an information granule. Obviously, the aggregation presented by (10)
applies to (i) and (ii) as well; here we have some simplifications of the above stated
formula.

There are no perfect models. Information granularity augmenting existing
(numeric) models results in a granular model and makes it more in rapport with reality.
In a general way, we can think of a certain general way of forming a granular model at
successively higher levels of abstraction. Subsequently the representation (model) of a
real system S can be symbolically described through the following relationship
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SxMa&GM)SG(M)e...aG (M) (11)

where the symbols M, G(M), G*(M), ... G'(M) stand for an original (numeric) model,
granular model built with the use of information granules of type-1, G(M), granular
model realized with the use of information granules of type-2, G*(M)..., and infor-
mation granules of type-¢, etc. The symbol is used to denote the enhancements of the
modeling construct aimed to model S. The models formed in this way are displayed in
Fig. 3.

2
GOV G" M)

Fig. 3. A hierarchy of granular models: from numeric constructs to granular models with
information granules of higher type

Noticeable is the fact that successive enhancements of the model emerge at the
higher level of abstraction engaging information granules of the increasing type.

6 Conclusions

In the study, we have presented a general framework of Granular Computing and
elaborated on their generalizations coming in the form of information granules of
higher type and higher order. We offered a brief overview of fuzzy rule-based models
and demonstrated that in light of new challenging modeling environments, there is a
strongly motivated emergence of granular fuzzy models where the concept of infor-
mation granularity and information granules of higher type/order play a pivotal role.
The fundamentals of Granular Computing such as the principle of justifiable granu-
larity and an optimal allocation of information granularity are instrumental in the
construction of the granular models.
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