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Old Quantum Theory

Spectroscopy and fundamental constants; Compton effect; Bohr–Som-

merfeld quantization; specific heats; de Broglie waves.

Note. The problems in this chapter are based on what is known as Old

Quantum Theory: Bohr and de Broglie quantization rules. Those situations

are treated in which the results will substantially be confirmed by quantum

mechanics and some problems of statistical mechanics are proposed where the

effects of quantization are emphasized.

2.1 The visible part of the electromagnetic spectrum is conventionally thus
divided:

|
4000 Å
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wavelengths being given in Å .

a) Convert the above wavelengths into the energies of the associated photons,
expressed in eV.

2.2 The dimensionless fine structure constant is defined as α ≡ e2/�c .

a) Show that the Rydberg constant R∞ ≡ mee
4/4π�3c may be written as

R∞ = α2/2λc (λc ≡ h/mec is the Compton electron wavelength) and the
ionization energy of the hydrogen atom (in the approximation of infinite
proton mass) as Ei =

1
2α

2mec
2.

According to the present day (2016) available data in the field of spectroscopy
one has:

R∞ = 109 737.315 685 08(65) cm−1 ; α = 7.297 352 5664(17)× 10−3

me = 0.910 938 356(11)× 10−27 g ;
me

mp
= 5.446 170 213 52(52)× 10−4

and in addition, by definition, c = 299 792 458m/s .
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14 2 Old Quantum Theory

b) Calculate the relative standard uncertainties for the values of R∞ , α, me .

The Rydberg constant Rh for the hydrogen differs from R∞ because of the
finite proton mass.

c) Calculate Rh and the Planck constant h with the correct number of sig-
nificant figures; also give the relative standard uncertainties of the results.

2.3 The frequency of an absorption transition from the n = 2 level of hydro-
gen was measured in a high precision spectroscopy experiments. The measured
frequency was νh = 799 191 727 409 kHz .
Owing to relativistic corrections and other minor effects, the energy levels of
hydrogen are not exactly those given by the Bohr theory. Nonetheless:

a) Find the value of n for the final level.

In deuterium (the isotope of hydrogen with A = 2 ) the same transition gives
rise to an absorption line whose frequency is νd = 799 409 184 973 kHz .

b) Assuming the difference between νd and νh is mainly due to the different
masses of the nuclei, calculate (with no more than three or four significant
figures) the value of the ratio between the deuterium nuclear mass and the
electron mass. (Use the numerical data given in Problem 2.2.)

2.4 Positronium is a system consisting of an electron and a positron (equal
masses, opposite charges) bound together by the Coulomb force.

a) Calculate the value of positronium binding energy Eb (i.e. the opposite
of the energy of the ground state).

One of the decay channels of positronium is the annihilation into two photons:
e+ + e− → 2γ (the lifetime for this channel being τ2γ � 1.25× 10−10 s).

b) Compute the energy and wavelength of each of the two photons in the
center-of-mass reference frame of positronium.

The decay photons are revealed by means of the Compton effect on electrons.

c) Calculate the maximum energy a photon can give to an electron at rest.

d) Assume the electrons are in a uniform magnetic field B = 103G with the
energy found in the previous question. Calculate the radius of curvature
of the trajectories described by the electrons.

2.5 Muonium is an atom consisting of a proton and a μ− meson. It is formed
via radiative capture: the proton (at rest) captures a meson (at rest) and this
reaches the ground state by emitting one or more photons while effecting
transitions to levels with lower energy (radiative cascade).
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a) Calculate the mass of the μ− meson, given that the maximum energy of
the photons emitted in the radiative cascade is 2.5 keV .

b) Calculate the characteristic dimension of muonium in its ground state.

c) Say what is the resolving power Δν/ν necessary to distinguish – by mea-
suring the frequency of the photons emitted during the radiative cascade
– whether the μ− has been captured by a proton or by a deuteron (the
latter being the nucleus of deuterium: the bound state of a proton and a
neutron).

2.6 The purpose of this problem is to show that any quantum state (i.e.
in the present case: any energy level), relative to a one-dimensional system
quantized according to the Bohr rule, occupies a (two-dimensional) volume h
in phase space.

Consider a one-dimensional harmonic oscillator quantized according to the
Bohr rule.

a) Compute the volume of phase space bounded by the surface of energy
En = n �ω and that of energy En−1 .

Consider now a particle constrained to move on a segment of length a; its
energy levels En are obtained by means of the Bohr quantization rule.

b) Compute the volume of phase space bounded by the two surfaces of energy
En and En−1 .

c) Show that the same result obtains for any one-dimensional system with
energy levels En obtained through the Bohr rule. (Hint: use Stokes’
theorem.)

Consider now an isotropic three-dimensional harmonic oscillator.

d) Use the Bohr quantization rule in the form
∑

i

∮
pi dqi = nh to show

that the energy levels still read En = n �ω and that the (six-dimensional)
volume of phase space bounded by the surface of energy En has magnitude
n3h3/6 .

2.7 When a system with several degrees of freedom enjoys the possibility
of the separation of variables – i.e. there exists a choice of q’s and p’s such
that the Hamiltonian takes the form H = H1(q1, p1) +H2(q2, p2) · · · – it is
possible to use the Bohr–Sommerfeld quantization rules

∮
pi dqi = nih for

all i = 1, · · · relative to the individual degrees of freedom.

a) Find the energy levels E(n1, n2, n3) of an anisotropic three-dimensional
harmonic oscillator. Exploit the fact that its Hamiltonian can be written
in the form:

H =
p 2
1

2m
+

1

2
mω 2

1 q 2
1 +

p 2
2

2m
+

1

2
mω 2

2 q 2
2 +

p 2
3

2m
+

1

2
mω 2

3 q 2
3 .
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Consider now an isotropic three-dimensional harmonic oscillator. The number
of states corresponding to a given energy level En = n �ω (the “degeneracy”
of the level) is the number of ways the three quantum numbers n1, n2, n3 can
be chosen such that E(n1, n2, n3) = En .

b) Compute the degeneracy of the energy levels for an isotropic three-
dimensional harmonic oscillator and the number of states with energy
E ≤ En .

c) Find the energy levels of a particle confined in a rectangular box with
edges of lengths a, b, c .

d) Still referring to the particle in the rectangular box (of volume V = abc),
compute the number of states enclosed in the phase space volume:

V ×
[
(|p1| ≤ pn1)× (|p2| ≤ pn2)× (|p3| ≤ pn3)

]
; pn1 =

n1h

2a
, etc.

and show that, just as in Problem 2.6, the volume-per-state is h3.

2.8 A particle of mass m in one dimension is subject to the potential
V (x) = λ (x/a)2k with λ > 0 and k a positive integer.

a) Show that the energy levels obtained through the Bohr quantization rule
are:

En = n2k/(1+k)

(
hλ1/2k

√
8m aCk

)2k/(1+k)

, Ck =

∫ +1

−1

√
1− x2k dx .

b) Explicitly write the energy levels for k = 1 and k = ∞ . Which well
known potential does the case k = ∞ correspond to?

2.9 Consider a nonrelativistic electron in a uniform magnetic field �B , mov-
ing in a plane orthogonal to �B .

a) Find the energy levels (Landau levels) by means of the Bohr quantization
rule

∮
�p · d�q = nh, paying attention to the fact that, in presence of a

magnetic field, �p 
= m�v .

b) Calculate the distance between energy levels for B = 1T = 104 G .

2.10 A particle of mass m in one dimension is constrained in the segment
|x| ≤ 1

2a and is subject to the potential:

V (x) =
{

0
−V0

|x| > 1
2 b

|x| ≤ 1
2 b

b < a , V0 > 0 .

a) By use of the Bohr quantization rule determine the energy levels with
En < 0, the condition for the existence of at least one level with negative
energy, and the number of levels with negative energy.
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b) Determine the energy levels with En � V0 (neglecting terms of order
V 2
0 /E2).

c) Show that the corrections to the ‘unperturbed’ levels (i.e. those with V0 =
0 ) found in the previous question, coincide with −V0× (probability of
finding the particle with |x| ≤ 1

2b), where such a probability is the ratio
between the time spent in the segment |x| ≤ 1

2 b and that spent in the
segment |x| ≤ 1

2a .

2.11 Consider a gas of atoms (or molecules) with a ground state E0 = 0, an
excited state E1, a third level Ex with 0 ≤ Ex ≤ E1, as well as other energy
levels En � E1 (a three-level system). Let us consider the contribution to
internal energy and heat capacity exclusively due to the three energy levels
E0 , Ex and E1 .

a) Calculate the contribution of the three levels to the internal energy as a
function of the temperature T and of Ex . For what range of T is it
legitimate to ignore the levels with En � E1 ?

�

�

CV

�

TE1/kb

a

b

c

The three curves (a, b, c) in the figure
represent (not necessarily in the same
order) CV (T ) for three different values
of Ex : Ex = 0, Ex = E1 , Ex = 1

10E1 .

b) Identify the value of Ex for each
curve and explain qualitatively their
different features: more precisely,
why is the maximum in c higher
than in b and why are there two maxima in a?

2.12 Consider a particle of mass m constrained in a segment of size a .

a) Show that, for high values of the temperature T , the quantum partition
function Z(β) =

∑
n exp

[−β En

]
(β ≡ 1/kbT ) is well approximated by

the classical partition function divided by the Planck constant h . Explain
what ‘high values of T ’ means.

2.13 Consider the gas consisting of the conduction electrons of a conductor
with given volume V . The conductor being neutral, the ions of the crystal
lattice partially screen the charge of the electrons, nearly making their repul-
sion vanish. In a first approximation the conduction electrons may therefore
be considered as a gas of free particles.

a) In Problem 2.7 it has been shown that the phase space volume taken by
each quantum state is h3. Calculate the number of (quantum) electron
states with energy �p 2/2me less than Ef .
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Due to the Pauli principle, at most two electrons are allowed to occupy the
same quantum state; furthermore, at temperature T = 0K, the gas has,
compatibly with the Pauli principle, the lowest possible energy.

b) Let N be the number of conduction electrons in the volume V . Calculate
the maximum energy Ef a conduction electron may have at T = 0K .
(Ef is known as the Fermi energy of the system.)

c) Under the same conditions specified above, calculate the value E of the
total energy of the gas (approximate sums with integrals) and its pressure
p . (For T = 0K the pressure is p = −∂E/∂V ). Verify that p V = 2

3E .
(Actually this relation holds also for T > 0 .)

d) Knowing that for silver the density is 10.5 g/cm3, the atomic weight is
A = 108 and that one conduction electron is available for each atom,
calculate the value (in atmospheres) of the pressure p at T = 0K and the
value of the Fermi temperature Tf ≡ Ef/kb for the electron gas.

2.14 Neutrons produced in a nuclear reactor and then slowed down (‘cold’
neutrons) are used in an interferometry experiment. Their de Broglie wave-
length is λ = 1.4 Å .

a) Calculate the energy of such neutrons and the energy of photons with the
same wavelength (neutron mass mn � 1.7× 10−24 g ).

d

θ θ

The neutrons are fired at a silicon crystal and the
smallest angle θ (see the figure), for which Bragg
reflection is observed, is θ = 22◦ .

b) Calculate the distance d between the lattice plains of the crystal respon-
sible for Bragg reflection.

c) Say for how many angles Bragg reflection can be observed.

2.15 ‘Ultracold’ neutrons are free neutrons whose de Broglie wavelength is
some hundred Å .

a) Calculate the speed and energy of neutrons with λ = 900 Å and their
‘temperature’ (T ≡ E/kb).

A way to obtain ultracold neutrons is to inject cold neutrons vertically into a
tower of height D � 35m .

b) Say what the initial wavelength λi of the cold neutrons must be in order
that, at the top of the tower, the final wavelength is λf = 900 Å .

A nonabsorbing material behaves for neutrons as a region where the potential
is about V0 � 10−7 eV (a repulsive potential). For aluminium V0 = 0.55 ×
10−7 eV.
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c) Calculate the refractive index of aluminium (i.e. the ratio between the
wavelengths in vacuum and in the medium) for the neutrons with λ =
900 Å .

θ θ

Neutrons with λ = 900 Å impinge on the surface of a
plate of aluminium.

d) Say for what range of angles (see the figure) does
total reflection occur.



Solutions

2.1

a) Since for photons λ[Å]× E[eV] = 12400 eV Å one has:
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2.2

a) One has:

R∞ =
mee

4

4π�3c
=

e4

�2c2
× mec

4π�
=

α2

2λc
; Ei = R∞hc =

α2hc

2λc
=

1

2
α2mec

2.

b)
ΔR∞
R∞

= 5.9× 10−12;
Δα

α
= 2.3× 10−10;

Δme

me
= 1.2× 10−8.

c) With μe the reduced mass of the (e, p) system,

Rh = R∞ × μe

me
=

R∞
1 +me/mp

ΔRh

Rh

=
ΔR∞
R∞

+
Δ(me/mp)

1 +me/mp
� ΔR∞

R∞
+Δ(me/mp)

= 5.9× 10−12 + 0.05× 10−12 = 6× 10−12

then Rh has 12 significant digits as R∞ : Rh = 109 677.583 4063(7) cm−1.

h =
α2mec

2R∞
⇒ Δh

h
= 2

Δα

α
+

Δme

me
+

ΔR∞
R∞

= 1.2× 10−8

(ΔR∞/R∞ , Δα/α � Δme/me ), then h = 6.626 070 040(80)×10−27 erg s.
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2.3

a) νh = Rh c
(1
4
− 1

n2

)
⇒ 1

n2
=

1

4
− νh

Rh c
·

If n2� 104 it is sufficient to make calculations with 6 significant digits
(Rh is given in the solution of Problem 2.2):

1

n2
� 1

4
− 0.799192× 1015

109677 · 299792× 105
= 0.007 ⇒ n2 � 143 ⇒ n = 12 .

b) As the frequencies are proportional to the reduced masses, one has:

νh
νd

=
1 +me/md

1 +me/mp
⇒ me

md
=

νh
νd

(
1 +me/mp

)− 1

and, with me/mp given in the text of Problem 2.2,

me

md
=

799 192

799 409
× 1.000544− 1 � 2.724× 10−4 ⇒ md

me
� 3670 .

2.4

a) Positronium differs from the hydrogen atom only for the value of the re-
duced mass, which is a half of the mass common to electron and positron.
Then:

Eb =
e2

4ab
=

1

2
13.6 eV = 6.8 eV .

b) In the center-of-mass reference frame the two photons have the same en-
ergy mec

2 (binding energy neglected):

Eγ = mec
2 = 0.51MeV , λ =

hc

Eγ
=

12400

0.51× 106
= 0.024 Å

which is the Compton electron wavelength λc = h/mec .

c) The maximum release of energy from the photon to an electron takes
place when the photon is scattered backwards (θ = 180◦). In this case the
wavelength of the scattered photon is

λ(π) = λ(0) + 2λc = 3λc ⇒ E f
γ =

1

3
E i

γ

and as a consequence the energy released to the electron is

Ee =
2

3
E i

γ =
2

3
mec

2 = 0.34MeV .

d) The momentum of the electron is

p =
E i

γ

c
− −E f

γ

c
=

4

3
mec

so the radius of curvature of the electron trajectory is

ρ =
p c

eB
=

4

3

mec
2

eB
=

4

3

hc

4π μbB
= 2.3 cm

where μb ≡ e �/2mec = 5.8× 10−9 eV/G is the Bohr magneton.
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2.5

a) The energy levels of muonium differ from those of the hydrogen atom only
because of the different value of the reduced mass. The highest energy
of the emitted photons is equal to the ionization energy of muonium and
is 2.5 × 103/13.6 = 184 times that of the hydrogen atom, therefore the
reduced mass μ of the system (μ− p) is 184 times the electron mass:

mμ =
mp μ

mp − μ
=

1840me × 184me

1840me − 184me
= 204me .

b) Also the dimensions of the orbits of the μ− meson are reduced by a factor
184 with respect to those of the electron. As a consequence the size of
muonium in its ground state is ab/184 = 0.53 Å/184 = 2.9× 10−3 Å .

c) The reduced mass of the system (μ− d) is 193me , whence:

Δν

ν
=

Δμ

μ
=

193− 184

184
� 5% .

2.6

a) The curve described by the equation p2 +m2ω2q2 = 2mEn is an ellipse
whose semiaxes are

√
2mEn and

√
2En/mω2 , so the enclosed area is

An =
2πEn

ω
= nh ⇒ An −An−1 = h .

b) In the case of a particle in a segment, the Bohr quantization rule gives
pn = ±nh/2a, so the volume of the phase space where E ≤ En is the
area of the rectangle whose base and height respectively are a and 2|pn|,
therefore:

An = 2|pn|a = nh ⇒ An − An−1 = h .

Equivalently:

An =

∫
E≤En

dq dp = a

+
√
2mEn∫

−√
2mEn

dp = 2a n

√
h2

4a2
= nh .

c) The volume of the phase space where E ≤ En is

An =

∣∣∣∣∫
E≤En

dq dp

∣∣∣∣
and by Stokes theorem (the surfaces are oriented):∫
E≤En

dq dp = −
∮
E=En

p dq

(indeed, the flux of the curl of the two-dimensional vector �B with com-

ponents Bq = −p, Bp = 0, curl �B = ∂Bp/∂q − ∂Bq/∂p = 1, equals the

circulation of the vector �B ) therefore, owing to Bohr quantization rule,
An = nh .
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d) One has:∮ ∑
i

pi dqi =
∑
i

∫
period

pi q̇i dt = 2
2π

ω
Ec =

2π

ω
En = nh ⇒ En = n �ω .

Making the change of variables pi =
√
mω p′i , qi = q′i/

√
mω (the Jaco-

bian is 1), the surface of energy En becomes the surface of the sphere of
radius

√
2En/ω . The volume of the sphere of radius R in d dimensions is

Vd =
πd/2Rd

Γ
(
d/2 + 1

) ⇒ VE≤En =
n3

6
h3

where use has been made of the fact that d = 6 and that, for integer k ,
the Euler Γ function has the value Γ (k) = (k − 1)! .

The meaning of the obtained result is that the number of states of the
oscillator with energy E ≤ En is of the order of n3/6 (approximately one
state for each cell of the phase space with volume h3).

2.7

a) As the Hamiltonian H is a separate variables one: H = H1+H2+H3 , its
energy levels are:

E(n1, n2, n3) = n1�ω1 + n2�ω2 + n3�ω3 .

b) In the case of an isotropic oscillator ω1 = ω2 = ω3 ≡ ω and

E(n1, n2, n3) = (n1 + n2 + n3) �ω ≡ n �ω , n = n1 + n2 + n3 .

Choosing n1 = n− k, (k = 0, · · · n), n2 and n3 may be chosen in k+1
ways: n2 = k, n3 = 0; n2 = k − 1, n3 = 1; · · · n2 = 0, n3 = k . So the
degeneracy of the level En is

gn =

n∑
0

(k + 1) =
(n+ 1)(n+ 2)

2

and the number of states with energy E ≤ En is

n∑
0

gk =
1

2

n∑
0

(k2 + 3k + 2) =

=
1

2

(n(n+ 1)(2n+ 1)

6
+ 3

n(n+ 1)

2
+ 2(n+ 1)

)
=

(n+ 1)(n+ 2)(n+ 3)

6
·

Compare this result – that will be confirmed by quantum mechanics – with
what has been found in question d) of Problem 2.6.

c) Also in the case of a particle in a box the Hamiltonian is a separate vari-
ables one: H = p 2

1 /2m+ p 2
2 /2m+ p 2

3 /2m, therefore:

E(n1, n2, n3) =
n 2
1 h2

8ma2
+

n 2
2 h2

8mb2
+

n 2
3 h2

8mc2
=

h2

8m

(n 2
1

a2
+

n 2
2

b2
+

n 2
3

c2

)
·
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d) Due to pn1 = n1h/2a, pn2 = n2h/2b, etc. the required volume is given
by V × 23 pn1pn2pn3 = n1n2n3 h

3 and, since the number of states with
quantum numbers less or equal to n1, n2, n3 is n1n2n3 , the result follows.

2.8

a)

∮
p dx =

∮ √
2m
(
E − V (x)

)
dx =

√
2mE

∮ (
1− λ

E

x2k

a2k

)1/2
dx .

Putting y = (λ/E)1/2k x/a ,∮
p dx = 2

√
2mE a

(E
λ

)1/2k∫ +1

−1

√
1− y2k dy = nh ⇒

E(1+k)/2k
n = n

hλ1/2k

√
8m aCk

⇒ En = n2k/(1+k)

(
hλ1/2k

√
8m aCk

)2k/(1+k)

.

b) For k = 1 C1 = π/2 and En = n �
√
2λ/ma2 : these are the energy

levels of a harmonic oscillator with 1
2mω2 = λ/a2.

For k = ∞ the potential is that of an infinite potential well of width 2a
(x2k → 0 for |x| < 1, x2k → ∞ for |x| > 1), C∞ = 2 and the energy
levels are En = n2h2/8m(2a)2.

Only in the two cases k = 1 and k = ∞ (up to the additive constant
1
2�ω in the case of the oscillator) the energy levels found by means of
the Bohr quantization rule will turn out to be identical to those predicted
by quantum mechanics: in general, the energy levels calculated using the
Bohr–Sommerfeld quantization rule agree with those predicted by quan-
tum mechanics only for large values of the quantum number n .

2.9

a) The electron follows a circular trajectory with cyclotron angular frequency
ωc = eB/mec (twice the Larmor frequency) and velocity v = ωcr =
eB r/mec . One has:

�p = me �v − e

c
�A ;

∮
�p · d�q =

2π

ωc
me v

2 − e

c

∮
�A · d�q

and, thanks to Stokes’ theorem,

e

c

∮
�A · d�q =

e

c
π r2B =

2π

ωc
× 1

2
me

e2B2r2

m 2
e c

2
=

2π

ωc
× 1

2
me v

2

then (the energy is only kinetic):∮
�p · d�q =

2π

ωc
× En = nh ⇒ En = n �ωc = n �

eB

mec
·

b) The Bohr magneton is defined by (see also Problem 2.4):

μb ≡ e �

2mec
= 0.93× 10−20 erg/G = 5.8× 10−9eV/G
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so the distance between Landau levels is

ΔEn = 2μbB = 1.16× 10−4 eV .

2.10

a) For negative energies the particle is confined in the region |x| ≤ 1
2b,

whence:

pn =
√
2m(En + V0) =

nh

2b
⇒ En =

n2h2

8mb2
− V0

E1 < 0 ⇒ V0 >
h2

8mb2
; En < 0 ⇒ n <

2b
√
2mV0

h

and the number of levels is given by the integer part of 2b
√
2mV0/h .

b) For E ≥ 0 the Bohr condition reads:[
(a− b)

√
2mEn + b

√
2m(En + V0)

]
=

nh

2

that, for En � V0 and up to the first order in V0/En , takes the form:√
2mEn

[
(a− b) + b

(
1 +

1

2

V0

En

)]
= a
√
2mEn +

mbV0√
2mEn

=
nh

2

that gives, upon solving and neglecting the terms of order V 2
0 /E2

n ,

En =
n2h2

8ma2
− b

a
V0 , n � 2a

√
2mV0

h
·

c) In one period, the time spent by the particle in a given segment, is twice the
ratio between the length of the segment and the velocity of the particle: in
order to find the result to the first order in E/V0 we must take the velocity
of the unperturbed motion (that with V0 = 0), then:

tb = 2
b

v
; ta = 2

a

v
⇒ −V0

tb
ta

= − b

a
V0 .

2.11

a) Putting E0 = 0 one has:

U =
Exe

−βEx + E1e
−βE1

1 + e−βEx + e−βE1
·

It is legitimate to neglect the levels with En � E1 when their population is
negligible with respect to that of the level E1, namely when e−β(En−E1) �
1, i.e when T � (En − E1)/kb .

b) Note that, when Ex = 0 = E0 , the degeneracy of the level E0 is 2, when
Ex = E1 the degeneracy of E1 is 2, while for Ex = 1

10E1 the lowest
energy level is “quasi degenerate” with Ex . So, for high temperatures
(kbT � E1), i.e. in the limit of equi-population, if Ex = E1, the internal
energy tends to a value that is twice that of the case Ex = E0 (2E1/3 in
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the first case, E1/3 in the second) and almost twice (2/1.1) that of the
case Ex = 1

10E1, and then grows more than in the other cases. For this
reason the specific heat of the case Ex = E1 (the curve labeled by c) is
greater than in the other cases.
If Ex = 1

10E1 , the level Ex becomes immediately populated (i.e. for tem-
peratures T � Ex/kb) and the heat capacity grows accordingly; then, as
long as kbT � E1 , the system behaves as a two-level system, therefore
CV decreases towards zero to start a new growth when the level E1 starts
populating: in conclusion the curve labeled by a corresponds to the case
when the lowest energy level is quasi degenerate: Ex = 1

10E1 .

2.12

a) The classical partition function is

Zcl =

∫
exp
[
− β p2/2m

]
dq dp = 2a

∫ ∞

0

exp
[
− β p2/2m

]
dp

� 2a
∑

n
exp
[
− β p 2

n/2m
]
×Δpn

and, if we take pn = nh/2a, Δpn = h/2a, the thesis follows. Let us now
examine the conditions under which approximating the integral by the
series is legitimate. One has:

Zcl/h =
2a

h

∫ ∞

0

exp
[
− β p2/2m

]
dp =

2a

h

∞∑
n=0

∫ pn+1

pn

exp
[
− β p2/2m

]
dp

=
2a

h

∞∑
n=0

exp
[
− β p 2

n/2m
]
×Δpn =

∞∑
n=0

exp
[
− β p 2

n/2m
]

where pn < pn < pn+1 . The maximum of the difference with respect to
the sum with pn instead of pn is obtained if one replaces pn with pn+1: in
this case the two sums differ by the first term that equals 1. The quantum
partition function and Zcl/h differ by a function of β (the pn do depend

on β) bounded by 0 and 1; since
∫
e−ax2

dx =
√
π/a , one has:

Zcl/h =
a

h

√
2πm

β

and in conclusion, if Zcl/h � 1 namely for β � ma2/h2 (kbT � h2/ma2),
the difference is negligible.

2.13

a) Since the energy of the electrons is �p 2/2me , putting pf =
√
2meEf one

has:∫
E≤Ef

d3q d3p = V × 4π

∫
p≤p

f

p2dp =
4π

3
V
(
2meEf

)3/2
.
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The number of states is n =
4πV

3h3

(
2meEf

)3/2
.

b) The energy is a minimum if all the states with energy less than Ef are
occupied and there are two electrons per state, so:

N = 2n = 2× 4πV

3h3

(
2meEf

)3/2 ⇒ Ef =
h2

8me

(
3N

πV

)2/3
.

c) The total energy is

E = 2×
∑

n1,n2,n3

En1,n2,n3 = 2×
∑

n1,n2,n3

1

2me

(
p 2
n1

+ p 2
n2

+ p 2
n3

)
where pn1 = n1h/2a , etc. and the sum is performed on all the quantum
numbers such that En1,n2,n3 ≤ Ef . The points �p = (pn1 , pn2 , pn3) in the
octant pi > 0 (i = 1, 2, 3) of momentum space give rise to a lattice with
unit steps h/2a, h/2b, h/2c . So, replacing the sum with the integral:

E = 2× 1

8

8V

h3
4π

∫ pf

0

p2

2me
p2 dp =

4πV

5meh3
p5f =

3 h2N

40me

(
3N

πV

)2/3
and since E is a homogeneous function of V of order −2/3 :

p V = −V
∂E

∂V
=

2

3
E ⇒ p =

2

3

E

V
=

πh2

60me

(
3N

πV

)5/3
.

d) A mole of atoms of silver occupies the volume 108/10.5 � 10 cm3, so:

N/V � 6× 1022 cm−3 ⇒ p � 2× 1011 dyn/cm2 = 2× 105 atm .

Ef = 9× 10−12 erg = 5.6 eV ⇒ Tf = 6.5× 104K .

2.14

a) While for a photon:

Eγ = h ν =
h c

λ
� 12400 eV Å

1.4 Å
= 8.9× 103 eV ,

for a particle of mass m 
= 0, if me stands for the electron mass:

λ =
h

p
=

h√
2mE

⇒ λ
√
E =

h c√
2mec2

√
me

m
= 12.4

√
me

m
Å (eV)1/2

and, as a consequence, for neutrons of mass mn � 1.7×10−24 g = 1840me

one has:

En =
(12.4
1.4

)2
× 1

1840
� 4.3× 10−2 eV .

b) From the Bragg relation 2 d sin θ = nλ with n = 1 one obtains:

d =
λ

2 sin θ
� 1.9 Å .

c) The number of angles for which there occurs Bragg reflection is the integer
part of 2d/λ, namely 2 .
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2.15

a) v =
p

mn
=

h

mnλ
= 4.3m/s ; Ef =

h2

2mnλ2
= 10−7 eV ; T = 1.1× 10−3K .

b) The difference between the initial and final kinetic energy is 3.7×10−6 eV,
that practically is the same as the initial energy; so, if the energy is ex-
pressed in eV and the wavelength in Å (see Problem 2.14), one has:

λi =
12.4√
Ei

√
me

mn
� 150 Å

or, since λ is inversely proportional to the square root of the energy,

λi = λf

√
Ef/Ei = 900

√
10−7/3.8× 10−6 � 150 Å .

c) In vacuum λ0 = h/p0 = h/
√
2mnE ; in the medium λ = h/p =

h/
√
2mn(E − V0) , therefore n ≡ λ0/λ =

√
1− V0/E = 0.67 (note

that n < 1 ).

d) Note that, contrary to the convention used in optics, here the incidence
angle is measured from the reflection plane. So total reflection occurs for
angles θ < θr where cos θr = n, namely θ < 48◦. Equivalently, if �p0 is
the momentum of the neutron in vacuum and �p is the momentum in the
medium, taking the y axis normal to the surface and the x axis in the
plane containing the incident beam, one has:

E =
p 2
0x

2mn
+

p 2
0y

2mn
=

p 2
x

2mn
+

p 2
y

2mn
+ V0 .

Since px = p0x and p0y = p0 sin θ , there occur both reflection and refrac-
tion when p 2

y > 0 , i.e. E sin2 θ > V0 , therefore sin2 θr = V0/E , namely

cos θr =
√
1− V0/E .
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