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Abstract A key challenge faced by large-scale computing platforms to go green
is the effective utilization of energy at the various processing nodes. Most existing
scheduling models assume that processors are able to stay online forever. In reality,
processors, however, may have arbitrary unavailable time periods. Hence, if we inad-
vertently assign tasks to processors without considering the availability constraints,
some processors would not be able to finish their assigned workloads. Thus all the
unfinished workloads need to be reassigned to other available processors resulting in
an inefficient time and energy schedule. In this chapter, we propose a novel proces-
sor availability-aware divisible-load scheduling model. Using this model, we design
a time-efficient genetic algorithm based global optimization technique to derive an
optimal load distribution strategy. Our experimental results show that the proposed
algorithm adapts to minimize the processing time, hence the energy consumption
too, by over 60% compared to other strategies.

Keywords Divisible load * Release time * Off-line time *+ Load distribution -
Processor availability

1 Introduction

Modern large-scale computing platforms, such as networked computing systems and
cloud computing, have imminent need to go green since they are severely constrained
by energy related issues [1]. This is predominantly due to their heavy utilization of
power and cooling resources which results in rapid energy consumption which in turn
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imparts large carbon footprints on the environment [2]. Emerging sustainable com-
puting technologies, which primarily aim at reducing massive energy consumption
by developing certain ab initio computational and mathematical models, methods,
and tools for resource allocation and task scheduling, are therefore gain significant
interest to researchers and practitioners.

One of the key techniques to save energy is Dynamic Voltage Scaling (DVS).
It exploits the hardware characteristics to save energy by degrading CPU voltage
and operating frequency while keeping the processor to operate at a slow speed [3].
During the past decades, substantial energy-efficient scheduling strategies have been
proposed for DVS-enabled systems [4—7]. These DVS-based techniques, however,
may not applicable to virtualized environments where physical processors are shared
by multiple virtual machines (VMs) as lowering the supply voltage will inadver-
tently affect the performance of VMs belonging to different applications [8]. Another
promising approach to conserve energy is turning off idle computing nodes in a data
center by packing the running VMs to as few physical servers as possible, often
called VM consolidation [9]. However, live VM migration must be guaranteed and
resources must be properly allocated in order to avoid severe performance degrada-
tion due to resource competition by co-located VMs. There are a large amount of
studies on the migration strategies, concerning the issues of where, when, and how
a VM should be migrated [10—-13]. At the current stage, several management issues
about VM consolidation still deserve additional investigations. For example, trans-
ferring large-sized data over the shared network link is a huge challenge, especially
when several goals in terms of Service-Level Agreement (SLA) violation avoid-
ance, minimum communication delay, high system throughput, and high quality of
services have to meet [14].

While significant advancements have been made to minimize the energy con-
sumption for sustainable computing, even stronger effort is needed to promote the
effective utilization of energy at the various processing nodes. By “effective uti-
lization” we mean that efforts need to be devoted to making compute platforms not
just minimizing the energy consumption but also to make every amount of energy
consumed for workload computation worthwhile. This is based on the fact that the
actual energy consumed for workload computation might not be equal to the energy
that is required for workload computation. For example, most existing scheduling
models assume that the compute units, which are processors, are able to stay online
and available forever. That is to say, it assumes that all processors remain idle at
the beginning of the workload assignment and that they will be kept busy until the
assigned workload fractions are completed. In reality, processors, however, may have
arbitrary unavailable time periods. They may still be busy computing any previous
workload even when a new workload arrives and may even get off-line before fin-
ish computing the currently assigned load. The time period between release time
and off-line time of a processor is referred to as its available time period. Hence, if
we inadvertently assign tasks to processors according to their computational capa-
bilities without taking into account of the availability constraints, some processors
would not be able to finish their assigned workloads. Thus all of the unfinished work-
loads need to be reassigned to other available processors resulting in an inefficient
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time and energy schedule. Therefore, designing an efficient load distribution strategy
seems appropriate when one considers resource (processor) available times.

It is believed that workloads to be scheduled on Heterogenous Sustainable Com-
puting Systems (HSCS) are quite large in size and possess computationally intensive
CPU requirements; otherwise, one or a few processors should be enough for work-
load computation. Also, workloads should be partitionable so that they can simply
be further divided into a number of load fractions and distributed to processors for
independently parallel computing. Ideally, if a workload can be divided into an arbi-
trary number of load fractions such that there are no precedence relationships among
these fractions, then we refer to it as a divisible load [15]. Actually, divisible loads
exist in widely multiple real-world applications, such as real-time video encoding
[16, 17], satellite image classification [18], signature searching in a networked col-
lection of files [19], and so on. It may be noted that divisible load modelling can also
be adopted for modern day Big Data processing when the requirements of processing
demand homogeneous processing on the data.

There are considerable studies available on finding an optimal load distribution
strategy for scheduling large-scale divisible loads on various distributed networks
with different topologies, including linear networks [20], bus networks [21], tree
networks [22], Gaussian, mesh, torus networks [23], and complete b-Ary tree net-
works [24]. Generally, a load distribution strategy involves two main issues—one in
deriving optimal sizes of the workloads to the processors, referred to as an optimal
load partition (OLP), and the other is to determine a viable sequence of distribution
that achieves minimum processing time, referred to as an optimal load distribution
sequence (OLDS).

As for the first issue, in order to obtain a minimized processing time, it is nec-
essary and sufficient to require that all processors stop computing at the same time
instant; otherwise, the processing time of the entire workload could be reduced by
transferring some load fractions from busy to idle processors. This widely accepted
principle in Divisible-Load Theory (DLT) is referred to as the optimality principle,
which provides a key to derive a closed-form solution for OLP [25]. However, as
mentioned earlier, processors may have arbitrary unavailable time periods in real-
ity. Hence, we could not inadvertently assign tasks to processors according to the
optimality principle as usual; otherwise, workload rescheduling would result in an
inefficient time and energy schedule. Therefore, searching for an OLP is necessary
for sustainable computing where processor available time periods are involved.

As for the second issue, sufficient evidence has shown that load distribution
sequences play a significant role in computational performance. For heterogeneous
single-level tree networks, it has been proven that only when the load distribution
sequence follows the decreasing order of communication speeds does the processing
time reach the minimum [26]. As regard to heterogeneous multi-level tree networks,
the OLDS depends only on communication speeds of links but not on computation
speeds of processors [27]. Nonetheless, the above studies did not consider start-up
overheads for both communication and computation into consideration. For the case
of homogenous bus networks with start-up overheads, it was shown that the process-
ing time is minimized when the load distribution sequence follows the order in which
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the computation speeds of processors decrease [28]. For a large enough workload
on heterogeneous single-level tree networks with arbitrary start-up overheads, the
sequence of load distribution should follow the decreasing order of the communi-
cation speeds in order to achieve minimum processing time [29], but how large a
workload should be to consider it as a large enough workload. Moreover, when we
consider processor available time periods, does the above conclusion still hold? If
not, what sequence does the load distribution should follow to achieve a minimum
processing time?

As regard to processor release times alone, several load distribution strategies
were proposed for bus networks [30], linear daisy chain networks [31], and single-
level tree networks [32], but they did not take start-up overheads and the influence of
load distribution sequence into consideration. In order to obtain an OLP and OLDS
simultaneously on single-level tree networks with arbitrary processor release times,
a bi-level genetic algorithm was proposed in [33]. The proposed algorithm comprises
two layers of nested genetic algorithms, with the upper genetic algorithm applied for
searching an OLDS and the lower algorithm utilized for finding an OLP. However,
as the number of processors increases, the proposed bi-level genetic algorithm gets
hard to converge. In order to obtain an accurate OLP, an exhaustive search algorithm
was proposed in [34] for release-time aware divisible-load scheduling on bus net-
works, but it did not consider processor off-line times and the influence of OLDS on
processing time.

In this chapter, both processor release times and off-line times are explicitly con-
sidered in our model, which brings the work more closer to reality. This schedul-
ing problem at hand is complex owing to an inherent nature of the computing plat-
form which could possibly comprise heterogeneous processors. We propose a novel
Processor Availability-Aware Genetic Algorithm (PAA-GA) based global optimiza-
tion strategy to minimize the processing time of the entire workload, thus reducing
the total energy consumption too, on HSCS.

The remaining of this chapter is organized as follows. Section?2 firstly gives a
mathematical description of the divisible-load scheduling problem on HSCS with
arbitrary start-up overheads and processor available time periods, followed by the
proposed availability-aware scheduling model. With this model, we accordingly
design algorithm PAA-GA in Sect. 3, which will be evaluated through experiments
in Sect. 4. In the last section, conclusions are obtainable.

2 Availability-Aware Scheduling Model

2.1 Problem Description

An HSCS is considered in this chapter with its topology given in Fig. 1. It com-
prises N + 1 Heterogeneous processors {P, P, ..., Py} connected through com-
munication links {L,,L,, ---, Ly}, where P, signifies the master, while the others
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Fig.1 An HSCS with
N + 1 heterogeneous
processors connected in a
single-level tree topology
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denote worker processors. P, does not participate in computation itself but merely
takes the responsibility of assigning loads to worker processors. P firstly divides
the entire workload W, into N fractions A= (aj, @y, ...,oy) With0 < a; < W, .,
and Zfil a; = W,,,- Then the load fractions are assigned to worker processors in
a certain distribution order (Pa] s P"z’ ,PUN), where 6 = (6,065, ..., 0y) is proces-
sor index which is a permutation of (1,2, ...,N) and «; is assigned to processor P
withi=1,2,...,N. P, sends load fraction to only one processor at a time and each
worker starts computing after its entire load fraction has been received completely.
Workers cannot communicate and compute simultaneously.

It is necessary to note that, not all worker processors have necessity to participate
in workload computation. Suppose that only the first n processors P, , P, , ..., P,
in the distribution sequence are needed for workload computation, so they will be
assigned with non-zero load fractions, that is, a; > 0 with i =1, ..., n, while the
remaining processors are not assigned with any load fractions, that is, for i = n +
I,...,N,a;,=0.

We consider a heterogeneous system wherein we have, for Vi # j, w; # w; and
8 # & Also, it is assumed that communication speeds are much faster than compu-
tation speeds; otherwise, only one or two processors should be enough to involve in
the workload computation [35]. As P, assigns g to the i-th processor P, in the load
distribution sequence, the communication and computation components are mod-
elled as affine functions, given by e, + g, @; and f, + w, a;, including communica-
tion and computation start-up overheads e;_ andf, associated with processor P, and
link L, , respectively. l ' l

Some processors in our system may be engaged in any of the previous workload
computation when a new load arrives, say at time ¢ = 0, so they cannot participate for
the newly arrived workload computation until their release times. Meanwhile, they
have to finish computing their assigned load fractions before they arrive at their off-
line times. It is assumed that processors can estimate their release times by the size of
the current workload to process, and the master knows the release and off-line times
of all processors. Even though the master does not know the accurate processor off-
line times, there exist some prediction techniques to estimate an approximate off-line
time for each processor based on a history of processor usage (for more information,
please refer to [36-38]). Let r; and o, be the release time and off-line time of processor
P, respectively, where i = 1,2, ..., N.
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Fig. 2 Gantt chart for load scheduling on HSCS with processor available times

Figure 2 shows a possible Gantt Chart for load scheduling on HSCS with proces-
sor release times and off-line times. As illustrated in Fig. 2, the first processor P,
starts to receive load fraction a; from master P, when it gets released at time
t=r, . Lets; be the start time of processor P, , at which P starts to receive
load fraction a; from P,. Thus s, = r_ . Except for P, the start time s; of proces-
sor P_ depends not only on its release time r_, but also on the start time s;_; of
proceslsor P, and the communication time (el(,l__] + 8, ;) taken by processor
P, toreceive its load fraction «;_; from P,. By observing Fig.2, we obtain that
§; = max {rai, Sipte,  + ggiilai_l}, wherei =2,3,...,n

According to the optimality principle of DLT, if processor off-line times are
ignored, all processors should finish computing at the same time to obtain a min-
imized processing time, say at time r = T*. Once we consider off-line times, proces-
sors whose off-line times are smaller than 7* will not be able to finish their assigned
load fractions. Hence, lest these load fractions be rescheduled and result in a waste
of energy consumption, processors should be assigned with appropriate workload
sizes according to their available time periods in the first place.

The processing time T; of processor P, is given by s; + e, +f + (g(, +w, )
wherei = 1,2, ...,n.Itcan be observed from the formulatlon that T depends dlrectly
on two parts: the former part s; indicating when processor P, _starts to receive load
from Py, and the latter part (e, +f, + (g, +w, ) &;) representmg how long it takes
for processor P, to finish computing its assigned load fraction. Both parts are deter-

mined directly by load partition A= {a;,a,, ..., ay} and load distribution sequence

(Pa] s Poz, ,PEN). Hence, T; is actually a function of ¢ and A. As the processing
time T of the entire workload lies upon the processor which stops computing the last,
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T can be derived as a function of & and A as follows.

T(c, A) = max 7; = max {si+e, +f, + (g, +w,) a;}.

The objective of divisible-load scheduling on HSCS is to minimize the processing
time T of the entire workload by taking into account processor available time periods,
so that every amount of energy is consumed for useful workload computation without
wasting, thus reducing the total energy consumption to the utmost. To achieve this
goal, one has to determine an optimal load distribution strategy, including an OLDS
and OLP. A feasible load distribution strategy should subject to the following four
constraints:

(1) Workload Constraint: Each load fraction should be non-negative and not larger
than the entire workload, the sum of which is equal to the entire workload. That

istosay,0 <o, <W,,, withi=1,...,N, and Zi\;l a =W,

otal*

(2) Processor Constraint: A load distribution sequence should contain exactly
one instance of a processor, without any omission or duplication of a proces-
sor or processors. That is, 6 = (o, 0,,...,0y), Where o, € {1,2,...,N} with
i=12,....N;forVj,k € {1,2,... ,N},if j # k, then o; # 0.

(3) Participant Constraint: Not all processors are needed for workload compu-
tation. Assuming that only the first n (n < N) processors in the distribution
sequence are required, we have a; > 0 with i = 1,2, ..., n, while a; = 0 when
i=n+1,...,N.

(4) Off-Line Time Constraint: Processors involved in workload computation
should stop computing before their off-line time come. That is, T; = s, + ¢, +
(&, +Wo)a; +f, < o, withi=1,....n. ’

2.2 A Novel Scheduling Model for Sustainable Computing

Table 1 briefly summarizes related notations and corresponding definitions. In order
to solve the scheduling problem mentioned in the previous section, we build a novel
processor availability-aware divisible-load scheduling model as follows:

min7(3, A) = min {max {s;+e, +f, + (g5, +W,) ai}} :
5.4 5.4 \lsisn P e T e T e

S.t.

ey Zi\;ai =W 0 <0 W, i=1,... N,

(2) 6 =(0y,0,,...,0y), whereo; € {1,2,...,N}andi=1,2,...,N.Vj,k € {1,2,
...,N},ifj#k,then6j¢0'k.

B)n<N;Vie{l,2,...,n},a;>0,whileVie {n+1,...,N},q; =0.

4 si+e, + (g(,i +w6i) a+fs <o, i=1,...n
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Table 1 Notations and definitions

Notations | Definitions
Woorat Total size of the entire workload
N Total number of worker processors
n Number of processors required for workload computation
e; Communication start-up overhead of link L,
fi Computation start-up overhead of processor P;
8i Ratio of time taken by link L; to communicate a given workload to that by a
standard link
w; Ratio of time taken by processor P; to compute a given workload to that by a
standard processor
G Processor index used for representing load distribution sequences.
6 = (0,05, ...,0y) is a permutation of (1,2, ... ,N)
r; Release time of processor P;
0; Off-line time of processor P;
s; Start time of the i-th processor P, in the distribution sequence
A Load partition scheme. A= {a;, a,, ..., ay} with each element ; representing the
size of load fraction assigned to the i-th processor P, in the distribution sequence
T Processing time of the entire workload
T, Processing time of the i-th processor P, in the distribution sequence
where

(5) n=card({e; | a; € A and a; > 0}), where card(X) denotes the number of ele-
ments in set X.
, =1
©) 5i=14 " ’.
max{r,, s,y +e, +8& o}, i=23,....,n

3 Algorithm PAA-GA Based Global Optimization Strategy

In the proposed model, two sets of variables are involved: A= {a;,ay,...,ay} and
o= (al, Opyeens O'N). Therefore, the solution of the proposed model is a mix of real
numbers and integer numbers. The problem of deriving an OLDS is similar to Trav-
elling Salesman Problem (TSP) which asks the following question: Given a list of
cities and the distances between each pair of cities, what is the shortest possible route
that visits each city exactly once and returns to the origin city? It is well acknowl-
edged that TSP is an NP-hard problem in combinatorial optimization. Therefore, as
an even more complex problem with two sets of variables Aand & optimized simul-
taneously, the problem considered in this chapter is definitely an NP-hard problem.
When N turns out to be large, it is hard to obtain a global optimal solution (;\, o).
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We select Genetic Algorithms (GAs), proposed by Holland [39], to solve our
model because GAs have been proven to be a promising technique for task-scheduling
problems, especially for complex permutation-based combinatorial optimization
problems like TSP [40]. In this chapter, we shall first design an encoding scheme
based on the characteristics of the proposed model, on the basis of which genetic
operators are introduced, followed by the framework of PAA-GA.

3.1 Encoding Scheme

The key point of finding an optimal solution by using GAs is to develop an encod-
ing scheme that can represent the problem to be solved directly and can satisfy the
problem constraints easily. In this chapter, a hybrid encoding scheme is adopted. An
individual is encoded as T = (6',;\'), where ¢ = (al, 0y, ... ,crN) indicates processor
index used for representing the load distribution sequence, and A= (al , 0y, e aN)
stands for load partition scheme. If @; = 0, then it means processor P, does not par-
ticipate in workload computation. ’

As a simple example, assume there are six worker processors and that the size of
the entire workload is 1000 units. A possible encoding scheme is given as follows:

7= <l:7:> _ <61,62, 03, 04, Os, 0'6> _ ( 2, 1, 4, 6, 3, 5>
A ap, 0y, Az, 04, Us, O 350, 200, 108, 150, 120,0 / °
6 = (2,1,4,6,3,5) indicates that the load distribution sequence follows the order
of (P,,P,,P,, Ps, P5,Ps) and A= (350,200, 180, 150, 120, 0) means that the sizes
of load fractions assigned to processors P,, P, P,, P, P5, Ps are 350,200, 180, 150,
120, 0, respectively. Note that, only 5 processors take part in workload computation
since @ = 0, which means P, does not assign any load to the last processor Ps in the

distribution sequence, so Ps does not participate in workload computation. There-
fore, we have n = 5.

3.2 Crossover Operators

It is worth noting that given a deterministic load distribution sequence, there exists
an OLP that achieves minimum processing time of the entire workload. Hence,
the scheduling problem dealt in this chapter can be summarized as determining an
OLDS, on the basis of which deriving an OLP to achieve minimum processing time.
Therefore, the scheduling problem has actually two layers of decision levels, with
the upper level determining an OLDS and the lower level deriving an OLP. With
this consideration in mind, we design two crossover operators in this section. One is
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to optimize the upper level variable o as well as the lower level variable A simulta-
neously, while the other is to optimize A alone based on a fixed 5.

Also noteworthy is the fact that both ¢ and A are not suitable for traditional two-
point crossover. This is because ¢ must contain exactly one instance of a number in
{1,2,..., N} and any omission or duplication of numbers leads to an invalid solution.

Meanwhile, A has to satisfy that Zi\;l a; =W

total*

3.2.1 First Crossover Operator

The first way of crossover is to evolve & and A at the same time. For two parents 1=
<31,Kl> and I2 = (&'2,22>, the steps given in Algorithm 1 are adopted to generate

two offsprings I3 = (6"3,;4)3> and [* = <&'4,Z4>.

Algorithm 1 First Crossover Operator

Input: Two parents I' = (8‘1,31> and 12 = (3‘2,22).

Output: Two offsprings I° = (33,;{3) and I+ = (34,A4>.
1: Generate two random integers p and g between 1 and N as the crossover points that satisfy
1<p<g<N.

2: fori=p,...,qdo

3:  exchange genes O'l.l and al.z to obtain 0’[.3 and U?. Let 6[.3 = 6[.2 and a? = al.'.
4:  exchange genes a} and a? to obtain ) and ). Let @} = o? and a} = a.
5: end for

6: fori=1,...,p—landi=¢g+1,...,Ndo

7: let a[,3 =ai',af=6[2,ai3 =a[,1,and af:a?.

8: end for

9

: Establish mapping relationships for interchangeability based on the genes of 6! and 52 between
the two crossover points.

: Based on the mapping relationships, replace the genes of 3 and 5+ outside the two crossover
points that have the same value with genes inside.

: Normalize A3 and A* to ensure that the total size of all load fractions equals the entire workload

W,

total*

—_
(=]

—
—

For instance, we have the following two parents.
1 '\ (2 11, 4 6|35
— At ) 7\ 350, | 200, 180, 150, | 120,0 /)"

p_(F\_ (413 6 215 1
—\ 42 ) T \ 320, | 270, 160, 140, | 150, 60 )"
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According to Step 1 of Algorithm 1, we first generate two random integers p and
q. Suppose that p = 2 and g = 4. After exchanging of genes based on Steps 2-8, we

then have,
po(EN_ (213 6 2135
43 ) 7\ 350, | 270, 160, 140, | 120,0 )°

s (Y (4 1L 4 6|5 1
— \ A4 ) = \ 320, | 200, 180, 150, | 150, 60 )

We observe that both I3 and 7* are invalid solutions because some genes of ¢°
and * that are outside the two crossover points have the same values as the genes
between the two points, and also that the total size of load fractions is not equal to

the entire workload. Therefore, we need to adjust 72 and 14
According to Step 9 of Algorithm 1, we establish the following mapping relation-
ships,
13, 46, and 62 implies 13 and 4<2.

With the above mapping relationships, we can fix 5° and * now. As for 6°, o7 = 2
should be replaced by 4, ag = 3 replaced by 1, and ag = 5 remaining unchanged.
Similarly, as for 64, 6} = 4 should be replaced by 2, 6§ = 5 remaining unchanged,
and o-é = 1 replaced by 3. Hence, we have,

Ao (FN_ (413 6 2] L5

—\ 43 ) 7\ 350, | 270, 160, 140, | 120,0 )
#_(\_[(211L 4 615 3

—\ 44 )~ \ 320, 200, 180, 150, | 150, 60 |

After normalization by the last step of Algorithm 1, we obtain two offsprings as
follows.

73_83_4,|3,6,2,|1,5

—\ A3 ) T\ 317, 267, 158,139, | 119,0 ) °
Fo(Yo (2L 4 615 3

~\ A4 ) T\ 321, 183, 165, 138, | 138,55 )"

3.2.2 Second Crossover Operator

The second way of crossover is to evolve A based on a fixed 3. Algorithm 2 shows
its main steps. As an example, suppose p = 2 and g = 5. By Steps 2-5 of Algorithm
2, we have,
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18
i '\ (211, 4 6 3, 15
~\ A" ) 7 \ 350, | 200, 180, 150, 120,] 0 /
7 _ *\ (4 13 6 2 5 |1
~ A2 ) 7 \ 320, | 270, 160, 140, 150, | 60 /
Ao (FY_( 21 1L 4 6 3|5
~\ 43 ) 7\ 350, | 270, 160, 140, 150, | 0 )
#_ (Y (413 6 2 5 |1
— A4 ) 7 \ 320, 200, 180, 150, 120, | 60 /

It is worth noting that both 13 and T* are invalid solutions because Zi\; al.3 < W,pai
and Zfi] a;‘ > W,,,- After normalization by Step 6, we obtain two offsprings as

follows.

po(CN_(2 1L 4 6 35
~\ A3 ) T\ 327,] 252, 150, 131, 140, | 0 ] *

#_(\_ (413 6 2 5|1
T\ A% ) T\ 311, | 194, 185, 146, 116, | 58 | °

Algorithm 2 Second Crossover Operator

Input: Two parents I! = (&'HK') and 12 = (32,52),

Output: Two offsprings I° = (3323) and I+ = (84,34).

:Let?? =1 and * = 12.

: Randomly select two crossover points p and ¢ that satisfy 1 <p < g < N.

fori=p,...,qdo
exchange genes al.3 and a;‘. Let a? = al.z and ozl‘.l = al.'.

: end for
: Normalize A3 and A* to ensure that the total size of all load fractions is equal to that of the

AR

entire workload.

3.3 Mutation Operator

The purpose of mutation in GAs focuses on preserving and introducing diversity
from one generation of a population to the next. It is analogous to biological muta-



A Genetic Algorithm Based Efficient Static Load Distribution ... 19

tion. Mutation operator alters one or more gene values in an individual from its initial
state, thus avoiding local minima and preventing the population from becoming too
similar to each other. Mutation occurs to offsprings generated by crossover according
to a user-definable mutation probability. This probability should be set low; other-
wise, the search will turn into a primitive random search [41].

We apply two-point mutation on both ¢ and A simultaneously to obtain a new
offspring. Randomly generate four integers p, g, [, and m that satisfy 1 <p < g <N
and 1 <1< m < N. Exchange genes o, and o, as well as «; and a,,. For example,

suppose p =2, g =4, =1, and m = 5. We obtain offspring 7' mutated from 7 as

follows.
F_(3\_(2 1 4 6 3.5
~\ A/~ \ 350, 200, 180, 150, 120, 0 /

-

~

7[ _ _ 27 63 43 1’ 33 5
“\ A )~ \ 120, 200, 180, 150, 350, 0 /-

3.4 Repair Operator

It cannot be expected that crossover and mutation operators produce new offsprings
that satisfy all of the four constraints in our proposed model by default, especially
for the Participant Constraint and Off-Line Time Constraint. Thus a newly generated
individual need to be checked whether it violates either of the constraints. If so, we
have to repair it to a feasible solution. Algorithm 3 gives the main steps of repair
operator with the first two steps responsible for Participant Constraint satisfaction
and the remaining for Off-Line Time Constraint satisfaction.

Figure 3 shows a Gantt Chart with processors that violate the Off-Line Time Con-
straint of the proposed model. It can be observed from Fig. 3 that the processing time
T, of processor P, exceeds its off-line time o, , which results in a time conflict.
Therefore, the individual that corresponds to this Gantt Chart violates the Off-Line
Time Constraint and needs to be repaired. According to the repair operator, excessive
load assigned to P, that causes the time conflict should be removed to its immediate
successor P, . Fig. 4 shows a possible Gantt Chart after the load distribution adjust-
ment. It can be seen that 7, = o, , so the time conflict for processor P, has been
eliminated. However, we also notice that the load adjustment gives rise to a new
time conflict for processor P, , whose processing time T exceeds its off-line time
0, Therefore, another round of adjustment is required for processor P, . According
to the repair operator, excessive load assigned to P, will be scheduled to its imme-
diate successor P, . This process repeats iteratively until there are no time conflicts
for all processors.

One may notice that we keep reallocating excessive load from a processor to its
successors in the distribution sequence, instead of its predecessors. This is because
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Algorithm 3 Repair Operator

1: For a newly generated individual T = (3,A), calculate the number of processors participating
in workload computation by n = card( {e; | a; € A and a; >0} ).
For an instance, given that

7o 6\ (o605, 050405,0,\_( 1, 2,3, 4 5 6
“\4a)~ ay, oy, a3, Ay, a5, & )\ 327, 0, 0, 182, 140, 151 )~
We have n = card( {327,182,140,151} ) =4
2: Adjust the order of (o;, ;) pairs so that processors with non-zero load fractions are listed in
front of the others.

As for the above example, it can be observed that a, = a3 = 0, so pairs (0,,a,) and (o3, a3)
should be placed at the end of 1. After reordering, we obtain,

7_<§>_< 1, 4, 5 6, 2 3)
A 327, 182, 140, 151, 0, 0 /°
Lets; =r, .
cfori=2,3,...,ndo
calculate the start time of each processor by s; = max{r,, s;_; + ¢,  +8&, &}
end for
fori=1,2,...,ndo
compute the processing time of each processor by T; = s; + (g,, +W,, ) & + ¢, +f, .
: end for
cfori=1,2,...,ndo
check Whether processing time 7; of processor P, exceeds its off-line time o, . If T; < o,
holds for all processors, then stop; otherwise, T > 0, means too much load has been
assigned to processor P, and that excessive load needs to be rescheduled.
12: end for
13: Compute the size of excess load by 4 = (Ti - o,,i)/ (gm- +wyi).
14: Assign this excess load fraction 4 to the next processor P, by a;, = & ; + Aand o; = o;; — A.
Then go back to Step 1.

YRR IINEW

—_—

the start time of each processor is determined by the load fractions assigned to its
predecessors according to the equation s; = max{r,, s;_; + €,  +&, @_;}. Sup-
pose processor P; violates the Off-Line Time Constraint. If we reallocate excessive
load from P; to one of the processors before P; in the distribution sequence, say P;,
then the start times of processors behind P; may all get postponed, which has a high
chance of causing more time conflicts for processors between P; and P;, thus taking
a much longer time for repair operator to fix all time conflicts.

3.5 Local Search

As mentioned earlier, searching for an OLDS itself is already an NP-hard problem,
not to mention that we also have to search for an OLP. When an HSCS scales up to a
large number of processors, it may hard for GAs to converge. In order to improve con-
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vergence speed of the proposed GA, we introduce a local search operator. The main
idea is to balance load between processors with the longest processing time T, and
the shortest processing time 7', so that all of the processors with processing times
not up to their off-line times will eventually stop computing at the same time. The

process of the local search operator is given in Algorithm 4.

Algorithm 4 Local Search

1: For a given individual i= (5",3), calculate the number n of processors participating in the
workload computation by n = card( {«a; | ; € A and a; >0} ).

2: Lets; =r,,.

3: fori=23,...,ndo

4: calculate the start time of each processor by s; = max{ro_l, Sit T e | 8, %y }.

5: end for

6: fori=1,2,...,ndo

7: compute the processing time of each processor by T; = s, + (g,,l + an> @+ e5 +fo-

8: end for

9: Among P, P, ,....P, , find processor P, with the longest processing time 7, and

processor P, with the shortest processing time 7,;,. Calculate their time difference by
A= Ty - T,

max min ) .

10: Let f = (Tpgy — Tin) /max{g, .g, }. Update individual 7 = (3.A4) by q
and Uin = Fmin + ﬁ

11: Apply repair operator given by Algorithm 3 on the updated individual to ensure that it satisfies
all constraints of the proposed model.

‘max — ¥max ~ B

Figure 5 shows a Gantt Chart that corresponds to an individual before applying
local search operator. As illustrated in Fig. 5, processor P, has the longest processing

0 Communicatiom

start-up overhead [] Communicatiomtime [_] Releasetime [] Time conflict

O Computation
start-up overhead

P, [T | |

9

P || |

oy

: ]
P, (] :|/|;
P, | [ | |

[] Computation time [ Off-line time

Processors

Time

Fig.3 Gantt Chart with processors violating the Off-Line Time Constraint of the proposed model
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Fig. 5 Gantt Chart before applying local search
time 7y and P;_has the shortest processing time 75. Thus Py, = P, and P, = P, .

After load balancing between P, and P, by local search operator a possible Gantt
Chart is shown in Fig. 6. It can be observed that the time difference between T, and
T; illustrated in Fig. 6 becomes much smaller than that shown in Fig. 5. Hence, the
total processing time of the entire workload would be decreased.
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Fig. 6 Gantt Chart after applying local search

3.6 Framework of Algorithm PAA-GA

Once encoding scheme is defined, a GA initializes a population of individuals and
then improves them through repetitive applications of genetic operators, including
crossover, mutation, repair, local search, and selection. The framework and flow chart
of algorithm PAA-GA are given in Algorithm 5 and Fig. 7, respectively.

4 Experimental Results and Analysis

Several rigours experiments are conducted to study the performance and demon-
strate the effectiveness of the proposed algorithm. We employed a compute cluster
comprising 15 nodes and the parameters of our HSCS are given in Table 2. In the
master node where our proposed scheduling algorithm PAA-GA runs, the following
parameters are set: population size Popsize = 100, crossover probability p,.,,, = 0.6,
mutation probability p,,,, = 0.02, elitist number E = 5, and stop criterion ¢ = 50000.

4.1 Evaluating the Correctness of PAA-GA

We attempt to make a comparison between an exhaustive algorithm (EA) [34] with
our PAA-GA. As expected, although EA will be time-consuming, EA can obtain
an absolute minimum processing time. In order to evaluate the correctness of algo-
rithm PAA-GA, we make a comparison between PAA-GA and EA to check whether
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Algorithm 5 PAA-GA: Processor Availability-Aware Genetic Algorithm
Input: Population size Popsize, crossover probability p,,,., mutation probability p,,,, elitist num-
ber E and stop criterion.
Output: An OLDS & and OLP A.
1: (Initialization) Set the population size Popsize, crossover probability p,,,., mutation probabil-
ity p,...» and elitist number E. Randomly generate Popsize individuals as the initial population

Pop(0) according to the encoding scheme. For each individual T € Pop(0), first apply the repair

operator given by Algorithm 3 on 1, and then compute processing time 7 of the entire work-

load by 7' = max {s;+e, + (g, +w, ) a+f, }, taking 1/T as the fitness value of I. Let the
<i<n i i i i

generation number ¢ = 0.

2: (Crossover) Select Popsize individuals into the crossover pool from Pop(t) by roulette wheel
selection. Apply the two crossover operators given by Algorithms 1 and 2 one-by-one on each
pair of parents selected from the crossover pool according to crossover probability p,.,,,. All
newly generated offsprings constitute a set denoted by O, (¢).

3: (Mutation) Apply mutation operator on each of the selected individuals from O, (¢) according
to mutation probability p,,,.. All newly generated offsprings constitute a set denoted by O,(1).

4: (Repair) Apply repair operator given by Algorithm 3 on each individual in set O, (¢) U O,(?).

5: (Local Search) Apply local search operator given by Algorithm 4 on each individual in set
0,(1) U 0,(1).

6: (Selection) Select the best E individuals for the next population Pop(t + 1) from set Pop(r) U
0,(1) U O,(1). Select the remaining Popsize — E individuals for Pop(t + 1) by roulette wheel
selection also from set Pop(1) U O (t) U O,(t). Lett =t + 1.

7: (Stopping Criteria) If a fixed number of generations reached, then stop and return the best
individual T = (E,A) in the current population; otherwise, go to Step 2.

| Start

|

‘ Initialization
<
- Selection
' No Selectic
Yes ¢ Y
Crossover
* First crossover operator
e Second crossover operator Local Search
A
A4

End Y
Mutation ’—b{ Repair

Fig. 7 Flow chart of algorithm PAA-GA
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Table 2 Parameters of our HSCS

P; 8i Wi ¢ fi Ti 9

P, 0.53 2.90 7.06 5.80 46.34 331.85
P, 0.77 7.61 3.02 0.14 53.55 397.44
Py 0.71 4.14 8.14 0.45 78.14 420.58
P, 0.79 9.62 8.63 3.74 93.47 509.31
Ps 0.06 3.64 8.71 9.50 13.86 613.82
Py 0.77 5.92 5.25 0.54 57.31 722.11
P; 0.30 6.48 4.69 6.23 47.47 855.85
Py 0.28 8.25 2.64 8.30 22.18 964.82
Py 0.99 2.27 5.89 9.11 34.38 1175.66
Py 0.98 5.34 6.95 2.44 17.06 1299.34
Py 0.99 1.57 1.06 6.76 79.63 1474.28
Py, 0.10 7.99 5.75 1.03 31.81 1763.75
Py 0.05 3.82 2.84 2.96 53.32 1768.40
Py 0.95 4.01 3.01 9.80 17.40 1911.18
Pis 0.16 6.47 2.78 1.63 60.60 1943.74

the processing time obtained by PAA-GA agrees with that obtained by EA. If their
processing times are in good agreement, then it surely proves that PAA-GA can
obtain an OLP.

Assuming that the off-line times of all processors are infinite, thus we only take the
processor release times into account. Note that EA requires a fixed load distribution
sequence as its input in advance, so we set the OLDS obtained by PAA-GA as the
input for algorithm EA. Table 3 records the comparison results for PAA-GA and EA.
It can be observed from this table that PAA-GA obtains the same experimental results
with EA for each test workload, including the same number of processors involved
in workload computation and the same processing time. Therefore, we can make the
conclusion that algorithm PAA-GA proposed in this chapter can obtain an OLP such
that the processing time is minimized for divisible-load scheduling problems with
processor release times.

Besides OLP, in order to prove that the proposed PAA-GA can also obtain an
OLDS, we make a comparison between PAA-GA and EA with three different distrib-
ution sequences as its input, which are commonly used in previous studies: sequence
in the order of increasing value of g;, denoted as IG; sequence in the order of increas-
ing value of w;, denoted as IW; and sequence in the order of increasing value of
release time r;, denoted as IR.

Based on the parameters given in Table 2, sequences IG, IW, and IR are as follows,
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Table 3 Experimental results obtained by PAA-GA and EA with the same OLDS

W | Algorithm | n T 6 =(06,,065,...,0,)
100 PAA-GA 12 110.615 (5,8,14,12,7,13,15,1,2,11, 6, 3)
EA 12 110.615 | (5,8,14,12,7,13,15,1,2, 11,6, 3)
200 PAA-GA 13 165.639 | (5,8,12,14,13,15,7,1,11,9,2,6, 3)
EA 13 165.639 | (5,8,12,14,13,15,7,1,11,9,2,6, 3)
300 PAA-GA 14 216.182 | (5,8,12,7,13,15,1,3,2,11, 14,9, 6, 10)
EA 14 216.182 | (5,8,12,7,13,15,1,3,2,11, 14,9, 6, 10)
400 PAA-GA 15 265.534 | (5,8,12,7,13,15,1,3,2,6,11, 14,9, 10, 4)
EA 15 265.534  |(5,8,12,7,13,15,1,3,2,6,11, 14,9, 10, 4)
500 PAA-GA 15 314.943  |(5,8,12,7,13,15,1,3,2,6, 14, 11,9, 10, 4)
EA 15 314943 | (5,8,12,7,13,15,1,3,2,6, 14,11, 9, 10, 4)
600 PAA-GA 15 365.878 |(5,8,12,13,15,7,1,3,2,6,14, 11,9, 10, 4)
EA 15 365.878 |(5,8,12,13,15,7,1,3,2,6,14, 11,9, 10, 4)
700 PAA-GA 15 414.793 | (5,8,12,13,15,7,1,3,2,6,14, 11,9, 10, 4)
EA 15 414793 | (5,8,12,13,15,7,1,3,2,6,14, 11,9, 10, 4)
800 PAA-GA 15 465.835 | (5,8,12,13,15,7,1,3,2,6,14, 11,9, 10, 4)
EA 15 465.835 |(5,8,12,13,15,7,1,3,2,6,14, 11,9, 10, 4)
900 PAA-GA 15 516.877 |(5,8,12,13,15,7,1,3,2,6, 14,11, 9, 10, 4)
EA 15 516.877 |(5,8,12,13,15,7,1,3,2,6, 14,11, 9, 10, 4)
1000 | PAA-GA 15 567.761 (5,12,8,13,15,7,1,3,2,6, 14,11, 9, 10, 4)
EA 15 567.761 (5,12,8,13,15,7,1,3,2,6, 14,11, 9, 10, 4)
IG = (13,5,12,15,8,7,1,3,2,6,4,15,10,9, 11).
w = (11,9,1,5,13,14,3,10,6,15,7,2,12,8,4).
IR = (5,10,14,8,12,9,1,7,13,2,6,15,3,11,4).

Table 4 records the experimental results obtained by algorithms PAA-GA, EA-
1G, EA-IW, and EA-IR. It can be observed from Table 4 that for each test workload,
the load distribution sequence obtained by PAA-GA is different from IG, IW, and
IR. Moreover, for some test workloads, PAA-GA even obtains different numbers of
processors involved in workload computation from EA with IG, IW, and IR, hence
obtaining different load partition too. To be more intuitively, Fig. 8 illustrates the
variation of processing time obtained by PAA-GA, EA-IG, EA-IW, and EA-IR along
with different workload size. From this figure, we can observe that for each workload,
the processing time obtained by the proposed PAA-GA is less than that by EA with
three different load distribution sequences. The processing time obtained by PAA-
GA shows a gain of about 10-25% compared to EA with IG and IR, and gained over
40% compared to EA with IW. Therefore, it is clear that PAA-GA outperforms over
other strategies in achieving an optimal processing time, hence an efficient energy
consumption too, for processor release time-aware divisible-load scheduling. Fur-
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Table 4 Experimental results obtained by PAA-GA and EA with three different load distribution
sequences

W | Algorithm | n T 6 =(0(,05,...,0,)
100 PAA-GA 12 110.615 | (5,8,14,12,7,13,15,1,2, 11,6, 3)
EA-1IG 11 145418 |(13,5,12,15,8,7,1,3,2,6,4)
EA-IW 8 208.662 | (11,9,1,5, 13,14, 3, 10)
EA-IR 12 130.256 | (5, 10, 14,8,12,9,1,7,13, 2,6, 15)
200 PAA-GA 13 165.639 |(5,8,12,14,13,15,7,1, 11,9, 2,6, 3)
EA-IG 15 201.189 | (13,5,12,15,8,7,1,3,2,6,4, 14, 10,9, 11)
EA-IW 12 297.881 (11,9,1,5,13, 14,3, 10,6, 15,7, 2)
EA-IR 14 199.450 | (5,10,14,8,12,9,1,7,13,2,6, 15,3, 11)
300 PAA-GA 14 216.182  |(5,8,12,7,13,15,1,3,2,11, 14,9, 6, 10)
EA-IG 15 251.701 (13,5,12,15,8,7,1,3,2,6,4, 14, 10,9, 11)
EA-IW 14 382499 | (11,9,1,5,13,14,3,10,6,15,7,2,12,8)
EA-IR 15 265.008 | (5,10, 14,8,12,9,1,7,13,2,6,15,3,11,4)
400 PAA-GA 15 265.534  |(5,8,12,7,13,15,1,3,2,6,11, 14,9, 10, 4)
EA-IG 15 302.213 | (13,5,12,15,8,7,1,3,2,6,4,14,10,9, 11)
EA-IW 15 465.058 | (11,9,1,5,13,14,3,10,6,15,7,2,12,8,4)
EA-IR 15 330.451 (5,10, 14,8,12,9,1,7,13,2,6, 15,3, 11, 4)
500 PAA-GA 15 314943 | (5,8,12,7,13,15,1,3,2,6, 14,11, 9, 10, 4)
EA-IG 15 352.725 |(13,5,12,15,8,7,1,3,2,6,4, 14, 10,9, 11)
EA-IW 15 547.376  |(11,9,1,5,13,14,3,10,6,15,7,2, 12, 8,4)
EA-IR 15 395.894 (5,10, 14,8,12,9,1,7,13,2,6, 15,3, 11, 4)

thermore, it can be seen from Fig. 8 that at first the processing time obtained by EA
with IR is less than that by EA with IG, but as workload size increases, EA with IG
outperforms EA with IR. This means that with increasing workload size, the influ-
ence of processor release times on the processing time becomes weaker, while the
influence of load distribution sequence on processing time becomes stronger.

4.2 Evaluating the Performance of PAA-GA

By taking processor available time periods into account, we make a comparison
between the proposed PAA-GA and EA with three commonly used load distribu-
tion sequences as its input: IG, IW, and IR. Given that the original EA proposed in
[34] does not consider processor off-line times, those processors whose processing
times exceed their off-line times need to be rescheduled. For simplicity, we real-
locate those load fractions to the processor with the largest off-line time. Figure 9
shows the variation of processing time obtained by PAA-GA, EA-IG, EA-IW, and
EA-IR along with different workload size. As shown in Fig. 9, for each workload,
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Fig. 8 Variation of processing time obtained by PAA-GA, EA-IG, EA-IW, and EA-IR along with
different workload sizes for processor release-time aware divisible-load scheduling
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Fig. 9 Variation of processing time obtained by PAA-GA, EA-IG, EA-IW, and EA-IR along with
different workload sizes for processor available-time aware divisible-load scheduling

the processing time obtained by PAA-GA is much less than that by EA with any of
the load distribution sequences, and the time difference between them grows with
increasing workload size. When workload size is as large as 800 in our experiment,
the processing time obtained by PAA-GA shows a gain of 64% compared to EA with
IR, gained about 72% compared to EA with IG, and gained over 77% compared to EA
with IW. Therefore, it is clear that although the effect of available times has a greater
influence on the performance as workload size increases, PAA-GA outperforms over
other strategies as testified in our evaluations.
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5 Conclusions

One of the key characteristics of sustainable computing systems is in efficiently man-
aging available shared resources by designing judicious scheduling algorithms. By
designing optimal, if not time-efficient scheduling algorithms, energy consumption
is indirectly managed. Towards this effort, in this chapter, we have proposed an effi-
cient processor availability-aware scheduling model to optimize the energy efficiency
of heterogeneous sustainable computing systems. Using this model, we designed a
genetic algorithm based global optimization strategy to derive an optimal load parti-
tion together with an optimal distribution sequence. This is an important contribution
to the literature as this is the first time where the modeling is tuned to accommo-
date all influencing parameters (start-up overheads, processor availabilities, hetero-
geneous networks) to achieve a global optimal solution. We have conducted several
experiments to demonstrate the correctness and effectiveness of the proposed algo-
rithm PAA-GA. Experimental results showed that although the effect of processor
available time periods has a greater influence on the performance as the workload
size increases, the proposed PAA-GA reduced the processing time, hence the energy
consumption too, by over 60% compared to other strategies. An important and an
immediate useful extension to the study posed in this chapter is in developing a sim-
ilar strategy for an arbitrary topology as real-life network based computing platforms
seldom have regular topologies.
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