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Old Quantum Theory

Spectroscopy and fundamental constants; Compton effect; Bohr—Som-
merfeld quantization; specific heats; de Broglie waves.

Note. The problems in this chapter are based on what is known as Old
Quantum Theory: Bohr and de Broglie quantization rules. Those situations
are treated in which the results will substantially be confirmed by quantum
mechanics and some problems of statistical mechanics are proposed where the
effects of quantization are emphasized.

2.1 The visible part of the electromagnetic spectrum is conventionally thus
divided:

\ [ | | [ \
4000 A 4680 4860 5390 5900 6200 7500

violet blue green yellow orange red
wavelengths being given in A .

a) Convert the above wavelengths into the energies of the associated photons,
expressed in eV.

2.2 The dimensionless fine structure constant is defined as o = €2?/hc.

a) Show that the Rydberg constant R., = mee*/4wh3c may be written as
Roo = a?/2X. (Ac = h/mec is the Compton electron wavelength) and the
ionization energy of the hydrogen atom (in the approximation of infinite

proton mass) as E; = ja’mec?.

According to the present day (2016) available data in the field of spectroscopy
one has:

Roo = 109737.31568508(65)cm~!; o
me = 0.910938356(11) x 1027 g; ' °

7.297 352 5664(17) x 10~3
= 5.44617021352(52) x 104

mMp

and in addition, by definition, ¢ = 299792458 m/s.
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14 2 0Old Quantum Theory
b) Calculate the relative standard uncertainties for the values of Ry, a, me .

The Rydberg constant Ry for the hydrogen differs from R., because of the
finite proton mass.

¢) Calculate Ry and the Planck constant h with the correct number of sig-
nificant figures; also give the relative standard uncertainties of the results.

2.3 The frequency of an absorption transition from the n = 2 level of hydro-
gen was measured in a high precision spectroscopy experiments. The measured
frequency was vy = 799191727409 kHz .

Owing to relativistic corrections and other minor effects, the energy levels of
hydrogen are not exactly those given by the Bohr theory. Nonetheless:

a) Find the value of n for the final level.

In deuterium (the isotope of hydrogen with A = 2) the same transition gives
rise to an absorption line whose frequency is vp = 799409 184 973 kHz .

b) Assuming the difference between vy, and vy is mainly due to the different
masses of the nuclei, calculate (with no more than three or four significant
figures) the value of the ratio between the deuterium nuclear mass and the
electron mass. (Use the numerical data given in Problem 2.2.)

2.4 Positronium is a system consisting of an electron and a positron (equal
masses, opposite charges) bound together by the Coulomb force.

a) Calculate the value of positronium binding energy Ej, (i.e. the opposite
of the energy of the ground state).

One of the decay channels of positronium is the annihilation into two photons:
eT + e~ — 2v (the lifetime for this channel being 75, ~ 1.25 x 1071%s).

b) Compute the energy and wavelength of each of the two photons in the
center-of-mass reference frame of positronium.

The decay photons are revealed by means of the Compton effect on electrons.

c¢) Calculate the maximum energy a photon can give to an electron at rest.

d) Assume the electrons are in a uniform magnetic field B = 103G with the
energy found in the previous question. Calculate the radius of curvature
of the trajectories described by the electrons.

2.5 Muonium is an atom consisting of a proton and a p~ meson. It is formed
via radiative capture: the proton (at rest) captures a meson (at rest) and this
reaches the ground state by emitting one or more photons while effecting
transitions to levels with lower energy (radiative cascade).
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a) Calculate the mass of the p~ meson, given that the maximum energy of
the photons emitted in the radiative cascade is 2.5keV .

b) Calculate the characteristic dimension of muonium in its ground state.

¢) Say what is the resolving power Av/v necessary to distinguish — by mea-
suring the frequency of the photons emitted during the radiative cascade
— whether the p~ has been captured by a proton or by a deuteron (the
latter being the nucleus of deuterium: the bound state of a proton and a
neutron).

2.6 The purpose of this problem is to show that any quantum state (i.e.
in the present case: any energy level), relative to a one-dimensional system
quantized according to the Bohr rule, occupies a (two-dimensional) volume h
in phase space.

Consider a one-dimensional harmonic oscillator quantized according to the
Bohr rule.

a) Compute the volume of phase space bounded by the surface of energy
FE, =nhw and that of energy F,_1.

Consider now a particle constrained to move on a segment of length a; its
energy levels F, are obtained by means of the Bohr quantization rule.

b) Compute the volume of phase space bounded by the two surfaces of energy
En and En—l .

¢) Show that the same result obtains for any one-dimensional system with
energy levels FE, obtained through the Bohr rule. (Hint: use Stokes’
theorem.)

Consider now an isotropic three-dimensional harmonic oscillator.

d) Use the Bohr quantization rule in the form ), j§ p;dg; = nh to show
that the energy levels still read E,, = nhw and that the (six-dimensional)
volume of phase space bounded by the surface of energy F,, has magnitude
n3h3/6.

2.7 When a system with several degrees of freedom enjoys the possibility
of the separation of variables — i.e. there exists a choice of ¢’s and p’s such

that the Hamiltonian takes the form H = Hy(q1,p1) + Ha(q2,p2) -+ — it is
possible to use the Bohr—Sommerfeld quantization rules ¢ p; dg; = n;h for
all ¢ =1, --- relative to the individual degrees of freedom.

a) Find the energy levels E(nq,n2,n3) of an anisotropic three-dimensional
harmonic oscillator. Exploit the fact that its Hamiltonian can be written

in the form:
p12 1 2 2 p22 1 2 2 P32 1 2 2
H:2m+2mw1(h+2m+2mW2Q2+2m+2mW3Q3-
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Consider now an isotropic three-dimensional harmonic oscillator. The number
of states corresponding to a given energy level F,, = nhw (the “degeneracy”
of the level) is the number of ways the three quantum numbers ny,n9,n3 can
be chosen such that E(ny,na,n3) = E, .

b) Compute the degeneracy of the energy levels for an isotropic three-
dimensional harmonic oscillator and the number of states with energy
E<E,.

¢) Find the energy levels of a particle confined in a rectangular box with
edges of lengths a, b, c.

d) Still referring to the particle in the rectangular box (of volume V = abc),
compute the number of states enclosed in the phase space volume:

nlh

2a "’

and show that, just as in Problem 2.6, the volume-per-state is h3.

Vx| (Ip1] < pny) X (Ip2] < pnw) X (Ip3] < pns) | Pny = etc.

2.8 A particle of mass m in one dimension is subject to the potential
V(z) = X(z/a)** with A > 0 and k a positive integer.

a) Show that the energy levels obtained through the Bohr quantization rule
are:

1/2k  \2k/(1+k) +1
B, = n2k/(1+h) ( h Y > ’ oy = / \/1 _ 22k dg .
\/8m aCk —1

b) Explicitly write the energy levels for £k = 1 and k = oo. Which well
known potential does the case k = oo correspond to?

2.9 Consider a nonrelativistic electron in a uniform magnetic field B , Mov-
ing in a plane orthogonal to B.

a) Find the energy levels (Landau levels) by means of the Bohr quantization
rule §p-d¢ = nh, paying attention to the fact that, in presence of a
magnetic field, p# mv.

b) Calculate the distance between energy levels for B=1T = 10*G.

2.10 A particle of mass m in one dimension is constrained in the segment
|z| < Ja and is subject to the potential:

0 lz| > 1o

Viz) = { 2 b<a, Vp>0.

a) By use of the Bohr quantization rule determine the energy levels with
E,, <0, the condition for the existence of at least one level with negative
energy, and the number of levels with negative energy.
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b) Determine the energy levels with E, > Vj (neglecting terms of order
Vi2/E?).

¢) Show that the corrections to the ‘unperturbed’ levels (i.e. those with V; =
0) found in the previous question, coincide with —Vjx (probability of
finding the particle with |z| < }b), where such a probability is the ratio
between the time spent in the segment |z| < b and that spent in the
segment |z| < la.

2.11 Consider a gas of atoms (or molecules) with a ground state Ey = 0, an
excited state FE7, a third level £, with 0 < E, < F4, as well as other energy
levels E, > E; (a three-level system). Let us consider the contribution to
internal energy and heat capacity exclusively due to the three energy levels
EQ, Em and El .

a) Calculate the contribution of the three levels to the internal energy as a
function of the temperature 7" and of E,. For what range of T is it
legitimate to ignore the levels with E, > F1 7

The three curves (a, b, ¢) in the figure Cv
represent (not necessarily in the same
order) Cy (T') for three different values ¢
of By: B, =0, E, = Ey, E, = LBy

b) Identify the value of E, for each
curve and explain qualitatively their b
different features: more precisely, Eijks T
why is the maximum in ¢ higher
than in b and why are there two maxima in a?

2.12 Consider a particle of mass m constrained in a segment of size a.

a) Show that, for high values of the temperature 7', the quantum partition
function Z(8) =3, exp [~BE,| (8=1/ksT) is well approximated by
the classical partition function divided by the Planck constant h. Explain
what ‘high values of T’ means.

2.13 Consider the gas consisting of the conduction electrons of a conductor
with given volume V. The conductor being neutral, the ions of the crystal
lattice partially screen the charge of the electrons, nearly making their repul-
sion vanish. In a first approximation the conduction electrons may therefore
be considered as a gas of free particles.

a) In Problem 2.7 it has been shown that the phase space volume taken by
each quantum state is h3. Calculate the number of (quantum) electron
states with energy p2/2m, less than Ep.
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Due to the Pauli principle, at most two electrons are allowed to occupy the
same quantum state; furthermore, at temperature 7' = 0K, the gas has,
compatibly with the Pauli principle, the lowest possible energy.

b) Let N be the number of conduction electrons in the volume V. Calculate
the maximum energy Fr a conduction electron may have at T = 0K.
( Er is known as the Fermi energy of the system.)

¢) Under the same conditions specified above, calculate the value E of the
total energy of the gas (approximate sums with integrals) and its pressure
p. (For T = 0K the pressure is p = —9FE/JV'). Verify that pV = gE
(Actually this relation holds also for T' > 0.)

d) Knowing that for silver the density is 10.5g/cm?, the atomic weight is
A = 108 and that one conduction electron is available for each atom,
calculate the value (in atmospheres) of the pressure p at T'= 0K and the
value of the Fermi temperature Ty = Ey/kg for the electron gas.

2.14 Neutrons produced in a nuclear reactor and then slowed down (‘cold’
neutrons) are used in an interferometry experiment. Their de Broglie wave-
length is A = 1.4A.

a) Calculate the energy of such neutrons and the energy of photons with the
same wavelength (neutron mass m, ~ 1.7 x 10724 g).

The neutrons are fired at a silicon crystal and the
smallest angle 6 (see the figure), for which Bragg \ /e/

reflection is observed, is 6 = 22°. ]d

b) Calculate the distance d between the lattice plains of the crystal respon-
sible for Bragg reflection.

¢) Say for how many angles Bragg reflection can be observed.

2.15 ‘Ultracold’ neutrons are free neutrons whose de Broglie wavelength is
some hundred A .

a) Calculate the speed and energy of neutrons with A = 900 A and their
‘temperature’ (T' = E/kg).

A way to obtain ultracold neutrons is to inject cold neutrons vertically into a
tower of height D ~ 35m.

b) Say what the initial wavelength A; of the cold neutrons must be in order
that, at the top of the tower, the final wavelength is A\s = 900 A .

A nonabsorbing material behaves for neutrons as a region where the potential
is about Vp ~ 10=7eV (a repulsive potential). For aluminium Vy = 0.55 x
10~ 7eV.
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c¢) Calculate the refractive index of aluminium (i.e. the ratio between the
wavelengths in vacuum and in the medium) for the neutrons with A =
900 A .

Neutrons with A = 900 A impinge on the surface of a
plate of aluminium. \ /g/

d) Say for what range of angles (see the figure) does
total reflection occur.




Solutions

2.1

a) Since for photons A[A] x E[eV] = 12400 eV A one has:

7500A 6200 5900 5390 4860 4680 4000
\ | | \ L |
1.65eV 2 2.1 2.3 2.55 2.65 3.1
red orange yellow green blue violet
2.2
a) One has:
R mee? et MeC a? E—Roh o?he 1 9
= = X = ; 1= c= = _a“mec”.
* drhdc  R22 T 4mh 2).] > 2X. 2 ¢
AR Ao Am,
b) * =59x1071% =23 x 10719 ©=12x10"8.
R (e Me

c) With pe the reduced mass of the (e, p) system,
pe _ R

me 1+ Me/Mp

ARy ARy . A(me/mp) N AR
Ry Re  1+me/m, R

RH = ROO X
+ A(me/my)

=59x107124+0.05x 1072 =6 x 1072

then Ry has 12 significant digits as Reo: Ry = 109 677.5834063(7) cm ™1,

a?mec Ah % Am R
h="__° =2 ° =12x10"%
9R.. = 5 N + e + < x 10

(ARoo/Roo, Aa/a < Ame/me ), then h = 6.626 070 040(80)x10~*7erg s.
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2.3

1 1 1 1 Vi

a) VH:RHC(4_n2) n2:4_RHc.

If n2<10* it is sufficient to make calculations with 6 significant digits
(Ry is given in the solution of Problem 2.2):

1 1 0.799192 x 10'°
n2 = 4 109677 - 299792 x 10°

b) As the frequencies are proportional to the reduced masses, one has:

=0007 = n®’~143 = n=12.

ve _ 14+me/mq mc_VH(

=

= 1+ me/my) — 1
vp 1+ me/mp mq  Up tm /mp)

and, with me/mp given in the text of Problem 2.2,

me 799192 B mq
_ 1.000544 — 1 ~ 2724 x 107% = ~ 3670 .
ma 799409 % e

24

a) Positronium differs from the hydrogen atom only for the value of the re-
duced mass, which is a half of the mass common to electron and positron.
Then:

62

Eg = day = ; 13.6eV =6.8¢eV .
b) In the center-of-mass reference frame the two photons have the same en-
ergy mec? (binding energy neglected):
hc 12400

E, = mec? =0.51 MeV A= = =0.024 A
7 = et o E, ~ 0.51 x 106

which is the Compton electron wavelength \. = h/mec.

¢) The maximum release of energy from the photon to an electron takes
place when the photon is scattered backwards (6 = 180°). In this case the
wavelength of the scattered photon is

1.
A7) =A0)+2X. =3\, = E7f=3E,;

and as a consequence the energy released to the electron is
2 . 2 9
3E,; = 3mcc =0.34 MeV .
d) The momentum of the electron is
. .

Ej -Ej 4

c c 3
so the radius of curvature of the electron trajectory is

E. =

p= Mec
_pc_4mcc2_4 he

P=¢B ™3 ¢eB ~ 34nusB

where g = eh/2mec =58 x 1072eV /G is the Bohr magneton.

=2.3cm
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2.5

a) The energy levels of muonium differ from those of the hydrogen atom only
because of the different value of the reduced mass. The highest energy
of the emitted photons is equal to the ionization energy of muonium and
is 2.5 x 103/13.6 = 184 times that of the hydrogen atom, therefore the
reduced mass p of the system (u~ p) is 184 times the electron mass:

mp i 1840me X 184 me

mp —p 1840me — 184 m,

b) Also the dimensions of the orbits of the = meson are reduced by a factor
184 with respect to those of the electron. As a consequence the size of
muonium in its ground state is ap/184 = 0.53 A /184 = 2.9 x 1073 A .

¢) The reduced mass of the system (u~ d) is 193 m,, whence:

Av.  Ap 193 — 184
vooou 184

2.6

m/"/: :204me.

~5%.

a) The curve described by the equation p? +m?w?q? = 2mE,, is an ellipse
whose semiaxes are v/2mE, and \/ 2FE,,/mw?, so the enclosed area is

2rE
Ay =" —nh > A=A, =h.
w
b) In the case of a particle in a segment, the Bohr quantization rule gives
pn = E£nh/2a, so the volume of the phase space where E < E,, is the
area of the rectangle whose base and height respectively are a and 2|p,]|,

therefore:
A, =2ppla=nh = A,—A,_1=h.
Equivalently:
+\/2me1
h2
A, = /dqdp:a / dp:2an\/ , =nh.
4a
E<E, —V2mE,

¢) The volume of the phase space where E < E,, is

/ dgdp
E<E,

and by Stokes theorem (the surfaces are oriented):

/ dgdp = —7{ p dq
E<E, E=E,

(indeed, the flux of the curl of the two-dimensional vector B with com-
ponents By = —p, B, =0, curl B = 0B,/0q — 0B,/0p = 1, equals the
circulation of the vector B) therefore, owing to Bohr quantization rule,
A,=nh.

A, =




d)

2.7

2)
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One has:

2 2
]{Zpidqi:Z/ piGidt=2"E,=""E,=nh > E,=nhw.
i i period w w
Making the change of variables p; = /mwp}, ¢ = ¢;/v/mw (the Jaco-
bian is 1), the surface of energy E,, becomes the surface of the sphere of
radius \/ 2E, /w . The volume of the sphere of radius R in d dimensions is
/2 pd 3
Vi= i = VESEn = " 3
r (d/2 + 1) 6

where use has been made of the fact that d = 6 and that, for integer k,
the Euler I" function has the value I'(k) = (k—1)!.

The meaning of the obtained result is that the number of states of the
oscillator with energy E < E, is of the order of n3/6 (approximately one
state for each cell of the phase space with volume h3).

As the Hamiltonian H is a separate variables one: H = Hy + Hs + Hs, its
energy levels are:

E(nl,ng,ng) = nlﬁw1 + ngﬁwg + nghwg .

In the case of an isotropic oscillator w; = wy = w3 = w and

E(ni,na,ng) = (n1+ne+n3) iw=nhw, n=mni+ne+ns.
Choosingn; =n—%k, (k=0, --- n), ng and ng may be chosen in k+ 1
ways:no =k, ng=0; no=k—1, ng=1; --- no =0, ng = k. So the

degeneracy of the level E,, is

R (n+1)2(n+2)

0
and the number of states with energy F < E,, is

n

> o= ;Z(k2+3k+2)=
0

0

1(n(n—|—1)(2n—|— 1) +3n(n—|— 1) Fon+ 1)): (n+1)(n+2)(n+3)

2 6 2 6
Compare this result — that will be confirmed by quantum mechanics — with
what has been found in question d) of Problem 2.6.

Also in the case of a particle in a box the Hamiltonian is a separate vari-
ables one: H = pZ/2m + p3/2m + p2/2m, therefore:

nih?® n2h? n2h? h? (nf n n n32)

E(n1,m2,n3) = 2 et

" 8ma?  8mb2  8mc2  8m
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d) Due to pn, = ni1h/2a, pn, = nah/2b, etc. the required volume is given
by V' X 23Dy, PryPns = ningng b and, since the number of states with
quantum numbers less or equal to n1, ng, ng is ningng, the result follows.

2.8

A 2k 1/2
a) %pdx—y{\/%nE Vix )d;v—\/2mE7§ Ez% de .

Putting y = (\/E)/?* z/a,
1/2k
%pdx:2\/2mEa(§) /\/1— ykdy=nh =

OBk _ B \1/2k LB 20 < h \1/2k >2k/(l+k)
" V8m a Cl, " V8m aCl,
b) For k=1 C; = /2 and E, = nh+/2\/ma?: these are the energy
levels of a harmonic oscillator with %mw2 =\ a>.
For k = co the potential is that of an infinite potential well of width 2a
(% — 0 for |z| < 1, 2% — oo for |#| > 1), Cx =2 and the energy
levels are E,, = n?h?/8m(2a)?.

Only in the two cases k = 1 and k = oo (up to the additive constant
;hw in the case of the oscillator) the energy levels found by means of
the Bohr quantization rule will turn out to be identical to those predicted
by quantum mechanics: in general, the energy levels calculated using the
Bohr-Sommerfeld quantization rule agree with those predicted by quan-
tum mechanics only for large values of the quantum number 7.

2.9

a) The electron follows a circular trajectory with cyclotron angular frequency
we = eB/mec (twice the Larmor frequency) and velocity v = wer =
eBr/mec. One has:

A %pd: mev—y{Adq

and, thanks to Stokes’ theorem,
- 2 1 2B%r2 2 1
efA-d(j:eWTQB: T % mce LN Me v?
c c we 2 m2c? we 2
then (the energy is only kinetic):
2 B
fﬁ~d§: 71'><En=nh = Enznﬁwcznhe .
We MeC
b) The Bohr magneton is defined by (see also Problem 2.4):
eh

=, =0.93 x 107 erg/G = 5.8 x 107 %V /G
MeC
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so the distance between Landau levels is

AE, =2usB =116 x 107 %eV .

2.10

2)

1b7

For negative energies the particle is confined in the region |z| <

whence:

nh n2h?
o=/ 2m(E, + V) = oy T En=g Vo
h? 2b+/2mV,
EFi<0 = V> ; E, <0 = n< V2mVy
8mb? h

and the number of levels is given by the integer part of 2b+/2mVy/h.

b) For E >0 the Bohr condition reads:
h
[(a — D)2mE, + b\/2m(E + VO)} - "2
that, for E, >V, and up to the first order in V,/E,,, takes the form:
1V mb 'V nh
2En{ b b(l )}: OmE, _
VamE, |(a=b)+ top, av/2m o emE, T 2
that gives, upon solving and neglecting the terms of order V,2?/E2,
n2h? b 2a+/2mV,
E, = - W, .
8ma2  a ° "> h
¢) Inone period, the time spent by the particle in a given segment, is twice the
ratio between the length of the segment and the velocity of the particle: in
order to find the result to the first order in E/Vj we must take the velocity
of the unperturbed motion (that with Vj = 0), then:
b t b
ty,=2 a:2a = —Vob:— Vo
v v ta a
2.11
a) Putting Ey = 0 one has:
_ Eye fFe 4 BremPE
T 14e BB pe BB
It is legitimate to neglect the levels with E,, > F; when their population is
negligible with respect to that of the level E7, namely when e PlE—E1) «
1,ie when T < (E, — Ey)/ks.
b) Note that, when E, = 0 = Ej, the degeneracy of the level Ey is 2, when

E, = FE; the degeneracy of F; is 2, while for E, = 110E1 the lowest
energy level is “quasi degenerate” with FE,. So, for high temperatures
(kgT > E1), i.e. in the limit of equi-population, if E, = F7, the internal
energy tends to a value that is twice that of the case E, = Fy (2E1/3 in
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the first case, F1/3 in the second) and almost twice (2/1.1) that of the
case B, = 110 FE;, and then grows more than in the other cases. For this
reason the specific heat of the case E, = Fj (the curve labeled by c¢) is
greater than in the other cases.

If £, = 110 E;, the level E, becomes immediately populated (i.e. for tem-
peratures T ~ F, /kg) and the heat capacity grows accordingly; then, as
long as kT < Ei, the system behaves as a two-level system, therefore
Cy decreases towards zero to start a new growth when the level E; starts
populating: in conclusion the curve labeled by a corresponds to the case
when the lowest energy level is quasi degenerate: F, = 110 I

2.12

a) The classical partition function is

oo

chz/exp[—6p2/2m} dqdsza/O exp[—6p2/2m] dp

:2aznexp {—ﬁpiﬂm} X App,

and, if we take p, = nh/2a, Ap, = h/2a, the thesis follows. Let us now
examine the conditions under which approximating the integral by the
series is legitimate. One has:

Zafh="" /0 Cexp [~ Bp2/2m| dp= 2 > /

_ %iexp [—ﬂpz/Qm} X Apy, = iexp [—ﬂp3/2m}
n=0 n=0

pnﬂeXp [ - Bp?/ 2m} dp

n

where p, < p,, < Pn+1. The maximum of the difference with respect to
the sum with p,, instead of p,, is obtained if one replaces p,, with p,41: in
this case the two sums differ by the first term that equals 1. The quantum
partition function and Z./h differ by a function of 8 (the p,, do depend
on f3) bounded by 0 and 1; since fe“”z dz = \/w/a, one has:

a [2mm
hV B

and in conclusion, if Z./h > 1 namely for 8 < ma?/h? (kgT >> h?/ma?),
the difference is negligible.

Za/h =

2.13

a) Since the energy of the electrons is 2/2m., putting pr = /2me Ep one
has:

4
/d3qd3p -V x 47T/p2dp - ;V(2meEF)

E<Ep p<pp

3/2
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47V
The number of states is n = a3 (2me Ey)
The energy is a minimum if all the states with energy less than Er are

occupied and there are two electrons per state, so:

47V 3/2 h?
N=2n=2x ., (2me Er) = EF:smc (
The total energy is
E=2x Z Enynang =2 % Z e pm +pn2 +pn3)

ni,n2,n3 ni,nz,n3

3/2

3N \2/3
7TV> '

where p,, = ni1h/2a, etc. and the sum is performed on all the quantum
numbers such that Ey, n,n, < Er. The points 9= (pn,, Pny,Png) i the
octant p; >0 (i = 1, 2, 3) of momentum space give rise to a lattice with
unit steps h/2a, h/2b, h/2c. So, replacing the sum with the integral:

18V [P p? ATV 3h2N /3N \*/3
E=2 4 >dp = 2=
s h3 T 2me? P T smend ' T d0me \ v

and since F is a homogeneous function of V' of order —2/3:

OE 2 2F  wh? (3N)5/3

ve_v9 _‘p
p ov 3" T PT 3y T 60m \av

A mole of atoms of silver occupies the volume 108/10.5 ~ 10 cm?, so:
N/V ~6x102cecm™> = p=~2x10"dyn/cm? =2 x 10°atm .
Fr=9x10""2erg=56eV = Ty =6.5x10"K

2.14

a)

While for a photon:

h 124 A
By = hy= ¢ 00 eV
A 1.4 A

for a particle of mass m # 0, if m, stands for the electron mass:

=89x10%eV,

h h m
= = = ME= \/ °—124\/ Aev)/?
P V2mE \/2mc02

and, as a consequence, for neutrons of mass my, ~ 1.7x 10724 g = 1840 m,
one has:

12.4\2 I 9
By = ( 1'4) X lggp =43 %1072V
From the Bragg relation 2d sinf =n A with n =1 one obtains:
A
~ 2sind
The number of angles for which there occurs Bragg reflection is the integer
part of 2d/\, namely 2

~1.94A .
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2.15

P h h?
= = = 4 M E =

a) v Mn M\ 3m/s; B 2ma )\

b) The difference between the initial and final kinetic energy is 3.7 x 107 %eV,
that practically is the same as the initial energy; so, if the energy is ex-
pressed in eV and the wavelength in A (see Problem 2.14), one has:

124 e
A = e~ 150 A

\/Ei mMn
or, since A is inversely proportional to the square root of the energy,
Ai = A /Er/E; = 900 /10-7/3.8 x 10-6 ~ 150 A .

c) In vacuum \g = h/py = h/v2myE; in the medium A\ = h/p =
h/\/2mu(E —Vp), therefore n = \g/A = /1—Vy/E = 0.67 (note
that n < 1).

,=10""eV; T=11x10"°K.

d) Note that, contrary to the convention used in optics, here the incidence
angle is measured from the reflection plane. So total reflection occurs for
angles 0 < 0, where cosf,. = n, namely 0 < 48°. Equivalently, if 7y is
the momentum of the neutron in vacuum and p is the momentum in the
medium, taking the y axis normal to the surface and the x axis in the
plane containing the incident beam, one has:

2 2
p02w + Poy _ pf + Dy

2my,  2my 2mn,  2my

E = + V.

Since py = por and po, = pgsin @, there occur both reflection and refrac-
tion when py2 > 0, i.e. Esin?6 > Vj, therefore sin®6, = Vo/E, namely

cos @, = \/l—VO/E.
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