From Discord to Entanglement

Shunlong Luo

Abstract Two prominent and widely studied notions of quantum correlations are
discord and entanglement, with the latter occupying a central place in quantum infor-
mation theory, while the former being regarded of marginal significance and even
being criticized by some researchers, although the deep relations between them have
been revealed in recent years. Discord and entanglement, being indistinguishable for
pure states, only differ for mixed states. The aim of this work is to subsume entangle-
ment under discord by identifying entanglement as the minimal shadow of discord
over extended systems. For this purpose, we first present a brief and concise review
of some historical aspects of discord and entanglement, emphasizing the ideas lead-
ing to them and the intimate relations between them. Then by exploiting an intrinsic
connection between classicality and separability of correlations, we derive entangle-
ment from discord in terms of state extensions, and put discord in a more primitive
place than entanglement in this context. We comment that the entanglement of pure
states studied by EPR and Schrodinger can actually also be well understood as dis-
cord, only with the emergence of nonlocality characterized by the Bell inequalities
involving mixed states rather than pure states, the LOCC paradigm for mixed-state
entanglement becomes significant and attracts great interests. Discord and entangle-
ment are different manifestations of the same global quantum substrate, with discord
conceptually more ubiquitous in quantum information and more deeply rooted in
quantum measurements.

1 Introduction

Correlations permeate our interpretation and understanding of the physical world. To
extract correlation information from physical systems, whether classical or quantum,
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one has to perform measurements. A key deviation of the quantum from the classi-
cal is the fundamental different characteristics of measurements: While a classical
measurement, by definition, can extract information without disturbance in princi-
ple, a quantum measurement often causes unavoidable disturbance to the measured
system. Actually, quantum measurements lie at the very heart of quantum mechanics
[1], and are the central characters in both theoretical and experimental investiga-
tions of quantum information. The early work of EPR “disproving” completeness of
quantum mechanics and state steering [2], Bohr’s response to the EPR argument [3],
as elaborated by Wiseman [4], and the discussion of probability relations of bipar-
tite states by Schrodinger [5-7], all depend crucially on quantum measurements.
The quantum-to-classical transition in decoherence is essentially a consequence of
quantum measurements [8—10].

Discord arises from the loss of information caused by quantum measurements,
and was explicitly introduced by Ollivier and Zurek [11], and Henderson and
Vedral [12], to quantify the quantumness of correlations. Its early roots, although
implicit, may be traced back to the EPR-Bohr argument on completeness of quan-
tum mechanics [2-4], to Everett’s thesis on universal wavefunction and relative-state
formulation of quantum mechanics [13], to Lindblad’s investigations of entropy and
quantum measurements [14, 15], etc. Its various aspects, including calculation, oper-
ational meaning, ramifications, and applications, are widely studied in the last decade
[16-49].

Entanglement is the underpinning of many fundamental quantum tasks [50, 51],
and is often regarded as a synonym of quantum correlations in early studies, although
now it is recognized that the notion of quantum correlations has a much wide scope,
and entanglement is a particular, albeit most important, kind of quantum correlations,
i.e., entanglement can be identified as nonlocal quantum correlations. The detection
and quantification of entanglement are extremely complicated and difficult for mixed
states, and there are extensive and intensive studies of these issues in the last two
decades [52-59]. The study of entanglement dated back explicitly, as the discord
implicitly, to the seminal works of Einstein, Podolsky and Rosen [2], and Schrédinger
[5-7], as early as 1930s. Now entanglement is regarded as a key resource in quantum
information and is often intertwined with quantum nonlocality [52, 58-61].

Discord and entanglement actually have the same historical as well as theoretical
origin. The present work is to clarify this, and to identify entanglement as the minimal
discord over state extensions. The work is arranged as follows. In Sect. 2, we recall
various notions of correlations, including total correlations, classical correlations,
discord, entanglement, as well as their interplay, in order to set up the context of our
investigation in Sect.3, which is devoted to the study of entanglement in terms of
discord. We demonstrate that entanglement is actually a kind of shadow (irreducible
residue) of discord over extended systems, and suggest some interesting problems
for further investigations. Finally, we conclude with discussions in Sect. 4.
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2 Classical Versus Quantum Correlations

Correlations are always encoded in physical systems and can be mathematically
synthesized by states (density operators) of composite systems. In the information-
theoretic description of the classical world, correlations are usually quantified by
the Shannon mutual information of bivariate probability distributions [62, 63]. More
precisely, the amount of correlations of a bivariate discrete probability distribution
P =1 pf‘jb}, shared between parties a and b, is well quantified by the Shannon

mutual information [62, 63]
I1(p™) == H(p") + H(p") — H(p"),

where p* = {p{ := 3" pi*}and p* = {ph := 3, p{} are the marginal probability
distributions, H (p*) := — >, pflogp¢ is the Shannon entropy. The Shannon mutual
information is dominated by the marginal entropies in the sense that [63]

1(p*) < min{H (p*), H(p")}.

In particular, for perfect correlations p® = {p?§;;}, itholds that I (p**) = H(p“) =
H (p"), which saturates the above upper bound and shows that the marginal entropy is
fully employed to establish correlations in such a case. However, the above inequality
fails in general for the quantum cases, as we will see shortly.

The Shannon mutual information for bivariate probability distributions can be
straightforwardly extended to the quantum case as a measure of total correlations
[64, 65]: For any bipartite quantum state (pure or mixed) p’, the amount of total
correlations is well quantified by the quantum mutual information [12, 50, 66—69]

1(p™?) := S(p*) + S(p”) — S(p*),

where p® = tryp® and p” := tr,p® are the marginal states, and S(p%) := —trp®
log p* is the von Neumann entropy. However, unlike the classical case, the quantum
mutual information is not dominated by the marginal entropies in general, but rather is
dominated by twice of the marginal entropies, as shown by the celebrated Araki-Lieb
inequality [65]

1(p*") < 2min{S(p"), S(p")).

This subtle factor 2 is really the origin of the difference between the classical and
the quantum, and indicates the presence of quantum correlations, i.e., while the cor-
relations in a classical bivariate probability distribution are always classical, there
may exist both classical and quantum correlations in bipartite quantum states, which
together constitute the total correlations, as quantified by the quantum mutual infor-
mation. This can be most strikingly illustrated in terms of perfect correlations: In the
classical case, the strongest correlations that party a with fixed marginal entropy
H(p®) can possibly establish with another party b are described by the perfect
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correlations in the bivariate probability distribution p® = { pj’f = p{d;;}, or in its
quantum formalism, p* = > Piialila @ |i)p(i| with {|i),} and {|i),} orthonor-
mal bases for parties a and b, respectively. The amount of total correlations coincides
with the marginal entropy, i.e.,

1(p*") = 1(p*) = H(p") = S(p*).

This is also the amount of classical correlations, and there are no quantum cor-
relations here. In contrast, for the quantum case, consider the quantum pure state
h _ h b . . .. b
= |W4P) (W | with the Schmidt decomposition [W*) = >, /p%|i), ® |i), and
the marginal 0% = tr, | W) (W | = p®, the amount of total correlations is

I(O,ab) =285(c") = 2H(pa) =25(pY).

The extra amount of correlations in the quantum case, I (¢%?) — I (p®) = H(p%),
is the root lurking in the EPR argument and the state steering [2, 5-7].

The total correlations in a classically correlated state can be fully extracted by
certain measurements, but this is not true for genuinely quantum correlated states.
To see this and to facilitate the comparison between the classical and the quantum,
we cast the classical bivariate probability distribution p® = { pfjb } in the quantum

formalism as
Zp“”n (i1® 1wl

where {|i),} and {| j),} are orthonormal bases for parties a and b, respectively. The
amount of total correlations in this state, as quantified by the quantum mutual infor-
mation I (p%"), coincides with the Shannon mutual information I (p?) in the bivariate
probability distribution p?®, i. e I (p‘”’ ) = I(p“?). This can be interpreted as that all

correlations in p® = > j 1’, , (i ® |j)»(j| are classical, and there are no quan-

tum correlations in this state. Indeed, the state p?? is left undisturbed after the local

von Neumann measurements [1¢ = {T1{ := |i),(i|} and TI” = {T1% := [ ), (j} by
parties a and b, respectively, in the sense that p® = I1(p), where

M(p™) = Y (M ® )p™ (I} @ 1)
ij

is the post-measurement state. All the correlations in this state are extracted by these
measurements.

A characteristic feature of classicality is the invariance under certain quantum
measurements. In contrast, disturbance under quantum measurements signifies quan-
tumness. In the context of correlations, one may define a bipartite state to be classi-
cally correlated if it is left undisturbed under certain von Neumann measurement [70].
More precisely, for a bipartite state o, if there exist local von Neumann measure-
ments {I1¢} and {I1%} such that 0* = T (c") := X, (1¢ @ )0 (IT¢ @ 1Y),
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then 0% can be considered as a classically correlated state, and the correlations
therein can be fully extracted without loss. In this case, ®” can be identified with
the classical bivariate probability distribution p®® = { pf’j}’ =tr(I{ ® Hi’- Yo ).

We have the following equivalent characterizations for the classically correlated
states, which justify the notion of classicality of correlations [70-72]:

(1) o is classically correlated.

(2) 0 can be represented as c% = Zij pl‘-’jbl_lf ® l'[lj?, where p? = {pl‘.‘jb} is a
bivariate probability distribution, IT¢ and H? are orthogonal projections for par-
ties @ and b, respectively [70].

(3) o“’ commutes with each IT¢ ® %, where I1{ and I/, are the spectral projections
of the reduced states 0 = tr,0® and o” = tr o, respectively [70].

(4) The correlations in 6% can be locally broadcast [71].

(5) Both parties a and b can establish perfect correlations with other systems [72].

Although a state 0’ may not be classically correlated, the post-measurement
state [1(oc®) := >, e H?)a””(l’lf ® Hi’.) is always a classical state after any
local von Neumann measurement IT = {I1{ ® H?}. By the monotonicity of quantum
relative entropy [65],

[(T(c™)) < 1(a™),

and the difference I (6%%) — I (IT1(c%?)) signifies the loss caused by the measurements
and captures quantumness of correlations.

Similarly, one may also define classicality of correlations with respect to one party.
More precisely, one defines 0 to be classical-quantum if there exists a local von
Neumann measurement I1¢ = {I1{} for party a which leaves the state undisturbed
in the sense that c® = T1%(c??), where

(o) := > (¢ @ 1" (1T @ 17)

1

is the post-measurement state after party a performs the quantum measurement I1¢.
Analogously, the following characterizations of classical-quantum states are equiv-
alent [70, 73]:

(1) o is classical-quantum.

(2) 0% can be represented as 0% = 3", p;T1Y ® o/, where {p;} is a probability
distribution, IT¢ are orthogonal projections for party a, and O'ib are local states
for party b.

(3) 0“® commutes with each IT¢ ® 17, where T1¢ are the spectral projections of
0% = trpo®.

(4) The correlations in %’ can be locally broadcast by party a [73].

In general, a classical-quantum state may not be classically correlated due to the

non-commutativity of o[b for party b, and it is impossible to identify such a state with
a classical bivariate probability distribution in general.
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All the above characterizations are intimately related to (and actually equivalent
to) the celebrated quantum no-broadcasting theorem [73]: A family of quantum states
can be broadcast if and only if the states commute [74].

Motivated by the idea that classical correlations are those that can be extracted
via quantum measurements, i.e., the maximum amount of correlations extractable
by local von Neumann measurements, a straightforward measure of classical corre-
lations in a bipartite quantum state may be defined as [11, 12]

C(p™) = max I (I(p™")),

where the maximization is over all local von Neumann measurements I1¢ for party
a. One can similarly define C?(p“?) with the measurement performed on party b, or
in a symmetric fashion [15, 21],

C(p*) = max 1(I1(p™))

with the maximization over all local von Neumann measurements IT = {T1{ ® 1'[? }.
In general, C“( ,o“” )#C b (p“” ) and by the monotonicity of quantum relative entropy,

C(p™) = Cp™) < 1(p™), C™(p™) < C*(p™) = S(p*). C(p*?) = CP(p*") = S(p").

However, it may happen that C(p®) > S(p?) [75].
The original discord of a bipartite state p is defined as [11]

Q" (p™) :=1(p™) = C*(p™).

which is asymmetric with respect to the two parties. It is known that Q¢(p®) = 0 if
and only if p is classical-quantum. A symmetric version of discord in a bipartite
state p? is defined as the difference [21]

0(p™) := 1(p"") — C(p*)

between the amounts of total correlations and classical correlations, and thus sum-
marizes quantum correlations in a state. Clearly, Q(p®) = 0 if and only if p?’ is
classically correlated.

In general, discord and classical correlations can be defined with respect to other
general distance-like measures [23, 70], which yield the relative entropy of quan-
tumness [23], the geometric discord based on Hilbert-Schmidt distance (or the trace
distance, or the Bures distance) [24, 25, 43, 45, 47, 48], etc. Here we recall that the
relative entropy of quantumness, which will be used late, is defined as [23]

Qrel(pab) = ml_}n D(p”b“-[(pab))’
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where the minimization is over all local von Neumann measurements IT = {I1{ ®
HI;}, i.e., the relative entropy of quantumness is defined as the minimal distance
between p® and the set of classically correlated states, with the (pseudo-)distance
being the quantum relative entropy D (o |c%) := trp®’ (logp® — loga ™).

Now, we come to the separability/entanglement paradigm. A state p® shared
between two parties a and b is called separable if it has a decomposition [52]

P = pinl ®p}
i

with local states p¢ and p? for parties a and b, respectively, and p; > 0,> . p; = 1.
Otherwise it is called entangled (nonseparable). Various entanglement measures,
such as the entanglement of formation, entanglement cost, distillable entanglement,
squashed entanglement, robustness of entanglement, etc., have been introduced to
quantify different aspects of entanglement [57, 58]. In particular, the relative entropy
of entanglement is defined as [23, 54]

Era(p") := min D(p"|0")

where the minimization is over all separable states o*”. Thus the relative entropy of
entanglement is the minimal distance between o and the set of separable (rather than
classically correlated) states. Accordingly, the relative entropy of entanglement is
always dominated by the relative entropy of quantumness, i.e., Eq ( p‘”’ ) < Qrel( ,0“” ),
since the set of classically correlated states is a strict subset of the set of separable
states.

Discord and entanglement are both measures of quantum correlations beyond
classical ones. They coincide for pure states but differ for mixed states. Discord and
entanglement have similarities as well as radical difference. On one hand, discord and
entanglement are quite different: The phenomenon of discord is a manifestation of
quantum correlations due to non-commutativity rather than nonlocality. Classically
correlated states are separable, but the converse is not true. Separable state may
possess non-zero discord, although their entanglement vanish. In this sense, discord
can be regarded as a more general type of quantum correlations than entanglement.
On the other hand, separable states may be helpful in distributing and manipulating
entanglement [76—79], and entanglement can be indirectly linked to discord created
in quantum measurements [34-36]. Furthermore, there are quantitative relations
connecting entanglement between two parties a and b with the discord between
party a and a third party ¢ which serves to purify the state possessed by ab [80,
81]. More precisely, the Koasi-Winter formula CP(pt) + E;(p*) = S(p*) implies
that [80]

Ef(p™) = Q" (0™) + S(p®1p"),

where |W?¢) is a purification of p® with p% = tr |Wab) (Wabe|, pb¢ = tr,|Wabe)
(Wabe|, p = tr |WAbe)(Wabe| E,(-) is the entanglement of formation, and
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S(p®|p?) :== S(p®) — S(p”) is the quantum conditional entropy, C’(p?*) and
Qb (p??), similar to C?(p??) and Q”(p™) = I(p**) — CP(p*), are the measures
of classical correlations and discord defined in terms of general POVMs rather than
von Neumann measurements [12].

3 Entanglement as Discord

A remarkable relation between the two classification schemes for correlations, clas-
sical/quantum [70, 71] and separable/entanglement [52], is that on one hand, a clas-
sically correlated state is always separable, on the other hand, any separable state
can be imbedded into a classically correlated state in the sense that for any separable
state p®, there is a classically correlated state p®“??" shared between aa’ and bb’

such that

pab =trypp

a/a:bh”

where a’ and b are two ancillary systems [82]. Any entangled state does not admit
such an extension. Phrased alternatively, a bipartite state is separable if and only if
it admits an extension which is classically correlated with the natural bipartition,
i.e., with a and b in different parties. This identifies entanglement as truly nonlocal
quantum correlations, and has some interesting consequences [83—85]. Here we
will exploit it to define entanglement in terms of discord. More precisely, for any
reasonable measure of discord Q(-), not necessary defined in terms of the quantum
mutual information as the original one, we define

Ep™) = min  Q(p "),

tryy pU bV = pab
where the minimization is over all state extensions p?“?*" of p® (ie., p® =
try p“'“:bb'), including the cases when a’ or b’ is trivial (one dimensional), and
the discord Q(p® ") is taken with respect to the bipartition a’a : bb'. This renders
entanglement to a kind of shadow of discord, i.e., the minimal discord over state
extensions.

Clearly, £(p®) = 0 for separable p®. This follows from the theorem in Li and
Luo [82] concerning the relation between separable states and classical states: A
bipartite state p® is separable if and only if it can be extended to a certain classical
state p? P’ (with respect to the bipartition a’a : bb').

The entanglement measure £(-) has the nice property that it is automatically
dominated by the discord in the sense that

E(p™) < Q(p™)

since p@“?" = p with the a’ and b’ being trivial (one-dimensional) can be regarded
as a state extension of p? itself.
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With the above property, we may decompose the total correlations, as quantified
by the quantum mutual information / (p), into classical correlations C (p®) plus
dissonance D(p“?) plus entanglement & (p*):

1(p™) = C(p™) +D(p*) + E(p™).

where the difference
D(p™) = Q(p*") — £(p*)

is interpreted as a measure of dissonance as termed by Kavan et al. [23].
£(-) is locally unitary invariant in the sense that

E(U* @ UM (U @ Uy = E(p™)

for any unitary operators U¢ and U? on parties a and b, respectively, as long as the
discord is invariant under local unitary transformations.

Since any pure state p®? = |W)(W?| has only trivial extensions of the form
%P @ |ty (W |, it follows that the entanglement £(p??) coincides with the dis-
cord Q(p™), i.e., E(p) = Q(p), for any pure state p®, as long as the discord
has the decreasing property Q(p®? ® |W) (We|) > QW) (W),

Since any state extension p? @ @PP'0" of p@ @b s necessarily a state extension of
the reduced state p?? = tr ., p@“?"", it follows from

" r N
. a"a'a:bb'b
min ~ Q(p )
U1 g1y p 4 0E0P'E = pab

E(p™)

A

Q(pa”a’a:bb’b”)

IA

min
tr pu”a’a:hh/b” :pa'a:bb’
a

— g(pa’a:bb’)
that £(-) is non-increasing under local partial trace (state reduction) in the sense that

E(p™) = (™)

for any state extension p?*??" of p?°.

We list some important and interesting problems requiring further investigations:

(1) Classify the discord measures such that the induced entanglement measures
are convex in the sense that

EQ pin®™ <D piEp™),

where pi‘”’ are bipartite states shared by parties @ and b, and p; > 0, >, p; = 1. We
remark that this may be related to the direct sum property of the discord measures.

(2) More generally, classify the discord measures such that the induced entangle-
ment measures are entanglement monotones.
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(3) How to evaluate the entanglement measures? On may try to find some ana-
Iytical formulas for some highly symmetric states, and establish some bounds for
general cases.

(4) What are the relations between the relative entropy of entanglement and the
relative entropy of quantumness? If one defines an entanglement measure induced
by the relative entropy of quantumness Q(-) as

Ea(p™) = min  Qu(p"™),

try p9 Y = pa
where the minimization is over all state extensions p? " of p® (ie., p® =
trap p@ "), then an interesting question arises as the relation between this induced
entanglement measure & (-) and the original relative entropy of entanglement E (+):
Does it hold that
Ewa(0™) = &a(p™)?

Since
Erel(pab) = Erel(paa:bb) = Q(pa a:bb ),

we have
Erel (,Oab) < grel(pab)’

thus it remains to establish the reversed inequality.

4 Discussions

Discord stems directly from the pivotal and ubiquitous notion of quantum measure-
ments, while entanglement is widely regarded as a key feature of quantum infor-
mation. We have reviewed briefly several aspects of discord and entanglement with
emphasis on their intertwining, and have illustrated that discord is not only a kind of
quantum correlations beyond entanglement, but also that quantum discord contracts
to entanglement, i.e., entanglement can be interpreted as the irreducible residue, as
the minimal shadow, of discord over all state extensions. This puts discord, concep-
tually, in a more primitive place than entanglement, sheds lights on the fundamental
importance of quantumness in characterizing quantum correlations, and highlights
the significance of the interplay between quantum measurements and state exten-
sions in quantum information science. We have outlined some problems for further
investigations.
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