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Abstract A key challenge faced by large-scale computing platforms to go green

is the effective utilization of energy at the various processing nodes. Most existing

scheduling models assume that processors are able to stay online forever. In reality,

processors, however, may have arbitrary unavailable time periods. Hence, if we inad-

vertently assign tasks to processors without considering the availability constraints,

some processors would not be able to finish their assigned workloads. Thus all the

unfinished workloads need to be reassigned to other available processors resulting in

an inefficient time and energy schedule. In this chapter, we propose a novel proces-
sor availability-aware divisible-load scheduling model. Using this model, we design

a time-efficient genetic algorithm based global optimization technique to derive an

optimal load distribution strategy. Our experimental results show that the proposed

algorithm adapts to minimize the processing time, hence the energy consumption

too, by over 60% compared to other strategies.

Keywords Divisible load ⋅ Release time ⋅ Off-line time ⋅ Load distribution ⋅
Processor availability

1 Introduction

Modern large-scale computing platforms, such as networked computing systems and

cloud computing, have imminent need to go green since they are severely constrained

by energy related issues [1]. This is predominantly due to their heavy utilization of

power and cooling resources which results in rapid energy consumption which in turn
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imparts large carbon footprints on the environment [2]. Emerging sustainable com-

puting technologies, which primarily aim at reducing massive energy consumption

by developing certain ab initio computational and mathematical models, methods,

and tools for resource allocation and task scheduling, are therefore gain significant

interest to researchers and practitioners.

One of the key techniques to save energy is Dynamic Voltage Scaling (DVS).

It exploits the hardware characteristics to save energy by degrading CPU voltage

and operating frequency while keeping the processor to operate at a slow speed [3].

During the past decades, substantial energy-efficient scheduling strategies have been

proposed for DVS-enabled systems [4–7]. These DVS-based techniques, however,

may not applicable to virtualized environments where physical processors are shared

by multiple virtual machines (VMs) as lowering the supply voltage will inadver-

tently affect the performance of VMs belonging to different applications [8]. Another

promising approach to conserve energy is turning off idle computing nodes in a data

center by packing the running VMs to as few physical servers as possible, often

called VM consolidation [9]. However, live VM migration must be guaranteed and

resources must be properly allocated in order to avoid severe performance degrada-

tion due to resource competition by co-located VMs. There are a large amount of

studies on the migration strategies, concerning the issues of where, when, and how

a VM should be migrated [10–13]. At the current stage, several management issues

about VM consolidation still deserve additional investigations. For example, trans-

ferring large-sized data over the shared network link is a huge challenge, especially

when several goals in terms of Service-Level Agreement (SLA) violation avoid-

ance, minimum communication delay, high system throughput, and high quality of

services have to meet [14].

While significant advancements have been made to minimize the energy con-

sumption for sustainable computing, even stronger effort is needed to promote the

effective utilization of energy at the various processing nodes. By “effective uti-

lization” we mean that efforts need to be devoted to making compute platforms not

just minimizing the energy consumption but also to make every amount of energy

consumed for workload computation worthwhile. This is based on the fact that the

actual energy consumed for workload computation might not be equal to the energy

that is required for workload computation. For example, most existing scheduling

models assume that the compute units, which are processors, are able to stay online

and available forever. That is to say, it assumes that all processors remain idle at

the beginning of the workload assignment and that they will be kept busy until the

assigned workload fractions are completed. In reality, processors, however, may have

arbitrary unavailable time periods. They may still be busy computing any previous

workload even when a new workload arrives and may even get off-line before fin-

ish computing the currently assigned load. The time period between release time

and off-line time of a processor is referred to as its available time period. Hence, if

we inadvertently assign tasks to processors according to their computational capa-

bilities without taking into account of the availability constraints, some processors

would not be able to finish their assigned workloads. Thus all of the unfinished work-

loads need to be reassigned to other available processors resulting in an inefficient
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time and energy schedule. Therefore, designing an efficient load distribution strategy

seems appropriate when one considers resource (processor) available times.

It is believed that workloads to be scheduled on Heterogenous Sustainable Com-

puting Systems (HSCS) are quite large in size and possess computationally intensive

CPU requirements; otherwise, one or a few processors should be enough for work-

load computation. Also, workloads should be partitionable so that they can simply

be further divided into a number of load fractions and distributed to processors for

independently parallel computing. Ideally, if a workload can be divided into an arbi-

trary number of load fractions such that there are no precedence relationships among

these fractions, then we refer to it as a divisible load [15]. Actually, divisible loads

exist in widely multiple real-world applications, such as real-time video encoding

[16, 17], satellite image classification [18], signature searching in a networked col-

lection of files [19], and so on. It may be noted that divisible load modelling can also

be adopted for modern day Big Data processing when the requirements of processing

demand homogeneous processing on the data.

There are considerable studies available on finding an optimal load distribution

strategy for scheduling large-scale divisible loads on various distributed networks

with different topologies, including linear networks [20], bus networks [21], tree

networks [22], Gaussian, mesh, torus networks [23], and complete b-Ary tree net-

works [24]. Generally, a load distribution strategy involves two main issues—one in

deriving optimal sizes of the workloads to the processors, referred to as an optimal

load partition (OLP), and the other is to determine a viable sequence of distribution

that achieves minimum processing time, referred to as an optimal load distribution

sequence (OLDS).

As for the first issue, in order to obtain a minimized processing time, it is nec-

essary and sufficient to require that all processors stop computing at the same time

instant; otherwise, the processing time of the entire workload could be reduced by

transferring some load fractions from busy to idle processors. This widely accepted

principle in Divisible-Load Theory (DLT) is referred to as the optimality principle,

which provides a key to derive a closed-form solution for OLP [25]. However, as

mentioned earlier, processors may have arbitrary unavailable time periods in real-

ity. Hence, we could not inadvertently assign tasks to processors according to the

optimality principle as usual; otherwise, workload rescheduling would result in an

inefficient time and energy schedule. Therefore, searching for an OLP is necessary

for sustainable computing where processor available time periods are involved.

As for the second issue, sufficient evidence has shown that load distribution

sequences play a significant role in computational performance. For heterogeneous

single-level tree networks, it has been proven that only when the load distribution

sequence follows the decreasing order of communication speeds does the processing

time reach the minimum [26]. As regard to heterogeneous multi-level tree networks,

the OLDS depends only on communication speeds of links but not on computation

speeds of processors [27]. Nonetheless, the above studies did not consider start-up

overheads for both communication and computation into consideration. For the case

of homogenous bus networks with start-up overheads, it was shown that the process-

ing time is minimized when the load distribution sequence follows the order in which
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the computation speeds of processors decrease [28]. For a large enough workload

on heterogeneous single-level tree networks with arbitrary start-up overheads, the

sequence of load distribution should follow the decreasing order of the communi-

cation speeds in order to achieve minimum processing time [29], but how large a

workload should be to consider it as a large enough workload. Moreover, when we

consider processor available time periods, does the above conclusion still hold? If

not, what sequence does the load distribution should follow to achieve a minimum

processing time?

As regard to processor release times alone, several load distribution strategies

were proposed for bus networks [30], linear daisy chain networks [31], and single-

level tree networks [32], but they did not take start-up overheads and the influence of

load distribution sequence into consideration. In order to obtain an OLP and OLDS

simultaneously on single-level tree networks with arbitrary processor release times,

a bi-level genetic algorithmwas proposed in [33]. The proposed algorithm comprises

two layers of nested genetic algorithms, with the upper genetic algorithm applied for

searching an OLDS and the lower algorithm utilized for finding an OLP. However,

as the number of processors increases, the proposed bi-level genetic algorithm gets

hard to converge. In order to obtain an accurate OLP, an exhaustive search algorithm

was proposed in [34] for release-time aware divisible-load scheduling on bus net-

works, but it did not consider processor off-line times and the influence of OLDS on

processing time.

In this chapter, both processor release times and off-line times are explicitly con-

sidered in our model, which brings the work more closer to reality. This schedul-

ing problem at hand is complex owing to an inherent nature of the computing plat-

form which could possibly comprise heterogeneous processors. We propose a novel

Processor Availability-Aware Genetic Algorithm (PAA-GA) based global optimiza-

tion strategy to minimize the processing time of the entire workload, thus reducing

the total energy consumption too, on HSCS.

The remaining of this chapter is organized as follows. Section 2 firstly gives a

mathematical description of the divisible-load scheduling problem on HSCS with

arbitrary start-up overheads and processor available time periods, followed by the

proposed availability-aware scheduling model. With this model, we accordingly

design algorithm PAA-GA in Sect. 3, which will be evaluated through experiments

in Sect. 4. In the last section, conclusions are obtainable.

2 Availability-Aware Scheduling Model

2.1 Problem Description

An HSCS is considered in this chapter with its topology given in Fig. 1. It com-

prises N + 1 Heterogeneous processors {P0,P1,… ,PN} connected through com-

munication links {L1,L2,⋯ ,LN}, where P0 signifies the master, while the others
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Fig. 1 An HSCS with

N + 1 heterogeneous

processors connected in a

single-level tree topology

denote worker processors. P0 does not participate in computation itself but merely

takes the responsibility of assigning loads to worker processors. P0 firstly divides

the entire workload Wtotal into N fractions ⃗A = (𝛼1, 𝛼2,… , 𝛼N) with 0 ≤ ai ≤ Wtotal
and

∑N
i=1 𝛼i = Wtotal. Then the load fractions are assigned to worker processors in

a certain distribution order (P
𝜎1
,P

𝜎2
,… ,P

𝜎N
), where 𝜎⃗ = (𝜎1, 𝜎2,… , 𝜎N) is proces-

sor index which is a permutation of (1, 2,… ,N) and 𝛼i is assigned to processor P
𝜎i

with i = 1, 2,… ,N. P0 sends load fraction to only one processor at a time and each

worker starts computing after its entire load fraction has been received completely.

Workers cannot communicate and compute simultaneously.

It is necessary to note that, not all worker processors have necessity to participate

in workload computation. Suppose that only the first n processors P
𝜎1
,P

𝜎2
,… ,P

𝜎n
in the distribution sequence are needed for workload computation, so they will be

assigned with non-zero load fractions, that is, 𝛼i > 0 with i = 1,… , n, while the

remaining processors are not assigned with any load fractions, that is, for i = n +
1,… ,N, 𝛼i = 0.

We consider a heterogeneous system wherein we have, for ∀i ≠ j, wi ≠ wj and

gi ≠ gj. Also, it is assumed that communication speeds are much faster than compu-

tation speeds; otherwise, only one or two processors should be enough to involve in

the workload computation [35]. As P0 assigns 𝛼i to the i-th processor P
𝜎i

in the load

distribution sequence, the communication and computation components are mod-

elled as affine functions, given by e
𝜎i
+ g

𝜎i
𝛼i and f

𝜎i
+ w

𝜎i
𝛼i, including communica-

tion and computation start-up overheads e
𝜎i

and f
𝜎i

associated with processor P
𝜎i

and

link L
𝜎i

, respectively.

Some processors in our system may be engaged in any of the previous workload

computation when a new load arrives, say at time t = 0, so they cannot participate for

the newly arrived workload computation until their release times. Meanwhile, they

have to finish computing their assigned load fractions before they arrive at their off-

line times. It is assumed that processors can estimate their release times by the size of

the current workload to process, and the master knows the release and off-line times

of all processors. Even though the master does not know the accurate processor off-

line times, there exist some prediction techniques to estimate an approximate off-line

time for each processor based on a history of processor usage (for more information,

please refer to [36–38]). Let ri and oi be the release time and off-line time of processor

Pi respectively, where i = 1, 2,… ,N.
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Fig. 2 Gantt chart for load scheduling on HSCS with processor available times

Figure 2 shows a possible Gantt Chart for load scheduling on HSCS with proces-

sor release times and off-line times. As illustrated in Fig. 2, the first processor P
𝜎1

starts to receive load fraction 𝛼1 from master P0 when it gets released at time

t = r
𝜎1

. Let si be the start time of processor P
𝜎i

, at which P
𝜎i

starts to receive

load fraction 𝛼i from P0. Thus s1 = r
𝜎1

. Except for P
𝜎1

, the start time si of proces-

sor P
𝜎i

depends not only on its release time r
𝜎i

, but also on the start time si−1 of

processor P
𝜎i−1

and the communication time (e
𝜎i−1

+ g
𝜎i−1

𝛼i−1) taken by processor

P
𝜎i−1

to receive its load fraction 𝛼i−1 from P0. By observing Fig. 2, we obtain that

si = max
{
r
𝜎i
, si−1 + e

𝜎i−1
+ g

𝜎i−1
𝛼i−1

}
, where i = 2, 3,… , n.

According to the optimality principle of DLT, if processor off-line times are

ignored, all processors should finish computing at the same time to obtain a min-

imized processing time, say at time t = T⋆

. Once we consider off-line times, proces-

sors whose off-line times are smaller than T⋆

will not be able to finish their assigned

load fractions. Hence, lest these load fractions be rescheduled and result in a waste

of energy consumption, processors should be assigned with appropriate workload

sizes according to their available time periods in the first place.

The processing time Ti of processor P
𝜎i

is given by si + e
𝜎i
+ f

𝜎i
+
(
g
𝜎i
+ w

𝜎i

)
𝛼i,

where i = 1, 2,… , n. It can be observed from the formulation that Ti depends directly

on two parts: the former part si indicating when processor P
𝜎i

starts to receive load

from P0, and the latter part
(
e
𝜎i
+ f

𝜎i
+
(
g
𝜎i
+ w

𝜎i

)
𝛼i
)

representing how long it takes

for processor P
𝜎i

to finish computing its assigned load fraction. Both parts are deter-

mined directly by load partition ⃗A = {𝛼1, 𝛼2,… , 𝛼N} and load distribution sequence
(
P
𝜎1
,P

𝜎2
,… ,P

𝜎N

)
. Hence, Ti is actually a function of 𝜎⃗ and ⃗A. As the processing

time T of the entire workload lies upon the processor which stops computing the last,
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T can be derived as a function of 𝜎⃗ and ⃗A as follows.

T(𝜎⃗, ⃗A) = max
1≤i≤n

Ti = max
1≤i≤n

{
si + e

𝜎i
+ f

𝜎i
+
(
g
𝜎i
+ w

𝜎i

)
𝛼i
}
.

The objective of divisible-load scheduling on HSCS is to minimize the processing

time T of the entire workload by taking into account processor available time periods,

so that every amount of energy is consumed for useful workload computation without

wasting, thus reducing the total energy consumption to the utmost. To achieve this

goal, one has to determine an optimal load distribution strategy, including an OLDS

and OLP. A feasible load distribution strategy should subject to the following four

constraints:

(1) Workload Constraint: Each load fraction should be non-negative and not larger

than the entire workload, the sum of which is equal to the entire workload. That

is to say, 0 ≤ 𝛼i ≤ Wtotal with i = 1,… ,N, and
∑N

i=1 𝛼i = Wtotal.

(2) Processor Constraint: A load distribution sequence should contain exactly

one instance of a processor, without any omission or duplication of a proces-

sor or processors. That is, 𝜎⃗ =
(
𝜎1, 𝜎2,… , 𝜎N

)
, where 𝜎i ∈ {1, 2,… ,N} with

i = 1, 2,… ,N; for ∀j, k ∈ {1, 2,… ,N}, if j ≠ k, then 𝜎j ≠ 𝜎k.

(3) Participant Constraint: Not all processors are needed for workload compu-

tation. Assuming that only the first n (n ≤ N) processors in the distribution

sequence are required, we have 𝛼i > 0 with i = 1, 2,… , n, while 𝛼i = 0 when

i = n + 1,… ,N.

(4) Off-Line Time Constraint: Processors involved in workload computation

should stop computing before their off-line time come. That is, Ti = si + e
𝜎i
+

(g
𝜎i
+ w

𝜎i
)𝛼i + f

𝜎i
≤ o

𝜎i
with i = 1,… , n.

2.2 A Novel Scheduling Model for Sustainable Computing

Table 1 briefly summarizes related notations and corresponding definitions. In order

to solve the scheduling problem mentioned in the previous section, we build a novel

processor availability-aware divisible-load scheduling model as follows:

min
𝜎⃗,

⃗A
T(𝜎⃗, ⃗A) = min

𝜎⃗,
⃗A

{

max
1≤i≤n

{
si + e

𝜎i
+ f

𝜎i
+
(
g
𝜎i
+ w

𝜎i

)
𝛼i
}
}

.

s.t.

(1)
∑N

i=1 𝛼i = Wtotal, 0 ≤ 𝛼i ≤ Wtotal, i = 1,… ,N.

(2) 𝜎⃗ =
(
𝜎1, 𝜎2,… , 𝜎N

)
, where 𝜎i ∈ {1, 2,… ,N} and i = 1, 2,… ,N. ∀j, k ∈ {1, 2,

… ,N}, if j ≠ k, then 𝜎j ≠ 𝜎k.

(3) n ≤ N; ∀i ∈ {1, 2,… , n}, 𝛼i > 0, while ∀i ∈ {n + 1,… ,N}, 𝛼i = 0.

(4) si + e
𝜎i
+
(
g
𝜎i
+ w

𝜎i

)
𝛼i + f

𝜎i
≤ o

𝜎i
, i = 1,… , n.
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Table 1 Notations and definitions

Notations Definitions

Wtotal Total size of the entire workload

N Total number of worker processors

n Number of processors required for workload computation

ei Communication start-up overhead of link Li
fi Computation start-up overhead of processor Pi

gi Ratio of time taken by link Li to communicate a given workload to that by a

standard link

wi Ratio of time taken by processor Pi to compute a given workload to that by a

standard processor

𝜎⃗ Processor index used for representing load distribution sequences.

𝜎⃗ = (𝜎1, 𝜎2,… , 𝜎N ) is a permutation of (1, 2,… ,N)
ri Release time of processor Pi

oi Off-line time of processor Pi

si Start time of the i-th processor P
𝜎i

in the distribution sequence

⃗A Load partition scheme. ⃗A = {𝛼1, 𝛼2,… , 𝛼N} with each element 𝛼i representing the

size of load fraction assigned to the i-th processor P
𝜎i

in the distribution sequence

T Processing time of the entire workload

Ti Processing time of the i-th processor P
𝜎i

in the distribution sequence

where

(5) n = card({𝛼i | 𝛼i ∈ ⃗A and 𝛼i > 0}), where card(X) denotes the number of ele-

ments in set X.

(6) si =

{
r1, i = 1;
max{r

𝜎i
, si−1 + e

𝜎i−1
+ g

𝜎i−1
𝛼i−1}, i = 2, 3,… , n.

3 Algorithm PAA-GA Based Global Optimization Strategy

In the proposed model, two sets of variables are involved: ⃗A = {𝛼1, 𝛼2,… , 𝛼N} and

𝜎⃗ =
(
𝜎1, 𝜎2,… , 𝜎N

)
. Therefore, the solution of the proposed model is a mix of real

numbers and integer numbers. The problem of deriving an OLDS is similar to Trav-

elling Salesman Problem (TSP) which asks the following question: Given a list of

cities and the distances between each pair of cities, what is the shortest possible route

that visits each city exactly once and returns to the origin city? It is well acknowl-

edged that TSP is an NP-hard problem in combinatorial optimization. Therefore, as

an even more complex problem with two sets of variables ⃗A and 𝜎⃗ optimized simul-

taneously, the problem considered in this chapter is definitely an NP-hard problem.

When N turns out to be large, it is hard to obtain a global optimal solution (⃗A, 𝜎⃗).
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We select Genetic Algorithms (GAs), proposed by Holland [39], to solve our

model because GAs have been proven to be a promising technique for task-scheduling

problems, especially for complex permutation-based combinatorial optimization

problems like TSP [40]. In this chapter, we shall first design an encoding scheme

based on the characteristics of the proposed model, on the basis of which genetic

operators are introduced, followed by the framework of PAA-GA.

3.1 Encoding Scheme

The key point of finding an optimal solution by using GAs is to develop an encod-

ing scheme that can represent the problem to be solved directly and can satisfy the

problem constraints easily. In this chapter, a hybrid encoding scheme is adopted. An

individual is encoded as ⃗I = (𝜎⃗, ⃗A), where 𝜎⃗ =
(
𝜎1, 𝜎2,… , 𝜎N

)
indicates processor

index used for representing the load distribution sequence, and ⃗A =
(
𝛼1, 𝛼2,… , 𝛼N

)

stands for load partition scheme. If 𝛼i = 0, then it means processor P
𝜎i

does not par-

ticipate in workload computation.

As a simple example, assume there are six worker processors and that the size of

the entire workload is 1000 units. A possible encoding scheme is given as follows:

I =
(
𝜎⃗

⃗A

)

=
(
𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6
𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6

)

=
(

2, 1, 4, 6, 3, 5
350, 200, 108, 150, 120, 0

)

.

𝜎⃗ = (2, 1, 4, 6, 3, 5) indicates that the load distribution sequence follows the order

of (P2,P1,P4,P6,P3,P5) and ⃗A = (350, 200, 180, 150, 120, 0) means that the sizes

of load fractions assigned to processors P2,P1,P4,P6,P3,P5 are 350, 200, 180, 150,
120, 0, respectively. Note that, only 5 processors take part in workload computation

since 𝛼6 = 0, which means P0 does not assign any load to the last processor P5 in the

distribution sequence, so P5 does not participate in workload computation. There-

fore, we have n = 5.

3.2 Crossover Operators

It is worth noting that given a deterministic load distribution sequence, there exists

an OLP that achieves minimum processing time of the entire workload. Hence,

the scheduling problem dealt in this chapter can be summarized as determining an

OLDS, on the basis of which deriving an OLP to achieve minimum processing time.

Therefore, the scheduling problem has actually two layers of decision levels, with

the upper level determining an OLDS and the lower level deriving an OLP. With

this consideration in mind, we design two crossover operators in this section. One is



16 X. Wang and B. Veeravalli

to optimize the upper level variable 𝜎⃗ as well as the lower level variable ⃗A simulta-

neously, while the other is to optimize ⃗A alone based on a fixed 𝜎⃗.

Also noteworthy is the fact that both 𝜎⃗ and ⃗A are not suitable for traditional two-

point crossover. This is because 𝜎⃗ must contain exactly one instance of a number in

{1, 2,… ,N} and any omission or duplication of numbers leads to an invalid solution.

Meanwhile, ⃗A has to satisfy that
∑N

i=1 𝛼i = Wtotal.

3.2.1 First Crossover Operator

The first way of crossover is to evolve 𝜎⃗ and ⃗A at the same time. For two parents ⃗I1 =(
𝜎⃗

1
,
⃗A1
)

and ⃗I2 =
(
𝜎⃗

2
,
⃗A2
)

, the steps given in Algorithm 1 are adopted to generate

two offsprings ⃗I3 =
(
𝜎⃗

3
,
⃗A3
)

and ⃗I4 =
(
𝜎⃗

4
,
⃗A4
)

.

Algorithm 1 First Crossover Operator

Input: Two parents ⃗I1 =
(
𝜎⃗

1
,
⃗A1
)

and ⃗I2 =
(
𝜎⃗

2
,
⃗A2
)

.

Output: Two offsprings ⃗I3 =
(
𝜎⃗

3
,
⃗A3
)

and ⃗I4 =
(
𝜎⃗

4
,
⃗A4
)

.

1: Generate two random integers p and q between 1 and N as the crossover points that satisfy

1 ≤ p < q ≤ N.

2: for i = p,… , q do
3: exchange genes 𝜎

1
i and 𝜎

2
i to obtain 𝜎

3
i and 𝜎

4
i . Let 𝜎

3
i = 𝜎

2
i and 𝜎

4
i = 𝜎

1
i .

4: exchange genes 𝛼
1
i and 𝛼

2
i to obtain 𝛼

3
i and 𝛼

4
i . Let 𝛼

3
i = 𝛼

2
i and 𝛼

4
i = 𝛼

1
i .

5: end for
6: for i = 1,… , p − 1 and i = q + 1,… ,N do
7: let 𝜎

3
i = 𝜎

1
i , 𝜎

4
i = 𝜎

2
i , 𝛼

3
i = 𝛼

1
i , and 𝛼

4
i = 𝛼

2
i .

8: end for
9: Establish mapping relationships for interchangeability based on the genes of 𝜎⃗

1
and 𝜎⃗

2
between

the two crossover points.

10: Based on the mapping relationships, replace the genes of 𝜎⃗
3

and 𝜎⃗

4
outside the two crossover

points that have the same value with genes inside.

11: Normalize ⃗A3
and ⃗A4

to ensure that the total size of all load fractions equals the entire workload

Wtotal.

For instance, we have the following two parents.

⃗I1 =
(
𝜎⃗

1

⃗A1

)

=
(

2, | 1, 4, 6, | 3, 5
350, | 200, 180, 150, | 120, 0

)

.

⃗I2 =
(
𝜎⃗

2

⃗A2

)

=
(

4, | 3, 6, 2, | 5, 1
320, | 270, 160, 140, | 150, 60

)

.
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According to Step 1 of Algorithm 1, we first generate two random integers p and

q. Suppose that p = 2 and q = 4. After exchanging of genes based on Steps 2–8, we

then have,

⃗I3 =
(
𝜎⃗

3

⃗A3

)

=
(

2, | 3, 6, 2, | 3, 5
350, | 270, 160, 140, | 120, 0

)

.

⃗I4 =
(
𝜎⃗

4

⃗A4

)

=
(

4, | 1, 4, 6, | 5, 1
320, | 200, 180, 150, | 150, 60

)

.

We observe that both ⃗I3 and ⃗I4 are invalid solutions because some genes of 𝜎⃗
3

and 𝜎⃗

4
that are outside the two crossover points have the same values as the genes

between the two points, and also that the total size of load fractions is not equal to

the entire workload. Therefore, we need to adjust ⃗I3 and ⃗I4.

According to Step 9 of Algorithm 1, we establish the following mapping relation-

ships,

1⇔3, 4⇔6, and 6⇔2 implies 1⇔3 and 4⇔2.

With the above mapping relationships, we can fix 𝜎⃗
3

and 𝜎⃗
4

now. As for 𝜎⃗
3
, 𝜎

3
1 = 2

should be replaced by 4, 𝜎
3
5 = 3 replaced by 1, and 𝜎

3
6 = 5 remaining unchanged.

Similarly, as for 𝜎⃗
4
, 𝜎

4
1 = 4 should be replaced by 2, 𝜎

4
5 = 5 remaining unchanged,

and 𝜎

4
6 = 1 replaced by 3. Hence, we have,

⃗I3 =
(
𝜎⃗

3

⃗A3

)

=
(

4, | 3, 6, 2, | 1, 5
350, | 270, 160, 140, | 120, 0

)

.

⃗I4 =
(
𝜎⃗

4

⃗A4

)

=
(

2, | 1, 4, 6, | 5, 3
320, | 200, 180, 150, | 150, 60

)

.

After normalization by the last step of Algorithm 1, we obtain two offsprings as

follows.

⃗I3 =
(
𝜎⃗

3

⃗A3

)

=
(

4, | 3, 6, 2, | 1, 5
317, | 267, 158, 139, | 119, 0

)

.

⃗I4 =
(
𝜎⃗

4

⃗A4

)

=
(

2, | 1, 4, 6, | 5, 3
321, | 183, 165, 138, | 138, 55

)

.

3.2.2 Second Crossover Operator

The second way of crossover is to evolve ⃗A based on a fixed 𝜎⃗. Algorithm 2 shows

its main steps. As an example, suppose p = 2 and q = 5. By Steps 2–5 of Algorithm

2, we have,
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⃗I1 =
(
𝜎⃗

1

⃗A1

)

=
(

2, | 1, 4, 6, 3, | 5
350, | 200, 180, 150, 120, | 0

)

.

⃗I2 =
(
𝜎⃗

2

⃗A2

)

=
(

4, | 3, 6, 2, 5, | 1
320, | 270, 160, 140, 150, | 60

)

.

⃗I3 =
(
𝜎⃗

3

⃗A3

)

=
(

2, | 1, 4, 6, 3, | 5
350, | 270, 160, 140, 150, | 0

)

.

⃗I4 =
(
𝜎⃗

4

⃗A4

)

=
(

4, | 3, 6, 2, 5, | 1
320, | 200, 180, 150, 120, | 60

)

.

It is worth noting that both ⃗I3 and ⃗I4 are invalid solutions because
∑N

i=1 𝛼
3
i < Wtotal

and
∑N

i=1 𝛼
4
i > Wtotal. After normalization by Step 6, we obtain two offsprings as

follows.

⃗I3 =
(
𝜎⃗

3

⃗A3

)

=
(

2, | 1, 4, 6, 3, | 5
327, | 252, 150, 131, 140, | 0

)

.

⃗I4 =
(
𝜎⃗

4

⃗A4

)

=
(

4, | 3, 6, 2, 5, | 1
311, | 194, 185, 146, 116, | 58

)

.

Algorithm 2 Second Crossover Operator

Input: Two parents ⃗I1 =
(
𝜎⃗

1
,
⃗A1
)

and ⃗I2 =
(
𝜎⃗

2
,
⃗A2
)

.

Output: Two offsprings ⃗I3 =
(
𝜎⃗

3
,
⃗A3
)

and ⃗I4 =
(
𝜎⃗

4
,
⃗A4
)

.

1: Let ⃗I3 = ⃗I1 and ⃗I4 = ⃗I2.

2: Randomly select two crossover points p and q that satisfy 1 ≤ p < q ≤ N.

3: for i = p,… , q do
4: exchange genes 𝛼

3
i and 𝛼

4
i . Let 𝛼

3
i = 𝛼

2
i and 𝛼

4
i = 𝛼

1
i .

5: end for
6: Normalize ⃗A3

and ⃗A4
to ensure that the total size of all load fractions is equal to that of the

entire workload.

3.3 Mutation Operator

The purpose of mutation in GAs focuses on preserving and introducing diversity

from one generation of a population to the next. It is analogous to biological muta-
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tion. Mutation operator alters one or more gene values in an individual from its initial

state, thus avoiding local minima and preventing the population from becoming too

similar to each other. Mutation occurs to offsprings generated by crossover according

to a user-definable mutation probability. This probability should be set low; other-

wise, the search will turn into a primitive random search [41].

We apply two-point mutation on both 𝜎⃗ and ⃗A simultaneously to obtain a new

offspring. Randomly generate four integers p, q, l, and m that satisfy 1 ≤ p < q ≤ N
and 1 ≤ l < m ≤ N. Exchange genes 𝜎p and 𝜎q, as well as 𝛼l and 𝛼m. For example,

suppose p = 2, q = 4, l = 1, and m = 5. We obtain offspring ⃗I′ mutated from ⃗I as

follows.

⃗I =
(
𝜎⃗

⃗A

)

=
(

2, 𝟏, 4, 𝟔, 3, 5
𝟑𝟓𝟎, 200, 180, 150, 𝟏𝟐𝟎, 0

)

.

⃗I′ =

(
⃗
𝜎
′

⃗A′

)

=
(

2, 𝟔, 4, 𝟏, 3, 5
𝟏𝟐𝟎, 200, 180, 150, 𝟑𝟓𝟎, 0

)

.

3.4 Repair Operator

It cannot be expected that crossover and mutation operators produce new offsprings

that satisfy all of the four constraints in our proposed model by default, especially

for the Participant Constraint and Off-Line Time Constraint. Thus a newly generated

individual need to be checked whether it violates either of the constraints. If so, we

have to repair it to a feasible solution. Algorithm 3 gives the main steps of repair

operator with the first two steps responsible for Participant Constraint satisfaction

and the remaining for Off-Line Time Constraint satisfaction.

Figure 3 shows a Gantt Chart with processors that violate the Off-Line Time Con-

straint of the proposed model. It can be observed from Fig. 3 that the processing time

T2 of processor P
𝜎2

exceeds its off-line time o
𝜎2

, which results in a time conflict.

Therefore, the individual that corresponds to this Gantt Chart violates the Off-Line

Time Constraint and needs to be repaired. According to the repair operator, excessive

load assigned to P
𝜎2

that causes the time conflict should be removed to its immediate

successor P
𝜎3
. Fig. 4 shows a possible Gantt Chart after the load distribution adjust-

ment. It can be seen that T2 = o
𝜎2

, so the time conflict for processor P
𝜎2

has been

eliminated. However, we also notice that the load adjustment gives rise to a new

time conflict for processor P
𝜎3

, whose processing time T3 exceeds its off-line time

o
𝜎3

. Therefore, another round of adjustment is required for processor P
𝜎3

. According

to the repair operator, excessive load assigned to P
𝜎3

will be scheduled to its imme-

diate successor P
𝜎4
. This process repeats iteratively until there are no time conflicts

for all processors.

One may notice that we keep reallocating excessive load from a processor to its

successors in the distribution sequence, instead of its predecessors. This is because
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Algorithm 3 Repair Operator

1: For a newly generated individual ⃗I = (𝜎⃗, ⃗A), calculate the number of processors participating

in workload computation by n = card( {𝛼i | 𝛼i ∈ ⃗A and 𝛼i > 0} ).
For an instance, given that

⃗I =
(
𝜎⃗

⃗A

)

=
(
𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6
𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6

)

=
(

1, 2, 3, 4, 5, 6
327, 0, 0, 182, 140, 151

)

.

We have n = card( {327, 182, 140, 151} ) = 4.

2: Adjust the order of (𝜎i, 𝛼i) pairs so that processors with non-zero load fractions are listed in

front of the others.

As for the above example, it can be observed that 𝛼2 = 𝛼3 = 0, so pairs (𝜎2, 𝛼2) and (𝜎3, 𝛼3)
should be placed at the end of ⃗I. After reordering, we obtain,

⃗I =
(
𝜎⃗

⃗A

)

=
(

1, 4, 5, 6, 2, 3
327, 182, 140, 151, 0, 0

)

.

3: Let s1 = r
𝜎1

.

4: for i = 2, 3,… , n do
5: calculate the start time of each processor by si = max{r

𝜎i
, si−1 + e

𝜎i−1
+ g

𝜎i−1
𝛼i−1}.

6: end for
7: for i = 1, 2,… , n do
8: compute the processing time of each processor by Ti = si +

(
g
𝜎i
+ w

𝜎i

)
𝛼i + e

𝜎i
+ f

𝜎i
.

9: end for
10: for i = 1, 2,… , n do
11: check whether processing time Ti of processor P

𝜎i
exceeds its off-line time o

𝜎i
. If Ti ≤ o

𝜎i
holds for all processors, then stop; otherwise, Ti > o

𝜎i
means too much load has been

assigned to processor P
𝜎i

and that excessive load needs to be rescheduled.

12: end for
13: Compute the size of excess load by 𝛥 =

(
Ti − o

𝜎i
)/ (

g
𝜎i + w

𝜎i
)
.

14: Assign this excess load fraction𝛥 to the next processorP
𝜎i+1

by 𝛼i+1 = 𝛼i+1 + 𝛥 and 𝛼i = 𝛼i − 𝛥.

Then go back to Step 1.

the start time of each processor is determined by the load fractions assigned to its

predecessors according to the equation si = max{r
𝜎i
, si−1 + e

𝜎i−1
+ g

𝜎i−1
𝛼i−1}. Sup-

pose processor Pi violates the Off-Line Time Constraint. If we reallocate excessive

load from Pi to one of the processors before Pi in the distribution sequence, say Pj,

then the start times of processors behind Pj may all get postponed, which has a high

chance of causing more time conflicts for processors between Pi and Pj, thus taking

a much longer time for repair operator to fix all time conflicts.

3.5 Local Search

As mentioned earlier, searching for an OLDS itself is already an NP-hard problem,

not to mention that we also have to search for an OLP. When an HSCS scales up to a

large number of processors, it may hard for GAs to converge. In order to improve con-
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vergence speed of the proposed GA, we introduce a local search operator. The main

idea is to balance load between processors with the longest processing time Tmax and

the shortest processing time Tmin, so that all of the processors with processing times

not up to their off-line times will eventually stop computing at the same time. The

process of the local search operator is given in Algorithm 4.

Algorithm 4 Local Search

1: For a given individual ⃗I = (𝜎⃗, ⃗A), calculate the number n of processors participating in the

workload computation by n = card( {𝛼i | 𝛼i ∈ ⃗A and 𝛼i > 0} ).
2: Let s1 = r

𝜎1
.

3: for i = 2, 3,… , n do
4: calculate the start time of each processor by si = max{r

𝜎i
, si−1 + e

𝜎i−1
+ g

𝜎i−1
𝛼i−1}.

5: end for
6: for i = 1, 2,… , n do
7: compute the processing time of each processor by Ti = s

𝜎i
+
(
g
𝜎i
+ w

𝜎i

)
𝛼i + e

𝜎i
+ f

𝜎i
.

8: end for
9: Among P

𝜎1
,P

𝜎2
,… ,P

𝜎n
, find processor P

𝜎max
with the longest processing time Tmax and

processor P
𝜎min

with the shortest processing time Tmin. Calculate their time difference by

𝛥 =
(
Tmax − Tmin

)
.

10: Let 𝛽 =
(
Tmax − Tmin

) /
max{g

𝜎max
, g

𝜎min
} . Update individual ⃗I = (𝜎⃗, ⃗A) by 𝛼max = 𝛼max − 𝛽

and 𝛼min = 𝛼min + 𝛽.

11: Apply repair operator given by Algorithm 3 on the updated individual to ensure that it satisfies

all constraints of the proposed model.

Figure 5 shows a Gantt Chart that corresponds to an individual before applying

local search operator. As illustrated in Fig. 5, processorP
𝜎1

has the longest processing

Fig. 3 Gantt Chart with processors violating the Off-Line Time Constraint of the proposed model
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Fig. 4 Gantt Chart after load distribution adjustment by repair operator

Fig. 5 Gantt Chart before applying local search

time T1 andP
𝜎3

has the shortest processing time T3. ThusPmax = P
𝜎1

andPmin = P
𝜎3

.

After load balancing between P
𝜎1

and P
𝜎3

by local search operator, a possible Gantt

Chart is shown in Fig. 6. It can be observed that the time difference between T1 and

T3 illustrated in Fig. 6 becomes much smaller than that shown in Fig. 5. Hence, the

total processing time of the entire workload would be decreased.
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Fig. 6 Gantt Chart after applying local search

3.6 Framework of Algorithm PAA-GA

Once encoding scheme is defined, a GA initializes a population of individuals and

then improves them through repetitive applications of genetic operators, including

crossover, mutation, repair, local search, and selection. The framework and flow chart

of algorithm PAA-GA are given in Algorithm 5 and Fig. 7, respectively.

4 Experimental Results and Analysis

Several rigours experiments are conducted to study the performance and demon-

strate the effectiveness of the proposed algorithm. We employed a compute cluster

comprising 15 nodes and the parameters of our HSCS are given in Table 2. In the

master node where our proposed scheduling algorithm PAA-GA runs, the following

parameters are set: population size Popsize = 100, crossover probability pcros = 0.6,

mutation probability pmut = 0.02, elitist number E = 5, and stop criterion t = 50000.

4.1 Evaluating the Correctness of PAA-GA

We attempt to make a comparison between an exhaustive algorithm (EA) [34] with

our PAA-GA. As expected, although EA will be time-consuming, EA can obtain

an absolute minimum processing time. In order to evaluate the correctness of algo-

rithm PAA-GA, we make a comparison between PAA-GA and EA to check whether
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Algorithm 5 PAA-GA: Processor Availability-Aware Genetic Algorithm

Input: Population size Popsize, crossover probability pcros, mutation probability pmut, elitist num-

ber E and stop criterion.

Output: An OLDS 𝜎⃗ and OLP ⃗A.

1: (Initialization) Set the population size Popsize, crossover probability pcros, mutation probabil-

ity pmut, and elitist number E. Randomly generate Popsize individuals as the initial population

Pop(0) according to the encoding scheme. For each individual ⃗I ∈ Pop(0), first apply the repair

operator given by Algorithm 3 on ⃗I, and then compute processing time T of the entire work-

load by T = max
1≤i≤n

{
si + e

𝜎i
+
(
g
𝜎i
+ w

𝜎i

)
𝛼i + f

𝜎i

}
, taking 1∕T as the fitness value of ⃗I. Let the

generation number t = 0.

2: (Crossover) Select Popsize individuals into the crossover pool from Pop(t) by roulette wheel

selection. Apply the two crossover operators given by Algorithms 1 and 2 one-by-one on each

pair of parents selected from the crossover pool according to crossover probability pcros. All

newly generated offsprings constitute a set denoted by O1(t).
3: (Mutation) Apply mutation operator on each of the selected individuals from O1(t) according

to mutation probability pmut. All newly generated offsprings constitute a set denoted by O2(t).
4: (Repair) Apply repair operator given by Algorithm 3 on each individual in set O1(t) ∪ O2(t).
5: (Local Search) Apply local search operator given by Algorithm 4 on each individual in set

O1(t) ∪ O2(t).
6: (Selection) Select the best E individuals for the next population Pop(t + 1) from set Pop(t) ∪

O1(t) ∪ O2(t). Select the remaining Popsize − E individuals for Pop(t + 1) by roulette wheel

selection also from set Pop(t) ∪ O1(t) ∪ O2(t). Let t = t + 1.

7: (Stopping Criteria) If a fixed number of generations reached, then stop and return the best

individual ⃗I = (𝜎⃗, ⃗A) in the current population; otherwise, go to Step 2.

Fig. 7 Flow chart of algorithm PAA-GA
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Table 2 Parameters of our HSCS

Pi gi wi ei fi ri oi
P1 0.53 2.90 7.06 5.80 46.34 331.85

P2 0.77 7.61 3.02 0.14 53.55 397.44

P3 0.71 4.14 8.14 0.45 78.14 420.58

P4 0.79 9.62 8.63 3.74 93.47 509.31

P5 0.06 3.64 8.71 9.50 13.86 613.82

P6 0.77 5.92 5.25 0.54 57.31 722.11

P7 0.30 6.48 4.69 6.23 47.47 855.85

P8 0.28 8.25 2.64 8.30 22.18 964.82

P9 0.99 2.27 5.89 9.11 34.38 1175.66

P10 0.98 5.34 6.95 2.44 17.06 1299.34

P11 0.99 1.57 1.06 6.76 79.63 1474.28

P12 0.10 7.99 5.75 1.03 31.81 1763.75

P13 0.05 3.82 2.84 2.96 53.32 1768.40

P14 0.95 4.01 3.01 9.80 17.40 1911.18

P15 0.16 6.47 2.78 1.63 60.60 1943.74

the processing time obtained by PAA-GA agrees with that obtained by EA. If their

processing times are in good agreement, then it surely proves that PAA-GA can

obtain an OLP.

Assuming that the off-line times of all processors are infinite, thus we only take the

processor release times into account. Note that EA requires a fixed load distribution

sequence as its input in advance, so we set the OLDS obtained by PAA-GA as the

input for algorithm EA. Table 3 records the comparison results for PAA-GA and EA.

It can be observed from this table that PAA-GA obtains the same experimental results

with EA for each test workload, including the same number of processors involved

in workload computation and the same processing time. Therefore, we can make the

conclusion that algorithm PAA-GA proposed in this chapter can obtain an OLP such

that the processing time is minimized for divisible-load scheduling problems with

processor release times.

Besides OLP, in order to prove that the proposed PAA-GA can also obtain an

OLDS, we make a comparison between PAA-GA and EA with three different distrib-

ution sequences as its input, which are commonly used in previous studies: sequence

in the order of increasing value of gi, denoted as IG; sequence in the order of increas-

ing value of wi, denoted as IW; and sequence in the order of increasing value of

release time ri, denoted as IR.

Based on the parameters given in Table 2, sequences IG, IW, and IR are as follows,
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Table 3 Experimental results obtained by PAA-GA and EA with the same OLDS

Wtotal Algorithm n T 𝜎⃗ = (𝜎1, 𝜎2,… , 𝜎n)
100 PAA-GA 12 110.615 (5, 8, 14, 12, 7, 13, 15, 1, 2, 11, 6, 3)

EA 12 110.615 (5, 8, 14, 12, 7, 13, 15, 1, 2, 11, 6, 3)

200 PAA-GA 13 165.639 (5, 8, 12, 14, 13, 15, 7, 1, 11, 9, 2, 6, 3)

EA 13 165.639 (5, 8, 12, 14, 13, 15, 7, 1, 11, 9, 2, 6, 3)

300 PAA-GA 14 216.182 (5, 8, 12, 7, 13, 15, 1, 3, 2, 11, 14, 9, 6, 10)

EA 14 216.182 (5, 8, 12, 7, 13, 15, 1, 3, 2, 11, 14, 9, 6, 10)

400 PAA-GA 15 265.534 (5, 8, 12, 7, 13, 15, 1, 3, 2, 6, 11, 14, 9, 10, 4)

EA 15 265.534 (5, 8, 12, 7, 13, 15, 1, 3, 2, 6, 11, 14, 9, 10, 4)

500 PAA-GA 15 314.943 (5, 8, 12, 7, 13, 15, 1, 3, 2, 6, 14, 11, 9, 10, 4)

EA 15 314.943 (5, 8, 12, 7, 13, 15, 1, 3, 2, 6, 14, 11, 9, 10, 4)

600 PAA-GA 15 365.878 (5, 8, 12, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

EA 15 365.878 (5, 8, 12, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

700 PAA-GA 15 414.793 (5, 8, 12, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

EA 15 414.793 (5, 8, 12, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

800 PAA-GA 15 465.835 (5, 8, 12, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

EA 15 465.835 (5, 8, 12, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

900 PAA-GA 15 516.877 (5, 8, 12, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

EA 15 516.877 (5, 8, 12, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

1000 PAA-GA 15 567.761 (5, 12, 8, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

EA 15 567.761 (5, 12, 8, 13, 15, 7, 1, 3, 2, 6, 14, 11, 9, 10, 4)

IG = (13, 5, 12, 15, 8, 7, 1, 3, 2, 6, 4, 15, 10, 9, 11).
IW = (11, 9, 1, 5, 13, 14, 3, 10, 6, 15, 7, 2, 12, 8, 4).
IR = (5, 10, 14, 8, 12, 9, 1, 7, 13, 2, 6, 15, 3, 11, 4).

Table 4 records the experimental results obtained by algorithms PAA-GA, EA-

IG, EA-IW, and EA-IR. It can be observed from Table 4 that for each test workload,

the load distribution sequence obtained by PAA-GA is different from IG, IW, and

IR. Moreover, for some test workloads, PAA-GA even obtains different numbers of

processors involved in workload computation from EA with IG, IW, and IR, hence

obtaining different load partition too. To be more intuitively, Fig. 8 illustrates the

variation of processing time obtained by PAA-GA, EA-IG, EA-IW, and EA-IR along

with different workload size. From this figure, we can observe that for each workload,

the processing time obtained by the proposed PAA-GA is less than that by EA with

three different load distribution sequences. The processing time obtained by PAA-

GA shows a gain of about 10–25% compared to EA with IG and IR, and gained over

40% compared to EA with IW. Therefore, it is clear that PAA-GA outperforms over

other strategies in achieving an optimal processing time, hence an efficient energy

consumption too, for processor release time-aware divisible-load scheduling. Fur-
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Table 4 Experimental results obtained by PAA-GA and EA with three different load distribution

sequences

Wtotal Algorithm n T 𝜎⃗ = (𝜎1, 𝜎2,… , 𝜎n)
100 PAA-GA 12 110.615 (5, 8, 14, 12, 7, 13, 15, 1, 2, 11, 6, 3)

EA-IG 11 145.418 (13, 5, 12, 15, 8, 7, 1, 3, 2, 6, 4)

EA-IW 8 208.662 (11, 9, 1, 5, 13, 14, 3, 10)

EA-IR 12 130.256 (5, 10, 14, 8, 12, 9, 1, 7, 13, 2, 6, 15)

200 PAA-GA 13 165.639 (5, 8, 12, 14, 13, 15, 7, 1, 11, 9, 2, 6, 3)

EA-IG 15 201.189 (13, 5, 12, 15, 8, 7, 1, 3, 2, 6, 4, 14, 10, 9, 11)

EA-IW 12 297.881 (11, 9, 1, 5, 13, 14, 3, 10, 6, 15, 7, 2)

EA-IR 14 199.450 (5, 10, 14, 8, 12, 9, 1, 7, 13, 2, 6, 15, 3, 11)

300 PAA-GA 14 216.182 (5, 8, 12, 7, 13, 15, 1, 3, 2, 11, 14, 9, 6, 10)

EA-IG 15 251.701 (13, 5, 12, 15, 8, 7, 1, 3, 2, 6, 4, 14, 10, 9, 11)

EA-IW 14 382.499 (11, 9, 1, 5, 13, 14, 3, 10, 6, 15, 7, 2, 12, 8)

EA-IR 15 265.008 (5, 10, 14, 8, 12, 9, 1, 7, 13, 2, 6, 15, 3, 11, 4)

400 PAA-GA 15 265.534 (5, 8, 12, 7, 13, 15, 1, 3, 2, 6, 11, 14, 9, 10, 4)

EA-IG 15 302.213 (13, 5, 12, 15, 8, 7, 1, 3, 2, 6, 4, 14, 10, 9, 11)

EA-IW 15 465.058 (11, 9, 1, 5, 13, 14, 3, 10, 6, 15, 7, 2, 12, 8, 4)

EA-IR 15 330.451 (5, 10, 14, 8, 12, 9, 1, 7, 13, 2, 6, 15, 3, 11, 4)

500 PAA-GA 15 314.943 (5, 8, 12, 7, 13, 15, 1, 3, 2, 6, 14, 11, 9, 10, 4)

EA-IG 15 352.725 (13, 5, 12, 15, 8, 7, 1, 3, 2, 6, 4, 14, 10, 9, 11)

EA-IW 15 547.376 (11, 9, 1, 5, 13, 14, 3, 10, 6, 15, 7, 2, 12, 8, 4)

EA-IR 15 395.894 (5, 10, 14, 8, 12, 9, 1, 7, 13, 2, 6, 15, 3, 11, 4)

thermore, it can be seen from Fig. 8 that at first the processing time obtained by EA

with IR is less than that by EA with IG, but as workload size increases, EA with IG

outperforms EA with IR. This means that with increasing workload size, the influ-

ence of processor release times on the processing time becomes weaker, while the

influence of load distribution sequence on processing time becomes stronger.

4.2 Evaluating the Performance of PAA-GA

By taking processor available time periods into account, we make a comparison

between the proposed PAA-GA and EA with three commonly used load distribu-

tion sequences as its input: IG, IW, and IR. Given that the original EA proposed in

[34] does not consider processor off-line times, those processors whose processing

times exceed their off-line times need to be rescheduled. For simplicity, we real-

locate those load fractions to the processor with the largest off-line time. Figure 9

shows the variation of processing time obtained by PAA-GA, EA-IG, EA-IW, and

EA-IR along with different workload size. As shown in Fig. 9, for each workload,
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Fig. 8 Variation of processing time obtained by PAA-GA, EA-IG, EA-IW, and EA-IR along with

different workload sizes for processor release-time aware divisible-load scheduling

Fig. 9 Variation of processing time obtained by PAA-GA, EA-IG, EA-IW, and EA-IR along with

different workload sizes for processor available-time aware divisible-load scheduling

the processing time obtained by PAA-GA is much less than that by EA with any of

the load distribution sequences, and the time difference between them grows with

increasing workload size. When workload size is as large as 800 in our experiment,

the processing time obtained by PAA-GA shows a gain of 64% compared to EA with

IR, gained about 72% compared to EA with IG, and gained over 77% compared to EA

with IW. Therefore, it is clear that although the effect of available times has a greater

influence on the performance as workload size increases, PAA-GA outperforms over

other strategies as testified in our evaluations.



A Genetic Algorithm Based Efficient Static Load Distribution . . . 29

5 Conclusions

One of the key characteristics of sustainable computing systems is in efficiently man-

aging available shared resources by designing judicious scheduling algorithms. By

designing optimal, if not time-efficient scheduling algorithms, energy consumption

is indirectly managed. Towards this effort, in this chapter, we have proposed an effi-

cient processor availability-aware scheduling model to optimize the energy efficiency

of heterogeneous sustainable computing systems. Using this model, we designed a

genetic algorithm based global optimization strategy to derive an optimal load parti-

tion together with an optimal distribution sequence. This is an important contribution

to the literature as this is the first time where the modeling is tuned to accommo-

date all influencing parameters (start-up overheads, processor availabilities, hetero-

geneous networks) to achieve a global optimal solution. We have conducted several

experiments to demonstrate the correctness and effectiveness of the proposed algo-

rithm PAA-GA. Experimental results showed that although the effect of processor

available time periods has a greater influence on the performance as the workload

size increases, the proposed PAA-GA reduced the processing time, hence the energy

consumption too, by over 60% compared to other strategies. An important and an

immediate useful extension to the study posed in this chapter is in developing a sim-

ilar strategy for an arbitrary topology as real-life network based computing platforms

seldom have regular topologies.
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