
Chapter 2
High-Level Synthesis of Dynamic
Data Structures

HLS promises significant shortening of the design cycle compared to a design entry
at RTL. However, many HLS implementations require extensive code alterations
to ensure synthesisability and to achieve latency, throughput and resource utilisa-
tion comparable to handwritten RTL designs. These are especially important for
programs with ‘irregular control flow’ and ‘complicated data dependencies’. In this
chapter, we describe these terms in detail and elaborate on their implications for
efficient HLS. To this end, we present a case study comparing the implementations
of two algorithms for a compute-intensive machine learning application (K -means
clustering). Algorithmically, both implementations solve the same problem, but they
differ significantly in their computational properties: the first is a data flow-centric,
‘regular’ implementation with simple control flow, whereas the second is based on
a recursive traversal of a pointer-linked tree data structure and uses dynamic mem-
ory allocation. The latter application thus exhibits highly ‘irregular control flow’
and ‘complicated data dependencies’. Despite this irregularity, software implemen-
tations of this algorithm have been shown to be significantly faster than their data
flow-centric counterparts because it effectively reduces the algorithmic complexity
of the problem [1].

Our evaluation fits in the line of works that present designer’s experiences with
HLS tools. For example, a broad selection of 12 state-of-the-art HLS tools, acad-
emic and commercial, is evaluated by Meeus et al. [2]. Their overview, attesting
Vivado HLS excellent test results, targets FPGA as well as ASIC flows and is based
on a large set of criteria grouped into language support, ease of use, QoR and the
capability of a rapid design space exploration. The goal is to perform a broad com-
parison across different tools mainly using a Sobel edge detector [3] as a test case.
Sarkar et al. [4] present a more refined designer’s experience with three HLS tools
for ASICs using stream-based video processing applications. Their conclusion high-
lights the importance of fine-grained re-architecturing their test cases to optimise area
and power consumption, and an evaluation by experienced users to obtain solid com-
parisons. BDTI present an explicit evaluation ofAutoPilot (later renamed intoVivado
HLS after the acquisition by Xilinx) [5]. Their evaluation uses video processing and
stream-basedwireless communications benchmarks, reportingQoRcomparablewith
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manual RTL implementations. The evaluations above share the commonality that the
chosen benchmark cases are data flow-centric stream-based applications with simple
control flow. A recent survey in [6] compares three academic tools and one com-
mercial HLS tool using and four data-flow centric benchmarks in addition to the
CHStone [7] benchmark suite, which covers a broader spectrum of applications.
Heap-manipulating code, however, is not included. In contrast to the above evalu-
ations, with our pointer-based benchmark, we aim to operate the HLS flow on test
cases outside its ‘comfort zone’.

The outcome of our case study is three-fold: Firstly, we can show that the per-
formance result obtained for software implementations can be repeated with hand-
optimised RTL implementations of both algorithms. This result is interesting in that
irregular algorithms are often believed to be inefficient once mapped into hardware.
Furthermore, it shows that the use of dynamic, pointer-linked data structures, which
are central to the second algorithm, can result in very efficient FPGA applications if
implemented well. Secondly, we repeat the case study with an HLS implementation
using a state-of-the-art HLS tool and show that our previous result is reversed if the
source code is not substantially altered prior to HLS. Thirdly, we analyse the effi-
ciencywithwhich theHLS toolmaps specific program features intoRTL and propose
source-to-source transformations that improve the QoR of the irregular algorithm by
a factor of eight in terms of latency, significantly narrowing the gap between HLS
and hand-written RTL implementations. This chapter describes:

• An efficient RTL implementation of the irregular tree-based K -means clustering
algorithm which preserves the algorithmic advantage over the conventional regu-
lar implementation. We show how the implementation can efficiently exploit the
distributed memory architecture in FPGAs.

• A comparative case study using a data-flow centric clustering implementation and
an implementation based on recursive traversal of a pointer-linked tree structure
which incorporates data-dependent control flow. The case study comprises hand-
written RTL and HLS implementations. Code transformations necessary to enable
HLS of unsupported program features are highlighted.

• The use of on-chip dynamic memory allocation which allows us to allocate the
average amount of memory required during runtime instead of statically pre-
allocating the worst-case amount resulting in a 57× reduction of on-chip memory
resources.

• Anend-to-endQoRcomparison between the automatically generatedRTLcode for
both variants andboth functionally equivalent, hand-writtenRTL implementations.

• An analysis of how efficiently specific program features are synthesised into RTL.
We propose source-to-source transformations that improve QoR by a factor of
eight in terms of latency.

The two algorithms for K -means clustering form the basis of our case study.
Figure2.1 shows our design flow. The initial C++ model is modified in order to
include custom precision for operands of the basic arithmetic operations. From
this model, we implement a hand-written RTL design written in VHDL (bottom
branch, Sect. 2.3) and a C++-based HLS design (top branch). The HLS
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implementation requires further code refactoring which we discuss in Sect. 2.4. The
generated and hand-crafted RTL design entries are verified using standard RTL sim-
ulation tools. Finally, QoR is compared in terms of latency and resource usage taken
from the placed and routed FPGA designs (Sect. 2.5). The evaluation flow in Fig. 2.1
is repeated for both clustering algorithms. The following section discusses both
algorithms.

2.1 Background

The test cases we chose for this case study are two implementations of a clustering
application, a technique for unsupervised partitioning of a data set commonly used in
a wide range of applications, such as machine learning and data mining [8, 9], radar
tracking [10], image colour or spectrum quantisation [11–14]. A popular technique
for finding clusters in a data set is K -means clustering, which partitions the D-
dimensional point set X = {x j }, j = 1, . . . , N into clusters {Si }, i = 1, . . . , K ,
where K is provided as a parameter. The goal is to find the optimal partitioningwhich
minimises the total sum of squared Euclidean distances (squared-error distortion)
given in (2.1) where μi is the geometric centre (centroid) of Si .

J ({Si }) =
K∑

i=1

∑

x j ∈Si

∥∥x j − μi

∥∥2
(2.1)

Finding optimum solutions to this problem is NP-hard [15]. A popular heuristic ver-
sion uses an iterative refinement scheme. The standard algorithm begins by choosing
K initial centres Z = {μ1, . . . , μK } sampled randomly from the point set. The set
Z is iteratively refined until it no longer changes. On each iteration, it splits X into
K partitions, according to which is the nearest mean of each partition. These means
(geometrical centres) form the next generation of Z (Z ′). Using one algorithm for
this problem, which we refer to as Lloyd’s algorithm, N · K · L distances in D-
dimensional space are computed where N is the number of data points and L , the
number of required iterations. Listing 1 shows pseudo code of the main processing
loop for one iteration of Lloyd’s algorithm. Line 12 searches among K candidate
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Listing 1 Main kernel of Lloyd’s algorithm (one clustering iteration).
1: Parameters:
2: N , K
3: Input:
4: point set X = {x1, x2, . . . , xN }
5: initial centre set Z = {μ1, μ2, . . . , μK }
6: Output:
7: new centre set Z ′ = {μ′

1, μ
′
2, . . . , μ

′
K }

8: Variables:
9: centroid information C = {c1, c2, . . . , cK }

10: function lloyds
11: for all x j ∈ {x1, x2, . . . , xN } do � iterate over all data points
12: i ← argmini ′,μi ′ ∈Z (||x j − μi ′ ||2) � find closest centre to x j among K candidates
13: ci ← select i th element in C
14: ci .wgtCent ← ci .wgtCent + x j
15: ci .count ← ci .count + 1
16: update ci in C
17: end for
18: for all ci ∈ C do � update centre positions
19: μ′

i ← ci .wgtCent/ci .count ;
20: end for
21: end function

centres for the closest centre to a data point xi . The index i of this centre is used
to update the correct entry in the centroid information table C (Lines 13–16). C
contains K vector sums of data points which we refer to as ‘weighted centroids’
(wgtCent). After all data points have been processed, the final output centre set
{μ′

1, μ
′
2, . . . , μ

′
K } is computed from the weighted centroids in C (Lines 18–20).

In contrast to massively parallel hardware implementations, sophisticated soft-
ware implementations have been proposed which gain speed-up from search space
reductions. Kanungo et al. [1] present one possible implementation. Their filtering
algorithm organises the data points in a multi-dimensional binary search tree, called
a ‘kd-tree’, and finds nearest centres at each iteration using a tree traversal. To this
end, the point set is recursively divided into two subsets. In each step, the axis-aligned
bounding box of the subset is computed and subdivided. This leads to a (generally not
perfectly balanced) binary kd-tree structure whose root node represents the bounding
box of all data points and whose children nodes represent recursively refined, non-
empty disjoint bounding boxes. Each tree node stores the bounding box (bnd Box)
information as well as the number (count) and the vector sum of its associated points
(the weighted centroid, wgtCent) which is used to update the cluster centres when
each iteration completes. The weighted centroid of leaf nodes is the data point itself.

Listing 2 shows a simplified version of the recursive kernel function of the filtering
algorithm for one iteration. During clustering, the tree is traversed starting from
the root node. The set of input centres in Lloyd’s algorithm is replaced by sets of
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candidates for the closest centre to a subset of data points. The algorithm propagates
multiple candidate sets down the tree. These are of variable size and are created and
disposed at run-time. At each non-terminal visited tree node, the closest candidate
centre to the mid point (mid Point) of the bounding box is found. Some of the
remaining candidates are pruned if no part of the bounding box is closer to them than
the closest centre (Line 22). The pruning greatly reduces the number of computed
distances since the averagenumber of ‘close’ cluster-centre candidates is significantly
smaller than K . Additionally, entire sub-trees can be pruned if only one candidate
remains. As the point set does not change during clustering, the kd-tree needs to be
built up only once and the additional overhead is amortised over all iterations. In fact,
our profiling results show that, on average, the tree construction demands less than
2% of the total computation required. Therefore, we perform the pre-processing in
software and the FPGA accelerator discussed in the following focuses only on the
tree traversal phase.

In light of this case study, we identify the most important features of both applica-
tions. Because the min-search in Listing 1 (Line 12) is implemented as a for-loop
over K centres, the main kernel of Lloyd’s algorithm consists of two nested for-
loops with constant bounds. The simple control flow and inherent parallelism at
the granularity of distance computations makes the computationally expensive algo-
rithm suitable for hardware implementations so as to accelerate K -means clustering
for real-time implementations if N and K are large. Computational parts of the fil-
tering algorithm in Listing 2 are the closest centre searches (Lines 14, 20) and the
candidate pruning (Line 22, containing two distance calculations), and the centroid
buffer update. The loops in the min-searches and candidate pruning have variable
bounds 2 ≤ k ≤ K . The implementation uses dynamic memory allocation (Line 21)
and de-allocation (Lines 32, 36) enclosed in data-dependent conditionals. Memory
space is freed upon backward traversal, i.e. after an allocated centre set has been
read twice. The implementation uses recursive function calls (beyond tail recursion)
which requires the presence of a stack. The stack is implicitly handled in the software
program, but it needs to be explicitly implemented in an FPGA application. The data
passed between recursive instances are the tree node u and the set of candidate centre
set Z .

Previous hardware implementations of Lloyd’s algorithm are proposed in [14,
16–19]. Pioneering work by Leeser et al. [16] implemented FPGA-clustering for the
analysis of hyperspectral images. Their approach trades clustering quality for hard-
ware resource consumptionby replacing theEuclideandistance normwithmultiplier-
less Manhattan and Max metrics. This trade-off is extended to bit width truncations
on the input data by Estlick et al. [14] who report a speed-up of up to 200× over
the software implementation. More recent work in [17] builds on the same frame-
work and extends it by incorporating a hybrid fixed- and floating-point arithmetic
architecture. These approaches aim to gain acceleration from an increased amount
of parallel hardware resources for distance computations and nearest centre search.
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Listing 2 Main kernel of the filtering algorithm (one clustering iteration) [1].
1: Parameters:
2: N , K
3: Input:
4: kd-tree
5: initial centre set {μ1, μ2, . . . , μK }
6: Output:
7: new centre set Z ′ = {μ′

1, μ
′
2, . . . , μ

′
K }

8: Variables:
9: node in the kd-tree u
10: multiple sets of candidates for the closest centre to a point cloud (Z )
11: centroid information C = {c1, c2, . . . , cK }

12: function filter(u, Z )
13: if u is leaf then
14: i∗ ← argmini ′,μi ′ ∈Z (||u.wgtCent − μi ′ ||2) � find closest centre to u.wgtCent
15: ci∗ ← select i∗-th element in C
16: ci∗ .wgtCent ← ci∗ .wgtCent + u.wgtCent
17: ci∗ .count ← ci∗ .count + 1
18: update ci∗ in C
19: else
20: i∗ ← argmini ′,μi ′ ∈Z (||u.mid Point − μi ′ ||2) � find closest centre to u.mid Point
21: Znew ← new centre set � allocate new centre set (empty)
22: for all μ j ∈ Z do � prune candidate centres
23: if pruningTest(i∗, μ j , u.bnd Box) is false then
24: Znew ← Znew ∪ {μ j }; � insert surviving candidates into Znew
25: end if
26: end for
27: if |Znew| = 1 then
28: ci∗ ← select i∗-th element in C
29: ci∗ .wgtCent ← ci∗ .wgtCent + u.wgtCent
30: ci∗ .count ← ci∗ .count + u.count
31: update ci∗ in C
32: delete Znew � immediately delete allocated Znew
33: else � recurse on children
34: FILTER(u.le f t , Znew);
35: FILTER(u.right , Znew);
36: delete Znew � delete allocated Znew on the way back
37: end if
38: end if
39: end function
40: for all ci ∈ C do � update centre positions
41: μ′

i ← ci .wgtCent/ci .count ;
42: end for

Contrary to these works, the first contribution in this thesis chapter is an efficient
implementation of the filtering algorithm, which gains acceleration largely from
search space pruning. Chen et al. [20] present a VLSI implementations for K -means
clustering which is notable in that it, in line with our approach, recursively splits the
data point set into two subspaces using conventional 2-means clustering. Logically,
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this creates a binary tree which is traversed in a breadth-first fashion and results in
computational complexity proportional to log2K . This approach, however, does not
allow any pruning of candidate centres. Saegusa et al. [12] present a simplified kd-
tree-based implementation for K -means image clustering. The data structure stores
the best candidate centre (or generally a few ‘best’ candidates) at its leaf nodes and
is looked up for each data point. The tree is built independently of the data points,
i.e. the pixel space is subdivided into regular partitions which leads to ‘empty’ pixels
being recursively processed. Other disadvantages are that the tree needs to be rebuilt
at the beginning of each iteration and that the centre lists are not pruned during tree
traversal in the build phase, which are essential features of the filtering algorithm.

2.2 Analysis of the Filtering Algorithm

We analyse several properties of the filtering algorithm that provide insight into the
advantage over Lloyd’s algorithm. To this end, we profile a software implementation
of the algorithm. The input data sets that we use throughout this chapter are point
sets of N = 16,384 three-dimensional real-valued samples. The data points are
distributed among 128 centres following a normal distribution with varying standard
deviationσ , whereas the centre coordinates are uniformly distributed over the interval
[−1, 1]. Finally, the data points are converted to 16bit fixed-point numbers. We
choose K = 128 initial centres sampled randomly from the data set and run the
algorithm either until convergence of the objective function or until a maximum of
30 iterations are reached. In addition to synthetic input data, we include a working set
with N = 16, 384 randomly sampled pixels from the well-known Lena benchmark
image and quantise the colour space into K = 128 clusters. Note that the clustering
output is exactly the same for both the implementation of Lloyd’s and the filtering
algorithm.

The filtering algorithm can be divided into two phases: building the tree from the
point set (pre-processing), and the repeated tree traversal and centre update (cluster-
ing phase). In order to obtain information about the computational complexity of both
parts, we profile the software implementation of the algorithm using synthetic input
data. Here, we chose the number of Euclidean distance computations performed as
our metric for computational complexity. Since the tree creation phase does not com-
pute any distances but performs mainly dot product computations and comparisons,
we introduce distance computation equivalents (DCEs) to obtain a unified metric for
both parts which combines several operations which are computationally equivalent.
Table2.1 shows the profiling results of the computational complexity of the filtering
algorithm broken down into clustering and pre-processing phases for different work-
ing sets. The parameter σ is varied such that the synthetic input data ranges from
well-distinguished clusters (σ = 0.05) to a nearly unclustered point set (σ = 0.35).
For all cases, the number of DCEs performed during tree creation is only a fraction of
the total number of DCEs (2% geometric mean). Because of the small contribution of
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Table 2.1 Computational complexity of the filtering algorithm broken down into clustering
and pre-processing phases

Input data
N = 16, 384,
K = 128

DCEs in clustering DCEs in
pre-processing

Contribution of
pre-processing (%)

Synthetic σ = 0.05 1,09,207 4963 4.3

Synthetic σ = 0.10 1,56,464 4712 2.9

Synthetic σ = 0.15 2,12,670 4574 2.1

Synthetic σ = 0.20 2,59,146 4494 1.7

Synthetic σ = 0.25 2,94,173 4423 1.5

Synthetic σ = 0.30 3,21,841 4432 1.4

Synthetic σ = 0.35 3,39,831 4424 1.3

Lena benchmark
(subset)

2,24,418 4923 2.1

the pre-processing, we perform this part in software and the FPGA implementation
described in the following section focuses on the tree traversal phase only.

We also evaluate the search space pruning. The major complexity reduction is
due to the fact that the repeated searches for the closest centre need to consider
significantly fewer centres than Lloyd’s algorithm for which this number is always
K . Figure2.2 (left) shows the frequency of candidate centre set sizes averaged over
all synthetic cases above. During tree processing, most sets contain only 2 or 3
centres and the average centre set size is 4.36 (3.78 for the Lena image benchmark),
which shows the effectiveness of the search space pruning. We quantify the overall
search complexity of the filtering algorithm in terms of the aggregate number of
node-centre pairs, i.e. the cumulative number of candidate centres processed at the
visited tree nodes per clustering iteration. This number is sensitive to the input data.
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Fig. 2.2 Left Frequency of candidate centre set sizes for synthetic input data. Right Computational
complexity of the filtering algorithm in terms of node-centre pairs (Lloyd’s algorithm has a constant
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Figure2.2 (right) shows the number of node-centre pairs over different values of σ

in the synthetic data sets. The complexity ranges from 31,399 to 94,590. We also
include the Lena benchmark with 61,230 node-centre pairs for a comparison with
real-world data. For Loyd’s algorithm, an equivalent metric of data point-centre pairs
can be defined which is N · K =20,97,152 for all input sets in Fig. 2.2. Even for
unfavourable input data (σ = 0.35), the filtering algorithm thus achieves a 22×
reduction of search complexity. In a sequential software implementation [1], this
reduction translates directly into a run-time advantage of the filtering algorithm. The
next sections investigate if, how, and to what extent this result can be reproduced in
hardware implementations.

2.3 RTL Implementations

This section describes efficient hand-crafted FPGA implementations of Lloyd’s
and Kanungo’s filtering algorithm implementations, which will be compared in
Sect. 2.5.1. Both RTL implementations are fully pipelined designs and their com-
putational parts mainly consist of the same basic elements, Euclidean distance and
dot product computations, but their control structures and memory architectures are
substantially different. We made the source code of the RTL implementations dis-
cussed below available in an open source repository.1 The following description
motivates later discussion of how we direct the HLS flow to produce competitive
designs from a C description. Specific features discussed here and implemented later
in the HLS flow (Sect. 2.4) will disclose particular limitations.

2.3.1 Lloyd’s Algorithm

The implementation consecutively fetches data points from memory, computes the
Euclidean distance to each centre μi , 1 ≤ i ≤ K , and selects the closest centre
before fetching the next data point. The distance computation is fully parallelised
for a parametric data point dimensionality D. Parallelism is further increased by
performing P distance computations concurrently which reduces the number of
sequential steps per iteration from N · K to (N · K )/P . A centroid buffer stores the
centroid information C and maintains the intermediate results during one iteration
which are continuously updated. The accumulated weighted centroids (wgtCent)
are then divided by the count value at each index to obtain the centre positions for
the next iteration. The data set memory and centroid buffer are implemented as on-
chip block random access memory (BRAM) and distributed look-up table (LUT)
RAM, respectively. The position update uses a pipelined divider core.

1https://github.com/FelixWinterstein/Vivado-KMeans [21].

https://github.com/FelixWinterstein/Vivado-KMeans
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Fig. 2.3 Left FPGA implementation of the filtering algorithm. Right Read-write accesses to the
scratchpad memory for centre sets during tree traversal

2.3.2 Filtering Algorithm

Figure2.3 (left) shows a high-level block diagram of our RTL design of the filtering
algorithm. Our RTL implementation contains three computational kernels: (1) The
closest centre search computes Euclidean distances to either the mid point of a
bounding box or the tree node’s weighted centroid, followed by a min-search. (2)
The pruning kernel performs two slightly modified distance computations to decide
whether any part of the bounding box crosses the hyperplane bisecting the line
between two centres. A more detailed description of the pruning algorithm is given
in [1]. Those centres μi for which the pruning test returns false are flagged and no
longer considered by subsequent processing units. (3) The centroid buffer is updated
andused in the sameway as forLloyd’s algorithm.All three sub-kernels are integrated
in a pipelined, stream-based processing core. This core has a hardware latency of 31
clock cycles and can accept a node-centre pair on every other clock cycle. Thus, if
fully utilised, the pipeline is usually filled with several tree nodes and their associated
candidate centre sets.

The heart of the filtering algorithm is the traversal of the kd-tree which is imple-
mented using the recursive calls shown in Listing 2. Our implementation controls
this tree traversal using a stack which contains pointers to a tree node and to its
associated set of candidate centres as well as the current set size. After fetching the
pointers from stack, the data referenced by them is processed. At the output of the
pipeline, we obtain a new traversal decision which is based on whether we have not
yet reached a leaf node and whether there is more than one centre in the pruned
candidate set left. If so, new pointers (left and right child and a new centre set) and
the new set size are pushed onto the stack. Otherwise, nothing is pushed onto the
stack. In the latter case, a pointer to a non-visited node further up in the tree will be
fetched for processing in the next cycle. This process is repeated until the stack and
pipeline are empty which terminates the tree traversal. Because all memories (tree
nodes, centre indices, centre positions, centroid buffer, and stacks) are mapped to
physically disjoint memories, all accesses can be made simultaneously in each clock
cycle.
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Pipelining and Parallelisation

The profiling results in Sect. 2.2 show that a candidate set (associated with a tree
node and processed item by item) has an average size of 4.36 centres in the scenarios
considered here, which is smaller than the pipeline depth of 31 stages. In order to hide
pipeline latency,we need to overlap the processing ofmultiple node-centre set pairs in
the pipeline, which is possible in the absence of feedback dependencies. Figure2.3
(right) illustrates the read and write accesses. Memory accesses are indicated by
dashed lines, pointer links are drawn as solid lines. The diagram shows that a read-
write data dependency exists only between centre sets whose associated tree nodes
have a direct parent-child relation. In fact, all pointers residing on the stack point
to data structures that has already been written to and hence can be processed inde-
pendently. The scheduler in the stack management fetches new pointers as described
above as soon as the pipeline is ready to accept new data. Independent centre sets are
read and written simultaneously using dual-port memory. For parallelism beyond
pipelining the processing units are duplicated. To process independent subsets of
such pairs, we split the tree into P disjoint sub-trees and distribute them across sev-
eral computational units for parallel processing. We note that for both pipelining and
parallelisation, we exploit knowledge about dependencies carried by data structures
accessed through pointers.

Dynamic Memory Allocation

The centre index memory (Fig. 2.3, left) serves as a scratchpad memory for storing
centre sets and retaining them for later usage during the tree traversal. A new set
is written when child nodes are pushed onto the stack and must be retained until
both left and right child nodes have been processed. The memory space then can be
freed and reused. The duration for which a centre set must be retained in memory
depends on the shape of the (generally unbalanced) tree. The results in Sect. 2.2 are
obtained under the assumption that the application can allocate as much scratchpad
memory as needed. However, the requested amount may exceed the available on-
chip memory resources. The worst-case number of candidate sets is N − 1 which
is required in the case of a degenerate kd-tree where every internal node’s right
child is a leaf and its left child is another internal node. If we consider an FPGA
application supporting Nmax = 16,384 data points and a maximum of Kmax = 256
centres, we require (Nmax − 1) · Kmax · log2Kmax ≈ 33.6Mbits worst-case memory
space which consumes 912 on-chip 36k-BRAM resources (∼89% in a medium-size
Virtex 7 FPGA) and does not leave enough resources for the other memories in the
implementation. However, in the average case, the tree is unlikely to be degenerate
as described above and therefore the lifetime of a centre set is much shorter and the
instantaneous memory requirement is significantly lower.

As a result of this resource advantage, we implement a memory management
unit which dynamically allocates space and frees it once the candidate set has been
read for the second time, rather than a static allocation. The implementation of the
fixed-size allocator uses a free-list that keeps track of occupied memory space. In our
implementation, the scratchpad memory and free-list are sized to accommodate an
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Fig. 2.4 Trade-off between heap size and run-time of the filtering algorithm (profiling)

‘average-case’ number of centre-candidate sets. Our approach is to limit the memory
to a size of B � N − 1 sets. When inadequate memory is available to service an
allocation request, the algorithm allows us to abandon the pruning approach and
instead consider all candidate centres. This modification does not compromise the
functionality of the algorithm, but it increases its run-time (the number of node-centre
interactions). Figure2.4 shows the result of profiling the software implementation
clusteringN=16,384 pixels (RGBvectors) sampled from the Lena image benchmark
and the two extreme cases for synthetic data in Table2.1. If we allow the algorithm to
allocate memory for only a single centre, the search complexity degrades to the worst
case of (2 · N − 1) · K node-centre pairs to be examined. The search complexity,
however, greatly decreases for B > 10 in all test scenarios. We select a bound
of B = 256 centre sets (16 36k-BRAMs) which practically causes no run-time
degradation in the scenarios considered in this case study.

The next section describes the re-implementations of both algorithms using a C-
based HLS tool, which finally allows us to compare the FPGA resource usage and
speed of all four designs.

2.4 HLS Implementations

WechooseVivadoHLS for this case study as an exemplary state-of-the-art toolwhich
shares many similarities with other modern C-to-FPGA flows such as LegUp [22],
ROCCC [23], Dwarv [24] and GAUT [25]. RTL generation is guided by synthesis
directives which are manually invoked and configured. Exploring design options
and optimisations using directives ideally does not require the source code to be
altered. The most important directives we use to control the RTL generation are loop
pipelining and loop unrolling directives. Loop pipelining overlaps loop iterations in
the pipeline. The interval between the start of two iterations is given by the initiation
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interval (II). Loop unrolling is used to force parallel instantiations of the loop body.
In order to remove the bottleneck of an insufficient number of memory ports in a
parallelised application, on-chip memories can be split into multiple banks using
an array partitioning directive. As for LegUp, ROCCC, Dwarv and GAUT, the C-
based input is restricted to a synthesisable subset. Vivado HLS allows pointers to
be used as references to statically allocated arrays. However, it does not synthesise
dynamic memory allocation (new, delete) and heap memory. In this thesis, we
refer to pointer variables which obtain their value from a call to the new function as
heap-directed pointers. Other disallowed features are system calls, arbitrary pointer
casting and arbitrary recursive functions.

Our goal is to bring the generated RTL designs produced by the HLS flow as close
as possible to the highly optimised manual RTL designs in the previous section. We
distinguish between optimisations using synthesis directives andmanual source code
modifications.

2.4.1 Lloyd’s Algorithm

The C code for Lloyd’s algorithm corresponding to Listing 1 is directly synthesisable
and does not contain any unsupported language features. We unroll all for-loops
over the three dimensions of the input data points which results in a parallel imple-
mentation of the distance computation ||x j − μi ′ ||2. Most of the computation is
contained within the inner for-loop which implements the min-search in Line 12
(bound K ). Pipelining this loop (II=1) leads to performance comparable to hand-
coded RTL. For acceleration beyond pipelining, we control the degree of parallelism
just as in the case of the manual RTL design by partially unrolling the outer loop
to degree P (replicating pipelines). In order to match the parallelism of computa-
tional units and memory ports, we partition the centre positions and centroid buffer
arrays into P banks using the array partitioning directive. Overall, using synthesis
directives and a minor source code modification to ensure correct indexing of the
parallel instances of the centroid buffer, we are able to produce an RTL design which
is architecturally similar to its hand-written counterpart.

2.4.2 Filtering Algorithm

The synthesisability of the main kernel as in Listing 2 requires the removal of the
recursive function calls and the calls to new (Line 21) and delete (Lines 32, 36),
and code transformations to improve QoR of the synthesis of the pointer-linked data
structures and the circuits operating on these.
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Listing 3 Iterative replacement for the recursive kernel in Listing 2.
1: push to stack (root , {μ1, μ2, . . . , μK }, true);
2: while stack not empty do
3: u, Z , d ← fetch from head of stack
4: if (d is true) then
5: delete Z
6: end if
7: Znew ← new centre set
8: … � original body in Listing 2 (contains two variable-bound sub-loops)
9: if (u is not a leaf) and (|Znew| > 1) then
10: push to stack (u.right , Znew , true)
11: push to stack (u.le f t , Znew , false)
12: else
13: delete Znew
14: … � update centroid buffer
15: end if
16: end while

Recursive Tree Traversal

Recursion is replaced by a while-loop and a stack data structure. As in the RTL
implementation, our C-based HLS design now contains three heap-allocated data
structures: the pointer-linked kd-tree, the pool of centre sets and the stack. The pro-
gram accesses these data structures through pointers. The stack contains the pointers
to a heap-allocated tree node u and a set of candidate centres Z (and its size), as
well as a flag d indicating that the centre set can be de-allocated. Listing 3 shows the
rewritten code that avoids recursion.

Dynamic Memory Allocation

We replace the basic C++ routines for dynamic memory allocation to ensure synthe-
sisability by off-the-shelf HLS tools. Occurrences of new and delete statements
are replaced by calls to custom allocator functions that we provide in an additional
header file. The implementation of the fixed-size allocator is in Line with Sect. 2.3.2.
Heap memory is replaced by arrays that are mapped to on-chip memory. We trans-
late pointer dereferencing into array indexing and instantiate an array for each data
structure type. We choose the same heap sizes as in the RTL implementation. The
memory for centre sets is limited to the same bound B as selected in Fig. 2.4. We
implement the same fall-back solution when inadequate memory is available to ser-
vice an allocation request as described in Sect. 2.3.2.

Parallelisation

As in the manual RTL design, we split the tree structure into P independent sub-
trees to parallelise the application by instantiating P parallel processing kernels.Heap
memories for tree nodes and centre set memory are by default monolithic memory
spaces which need to be divided into P disjoint regions (sub-trees, and segments for
private centre sets). The access through (dynamically allocated) pointers, however,
hides this disjointness information, which renders the array partitioning directive
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Listing 4 Loop distribution to enable pipelining.
1: while stack not empty do
2: while (stack not empty) and (queue not full) do
3: u, Z , d ← fetch from head of stack
4: enqueue (u, Z , d) in queue � newly introduced queue
5: end while
6: while queue not empty do
7: u, Z , d ← dequeue from queue
8: … � remaining loop body in Listing 3 (Lines 4–15)
9: end while
10: end while

ineffective and does not lead to parallel execution. In fact, applying automatic parti-
tioning through HLS directives even leads to a degradation in latency as we show in
the performance comparison in Sect. 2.5. Instead, wemanually partition the tree node
memory and privatise heap space for centre sets for each instance. This ensures that
the scheduler of the HLS tool recognises the parallelisation opportunity. Automating
this step requires a program analysis capable of identifying disjoint regions (in terms
of access patterns) in the monolithic heap memory space.

Inter-Iteration Dependencies and Pipelining

Apart from replication, acceleration of the manual RTL design is obtained from
pipelining the tree traversal. This corresponds to pipelining the loop nest in Listing 3
which must take two (potential) inter-iteration dependencies into account. The first
occurs between fetching pointers to data from the stack and pushing new pointers
onto the stack, which hinders pipelining. However, because there are twopush state-
ments and one fetch statement, the items stored on the stack (pointers u and Z , d)
accumulate if the condition in Line 9 holds in several iterations. Once there are mul-
tiple pointers on the stack, these do not cause any read-write dependencies between
iterations and hence can be overlapped in pipelined execution. Listing 4 shows a
transformation of the loop in Listing 3 to implement this schedule. The transfor-
mation distributes the execution of the original loop body over two (pipelineable)
inner loops which exchange data via a newly inserted queue. The second inner loop
ensures that multiple items on stack will be immediately scheduled for processing.
However, this loop still contains sub-loops with variable bounds which prevents the
tool from pipelining it. An additional manual loop nest flattening transformation is
required to enable pipelining the loop with II=1. Because of the variable bounds of
the inner loops, this loop nest is not a perfectly or semi-perfectly nested loop, which
prevents the application of Vivados loop flattening directive. Without loop flattening,
only the inner loops can be pipelined, which would result in less speed-up compared
to the manually flattened loop.

The other (potential) inter-iteration dependency is due to the pointer references to
Z and Znew in Listing 3. This is a false dependency because, after the loop transforma-
tion, the pointers to Z and Znew never alias across iterations. Inserting a ‘dependence
false’ directive makes Vivado HLS aware of the non-existence of this dependency.
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Enabling automatic pipelining for pointer-based programs thus crucially depends on
an automated analysis capturing the semantics of new and delete and reasoning
about such ‘pointer-carried’ dependencies which we will explore in Chap.4.

2.5 Performance Comparison

We evaluate the four implementations (RTL and HLS designs for both algorithms)
based on their execution time (latency) and resource consumption. For a latency
comparison, we ran simulations on the synthetic data described in Sect. 2.2 for dif-
ferent values of σ . All hardware implementations produce the same clustering result
as a software implementation that we implemented for validation. The algorithms
ran until convergence or until 30 iterations were reached. All latency results below
are per clustering iteration (average). This section begins with a comparison of the
two RTL implementations. The latter part of the section then shows how close our
manually optimised HLS designs can get to these results.

2.5.1 RTL Designs

Figure2.5 shows the average number of clock cycles per iteration of the FPGA-based
filtering algorithm (left) as well as the average speed-up over the FPGA implemen-
tation of Lloyd’s algorithm (right). We synthesise both RTL implementation of the
filtering algorithm and Lloyd’s algorithm for a Xilinx Virtex 7 FPGA (7vx485tffg-
2) for varying degrees of parallelism. We use Xilinx Vivado 2014.4 for netlist
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Fig. 2.5 Left Average cycle count per iteration for the manual RTL implementation of the filtering
algorithm (P = 1). Right Speed-up over an RTL implementation of Lloyd’s algorithm (P = 1 in
both cases)
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Fig. 2.6 Mean execution time per iteration over FPGA resources for N = 16384, K = 128,
σ = 0.2 (Xilinx Virtex7 7vx485tffg-2)

synthesis, placement and routing. We report the FPGA resource consumption for
the different design points in terms of look-up tables (LUTs), flip-flops (FFs), FPGA
slices (containing four LUTs and eight FFs), digital signal processing slices (DSPs)
and 36k-BRAM resources. All designs are synthesised for 200MHz target clock
frequency and all results are taken from fully placed and routed designs meeting the
timing constraint. For the resource comparison of both implementations, we select
the performance point in Fig. 2.5 with σ = 0.2, which lies amid the range of exe-
cution times and is close to the performance measured for the Lena benchmark.
The degree of parallelism we choose in both implementations is given by the tar-
get latency which is expressed as average execution time per iteration. Figure2.6
shows the area-time (AT) diagram, i.e. the amount of FPGA resources required to
meet a target throughput. For ease of comparison of the two algorithms, we draw
an area-time frontier with a constant AT product through the design points with the
smallest AT product for each algorithm (solid blue and dashed red line; note that
only the intersections of these lines with the data points are feasible designs). The
inherent run-time advantage of the filtering algorithmneeds to be countered by signif-
icantly increased parallelism of computational units in the implementation of Lloyd’s
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Table 2.2 Resource comparison for a 270µs-latency constraint (input parameters: N =16,384,
K = 128, σ = 0.2)

P: parallelisation degree, R: resource overhead for LLoyd’s algorithm

Lloyd’s algorithm
P = 40

Filtering algorithm
P = 2

R

LUT 64,922 (21.4%) 9148 (3.0%) 7.3×
FF 56,975 (9.4%) 17397 (2.9%) 3.3×
Slices 19,843 (26.1%) 4915 (6.5%) 4.0×
DSP 120 (4.3%) 40 (1.4%) 3.0×
36k-BRAM 83 (8.1%) 478 (46.4%) 0.2×

algorithm (22×-70×). Table2.2 shows a resource comparison as well as the absolute
and relative utilisation for a fixed latency constraint of 270 µs (which corresponds
to the latency achieved by the filtering algorithm with P = 2).

For DSP, LUT and FF resources, the efficiency advantage of the filtering algo-
rithm in hardware is obvious. We also note that the data set used here is relatively
unclustered (σ = 0.2) and the performance advantage will be greater for values
σ < 0.2 as shown in Fig. 2.5. However, our implementation of the filtering algo-
rithm requires more memory compared to Lloyd’s algorithm. This is mainly due to
the increased memory space required to store the data points in the kd-tree structure.
We can conclude that the availability of on-chip BRAM resources is the limiting
factor in scaling this algorithm through increased parallelism, but the advantage of
its RTL implementation in terms of computational resources is compelling.

2.5.2 HLS Designs

We compare the performance of both HLS to both RTL designs based on different
metrics: clock cycles count per iteration (through RTL simulations), execution time
per iteration (includes the clock period), resource usage and AT product (in logic
slices×ms). We implement the HLS designs with Xilinx Vivado HLS 2014.4. As in
the previous section, all designs are synthesised for a 200MHz target clock rate and
all results are taken from fully placed and routed designs (not all designs meet the
timing constraint in which case we report the best achievable clock period). The input
data set to all implementations is the same data set as used above (σ = 0.2). In order
to account for the inherent runtime advantage of the filtering algorithm due to search
space pruning and to compare all four designs on a common basis, we increase the
parallelisation degree for the final implementations of Lloyd’s algorithm to P = 40,
which equalises the cycle count of the hand-written RTL designs.

Table2.3 shows the performance comparison based on the metrics above. The
resource consumption of both HLS designs compared to their RTL counterparts is
remarkably similar. The utilisation of flip flops is notable in that it is substantially



2.5 Performance Comparison 29

Ta
bl
e
2.
3

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
us
in
g
th
e
ha
nd
-w

ri
tte
n
R
T
L
de
si
gn
s
as

re
fe
re
nc
e

A
rc
hi
te
ct
ur
e:

N
m

a
x

=
32

,
76
8,

K
m

a
x

=
25
6,

B
=

25
6;

in
pu
td

at
a
(s
yn
th
et
ic
):

N
=1

6,
38
4,

K
=

12
8,

σ
=

0.
2

L
lo
yd
’s
al
go
ri
th
m

Fi
lte

ri
ng

al
go

ri
th
m

R
T
L
(r
ef
er
en
ce
)

H
L
S

R
T
L
(r
ef
er
en
ce
)

H
L
S
(d
ir
ec
tiv

es
on
ly
)

H
L
S
(m

an
ua

pa
rt
iti
on
in
g)

H
L
S
(m

an
ua
ll
oo
p

tr
an
sf
or
m
at
io
n)

P
40

40
2

2
2

2

Sl
ic
es

19
,8
43

22
,7
11

(×
1.
1)

69
50

52
63

(×
0.
8)

51
61

(×
0.
7)

65
40

(×
0.
9)

L
U
T

64
,9
22

68
,4
84

(×
1.
1)

10
,4
18

12
,8
65

(×
1.
2)

12
,7
17

(×
1.
2)

15
04
6
(×

1.
4)

FF
56
,9
75

47
,8
95

(×
0.
8)

19
,0
08

11
,5
17

(×
0.
6)

11
,2
93

(×
0.
6)

13
61
2
(×

0.
7)

D
SP

12
0

12
0
(×

1.
0)

40
36

(×
0.
9)

36
(×

0.
9)

36
(×

0.
9)

36
k-
B
R
A
M

83
75

(×
0.
9)

44
8

50
6
(×

1.
1)

50
6
(×

1.
1)

50
7
(×

1.
1)

C
lo
ck

pe
ri
od

5.
0
ns

8.
4
ns

(×
1.
7)

5.
0
ns

5.
0
ns

(×
1.
0)

5.
0
ns

(×
1.
0)

5.
5
ns

(×
1.
1)

C
yc
le
s/
ite

ra
tio

n
53

k
66

k
(×

1.
2)

54
k

14
40

k
(×

26
.6
)

58
3
k
(×

10
.8
)

16
5
k
(×

3.
0)

T
im

e/
ite

ra
tio

n
26
4
us

55
5
us

(×
2.
2)

27
0
us

72
00

us
(×

26
.6
)

29
15

us
(×

10
.8
)

90
2
us

(×
3.
3)

A
T
pr
od
uc
t

52
43

12
,5
94

(×
2.
4)

18
80

37
,8
92

(×
20

.2
)

15
,0
43

(×
8.
0)

58
99

(×
3.
1)



30 2 High-Level Synthesis of Dynamic Data Structures

lower in both HLS designs. There is only a 20% overhead in terms of cycle count
for both implementations of Lloyd’s algorithm which indicates similar scheduling of
operations. However, the HLS implementation has a significantly longer critical path
(8.4ns compared to 5.0ns) which results in a performance gap of a factor of 2.1×
in terms of latency and 2.4× in terms of AT product. The BRAM utilisation of the
HLS design is lower because the synthesis tool decides to map some of the memories
into LUT RAM. The last three columns show different variants of the HLS designs
for the filtering algorithm. The design in Column 5 includes only code alterations
that enable synthesisability and only uses Vivado’s synthesis directives to improve
QoR which results in a 20.2× degradation in terms of the AT product compared to
the manual RTL design. Columns 6 and 7 show the importance of additional source-
to-source transformations as discussed in Sect. 2.4.2. The manual partitioning of the
heap memory narrows the performance gap from 20.2× to 8.0× (Column 6). The
loop distribution in Listing 4 that enables pipelining in the tree traversal loop in
addition to manual memory partitioning further improves the AT product to a factor
of 3.1× larger than that of the manual RTL design (Column 7). The final AT product
is more than two times smaller than that for Lloyd’s algorithm.

2.6 Summary

This chapter presents a comparative case study for a C-to-FPGA flow using Xilinx
Vivado HLS as an exemplary state-of-the-art tool. Our test cases are two alterna-
tive algorithms for K -means clustering, referred to as Lloyd’s algorithm and the
filtering algorithm. The former is a data flow-centric brute-force approach and has
regular control flow and regular memory accesses, whereas the implementation of
the filtering algorithm uses dynamic memory management and is based on recursive
traversal of a pointer-linked tree structure. The search space pruning applied by the
latter algorithm translates into a substantial run-time advantage in sequential soft-
ware implementations. We first investigate the practicality of the algorithm in the
context of an FPGA implementation and show that a carefully optimised parallel
RTL implementation achieves the same execution time with four times fewer logic
slices and three times fewer DSP slices. We also show how a custom implementation
of dynamic memory allocation greatly reduces the on-chip memory consumption for
the filtering algorithm. The implementations and evaluations of this part of the study
were first published in [26].

The second part of this case study repeats the comparison for HLS designs of both
algorithms. The performance gap between theHLS and hand-writtenRTL implemen-
tations of Lloyd’s algorithm is approximately a factor of two in terms of area-time
product, which is a remarkable result given the enormous difference in design time.
The HLS design of the filtering algorithm also consumes a ‘close-to-hand-written’
amount of FPGA resources, but latency is initially degraded by a factor of 26.6×.
The limited acceleration gained from semi-automatic design optimisations with syn-
thesis directives results in a reversal of the previous finding: the AT product of the
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initial HLS implementation of the filtering algorithm is larger than that for Lloyd’s
algorithm. We subsequently apply manual code transformations to partition and pri-
vatise data structures accessed through pointers in order to promote parallelisation
and to enable pipelining of the loop traversing the pointer-linked data structure which
results in an overall 8× improvement of latency. The code transformations ultimately
narrow the performance gap in terms of the AT product from 20.2× to 3.1× larger
than that of the hand-crafted RTL design. The results of the HLS-based case study
and guidelines for source code refactoring were first published in [27].

The AT product results in Table2.3 show that both a carefully designed RTL and
HLS implementation of the filtering algorithm outperform the respective implemen-
tation of the data flow-centric brute-force algorithm. This case study quantifies the
benefits of hardware implementations of a sophisticated algorithm that uses struc-
tured data. We argue that this algorithm is representative of many other benchmarks
that operate on tree structures, linked lists or graphs in general and common imple-
mentations of these algorithms are based on dynamically allocated data structures
and pointer chasing. Due to the significant amount of source code refactoring in
the implementation of the filtering algorithm, we conclude from this case study that
the current generation of HLS tools lack support for effective design automation
optimisations for this type of code. In particular, our code transformations enable
memory partitioning, parallelisation and pipelining - optimisations that are essen-
tial for efficient FPGA designs. These optimisations require knowledge about data
dependencies carried by data structures accessed through pointers.

Our goal in the following chapters of this thesis is to automate the memory par-
titioning and parallelisation in HLS flows targeting heap-manipulating programs.
The difficult part of the automation of these optimisations is the program analysis:
regardless of scope, every two heap-directed pointers could potentially reference the
same memory cell and hence could create a data dependency. We propose an auto-
mated analysis of dependencies carried by data structures accessed through pointers,
and an automated analysis to identify and privatise disjoint regions in the monolithic
heap memory as the key features to improve the HLS support for (widely used) pro-
grams operating on dynamic, pointer-based data structures. Chapter 4 presents our
approach to automatic heap partitioning and parallelisation. The HLS design aid in
Chap.4 automates the related code transformations that were applied manually in
this chapter.

The synthesis of heap memory from on-chip BRAM in this case study and in
Chap.4 imposes a tight constraint on the working set size. For example, the RTL and
HLS implementations in Sects. 2.3 and 2.4 use nearly 50% of the on-chip memory
resources on the device. Chapter 5 removes this limitation by extending the technique
in Chap.4 to the automatic generation of application-specific parallel multi-cache
systems in a framework where the heap resides in off-chip memory by default and
only a fraction of it is held on-chip. This extension enables the HLS implementation
of heap-manipulating programs with large memory footprints and alleviates the per-
formance penalty due to the drop of memory bandwidth. Before describing the two
core contributions of this thesis in Chaps. 4 and 5, we discuss related research in the
following chapter.

http://dx.doi.org/10.1007/978-3-319-53222-6_4
http://dx.doi.org/10.1007/978-3-319-53222-6_4
http://dx.doi.org/10.1007/978-3-319-53222-6_4
http://dx.doi.org/10.1007/978-3-319-53222-6_5
http://dx.doi.org/10.1007/978-3-319-53222-6_4
http://dx.doi.org/10.1007/978-3-319-53222-6_4
http://dx.doi.org/10.1007/978-3-319-53222-6_5
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