
Chapter 2
Measurement Errors

2.1 Errors of Measurements

All experimental measurements are inaccurate to some degree. By this statement we
mean that the measured quantity (e.g. length, weight, mass, time interval, speed,
temperature etc.) has a real value, which we wish to determine, but any mea-
surement we perform of this magnitude, direct or indirect, does not have as its result
this real value but some value which differs from it by an unknown amount. We call
the difference between the numerical result of the measurement and the real value of
the magnitude being measured, error of the measurement.

Measurement errors are classified in two categories: accidental and systematic.
There is no clear definition of the exact difference between them. Neither do they
obey any simple law. It is difficult to distinguish them; the error of a measurement is
usually a combination of errors of both kinds.

2.1.1 Accidental or Random Errors

Accidental or random errors are due to many unpredictable factors and their presence
may be revealed by repetitions of the measurement. The main characteristics of
accidental errors are that they have no regularity in successive measurements of the
same magnitude and that their sign is equally probable to be positive or negative. The
basic property of accidental errors to be positive or negative with equal probabilities,
aswell as the fact that small deviations from the real value aremore probable than large
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ones, make possible the determination of an estimate of the uncertaintywith which the
measured magnitude is known. This is achieved by repeating the measurement, under
identical experimental conditions, many times, so that, on average, accidental errors
mutually cancel out to a certain degree.

Classical examples of random errors are those due to thermal noise. The inevitable thermal
noise affects all systems, mechanical and electrical. The indications of a torsion balance or a
galvanometer, for example, are always non-zero and vary with time (Brownian motion).
This fact is due to their thermal interaction with their surroundings through their collisions
with air molecules or even the photons of the ambient electromagnetic radiation. The noise
in electronic instruments is of the same (thermal) origin. This noise (known as Johnson or
Nyquist noise) is due to the random thermal motion of the electrons in the components of
the instrument, such as resistors, which leads to the appearance of small potential differ-
ences across them. These signals, after being processed by the instrument, appear at its
output as random variations of its reading. There exist, of course, means of minimizing
thermal noise (suitable filtering of electric signal, lowering the temperature since the noise
depends on it etc.). It is, however, both practically and theoretically impossible to eliminate
this noise completely. The noise is added to the signal being measured changing its value.
The often-used term signal to noise ratio describes precisely this situation.

2.1.2 Systematic Errors

Systematic errors may be due to imperfections of the instruments or the method
used, and to the observer. They are the most difficult to deal with, as the repetition
of the measurement does not reveal their existence. Some examples of sources of
systematic errors will help clarify this statement.

Zero error is one of the commonest of systematic errors. If, for example, the
pointer of an instrument (for those instruments that still have pointers!) has been
shifted relative to its scale, in such a way that for zero input signal the instrument
shows a non-zero output signal xz, then all the instrument’s readings will differ by xz
from what they should be. In this example, the systematic error is constant.

If a ruler was marked so that a length of 999 mm was subdivided into 1000 equal
parts, which are supposed to have a length of one mm, then each measurement of
length using this ruler will give results which are systematically larger by 0.1%. In
this example, the systematic error is equal to a constant proportion of the measured
quantity. In addition, if the subdivision of the length into equal parts was not
performed with the necessary precision, this will add more systematic errors.

A mercury thermometer, whose column does not have a constant cross section,
will give systematically and irregularly wrong values for the temperature. This, of
course, is true assuming that the scale of the thermometer was drawn using the usual
method of establishing the points corresponding to 0 and 100 °C and subdividing the
distance between them into 100 equal intervals, each corresponding to 1 °C.

An instrument which needs a certain time to reach a state of equilibrium (e.g.
thermal) before it can function normally, will systematically give erroneous readings
during its transition period. In this case the systematic error will be a function of time.
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The use of a wrong numerical value in the processing of experimental results, or
an approximate theoretical relation involving the measured magnitudes, will lead to
systematic errors. It is of course arguable whether these errors may be considered to
be experimental errors. A classical example is the case of the measurement of the
electronic charge by Millikan. The value found by Millikan was
e ¼ 1:591� 10�19 C, with an estimated probable uncertainty of the order of
0:002� 10�19 C, or about 0.1%. The accepted value today is e ¼ 1:602� 10�19 C,
accurate to the significant digits given. It is seen that the real error of Millikan’s
value was greater than 0.7%, which is five times that given by Millikan. The
problem arose from the fact that the value for viscosity of air available to Millikan
was wrong. Due to this error, all values of the atomic constants, such as Planck’s
constant and Avogadro’s constant, the determination of which depends on the value
of e, were wrong by errors larger than 0.7% until 1930.

The avoidance of systematic errors depends mainly on the observer’s experi-
ence. Systematic errors are difficult to detect and usually are the most important
errors present in measurements. The most common way of detecting systematic
errors is the calibration of the measuring instrument, by comparing it with another
instrument which is known to have greater precision and negligible systematic
errors. Another way of testing for systematic errors in an instrument or procedure is
to use it in the measurement of a standard. A balance, for example, may be tested
by weighing a standard of known weight. A voltmeter may be calibrated by the
measurement of a standard of emf. A radioactive source of well known activity may
be used in the calibration of an arrangement for the measurement of radioactivity.

Figure 2.1 illustrates the relationship between random and systematic errors.

Fig. 2.1 A schematic illustration of random and systematic errors: a Random errors only.
b Random and systematic errors. c Only random errors, but larger than those of (a). d Random
errors larger than those of (a) and systematic errors. In line A the real value of the measured
quantity is also shown (center of the circles) and the distinction between random and systematic
errors is possible. In practice, however, the real value is not known [line B] and the detection of
systematic errors is difficult
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2.1.3 Personal Errors

The habits of experimentalists differ and it has been adequately documented, mainly
from astronomical observations, that, in measurements where subjective judgment
is important, some systematic errors are characteristic of the observer or the
instrument-observer combination. Bessel had examined the positions of stars, as
these were determined by leading astronomers of his age by measuring the times of
passage across the meridians of various observatories and found systematic dif-
ferences between them. Another good example refers to the estimation of the
sunspot activity. This is measured by a number R, which was proposed by R. Wolf
of the Zurich Observatory and is defined as:

R ¼ k½10� ðnumber of visible groups of sunspotsÞþ ðnumber of all sunspotsÞ�:

The coefficient k in the definition of this so-called Wolf number, depends on the
combination of the observer and the telescope used. It is determined by comparison
with some such combination which is used as standard for k ¼ 1. It is found that it
has values which differ, in some cases, by up to 20% from unity. The k coefficients
are known for many combinations of telescope-observer, a fact that makes possible
the coordinated observation of solar activity by many observatories simultaneously.

2.1.4 Occasional Errors

In some experimental arrangements it is possible for signals to be detected and
measured which occur very rarely and cannot be considered to be a permanent
source of noise. For example, in a system which measures pulses resulting from
some process under investigation, a false event may be recorded, such as one due to
the relatively rare high-energy cosmic ray showers. It must be stressed here that
some of science’s greatest discoveries were made possible when an experienced
observer realized that such a signal was not a spurious noise signal but was caused
by an unknown effect.

More pedestrian causes may lead to similar mistakes; an example from real life
is that of the postgraduate student who was tormented for days trying to explain a
small peak that appeared in the curve of light intensity versus time he was recording
in his studies, before he realized that the source of the signal was the building’s
elevator arriving at the fourth floor where his laboratory was situated! Apart from
working in a hut outside the main building, the student learned the advantages of
good shielding of his apparatus from external electrical signals.

The first author had a similar, very striking experience during his participation in
a project to detect gravitational radiation back in the 70s. The detector, a cylinder of
mass over 600 kg, was so sensitive that it could detect minute sound signals before
the chamber in which it was situated was evacuated to a low enough pressure.
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This resulted in pulses appearing at the output, which one could either interpret as
gravitational radiation pulses emitted when a star fell into a black hole at the center
of the Galaxy or to the sound waves created when someone was walking along the
corridor of the floor above. The final site for the detector was actually a farm
belonging to the university, outside the city, where the farm’s cows could not cause
such pulses.

The problem with occasional errors is mainly that they are so rare that we cannot
predict the number of expected events during our experiment. This number is small,
in any case. Occasional errors, however, may be very significant and cause a
modification of the results of a sensitive experiment when they occur. We might call
them parasitic, although this term fits any unwanted signal in general.

2.1.5 The Errors in Reading the Indications of Instruments

Despite the fact that in modern instruments the participation of the observer in the
taking of readings becomes more and more rare, there are still many instances in
which the subjectivity factor and the habits of the observer play an important role in
the reading of the indications of instruments. Most uncertainties which are due to
the observer may be minimized as the observer’s experience increases, both in
general and due to the fact that a procedure is repeated many times. In all cases,
however, it is necessary for the observer to be fully conscious of both his capa-
bilities and of the instruments he is using. Overestimation of these capabilities may
lead to problems.

For example, if we measure a length 5 times using a ruler and record the results

17 17 17 17 17 mm

are we justified in stating that the measured length is equal to 17 mm exactly?
Obviously not. If the length was actually 17.01 mm would we be able to measure
this? The answer is ‘no’, because the method we used did not allow us to detect the
difference between 17.00 and 17.01 mm. The accuracy with which we read the
scale of the instrument we are using is a basic quantity that we must always have in
mind. In a well designed experiment, the accuracy of the method should manifest
itself in the differences among the numerical results of repeated measurements. By
this we mean that the accuracy with which the instrument’s scale can be read should
be such that the random errors of the measurements become apparent. Such a set of
measurements would be, for example,

17:2 17:0 16:8 17:1 16:9 mm:

This would mean, however, that we have the ability to take readings with an
accuracy of 0.1 mm, which is not the case when we measure lengths with a ruler
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and the naked eye. The belief that we have this ability is over-ambitious in this
particular case. The solution is obvious:

In those cases in which the random errors are not apparent in our measure-
ments, the uncertainty in our result should be based on the accuracy with which we
can read the indications of the instrument used.

Examples are given below:
Let us assume that we are measuring the length of an object using a ruler and the

naked eye. We naturally assume that the ends of the object are well defined, so that
it makes sense to talk of its exact length. If the smallest subdivisions on the ruler
correspond to mm, then the procedure would be to place one end of the object next
to an incision on the ruler and then see with which incision of the ruler the other end
coincides. The difference of the two readings on the ruler will be the length of the
object. The positioning of the one end of the object next to an incision on the ruler
may usually be achieved with an accuracy of 1/5 mm. The reading of the position
of the other end has the same uncertainty. The reading error for the length of the
object will, therefore, be of the order of 2� 1=5 ¼ 0:4 mm. A more realistic
estimate of the reading error for measurements with a common ruler would usually
be 1 mm. So, for the 5 measurements we had above, all of which gave the result of
17 mm, it follows that:

The length measured is 17 mm, with a possible error of the order of 1 mm.
What we have said above also apply to the case when we have only one mea-

surement of a quantity. In this case no estimate of the random error can be made and
the reading error should be considered to be a lower estimate of the error of the
measurement.

Another example is that of the measurement of time. We assume that we use a
chronometer of the traditional kind, with a circular scale and subdivisions of 1/5 of
a second. If we measure the time that passes between two events and we read an
indication of, say, 15.8 s, just how sure are we of this result? We assume that the
two events are well defined in time so that it makes sense to talk of accuracy in the
timing of their occurrence equal to 1/5 s. Our reaction time in pressing the
chronometer’s knob at the right time is not zero. It might be that a reaction time of
1/10 s is possible for some people. However, do the mechanical parts of the
chronometer’s knob react at such a speed? Something else that must be taken into
account is that the chronometer’s pointer does not change position continuously but
in steps of 1/5 s. In the best of cases, therefore, the accuracy of our measurements
cannot be smaller than about 1/5 s, assuming of course that the chronometer is that
well manufactured.

The problem is also present in measurements performed with instruments having
digital indications. If the instrument has a 4-digit display, we must assume that the
error corresponds to one unit in the last digit. Most digital instruments do not round
to the nearest previous digit but simply reject all digits beyond those shown in the
display. The round-off error must thus be taken to be equal to one unit in the last
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digit of the display. So, if the indication of a digital instrument is, for example,
1.245, the reading error must be taken as being equal to 0.001 units.

Good quality instruments are usually accompanied by instructions on how to
estimate the highest possible systematic error, something that is determined by the
manufacturer by calibrating the instrument. A voltmeter may, for example be
accompanied by a certificate stating that:
The maximum possible error in the measured voltage is equal to:

0.005 � (maximum indication of the scale used) + 0.010 � (indication of the
instrument).

If, for example we are using the scale of 0–3 mV and the indication of the
instrument is 2.45 mV, the maximum possible systematic error due to the instru-
ment is 0.005 � 3 + 0.010 � 2.45 = 0.015 + 0.025 = 0.04 mV.

While it is certain that an accurate value of the magnitude being measured is
desirable, it is not always necessary for us to do everything we can in order to lower
the error as much as possible; in most cases, a reasonable error is tolerable.
However, what is certainly needed is for us to have a good estimate of the possible
error in our measurement. The use of our measurements so as to derive from them
the most accurate estimate for the real value of the magnitude being measured, as
well as of the possible error in this value, is the main purpose of the first part of this
book. The theory to be used in the mathematical analysis is valid only for random
errors. We must never forget, therefore, that our measurements may contain sys-
tematic errors which are much larger than the random errors and which will be
definitive for the usefulness of our results.

2.2 Errors in Compound Quantities

We will now examine the methods of evaluating the error in a compound quantity
Q ¼ Qðx; y; . . .Þ which is a function of the quantities x, y, …, which we have
measured. If x0, y0, … are the real values of the quantities x, y, … and xm, ym, …
the numerical values that resulted from their measurement, then, the errors in these
magnitudes are defined as

ex � xm � x0; ey � ym � y0; . . .: ð2:1Þ

The reduced or fractional error in the quantity x is defined as

fx � ex
x0

: ð2:2Þ

2.1 Errors of Measurements 45



Obviously, it is

xm ¼ x0 þ ex ¼ x0ð1þ fxÞ: ð2:3Þ

The percentage error is also defined as 100ex=x0%.
If the fractional error in x is small compared to unity ðfx � 1), the following

approximate relations hold

x0
xm

¼ 1
1þ fx

� 1� fx ð2:4Þ

and

ex
x0

¼ ex
xm

xm
x0

¼ ex
xm

ð1þ fxÞ � ex
xm

: ð2:5Þ

The errors ex, ey, … are unknown to us, since we do not know the real values x0,
y0, … of the magnitudes x, y, …. As a consequence, the error in the compound
quantity Q will also be unknown to us. We could say that the numerical results of
the examples to follow would be known only to somebody who knew, apart for our
experimental results, the real values of the quantities being measured as well. We
will, however, examine the way in which the errors in x, y, … affect the estimated
value Qm of the compound quantity Q, because this will help us understand the
concept of propagation of errors, i.e. the evaluation of the deviation of the value
Qm from the real value Q0, due to the errors in xm, ym,….

2.2.1 Error in a Sum or a Difference

If it is Q ¼ xþ y, then Q0 ¼ x0 þ y0 and if the measurements of x and y gave the
results xm and ym, it will be

Qm ¼ xm þ ym ¼ x0 þ y0 þ ex þ ey ¼ Q0 þ eQ; ð2:6Þ

where eQ is the error in Qm. The fractional error in Q ¼ xþ y is, therefore,

fQ ¼ eQ
Q0

¼ ex þ ey
x0 þ y0

¼ x0fx þ y0fy
x0 þ y0

: ð2:7Þ

The relation also holds when either x0 or y0 is negative, in which case Eq. (2.7)
gives the error in the difference of the two quantities.

We observe that, if fx and fy are comparable and x0 � y0, then fQ � fx, while, if
y0 � x0, then fQ � fy.
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The result may be generalized to give the fractional error in Q0 ¼
x0 þ y0 þ z0 þ . . . as

fQ ¼ eQ
Q0

¼ ex þ ey þ ez þ . . .

x0 þ y0 þ z0 þ . . .
¼ x0fx þ y0fy þ z0fz þ . . .

x0 þ y0 þ z0 þ . . .
: ð2:8Þ

In particular, if it is Q0 ¼ kx0 where k is an integer, putting x0 ¼ y0 ¼ z0 ¼ . . .
(k terms) in Eq. (2.8) we have

fQ ¼ eQ
Q0

¼ kex
kx0

¼ ex
x0

¼ fx or fQ ¼ fx: ð2:9Þ

The result is true for every k: Since Q0 ¼ kx0, Qm ¼ kxm and xm ¼ x0ð1þ fxÞ,
we have

Qm ¼ kx0ð1þ fxÞ ¼ Q0ð1þ fxÞ;

and, because Qm ¼ Q0ð1þ fQÞ, it follows that fQ ¼ fx.

Example 2.1

The measurements of x and y gave the results xm ¼ 6:2 cm and ym ¼ 3:6 cm. The
real values of these quantities are x0 ¼ 6:1 cm and y0 ¼ 3:4 cm. What is the error in
the sum Q ¼ xþ y?

Obviously, the real value of Q is Q0 ¼ x0 þ y0 ¼ 6:1þ 3:4 ¼ 9:5 cm. The value
determined by the measurements is Qm ¼ xm þ ym ¼ 6:2þ 3:6 ¼ 9:8 cm. It is
immediately seen that the error in Q is equal to eQ ¼ 9:8� 9:5 ¼ 0:3 cm and the
fractional error is fQ ¼ eQ=Q0 ¼ 0:3=9:5 ¼ 0:03, or 3%.

Using Eq. (2.7), we find again

fQ ¼ x0fx þ y0fy
x0 þ y0

¼ ðxm � x0Þþ ðym � y0Þ
x0 þ y0

¼ xm þ ym
x0 þ y0

� 1 ¼ 0:03:

Example 2.2

The quantities x and y were measured with fractional errors fx ¼ 0:01 and fy ¼ 0:02.
If the real values of these quantities are x0 ¼ 15 m and y0 ¼ 5 m, what is the
fractional error in the sum Q ¼ xþ y?

From Eq. (2.7) we have

fQ ¼ x0fxþ y0fy
x0 þ y0

¼ 15� 0:01þ 5� 0:02
15þ 5

¼ 0:15þ 0:10
20

¼ 0:0125; or 1:25%:
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2.2.2 Error in a Product

If Q ¼ xy, then Q0 ¼ x0y0 and if the measurements of x and y gave the results xm
and ym, it will be

Qm ¼ xmym ¼ ðx0 þ exÞ � ðy0 þ eyÞ ¼ x0ð1þ fxÞ � y0ð1þ fyÞ
¼ x0y0ð1þ fxÞð1þ fyÞ: ð2:10Þ

Since for small fx and fy it is ð1þ fxÞð1þ fyÞ � 1þ fx þ fy, it follows that

Qm � Q0ð1þ fx þ fyÞ ð2:11Þ

and the fractional error in Q is

fQ ¼ Qm � Q0

Q0
¼ fx þ fy; ð2:12Þ

i.e., the fractional error in Q ¼ xy is equal to the sum of the fractional errors in x
and y.

The result may be generalized and in the case of Q ¼ xyz. . .. We have

Qm ¼ xmymzm. . . ¼ x0y0z0. . .ð1þ fxÞð1þ fyÞð1þ fzÞ. . . � Q0ð1þ fx þ fy þ fz þ . . .Þ
ð2:13Þ

and, therefore,

fQ ¼ Qm � Q0

Q0
¼ fx þ fy þ fz þ . . .; ð2:14Þ

i.e., the fractional error in Q ¼ xyz. . . is equal to the algebraic sum of the frac-
tional errors in x, y, z, ….

Example 2.3

The measurements of the quantities x and y gave results with fractional errors
fx ¼ 0:01 and fy ¼ 0:02, respectively. Which is the fractional error in the product
Q ¼ xy?

Equation (2.12) gives fQ ¼ fx þ fy ¼ 0:01þ 0:02 ¼ 0:03 or 3%.

2.2.3 Error in a Power

For the special case of Q ¼ xn where n is a positive integer, Eq. (2.14) gives
fQ ¼ nfx or that the fractional error of the power xn is equal to n times the fractional
error in x.
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Generally, let Q ¼ kxn, where n is any real number and k a constant. Since it is
Qm ¼ Q0ð1þ fQÞ, xm ¼ x0ð1þ fxÞ, Q0 ¼ kxn0 and Qm ¼ kxnm, we have

Qm ¼ Q0ð1þ fQÞ ¼ kxnm ¼ kxn0ð1þ fxÞn � Q0ð1þ nfxÞ ð2:15Þ

for fx � 1. From the equality of the first term and the last term, it follows that

fQ ¼ nfx ð2:16Þ

or that the fractional error in any multiple of the n-th power of x is equal to n times
the fractional error in x.

Special cases: If Q ¼ x2 it is fQ ¼ 2fx and if Q ¼ ffiffiffi
x

p
it is fQ ¼ 1

2fx.

Example 2.4

If the result of the measurement of x has a fractional error fx ¼ 0:005, what is the
fractional error in the quantity Q ¼ 7x3=2?

From Eq. (2.16), fQ ¼ nfx ¼ 3
2 � 0:005 ¼ 0:0075 � 0:008.

2.2.4 Error in a Quotient

If it is Q ¼ x=y and the measurements of x and y gave the results xm and ym, then

Qm ¼ xm
ym

¼ x0 þ ex
y0 þ ey

¼ x0ð1þ fxÞ
y0ð1þ fyÞ �

x0
y0

ð1þ fxÞð1� fyÞ � Q0ð1þ fx � fyÞ ð2:17Þ

for small fx and fy, and the fractional error in Q is

fQ ¼ Qm � Q0

Q0
¼ fx � fy; ð2:18Þ

i.e. the fractional error in Q ¼ x=y is equal to the difference of the fractional errors
of x and y.

The result may be generalized and in the case when it is Q ¼ x0y0z0...
x00y00z00... we have

Qm ¼ x0my
0
mz

0
m. . .

x00my00mz00m. . .
¼ x00y

0
0z

0
0. . .

x000y
00
0z

00
0 . . .

� ð1þ fx0 Þð1þ fy0 Þð1þ fz0 Þ. . .
ð1þ fx00 Þð1þ fy00 Þð1þ fz00 Þ. . .

� Q0ð1þ fx0 þ fy0 þ fz0 þ . . .� fx00 � fy00 � fz00 � . . .Þ
ð2:19Þ

and

fQ ¼ Qm � Q0

Q0
¼ ðfx0 þ fy0 þ fz0 þ . . .Þ � ðfx00 þ fy00 þ fz00 þ . . .Þ; ð2:20Þ

i.e. the fractional error in Q is equal to the algebraic sum of the fractional errors in
x0; y0; z0; . . ., minus the algebraic sum of the fractional errors in x00; y00; z00; . . ..
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Example 2.5

If the quantities x and y were measured with fractional errors fx ¼ �0:015 and
fy ¼ 0:02, respectively, what will the fractional error in Q ¼ x2=y be?

We initially evaluate the fractional error in x2. Equation (2.16) gives
fx2 ¼ 2fx ¼ �0:03. Then Eq. (2.18) gives fQ ¼ fx2 � fy ¼ �0:03� 0:02 ¼ �0:05.

2.2.5 The Use of Differentials

2.2.5.1 Functions of One Variable

If QðxÞ is a function of one variable, x, its derivative is dQdx . From the definition of

the derivative lim
dx!0

dQ
dx

¼ dQ
dx

, it follows that for small dx it is, approximately,

dQ � dQ
dx

dx: ð2:21Þ

Equation (2.21) gives the change dQ in Q due to a small change dx in x. If now it is
xm ¼ x0 þ ex and Qm ¼ Q0 þ eQ, and we put dx � xm � x0 ¼ ex and dQ � Qm �
Q0 ¼ eQ in Eq. (2.21), we will have, to a good approximation for small ex,

eQ ¼ dQ
dx

ex; ð2:22Þ

a relationship which correlates the error in Q to the error in x.
The geometrical interpretation of the relations (2.21) and (2.22) is given in

Fig. 2.2. Assuming a linear relationship between dQ and dx, which is shown in the
figure by the tangent to the curve QðxÞ at x, we evaluate the error in dQ. The dashed
line gives a better value for dQ, because it takes into account the non-linearity of
QðxÞ. We would also have a better value for dQ by taking point x at the center of dx.
These, however, are second-order corrections, which are not important for small
values of dx.

For example, if Q ¼ x2, then dQ
dx ¼ 2x and, therefore, eQ ¼ 2xex. Dividing on the

left by Q and on the right by x2, we find that
eQ
Q

¼ 2
ex
x
, or fQ ¼ 2fx, as we found

above. In the same way we may verify that, if it is Q ¼ ffiffiffi
x

p
, then fQ ¼ 1

2
fx.

Strictly speaking, the derivative should be evaluated at x ¼ x0. However, since
this value is not known to us and because we assume that xm does not differ by much
from x0, we can do nothing else but evaluate the derivative at the point x ¼ xm.
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Warning: When angles are involved in Eqs. (2.21) and (2.22), we must bear in

mind that the relations dðsin hÞ � dðsin hÞ
dh

dh ¼ cos h dh, dðcos hÞ � dðcos hÞ
dh

dh

¼ � sin h dh, as well as other similar trigonometric relations, are valid only if the
error in the angle, dh, is given in radians. This is a common source of errors when
one meets such problems for the first time.

Example 2.6

On measuring the radius of a sphere, the value rm ¼ 10:1 mm was found, instead of
the real value r0 ¼ 10 mm. What will the error be in the volume of the sphere, if
this is evaluated using the value rm?

Since the volume of the sphere is given by V ¼ 4
3pr

3 and
dV
dr

¼ 4pr2, it will be

eV ¼ dV ¼ 4pr2dr ¼ 4pr2er, where er ¼ 10:1� 10 ¼ 0:1 mm. If in the evaluation

of
dV
dr

¼ 4pr2 we use the real value r0 ¼ 10 mm, we find that

eV ¼ dV ¼ 4pr20er ¼ 4p� ð10Þ2 � 0:1 ¼ 126mm3:

The real volume of the sphere is V0 ¼ 4
3pr

3
0 ¼ 4189 mm3.

Using the value rm ¼ 10:1 mm, we find Vm ¼ 4
3pr

3
m ¼ 4316 mm3, which is

larger than V0 by 127 mm3.
The fractional error in the volume is equal to 127/4189 = 0.030 (or 3%), which

is three times the fractional error 0.1/10 = 0.010 (or 1%) in the radius. This is
expected, since it is V / r3.

Fig. 2.2 The relationship between the error dx in the variable x and the corresponding error dQ in
the function QðxÞ
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2.2.5.2 Functions of Many Variables

If Qðx; y; z; . . .Þ is a function of the variables x, y, z,…, then it is known from
differential calculus that the differential of the function is

dQ ¼ @Q
@x

dxþ @Q
@y

dyþ @Q
@z

dzþ . . .; ð2:23Þ

where @Q
@x ;

@Q
@y ;

@Q
@z ; . . . are the partial derivatives of the function Qðx; y; z; . . .Þ with

respect to the variables x, y, z, …, respectively. (The concept of the partial
derivative is simple: the partial derivative @Q

@x of Q with respect to x is found by
differentiating Qðx; y; z; . . .Þ with respect to x, keeping all the other variables, y, z,
… constant. @Q

@y ;
@Q
@z ; . . . are found in a similar way.)

For small changes dx; dy; dz; . . . in x, y, z,…, the change inQðx; y; z; ::Þ is given by

dQ ¼ @Q
@x

dxþ @Q
@y

dyþ @Q
@z

dzþ . . .; ð2:24Þ

which contains an infinite number of terms of higher order in dx; dy; dz; . . ., of the

form @2Q
@x2 ðdxÞ2, @

2Q
@y2 ðdyÞ2, @2Q

@y@x ðdxÞðdyÞ etc., which have been omitted as negligible.

If dx � xm � x0 ¼ ex; dy � ym � y0 ¼ ey; dz � zm � z0 ¼ ez; . . . are the errors in
the values of x, y, z, …, then

eQ ¼ @Q
@x

ex þ @Q
@y

ey þ @Q
@z

ez þ . . . ð2:25Þ

is the error in Q.
Strictly speaking, the evaluation of the partial derivatives @Q

@x ;
@Q
@y ;

@Q
@z ; . . . should

be done using the real values of x; y; z; . . ., which are not known. However, if the
fractional errors in these, fx; f y; fz; . . ., are small enough, the measured values
xm; ym; zm; . . . may be used without introducing a significant error in the calcula-
tions. This method is adopted in most of the examples that follow.

The relations (2.24) and (2.25) are two equivalent formulations of the principle of
superposition of errors. Its physical interpretation is evident if we consider the term
@Q
@x ex to be the error inQwhich is due to the error ex of x etc.Of course, in the evaluation
of the error inQ, due to the propagation of errors, we will find that we can only make
statistical predictions for eQ ¼ dQ, since we can only make statistical predictions
concerning the values of ex ¼ dx; ey ¼ dy; ez ¼ dz; . . .. So, if dx; dy; dz; . . . are the
probable errors in x, y, z, …, we will prove that the probable error in Q is

dQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Q
@x

dx

� �2

þ @Q
@y

dy

� �2

þ @Q
@z

dz

� �2

þ . . .

s
; ð2:26Þ
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i.e. we will prove that the probable error in Q is equal to the square root of the sum of
the squares of the contributions of the probable errors in x, y, z,… to the error in Q.

Example 2.7

The real values of the quantities x, y and z are x0 ¼ 1, y0 ¼ 2 and z0 ¼ 3. They were
measured with fractional errors fx ¼ 0:01, fy ¼ �0:02 and fz ¼ 0:01, respectively.
What is the fractional error in the function Q ¼ 2x2yþ 5z=y?

The real value of Q is Q0 ¼ 2x20y0 þ 5z0=y0 ¼ 2� 12 � 2þ 5� 3=2 ¼ 11:5:
Also, the errors in x, y and z are

dx ¼ 1� 0:01 ¼ 0:01; dy ¼ 2� ð�0:02Þ ¼ �0:04; dz ¼ 3� 0:01 ¼ 0:03:

The partial derivatives of Q ¼ 2x2yþ 5z=y are @Q
@x ¼ 4xy; @Q@y ¼ 2x2 � 5z

y2 ;
@Q
@z ¼ 5

y :

From Eq. (2.24), it is dQ ¼ @Q
@x dxþ @Q

@y dyþ @Q
@z dz and we have

dQ ¼ 4xydxþ 2x2 � 5z
y2

� �
dyþ 5

y
dz:

Substituting, we find dQ ¼ 4� 1� 2� 0:01þ 2� 12 � 5� 3
22

� �� ð�0:04Þþ 5
2 �

0:03 ¼ 0:225 and fQ ¼ dQ=Q0 ¼ 0:225=11:5 ¼ 0:0196 ¼ 0:02 or 2%.

Example 2.8

The hypotenuse of a right-angled triangle was measured to be equal to a ¼ 10:3 m,
with fractional error fa ¼ 0:01, and one of the triangle’s angles was measured to be
B ¼ 56:3	, with fractional error fB ¼ 0:02. Using the results for a and B, find the
values and the fractional errors of the other elements of the triangle (angle C and
sides b and c).

The other elements of the triangle are given by C ¼ 180	 � A� B, b ¼ a sinB,
c ¼ a cosB.

(a) The other acute angle: C ¼ 180	 � A� B.

We take angle A of the triangle to be a right angle and, therefore, A ¼ 90	 exactly.
Therefore, C ¼ 90	 � B ¼ 90	 � 56:3	 ¼ 33:7	

which has an error equal to eC ¼ e90	 � eB ¼ 0	 � 56:3	 � 0:02 ¼ �1:1	

and a fractional error fC ¼ eC=C0 � eC=C ¼ �1:1	=33:7	 ¼ �0:033 or –3.3%.

(b) The opposite side: b ¼ a sinB.

Since B ¼ 56:3	 and a ¼ 10:3 m, we have b ¼ a sinB ¼ 10:3� sin 56:3	 ¼
8:57 m.
Here, @b

@a ¼ sinB and @b
@B ¼ a cosB and, therefore, db ¼ @b

@a daþ @b
@B dB ¼

sinBdaþ a cosBdB.
The error in a is da � 10:3� 0:01 ¼ 0:10 m.
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Also, dB ¼ 56:3	 � 0:02 ¼ 1:13	 and therefore dB ¼ 2p
360	 � 1:13	 ¼ 0:0197 ¼

0:020 rad.
So, db ¼ sin 56:3	 � 0:103þ 10:3� cos 56:3	 � 0:020 ¼ 0:0857þ 0:1143 ¼

0:20 m.

(c) The adjacent side: c ¼ a cosB.

The length of the side is c ¼ 10:3 cos 56:3	 ¼ 5:71 m.
Here @c

@a ¼ cosB and @c
@B ¼ �a sinB and, therefore, dc ¼ @c

@a daþ @c
@B dB

¼ cosBda� a sinBdB.
So, dc ¼ cos 56:3	 � 0:103� 10:3� sin 56:3	 � 0:020 ¼ 0:0571� 0:1714 ¼

�0:11 m.

Example 2.9

The acceleration of gravity g may be determined by measuring the period T of a
pendulum of length l and using the relation g ¼ 4p2l=T2. In one such experiment,
with a pendulum of length l = 1.000 m, whose fractional error is fl ¼ �0:005, a
period of T = 2.01 s was measured, with a fractional error fT ¼ 0:01. Find the value
of g and its fractional error fg.

The value of g found by using the measured values of l and T is equal to g ¼
4p2l=T2 ¼ 4� ð3:1416Þ2 � 1:000=ð2:01Þ2 ¼ 9:76 m/s2.

Because it is dg ¼ @g
@l dlþ @g

@T dT ¼ 4p2 1
T2 dl� 2 l

T3 dT
� � ¼ 4p2 l

T2
dl
l � 2 dT

T

� � ¼
g dl

l � 2 dT
T

� �
; the fractional error in g is equal to

fg ¼ dg
g

¼ dl
l
� 2

dT
T

¼ fl � 2fT ¼ �0:005� 2� 0:01 ¼ �0:025:

This is equivalent to an error in g equal to dg ¼ fgg ¼ �0:025� 9:76 ¼ �0:24
m/s2.

It is worth examining the following question: What portion of the error in g is
due to the fact that we have used the approximate value p � 3:14 instead of the
exact value?

If we consider p to be a variable with error dp ¼ 3:14� p
¼ 3:14� 3:14159. . . ¼ �0:0016, then the contribution of dp to the error dg in
g will be equal to

dgp ¼ @g
@p

dp ¼ 8pl
T2 dp ¼ 2g

dp
p

¼ 2� 9:76� ð�0:0016Þ
3:14159

¼ �0:00994

¼ �0:01m=s2;

which is negligible compared to the error dg ¼ �0:24 m/s2 due to the errors in
l and T. This should have been expected, since the fractional error in p is only
fp ¼ dp=p ¼ �0:0016=3:14159 ¼ �0:0005 or �0:05%, while the fractional errors
in l and T are �0:5% and 1%, respectively.
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Example 2.10

Find the relationship between the errors in the variables x; y; z; . . . and the error in
the function Qðx; y; x; . . .Þ ¼ Axaybzc. . ., where A is a constant.

The natural logarithm of the function is lnQ ¼ lnAþ a ln xþ b ln yþ c ln zþ . . . .

From this relation, by taking differentials, we get
dQ
Q

¼ a
dx
x

þ b
dy
y

þ c
dz
z
þ . . . .

Therefore, for small dx; dy; dz; . . . the approximation
dQ
Q

¼ a
dx
x

þ b
dy
y

þ c
dz
z
þ . . .

holds.
In Example 2.9, the function was g ¼ 4p2lT�2. Therefore, the last relation gives

dg
g

¼ dl
l
� 2

dT
T
. Assuming that p is also a variable, it is

dg
g

¼ 2
dp
p

þ dl
l
� 2

dT
T
, in

agreement with the last results.

Example 2.11

If it is difficult to differentiate an expression, the error of which we require, it is
possible to use numerical methods for this purpose. We will apply this technique to
the expression F ¼ xy

z
.

Let x ¼ 2:00, y ¼ 1:50, z ¼ 1:20 and dx ¼ 0:10, dy ¼ �0:15, dz ¼ 0:20. We need
to find the corresponding dF.

Given F, it is true that:

@F
@x

dx � Fðxþ dx; y; zÞ � Fðx; y; zÞ ¼ ðxþ dxÞyz � xy
z ¼ 2:101:50

1:20 � 2:001:50
1:20 ¼ 0:2535

@F
@y

dy � Fðx; yþ dy; zÞ � Fðx; y; zÞ ¼ xðyþ dyÞz � xy
z ¼ 2:001:35

1:20 � 2:001:50
1:20 ¼ �0:3870

@F
@z

dz � Fðx; y; zþ dzÞ � Fðx; y; zÞ ¼ xy
zþ dz � xy

z ¼ 2:001:50
1:40 � 2:001:50

1:20 ¼ 0:3086

Summing, we have dF ¼ 0:175.

Completing Sect. 2.2, we repeat that most of what were mentioned are usually of
no use in arithmetical applications, since the errors we referred to are not known.
The topics we examined, however, are of great theoretical importance and consti-
tute the background for the understanding of the theory of errors, something which
will become obvious in the following chapters.

Problems

2:1 When you stand on the bathroom scales, its reading is 70.5 kg. When you get
off it, it shows –1.5 kg. How much do you weigh?

2:2 The fractional errors in the lengths of the sides a and b of a rectangle are –2
and 3%, respectively. Find the fractional error in its area.
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2:3 The lengths of the edges of a rectangular parallelepiped have real values
a ¼ 1 m, b ¼ 2m and c ¼ 3m. The lengths of these edges were measured
and found to be am ¼ 1:02m, bm ¼ 1:99m and cm ¼ 3:05m. Find:

(a) the volume of the parallelepiped using first a, b and c, and then am, bm
and cm.

(b) the fractional error in the volume of the parallelepiped using the results
of (a).

(c) the fractional errors in a, b and c.
(d) the fractional error in the volume of the parallelepiped using the formula

for the evaluation of the fractional error of a compound quantity in
terms of the fractional errors of the variables on which it depends.
Compare with the result of (b).

2:4 Find the fractional error in Q ¼ x2yz�2 in terms of the fractional errors in the
variables.

2:5 Find the fractional error in Q ¼ x2ðyþ 2Þz�2 in terms of the fractional errors in
the variables.

2:6 For the determination of the focal length f of a lens, the distances s ¼ 0:53m
and s0 ¼ 0:32m of the object and the image from the lens are measured and
the formula 1

f ¼ 1
s þ 1

s0 is used. If the errors in s and s0 are ds ¼ 0:01m and
ds0 ¼ 0:02m, find the fractional error in the value of f calculated.

2:7 The rate of flow, / ¼ dV=dt, of a fluid with viscosity η through a cylindrical

pipe of length l and radius r is / ¼ ppr4

8lg , where p is the pressure difference
between the two ends of the pipe (Poiseuille’s formula). (a) Find the fractional
error in / in terms of the fractional errors in η, l, r and p. (b) Which quantity
must be measured with the greatest accuracy if we want to have a small error
in /?

2:8 The relativistic mass of a body moving with speed V, is given by the relation
m ¼ m0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�V2=c2
p , where m0 is a constant of the body, known as its rest mass. If

the ratio V=c is very much smaller than unity, find the fractional error in m, in
terms of the fractional error in V.

2:9 The displacement x of a simple harmonic oscillator as a function of time t is
given by the relation x ¼ a sinðxtÞ, where a and x are constants. If mea-
surements of a and x gave the results am and xm, which have fractional errors
da and dx, respectively, find the fractional error in x as a function of time.
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