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Abstract. Despite the great deal of progress during the recent years,
face spoofing detection is still a focus of attention. In this paper, an effec-
tive, simple and time-saving countermeasure against video-based face
spoofing attacks based on LBP (Local Binary Patterns) and multiscale
DCT (Discrete Cosine Transform) is proposed. Adopted as the low-level
descriptors, LBP features are used to extract spatial information in each
selected frame. Next, multiscale DCT is performed along the ordinate
axis of the obtained LBP features to extract spatial information. Repre-
senting both spatial and temporal information, the obtained high-level
descriptors (LBP-MDCT features) are finally fed into a SVM (Support
Vector Machine) classifier to determine whether the input video is a
facial attack or valid access. Compared with state of the art, the excel-
lent experimental results of the proposed method on two benchmarking
datasets (Replay-Attack and CASIA-FASD dataset) have demonstrated
its effectiveness.

Keywords: Video-based face spoofing - LBP - Multiscale DCT -
Replay-attack + CASIA-FASD

1 Introduction

Spoofing attack is a kind of presentation attack which is targeted towards fool-
ing a biometric system into recognizing an illegitimate user as a genuine one by
means of presenting to the sensor a synthetic forged version of the original bio-
metric trait [1]. Currently it is an accepted fact that, many biometric modalities
are vulnerable to spoofing attacks [2-8] wherein face spoofing is of paramount
importance to be dealt with. For one thing, face is one of the biometric traits
with the highest potential impact both from an economic and a social point of
view [1]. For another thing, compared with other spoofing attacks, face spoofing
is very easy to conduct due to its low-cost and low-tech features. Facial traits are
widely available on the Internet including personal websites and social networks.
Moreover, an imposter can easily collect photographs or videos from a genuine
user at distance.
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Generally speaking, face spoofing attacks can be divided into three categories:
photo attacks, video attacks and mask attacks. In the case of a photo attack, the
spoofing artefact is a photograph of the genuine client which can be presented
to the sensor on a paper or the screen of a digital device. Video attacks are also
referred to as replay attacks since they are carried out by replaying a video of
the valid user. A mask attack is a fraudulent access attempt using a 3D mask of
the legitimate user enrolled in the system.

With the release of several public face spoofing databases [9-12], many
publications addressing face spoofing problems have appeared in the last few
years. Overlooking methods dealing with mask attacks which are beyond the
scope of this paper, the majority of anti-spoofing methods can be classified into
two parts, namely photo-based methods and video-based methods. According
to [13], photo-based approaches are not suitable for directly detecting video
attacks, especially for high resolution videos. It is more difficult to detect video
attacks since the dynamics of the video makes the biometric data more real-
istic. Besides, video attacks tend to have less degradations and fewer artefacts
generated during quantization and discretization. Heretofore, while a number of
photo-based schemes have been proposed in the literature, the development of
research regarding video-based schemes is not up to par.

Motivated by the strong energy compaction property, DCT has been used
extensively in image processing tasks. However, it is adopted to extract static
information by performing on a frame-by-frame basis in the literature. Hereto-
fore, it has not beed used for dynamic information extraction. In this paper, we
propose an innovative way of applying multiscale DCT to LBP features to repre-
sent spatial-temporal information. To the best of our knowledge, this is the first
attempt of processing video-based face spoofing attacks by performing multi-
scale DCT on LBP features in the aim of extracting facial dynamic information.
While the proposed scheme is very simple and time-saving, our experiments on
two benchmarking datasets showed excellent performance which indicated its
effectiveness.

The remainder of the paper is organized as follows. Section 2 briefly reviews
the existing methods for detecting face spoofing attacks. Section 3 demonstrates
the proposed approach, followed by experimental results in Sect. 4. Finally, con-
clusions and future work are given in Sect. 5.

2 Related Work

Depending on the type of information used, the majority of existing solutions
for face spoofing consists of two parts: solutions using spatial information, solu-
tions using both spatial and temporal information. In order to extract spatial
information, the first type of solutions are mainly based on the analysis of face
texture using different image processing methods. One of the first attempts
towards face spoofing was made in [14], where Fourier spectra of a single face
image or face image sequences was analysed. Later, Difference of Gaussian (DoG)
was adopted to explore specific frequency information in [10,15]. In [16], Gabor
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wavelet was used to enhance texture representation while Histogram Oriented
Gradients (HOG) was utilized to introduce local shape description. Proven as an
effective tool, Local Binary Pattern (LBP) and its extensions were employed in
many works such as [11,13,16-18]. Recently, the authors of [19] created a method
for identifying computer-generated facial image which is based on smoothness
property of the faces presented by edges and human skin’s characteristic via
local entropy.

Designed to take advantage of both spatial and temporal information, the sec-
ond type of anti-spoofing schemes usually achieve very competitive performance,
at a cost, in some cases, more time-consuming. An example of such methods is
the work in [20] which introduced Local Binary Patterns from Three Orthogonal
Planes (LBP-TOP) to combine both space and time information into a single
multiresolution texture descriptor. Inspired by the special property of Dynamic
Mode Decomposition (DMD), a pipeline of DMD + LBP + SVM was proposed
for countering spoof attacks in face anti-spoofing [21]. In [22], the authors com-
bined Multiscale Binarized Statistical Image Features on Three Orthogonal
Planes (MBSIF-TOP) and Multiscale Local Phase Quantization Representa-
tion on Three Orthogonal Planes (MLPQ-TOP) in the aim of improving the
robustness of spoofing attack detector. Recently, a low-level feature descriptor
was formed by extracting time-spectral information from the video [23]. Except
these texture-based methods, spatial and temporal information are integrated
from some other perspectives such as analyzing noise signatures generated by
the recapturing process [24].

While the above schemes exploit spatial-temporal information and improve
the detection performance, they tend to be more complex and time-consuming.
In comparison, the proposed scheme is simple and time-saving. For one thing, the
implementations of both LBP and DCT are of high efficiency. For another thing,
the proposed method only requires a few of frames instead of the entire frames
contained in a video. Furthermore, owing to the strong energy compaction prop-
erty of DCT, only one or several DCT components are required to form the final
descriptor. The scheme as a whole is thus easy to implement and efficient. As for
the indispensable classifier in face anti-spoofing task, we use SVM as a back-end
classification engine. Our experimental results, strictly following the published
experimental protocols, showed that the proposed approach achieved the best
performance reported so far. Indeed, we attained zero HTER, i.e., perfect clas-
sification, on both the development and test set of Replay-Attack dataset.

3 Proposed Method

In this section, we present an algorithm for video-based attempted spoofing
attack detection. The algorithm comprises four main steps: face extraction, low-
level descriptor extraction, high-level descriptor extraction, and classification.
The overall pipeline is shown in Fig. 1. First, we extract face images from a
target video at a fixed time interval. Second, the low-level descriptors, i.e., LBP
features are generated for each extracted face image. After that, we perform
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Fig. 1. Flow chart of the proposed method

multiscale DCT on the low-level descriptors to obtain the high-level descriptors
(LBP-MDCT features). Finally, the high-level descriptors are fed into a SVM
classifier to determine whether the target video is a spoof attack or valid access.

3.1 Face Extraction

Instead of the entire images contained in an input video, only a few of frames are
utilized in this work for the sake of efficiency. To this end, we extract frames at a
fixed time interval I for each input video. For example, if I = 1, the first frame,
the third frame, the fifth frame et al. are extracted; if I = 2, the first frame,
the fourth frame, the seventh frame et al. are extracted. Using the Viola-Jones
face detection algorithm [25], we detect face region of each selected frame and
then geometrically normalize the face region into 64 x 64 pixels. Given a video
containing M frames, we attain [I%] normalized face images at the end of this
stage.

3.2 Low-Level Descriptor Extraction

Local Binary Patterns (LBP), a simple yet a powerful gray-scale invariant texture
representation, extracts spatial information based on comparisons of gray values
between each pixel and its neighbours. Since it was proposed, many variants
have been developed. In this paper, we use the uniform LBP (LBP“2) which only
considers labels containing at most two 0—1 or 1—0 transitions. Conventionally,
uniform LBP is denoted as LBP}%?R, where P and R stand for the number of
used neighbourhood pixels and radius respectively. Assuming N = fl—]\fl] face
images are extracted in total, after we obtain a LBP feature vector of length 59,
namely a simple normalized histogram of LBPg?l codes for each selected face,
all the feature vectors are parallelized, generating a LBP feature matrix of size
N x 59 for each video which is adopted as a low-level descriptor in this work.
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3.3 High-Level Descriptor Extraction

In this phase, DCT operation is applied to the LBP feature matrix in the aim
of extracting temporal information. Figure2 demonstrates the generation of a
LBP-DCT feature. Specifically, after the formation of the N x 59 LBP feature
matrix, we perform DCT along its ordinate axis, i.e., the time axis of the entire
video, generating many DCT components for each column. Given an input f(n),
its 1D-DCT transform can be represented as:

N-1
F(k) = alk) Y () cos] 22t DR (1)
n=0

where 0 < k < n — 1. Since the strong energy compaction property of DCT, the
direct component (DC) concentrates the majority of energy. Taking advantage
of this special property, there is no need to utilize all the DCT components.
With this in mind, only C' components are used in this stage. Specifically, in the
case of C' =1, only the direct component is extracted; in the case of C' = 2, the
direct component along with the first alternating component are extracted. As a
result of this process, we end up with a 59 x C' LBP-DCT feature matrix. Of par-
ticular worth to mention here is the benefits brought by neglecting most of the
DCT components which achieves dimension reduction. Not only does dimen-
sion reduction decreases computational complexity, it also improves detection
efficiency.
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Fig. 2. Demonstration of high-level descriptor extraction

As demonstrated in many previous work [26-28], applying multiscale feature
is instrumental in improving performance. Therefore, in order to achieve a bet-
ter performance, here we perform 3-scale DCT on LBP matrices. In the first
scale, we calculate DCT on an entire LBP matrix, generating a 59 x C' LBP-
DCT feature matrix. In the second scale, the entire LBP matrix is divided into
two parts: the first and second part consisting of LBP vectors obtained from
the first [%J frames and the following [%J frames, respectively. Subsequently,
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DCT operation is performed on each part separately, resulting in two LBP-DCT
features. Similarly, we obtain four LBP-DCT features in the third scale by parti-
tioning the LBP matrix into four parts. Hence, we end up with seven LBP-DCT
features in total through this procedure. Last but not least, the resultant seven
LBP-DCT features are concatenated to form a final matrix which is referred to
as a high-level descriptor (LBP-MDCT feature) in the present paper.

3.4 Classification

The last step of the proposed algorithm is to use a discriminative machine
learning approach to find an appropriate classification model in order to decide
whether an input video is an attempted attack or not. In this paper, we choose
Support Vector Machine (SVM) [29] algorithm with Radial Basis Function
(RBF) kernel. After we feed the high-level descriptors into a SVM, the detection
of face spoofing attacks is completed according to the output of the SVM.

4 Experimental Results

In this section, the experimental results of the proposed method are presented
and discussed. Prior to proceeding with the experiments, we give an overview
of the datasets and experimental protocols employed to evaluate performance of
different countermeasures.

4.1 Datasets

In this work, we consider two benchmarking datasets.

Replay-Attack Dataset [11]: This dataset consists of short video recordings of
about 10s of both real access and spoofing attacks to a face recognition system.
It contains 1200 videos (200 real access and 1000 spoof attacks) of 50 identities
and the samples are taken in 3 different scenarios with 2 different illumination
and support conditions.

CASIA-FASD Dataset [10]: This dataset comprises 600 videos (150 real access
and 450 attacks) of 50 subjects. It introduces face attacks with a varying degree
of imaging quality, namely low quality (captured using an old USB camera with
a resolution of 640 x 480 pixels), normal quality (captured using a new USB
camera with a resolution of 480 x 640 pixels) and high quality (captured using
a Sony NEX-5 with a resolution of 1920 x 1080 pixels). It also considers three
different types of attacks including warped photo attacks, cut photo attacks and
video attacks.

4.2 Experimental Protocols

In order to fairly measure performance of different face spoofing detection sys-
tems, we adopt the widely-used Half Total Error Rate (HTER) as the evaluation
parameter. As the following equation shows, HTER is half of the sum of the



22 Y. Tian and S. Xiang

False Acceptance Rate (FAR) and the False Rejection Rate (FRR). Since both
the FAR and the FRR depend on a threshold 7, increasing one usually decreases
the other. For this reason, HTER is conventionally calculated in a specific oper-
ating point of the Receiver Operating Characteristic (ROC) curve in which the
FAR is equal to the FRR, known as the Equal Error Rate (ERR). Apparently,
the lower the HTER value is, the better the approach is.

1
HTER =  (FAR + FRR). (2)

Protocol I: In this evaluation protocol, we use the Replay-Attack dataset.
This dataset is divided into three partitions: training, development and testing
set. The training set is used for training the classifier itself and the development
set is used for choosing the threshold 7 on the EER. Finally, the testing set is
used to report the HTER value.

Protocol II: Herein, we use the CASIA-FASD dataset which is divided into
two disjoint subsets for training and testing (240 and 360 videos, respectively).
The training subset is used to build a classifier and the testing set is used to
report the HTER value.
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Fig. 3. ROC curves of Replay-Attack dataset when I = 72 & C = 1. (a) Development
set (b) Test set

4.3 Effectiveness of the Proposed Scheme on Replay-Attack Dataset

Table 1 shows the performance of this countermeasure on Replay-Attack dataset
in terms of HTER with different numbers of used DCT components C' and
different values of interval I. Note that, there is a limitation for interval I under a
specific C. For instance, given C' = 1, at least 4 frames are required as we perform
3-scale DCT on LBP features. Consequently, when C' =1 | the maximum value
of interval I is 72 due to the minimum number of frames contained in each

video in this dataset is 221. Subject to limited space, only part of the parameter
sittings are shown in Table 1.
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Table 1. Results in HTER (%) of the proposed method on Replay-Attack and CASIA-
FASD dataset. Here, C: number of used DCT components, I: interval for extracting
frames, Dev: on development set and Test: on test set

C | I | Replay-Attack | CASTA-FASD
Dev | Test Test
1 /1/0.00/|0.00 20.00
2/0.000.00 19.07
3/0.000.00 20.00
410.00|0.00 18.89
2 {1/0.000.00 20.00
2/0.000.00 19.07
3/0.000.00 20.00
410.00 | 0.00 19.26
3 /1/0.000.00 18.89
2/0.000.00 19.26
3/0.000.00 19.07
410.00|0.00 18.43
4 11/0.00|0.00 18.89
2/0.000.00 20.00
3/0.000.00 18.25
410.00 | 0.00 18.06
5 11]0.000.00 18.89
2/0.000.00 19.18
3/0.000.00 19.18
410.00|0.00 18.89

Surprisingly, all the parameter settings lead to HTER values of 0 on both
development set and testing set of Replay-Attack dataset. In other words, all the
parameter settings achieved perfect classification. Apparently, the greater I is,
the fewer frames are involved, thus the faster the detection is and the lower the
computational complexity is. Likewise, the less C' is, the faster and the simpler
the detection is. Therefore, we consider I = 72 & C' = 1 as the best setting
for the sake of efficiency and simplicity. Figure 3 shows the corresponding ROC
curves when [ =72 & C' = 1.

4.4 Effectiveness of the Proposed Scheme on CASTA-FASD Dataset

Table 1 also shows the HTER, of this countermeasure on CASTA-FASD dataset
with different numbers of used DCT components C' and different interval val-
ues I. Same as Replay-Attack dataset, subject to the minimum number of frames
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contained in each video in CASTA-FASD dataset, there is a maximum value for
interval I given a specific C. We also omit some of the results due to lim-
ited space.

From Table 1 we notice that while HTER value of the proposed countermea-
sure on this dataset fluctuates around 19.00%, I = 4 & C' = 4 gives an HTER of
18.06s%, recording the best result on the testing set of CASIA-FASD dataset.
Therefore, we consider I = 4 & C = 4 as the best setting for CASIA-FASD
dataset. Figure4 shows the corresponding ROC curve when I =4 & C = 4. As
for the relationship between the parameter setting (I and C') and performance
fluctuation, it falls into one direction of our future work. Unlike perfect classi-
fication attained on Replay-Attack dataset, performance on this dataset is less
satisfactory. We believe this is because CASIA-FASD dataset is more challenging
than the former dataset. For instance, it incorporates cut photo attack which is
a kind of printed 2D attacks. As it simulates eye blinking with perforated eyes,
this new kind of attack is difficult to detect. In addition, CASIA-FASD dataset
is more heterogeneous than Replay-Attack dataset as it contains three types of
attacks (warped photo attack, cut photo attack and reply attack) captured in
three different settings (low, normal and high resolutions).
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Fig. 4. ROC curve of CASIA dataset when I =4 & C =4

4.5 Comparisons with State of the Art

Finally, Table2 shows a comparison among state-of-the-art methods. Consis-
tent with our observation that CASTA-FASD dataset is more challenging than
Replay-Attack dataset, all the methods show a better performance on Replay-
Attack dataset than CASIA-FASD dataset.

We can see from Table 2 that the proposed approach achieves the best per-
formance among other approaches. For Replay-Attack dataset, it recorded zero
HTER, i.e., perfect classification. For CASIA-FASD dataset, it recorded 18.06%
HTER which also outperforms all the other methods with a minimum superior-
ity of 3.69%. Using LBP for feature extraction, Chingovska et al.’s methods [11]
show moderate discriminability with about 15.00% HTER. The best performance
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Table 2. Comparison of HTER (%) on test sets for the proposed method with respect
to state-of-the-art methods.

Algorithm Replay-Attack | CASIA-FASD
Chingovska et al. (2012) [11] | LBP + LDA 13.87 -
LBP + SVM 18.17 -
Pereira et al. (2013) [30] Motion Correlation 11.79 30.33
LBP 15.45 23.19
LBP-TOP 8.51 23.75
Tirunagari et al.(2015) [21] | DMD +LBP +SVM¥ | 0.00 -
DMD +LBP +SVM¥ | 3.75 21.75
DMD + SVMF 7.50 29.50
PCA +SVMF 21.50 33.50
PCA+LBP+SVMF |17.11 24.50
PCA+LBP+SVMFP |20.50 -
Proposed method LBP+MDCT+SVM | 0.00 18.06

Here, E: on entire frames and F': on face regions

achieved in Pereira et al.’s work [30] is based on LBP-TOP and the corresponding
HTER is 8.51% on Replay-Attack dataset. Although Tirunagari et al.’s method
DMD + LBP + SVMPZ [21] also gives an HTER. of 0% on Replay-Attack dataset,
it requires 240 frames from each video while the proposed pipeline only requires
4 frames. As face spoofing detection is aimed for real-time application, the fewer
frames the approach uses, the less time the detection takes, thus, the higher the
efficiency is and the better the approach is. Therefore, the proposed approach
is better than approach DMD + LBP + SVM¥. More importantly, instead of the
face regions, pipeline DMD + LBP + SVMP¥ requires the entire video frames.
Once only the face regions are given (DMD + LBP +SVM®), the performance
degrades to 3.75% HTER. This degradation is made by the fact that the back-
grounds of videos for different types of attacks in CASIA-FASD dataset are
different which may well benefit the detection performance. However, in real
life, this difference tends to be non-existent for a certain biometric system. From
this point of view, the perfect classification attained by DMD + LBP + SVM¥ is
meaningless. With all these in mind, the proposed pipeline is superior to all the
others including Tirunagari et al.’s method.

In addition to the excellent performance, our approach is of low complexity
and high efficiency as it only requires a few of frames rather than the entire frames
contained in a video. Besides, the implementation of both LBP and DCT opera-
tions are time-saving. For videos from Replay-Attack or CASIA-FASD dataset,
it only takes about 0.12s to obtain a LBP vector for each frame. Given a LBP
matrix of a video from the two datasets, the calculation of a LBP-MDCT fea-
ture only costs about 0.02s whatever the parameter sitting is. Moreover, taking
advantage of the strong energy compaction property of DCT, only one or several
DCT components are used in the stage of high-level descriptor extraction which
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realises dimension reduction. The scheme as a whole is thus easy to implement
and efficient. With low complexity and high efficiency, the proposed method is
very competitive and promising for face anti-spoofing which is aimed for real life
scenario.

5 Conclusions and Future Work

The present paper addressed the problem of video-based face spoofing detec-
tion using LBP and multiscale DCT. LBP§3 features are adopted as the low-
level descriptors to exact spatial information while multiscale DCT are imple-
mented along the ordinate axis of LBP features in order to take advantage of
temporal information at the same time. Therefore, the resultant LBP-MDCT
features represents spatial-temporal information. Excellent experimental results
demonstrated that multiscale DCT can indeed capture facial dynamic informa-
tion which makes a significant contribution to distinguish spoof attacks from
valid access.

The proposed method was comprehensively evaluated on two benchmarking
datasets using standard protocols and shown to be superior to other approaches
reported to date. For Replay-Attack dataset, it recorded zero HTER, i.e., perfect
classification. For CASIA-FASD dataset, it recorded 18.06% HTER which also
outperforms all the other methods with a minimum superiority of 3.69%. We
attribute this performance superiority to (1) the capacity of LBP to extract
texture information on a frame-by-frame basis, (2) the capacity of multiscale
DCT to extract temporal dynamics of video sequences and (3) the choice of
pipeline within which multiscale DCT is deployed along the ordinate axis of
LBP matrices to capture spatial-temporal information. Note that, instead of the
strength of LBP or DCT alone, it is the unique combination of the two descriptors
that lead to the superiority of the proposed method. In addition to the excellent
performance, our approach is time-saving and very simple to conduct. Taking its
outstanding performance, low complexity and high efficiency into account, the
proposed method is very competitive and promising for practical application of
face anti-spoofing.

Our focus of future research will include a further investigation into the
relationship between the skipped frames and detection performance on CASIA-
FASD dataset. It would also be interesting to exploit other types of LBP
descriptor with the same pipeline and compare the performance. Another future
research direction relates to replacing LBP or DCT with other effective opera-
tions in the context of using spatial-temporal information.
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