
Chapter 2
Introducing the Inner Structure
of the Magnetic Atom in the Interaction
Between a Transition Metal Atom Impurity
and a Metal Surface

Fernando Flores and E.C. Goldberg

Abstract This paper presents a review of the work performed by the authors to
incorporate the inner structure of a d-shell magnetic atom in the description of the
many-body interaction between a transition metal atom impurity and a metal host.
Two main assumptions are made in this approach: (i) the magnetic atom has an
orbital singlet with a total electronic spin S (as corresponds to a case for which
the angular moment is quenched); (ii) the first Hund’s rule determines the inner
electronic structure of the magnetic atom. Using these two assumptions and the
rotational symmetry of the electronic spin, an ionic Hamiltonian is introduced and,
in a further step, the effective exchange metal atom coupling and the impurity Kondo
temperature are analyzed.

Introduction

Kondo related problems are still an important issue in many-body condensed
matter [1]. In the earliest approaches, very idealistic models [2–5] with a very poor
description of the inner structure of the magnetic atom involved in the problem were
introduced. This was a very convenient way for understanding the general proper-
ties of that basic problem. In particular, in the Anderson-like Hamiltonian a spin
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degenerate level, with an intra-site Coulomb interaction U , interacting with a metal
band is introduced. Kondo-like properties of this Hamiltonian are crucially depen-
dent on the correlation effects associated with its twofold degenerate level and the
U-value. In section “The Anderson Model Revisited”, we present a summary of the
well-known main properties of that Hamiltonian, including the effective exchange
coupling between the atom and the metal, and its Kondo temperature.

Although it has been a great success of nanoscience the realization of differ-
ent many-body systems in the quantum wells fabricated using different techniques,
Kondo resonances and their electron correlation properties have been found to play
also an important role in the interaction between d orbitals ( f orbitals) of transition
(rare-earth) metal impurities and the electrons of a metal band [6]. However, the
analysis of the properties of these impurities has not yet been fully developed except
for the so-called N -fold degenerate case [2].

Recent data in the experiments of inelastic tunneling spectroscopy of transition
metal magnetic atoms [7–9] or single atom transistors [10] also points out to the
need to understand the properties of those systems including the inner structure of
the atom with its Hund’s rule. A first attempt in this direction was taken by Hirst [11]
who introduced the following Hamiltonian:

ĤHirst =
∑

kσ

εkĉ
†
kσ ĉkσ +

∑

m

[
En−1|n − 1,m〉〈n − 1,m| + En|n,m〉〈n,m|]

+
∑

kσm

[
V ∗
kσ (m)ĉ†kσ |n − 1,m − σ 〉〈n,m|

+Vkσ (m)|n,m〉〈n − 1,m − σ |ĉkσ

]
, (2.1)

where, for simplicity, only fluctuations of one electron in the atom are considered. In
the Hamiltonian, Eq. (2.1), one electron from state |n,m〉, with n electrons and Sz =
m, jumps to a k, σ state leaving the atom in a |n − 1,m − σ 〉 state. Apparently, the
Hamiltonian, Eq. (2.1), is rather complicated because it requires many parameters to
specify it; however, using Hund’s rule and the spin symmetry of the states associated
with the d-shell we have introduced an ionic Hamiltonian that only depends on one
parameter [12].

In section “The Anderson Model Revisited”, the Anderson Hamiltonian is revis-
ited and used to introduce, in section “An Ionic Hamiltonian for d Electrons”,
the main ideas leading to our generalization of the Hirst Hamiltonian. Then, in
section “Effective Exchange Coupling and Kondo Temperature” we review the main
properties of that model, including its effective exchange coupling with the metal
and its Kondo temperature [13]. Finally, in section “Discussion and Conclusions”
we present our main conclusions.
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The Anderson Model Revisited

In the Anderson model [3], the interaction between an atom with a nondegenerate
d-level and a metal is described by the following Hamiltonian:

Ĥ = Ĥ0 + Ĥint, (2.2)

where

Ĥ0 = ε0 [| ↑ 0〉〈↑ 0| + |0 ↓〉〈0 ↓ |] + (2ε0 +U )| ↑↓〉〈↑↓ | +
∑

kσ

εkĉ
†
kσ ĉkσ ,

(2.3)
|kσ 〉 being the metal states, and | ↑ 0〉, 0 ↓〉, | ↑↓〉 the single and configurations.
The atom-metal interaction is described by

Ĥint =
∑

k

{
Vk

[| ↑ 0〉〈00|ĉk↑ + |0 ↓〉〈00|ĉk↓ + | ↑↓〉〈0 ↓ |ĉk↑ − | ↑↓〉〈↑ 0|ĉk↓
] + c.c.

}

(2.4)

with electrons being transferred between the atom and the metal (the metal Fermi
energy, EF, is taken as the origin of energies). We stress that, for the convenience of
our discussion below, we are using the projector operators for the atom instead of
the more conventional creation and annihilation operators [14].

ThisHamiltonian has been analyzed usingmany different (exact and approximate)
solutions [2]; we mention here the solution obtained using a many-body technique
that uses aGreen functionmethod combinedwith an appropriate self-energy [15, 16].
Figure2.1 shows the DOS calculated with that approach takingU = 0.2,U/Γ = 10
(Γ is the usual linewidth of the one-electron problem: Γ = π |V |2ρ0, ρ0 being the
metal density of states and V = Vk assuming that Vk is k-independent), and different
values of ε (−0.1, −0.15, −0.2, and −0.25). For ε0 = −0.1, the solution has an
electron–hole symmetrywith a narrowKondopeak at the Fermi level; for ε0 = −0.15
the solution is asymmetric, but still there is a Kondo peak at EF; for ε0 = −0.20,
ε0 +U = 0, the Kondo peak disappears and the second electron level, ε0 +U , is
already the only one appearing practically in the DOS; finally for ε0 = −0.25 this
regime is completely developed and the one-electron solution coincides practically
with the many-body one.

The Hamiltonian, Eq. (2.2) can be transformed into an effective spin scattering
Hamiltonian by means of a Schrieffer-Wolff transformation [17], assuming that the
atom is mostly in a spin state with S = 1/2. We illustrate here briefly how this
transformation can be obtained using the projector operators just discussed; this will
also be useful for our discussion below.

Themain idea is to eliminate the atomic excited states, |00〉, | ↑↓〉, using a second-
order perturbation theory in Ĥint:
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(a) (b)

(c) (d)

Fig. 2.1 Upper panel (from Ref. [14]): DOS for U/Γ = 10, U = 0.2 and a ε0 = −0.1; b ε0 =
−0.15; c ε0 = −0.2, and d ε0 = −0.25. Dashed line one-electron solution without correlation
effects.Full linemany-body solution followingRef. [15]. Lower panel indicates the energywindow,
ε0 < EF < ε0 +U , for which the effective atom-metal exchange coupling is antiferromagnetic

Ĥeff = −
∑

n

Ĥint|n〉〈n|Ĥint

En − E
. (2.5)

Taking |n〉 = |00〉 and |n〉 = | ↑↓〉 in Eq. (2.5), and assuming the energy levels,
ε0 (ε0 +U ), much lower (higher) than the Fermi level, so that E0 − E ≈ |ε0| and
E↑↓ − E ≈ |ε0 +U |, Eq. (2.5) yields:

Ĥeff = −
∑

kk′σσ ′

[
VkV ∗

k′

|ε0| + VkV ∗
k′

|ε0 +U |
]

|σ 〉〈σ ′|ĉkσ ĉ
†
k′σ ′

= −
∑

kk′σσ ′
Jkk′ |σ 〉〈σ ′|ĉkσ ĉ

†
k′σ ′, (2.6)

where |σ 〉 = | ↑ 0〉 for σ = 1
2 , and |σ 〉 = |0 ↓〉 for σ = − 1

2 , and we have introduced

Jkk′ = VkV
∗
k′

[
1

|ε0| + 1

|ε0 +U |
]

. (2.7)
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Now, introducing the spin operators for the atom and the k states, respectively,

Ŝ+ = | 12 〉〈− 1
2 |; Ŝ− = | − 1

2 〉〈 12 |; Ŝz = 1

2

[| 12 〉〈 12 | − | − 1
2 〉〈− 1

2 |
]
, (2.8a)

ŝ+
kk′ = ĉ†k↑ĉk′↓; ŝ−

kk′ = ĉ†k↓ĉk′↑; ŝz,kk′ = 1

2

[
ĉ†k↑ĉk′↑ − ĉ†k↓ĉk′↓

]
, (2.8b)

we can write Eq. (2.6) in the following way:

Ĥeff =
∑

kk′
Jkk′ Ŝ · ŝkk′ + 1

2

∑

kk′
Jkk′

[
ĉ†k↑ĉk′↑ + ĉ†k↓ĉk′↓

]
−

∑

k

Jkk. (2.9)

This equation can be written in a more transparent way if we assume a localized
description of the k-band states, φk = ∑

α a
k
αϕα , with the index α denoting the dif-

ferent metal local (Wannier) orbitals. If the k-band and the atom interact through a
single channel state α [18], the atomic spin part of Hamiltonian, Eq. (2.9), can be
written as follows:

Ĥ (spin)
eff = 2Jα Ŝ · ŝα, (2.10)

a Ŝ-ŝα antiferromagnetic interaction, with Jα = |Vα|2[1/|ε0| + 1/|ε0 +U |] (remem-
ber that we have assumed ε0 < EF < ε0 +U ). Equation (2.10) represents the s-
d model of the Anderson Hamiltonian [19]. Notice that in the limit of U → ∞,
Jα ≈ |Vα|2/|ε0|; however, when EF < ε0, Jα = −|Vα|2/|ε0|, so that the Ŝ-ŝα inter-
action becomes ferromagnetic. Likewise, if the (ε0 +U ) level is much closer to EF

than ε0, Jα ≈ |Vα|2/|ε0 +U |; but if EF < ε0 +U , Jα ≈ −|Vα|2/|ε0 +U |, show-
ing that there is a Ŝ-ŝα ferromagnetic interaction. This is shown schematically in the
lower panel of Fig. 2.1, where the window of energy is indicated, ε0 +U > EF > ε0,
for which there appears an antiferromagnetic interaction and, consequently, a Kondo
resonance, as it can be seen in the upper panel of Fig. 2.1.

ThisKondo-temperature, TK, can be calculated by applying the poorman’s scaling
method to the antiferromagnetic interaction given byHamiltonian, Eq. (2.6) [2, 3, 5],
whereby metal k-states in the energy intervals (D, D − δD) and (−D,−D + δD)

are removed from that Hamiltonian, Eq. (2.6); the metal states are characterized by
a constant density of states per spin, ρ0, and a bandwidth extending from −D to D.
This is achieved by using second-order perturbation theory and summing upon the
K-states in the following equation:

δHeff = −
∑

K

Ĥeff |K〉〈K|Ĥeff

EK − E0
, (2.11)

where |K〉 represents excited states like ĉ†kσ |σ ′〉 or ĉkσ |σ ′〉. This analysis yields the
following TK:

kBTK ≈ D exp
(− 1

2ρ0 J0
)
. (2.12)
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An Ionic Hamiltonian for d Electrons

We describe the interaction between a metal and a d-shell atom by the following
Hamiltonian:

Ĥ = Ĥ0 + Ĥint. (2.13)

In Eq. (2.13) Ĥ0 = ∑
kσ εkn̂kσ + Ĥatom includes the energy terms of both, the solid

and the atom. The solid is described by the conduction band energies εk with an
occupation number given by n̂kσ = ĉ†kσ ĉkσ . The atomic part, Ĥatom, in the extended
version appropriate for treating any multi-electron atom [20], takes the form:

Ĥatom =
∑

mσ

εmn̂mσ +
∑

m

Udn̂m↑n̂m↓ + 1

2

∑

m �=m ′,σ

Jd n̂mσ n̂m ′ −σ

+1

2

∑

m �=m ′,σ

(Jd − J x
d )n̂mσ n̂m ′σ − 1

2

∑

m �=m ′,σ

J x
d ĉ

†
mσ ĉm −σ ĉ

†
m ′ −σ ĉm ′σ . (2.14)

Here, ĉ†mσ (ĉmσ ) are the fermionic operators creating (annihilating) an electron with
spin projection σ in the orbital m and n̂mσ = ĉ†mσ ĉmσ ; the intra-atomic Coulomb
interactions Ud and Jd , as well as the intra-atomic exchange interaction J x

d , are
assumed to be constants independent of the orbital index m. The last term, related to
spin-flip processes, restores the invariance under rotation in spin space.

The interaction term, Ĥint, contemplates the charge exchange between the atom
and the solid through a one-electron tunnelingmechanism described by the following
expression:

Ĥint =
∑

kmσ

[
Vkmĉ

†
kσ ĉmσ + V ∗

kmĉ
†
mσ ĉkσ

]
. (2.15)

In transition metal atoms where the orbital contribution to the angular moment is
often quenched due to crystal field effects associated with the low symmetry of the
environment (this implies that the ground state of the atom is an angular singlet), the
maximum spin associated with a given number of electrons, say N , determines the
atomic ground state (first Hund rule). Figure2.2 shows the atomic states and their
corresponding energies as defined by the atomic Hamiltonian, Eq. (2.14), for N ≤ 5;
for N > 5, we find a hole–electron symmetry with respect to the previous case (their
energies are included in the caption of Fig. 2.2).

Then, we introduce the electronic states of total spin S and spin projection
M , |S, M〉e and |S, M〉h for N ≤ 5 and N > 5 respectively, to rewrite the atomic
Hamiltonian, Eq. (2.14), as follows:

Ĥatom =
∑

SM

[
ES,e|S, M〉e〈S, M |e + ES,h |S, M〉h〈S, M |h

]
, (2.16)
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Fig. 2.2 It is shown the atomic dN states and their energies for different number of electrons, N ;
S = N/2 and M is taken equal to S (N ≤ 5). For N > 5 we find: ES = 6εd +Ud + 14Jd − 14J xd
for N = 6; ES = 7εd + 2Ud + 19Jd − 19J xd for N = 7; ES = 8εd + 3Ud + 25Jd − 25J xd for
N = 8; ES = 9εd + 4Ud + 32Jd − 32J xd for N = 9 and ES = 10εd + 5Ud + 40Jd − 40J xd for
N = 10

where the energies ES are given in Fig. 2.2. In this way we reduce the configuration
space of Hamiltonian, Eq. (2.14), to the one spanned by those eigenvalues, so that
we have

∑
SM [|S, M〉e〈S, M |e + |S, M〉h〈S, M |h] = 1.

Notice that the one-electron levels, E(dN ), associated with the many-body
Hamiltonian, Eq. (2.16), are defined by the equation: E(dN ) = ES(N ) − ES− 1

2

(N − 1). This yields:

E(d1) = εd , (2.17a)

E(d2) = εd + Jd − J x
d , (2.17b)

E(d3) = εd + 2Jd − 2J x
d , (2.17c)

. . .

E(d5) = εd + 4Jd − 4J x
d , (2.17d)

E(d6) = εd +Ud + 4Jd − 4J x
d , (2.17e)

E(d7) = εd +Ud + 5Jd − 5J x
d , (2.17f)

. . .

E(d10) = εd +Ud + 8Jd − 8J x
d . (2.17g)
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For E(dN ) < EF < E(dN+1)we can expect the atom to have N electrons. However,
when EF approaches the levels E(dN ) or E(dN+1), the atom should start to have
fluctuations to either N − 1 or N + 1 electrons.

We describe those metal atom processes by assuming that an atomic ground state
with N electrons, |S, M〉, has fluctuations to the stateswith N − 1 or N + 1 electrons,
which for N < 5, correspond to the states |S − 1

2 , M〉e, |S + 1
2 , M〉e respectively. For

the sake of simplicity, we restrict our discussion to N < 5, and neglect the sub-index
e from the atomic states. Then, the corresponding interaction Hamiltonian has the
form:

Ĥint =
∑

kMσ

[
V S∗
kMσ ĉ

†
kσ

|S − 1
2 , M − σ 〉〈S, M | + V S

kMσ |S, M〉〈S − 1
2 , M − σ |ĉkσ

]

+
∑

kMσ

[
V
S+ 1

2 ∗
kMσ

ĉ†kσ
|S, M − σ 〉〈S + 1

2 , M | + V
S+ 1

2
kMσ

|S + 1
2 , M〉〈S, M − σ |ĉkσ

]
,

(2.18)

where the different interaction elements, V S
kMσ and V

S+ 1
2

kMσ , are calculated by ensur-
ing to have spin rotation invariance. This is illustrated in Fig. 2.3, where we

Fig. 2.3 Illustrates how to calculate the matrix elements between the states |S, M〉 and |S − 1
2 , M ′〉

due to the interaction:
∑

kσ

[
Vk ĉ

†
kσ ĉ1σ + V ∗

k ĉ
†
1σ ĉkσ

]
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consider states with S = 3
2 and S = 1, and assume to have the following interac-

tion:
∑

kσ

[
Vkĉ

†
kσ ĉ1σ + V ∗

k ĉ
†
1σ ĉkσ

]
between them, where 1 refers to the first d state

in the sequence of the 5 d-states shown in that figure. In Fig. 2.3, the different |S, M〉
or |S − 1

2 , M
′〉 states are generated by successive application of the operator Ŝ−. In

this way the following expression for the coupling terms, V S
kMσ in Eq. (2.18), with

N → N − 1, is calculated for the case of a half-filled or less than half-filled shell
(N ≤ 5) [21]:

V S
kMσ =

√
S + (−1)pM

2S
Vkd . (2.19)

For the sake of completeness, we also mention that for N ≥ 5 and fluctuation from
N to N + 1 (S to S − 1

2 in the hole picture), we obtain:

V S
kMσ = (−1)p

√
S − (−1)pM

2S
Vkd . (2.20)

Effective Exchange Coupling and Kondo Temperature

Equations (2.16), (2.18), and (2.19) define our ionic Hamiltonian. In this section,
we are going to analyze the effective exchange coupling and the Kondo tempera-
ture associated with it [13]. We calculate the effective exchange coupling by using
the Schrieffer–Wolff transformation as performed above for the case S = 1

2 . We
also start by considering only the atomic fluctuations, |S, M〉 → |S − 1

2 , M
′〉 and

N ≤ 5. Then, using Eq. (2.5), and |n〉 = |S − 1
2 , M〉 we find the following effective

Hamiltonian:

Ĥeff =
∑

kMσ

k′σ ′

V S
kMσ ĉkσ |S, M〉〈S, M − σ + σ ′|V ∗

k′M−σ+σ ′ σ ′ ĉ
†
k′σ ′

ES − ES− 1
2 − (εk′ − εk)

. (2.21)

Next, approximate ES − ES− 1
2 − (εk′ − εk) by ES − ES− 1

2 = E(dN ) ≡ −�, use
the expression, Eq. (2.19) for V S

kMσ , the following equations for Ŝ,

Ŝ+ =
∑

M

√
S(S + 1) − M(M + 1)|S, M + 1〉〈S, M |, (2.22a)

Ŝ− =
∑

M

√
S(S + 1) − M(M − 1)|S, M − 1〉〈S, M |, (2.22b)

Ŝz =
∑

M

M |S, M〉〈S, M |, (2.22c)
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and the expressions of ŝ+
kk′ , ŝ−

kk′ , and ŝz,kk′ given by Eq. (2.8b). All this leads to

Ĥeff =
∑

kk′

Jkk′

S
Ŝ · ŝkk′ +

∑

kk′

Jkk′

2

(
ĉ†k′↑ĉk↑ + ĉ†k′↓ĉk↓ − 2δkk′

)
(2.23)

which defines a Heisenberg exchange interaction between a local moment and the
conduction electrons with a coupling constant Jkk′ = VkV ∗

k′/�.
The spin part of this effective Hamiltonian in the case where the k-band and the

atom interact through a single channel is given by:

Ĥ (spin)
eff = Jα

S
Ŝ · ŝα, (2.24)

with Jα = |Vα|2/�. This is an antiferromagnetic exchange interaction between Ŝ
and ŝα with a coupling constant Jα/S when � > 0, or equivalently when E(S) −
E(S − 1

2 ) = E(dN ) < 0.
Up to this point, we have assumed the atom to fluctuate from the spin S (the

normal state of the atom) to spin S − 1
2 . If the atom fluctuates to S + 1

2 , our analysis
yields that the effective spin Hamiltonian is (written in the channel representation):

Ĥ (spin)
eff = − Jα

S + 1
2

Ŝ · ŝα, for S → S + 1

2
, (2.25)

where Jα = |Vα|2/�′, with �′ = E(dN+1). This is a ferromagnetic exchange inter-
action if E(dN+1) > 0.

Notice that in all these cases, there appear renormalization factors, S or S + 1
2 ,

changing the J -coupling, defined in the conventional way Jα = |Vα|2/�, to either
J/S or J/(S + 1

2 ). Then, we have that a large spin would imply a reduction in

the effective Ŝ · ŝα interaction and in the corresponding Kondo resonance for the
antiferromagnetic case. This is illustrated in the results shown in Fig. 2.4. In this
figure, we show the impurity atom spectral densities for 0 ≤ N ≤ 5 electrons in
the d-shell and S → S − 1

2 fluctuations. These ones have been obtained from the
imaginary part of the Green function defined in the projection operator language,

GSM
S− 1

2 M− 1
2
(t, t ′) = iθ(t − t ′)

〈{|S, M〉〈S − 1
2 , M − 1

2 |t ′ , |S − 1
2 , M − 1

2 〉〈S, M |t
}〉

(2.26)

and solved by using the equation of motion technique up to second order in the
coupling term Vk [12].

From this figure a decreasing antiferromagnetic exchange interaction between Ŝ
and ŝα accordingly with an effective coupling constant J/S results evident. Consis-
tently, the corresponding Kondo temperature should decrease with S (see below).
Experimental evidences of these results exist from long time ago [22] being recently
confirmed by using scanning tunneling spectroscopy [23]. Jamneala et al. have found
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Fig. 2.4 The impurity
density of states ρ(ω) around
the Fermi level for the
antiferromagnetic case with
� = 0.1D and Γ = 0.01D.
From up to down: d1 ↔ d0,
d2 ↔ d1, d3 ↔ d2,
d4 ↔ d3, d5 ↔ d4. The
energies ω are measured in
units of D. From Ref. [21]

that atoms near the middle of the 3d row, such as V, Cr, Mn and Fe, show no dis-
cernible features of the local density of states at low energy, while atoms near the
ends of the row, such as Ti, Co, and Ni, show narrow resonances near the Fermi
energy [23].

Although the cases S → S − 1
2 and S → S + 1

2 have been presented indepen-
dently, they can be combined simultaneously in one equation because, in the second-
order perturbation theory used to calculate the exchange interaction, both terms
appear as contributions that add to each other in the effective Hamiltonian. This
means that we can combine Eqs. (2.24) and (2.25) into the equation

Ĥ (spin)
eff = Jα

S
Ŝ · ŝα − J ′

α

S + 1
2

Ŝ · ŝα, for S → S − 1
2 and S → S + 1

2 (N < 5).

(2.27)

A similar argument can be applied to the case N ≥ 5, with the magnetic atom of
spin S fluctuating to spin S − 1

2 or S + 1
2 , S defining the normal state of the atom. In

general, our analysis yields the same result, Eq. (2.27), for the corresponding spin
effective Hamiltonian. It should be stressed, however, that there is an exception to
Eq. (2.27), when the normal state of the atom corresponds to the half-filled shell
(N = 5). In such a case the N to N − 1 fluctuation is related to the spin fluctuation
S → S − 1

2 within the electron picture, and the N to N + 1, in the hole picture, is
related to the same spin fluctuation S → S − 1

2 . Therefore, due to the hole–electron
symmetry of the problem we find that both fluctuations have an antiferromagnetic
character if E(dN ) < EF < E(dN+1). Then, the effective spin Hamiltonian reads as:

Ĥ (spin)
eff = Jα

S
Ŝ · ŝα + J ′

α

S
Ŝ · ŝα (S corresponds to the half-filled shell). (2.28)
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On the other hand, it is worthmentioning that our results for the effectiveHamiltonian
keep the rotational symmetry of the problem in all the cases, giving an independent
confirmation to the validity of the ionicHamiltonian introduced for d-transitionmetal
atoms.

Regarding the Kondo temperature associated with our ionic Hamiltonian, we can
start our analysis with the spin effective Hamiltonians, Eqs. (2.27) and (2.28), and
write

Ĥ (spin)
eff = J ′ Ŝ · ŝα, (2.29)

where J ′ = (Jα/S) − (J ′
α + 1

2 ) for S �= 5
2 , or J ′ = (Jα/S) + (J ′

α/S) for S = 5
2 .

Equation (2.29) allows us to calculate the Kondo temperature for the antiferromag-
netic case by using results obtained by other researchers for the same Hamiltonian,
Eq. (2.29) [1, 4]. In this way, we can write:

kBTK ≈ D exp(−1/ρ0 J
′). (2.30)

Assuming that the term Jα/S dominates the J -value for the case S �= 5
2 , we obtain

the following Kondo temperature

kBTK ≈ D exp(−S/ρ0 Jα) (S �= 5
2 ). (2.31a)

This equation indicates how the Kondo temperature decreases with increasing values
of S. On the other hand, for S = 5

2 , if we assume that EF = [E(d6) + E(d5)]/2 and
Jα = J ′

α , we can write

kBTK ≈ D exp(−S/2ρ0 Jα) (S = 5
2 ). (2.31b)

Discussion and Conclusions

In this paper, we have discussed the properties of an ionic Hamiltonian introduced
to describe the interaction between a metal band and a d-shell magnetic atom with
an orbital singlet. As an introduction to that general problem, we have reviewed
in section “The Anderson Model Revisited” the properties of the Anderson Hamil-
tonian, where only one-electron d-level is introduced; in particular we have discussed
for this Hamiltonian the exchange coupling between the metal and the atomic spin
as well as the corresponding Kondo temperature.

In section “An Ionic Hamiltonian for d Electrons”, we have presented our ionic
Hamiltonian [12] and have shown how the different hopping parameters between the
metal and the atomic wave functions, |S, M〉, defined by the first Hund’s rule can be
calculated, up to a factor, using the spin rotational symmetry.

In section “Effective Exchange Coupling and Kondo Temperature”, we have
discussed [13] how to apply the Schrieffer–Wolff transformation to our ionic
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Hamiltonian to obtain the effective exchange coupling interaction between the
metal and the atom. Our results show that this effective interaction has the form:
Γ Ŝ · ŝ + γ Î , confirming that our Hamiltonian has the appropriate rotational spin
symmetry. Consider the case N < 5; S is related to the number of electrons in the
d-shell by the equation 2S = N . The atomic occupancy is determined by the posi-
tion of the Fermi level; for E(dN+1) > EF > E(dN ), we can expect the atom to
be in the dN -state (with N electrons and S = N/2), and to develop charge fluctua-
tions to states with either N + 1 (dN+1) or N − 1 (dN−1) electrons. Depending on
those fluctuations we find different effective spin interactions with the metal. If EF is
closer to the E(dN ) level, the system develops an antiferromagnetic (AF) interaction,
with N → N − 1 fluctuations; when EF approaches the E(dN+1) level, the effective
spin interaction is ferromagnetic (FM) and N → N + 1. Things are different when
E(d6) > EF > E(d5), which shows in both cases, for EF close to either E(d6) or
E(d5) an AF interaction; this is due to the electron–hole symmetry of the system
between the cases N < 5 and N > 5. For example, the case E(d2) > EF > E(d1) is
the symmetric of E(d8) < EF < E(d9), the system being in both cases AF if EF is
closer to either E(d8) or E(d2); for that AF interaction, we find the following fluctu-
ations d2(S = 1) → d1(S = 1

2 ) or d
8(S = 1) → d9(S = 1

2 ), and a similar effective

spin interaction, (Jα/S)Ŝ · ŝα , Eq. (2.24), with S = 1.
Notice an interesting similarity between the conventional d-shell atom, with a

fivefold orbital degeneracy, and the Anderson model. For the Anderson model we
have two levels, E(d1) and E(d2), and the system shows anAF behavior for E(d1) <

EF < E(d2) (see Fig. 2.1), while for the conventional d-shell atom we find the same
AF behavior for E(d6) > EF > E(d5). In this last model we find, however, that
for any other Fermi energy interval E(dN+1) > EF > E(dN ), N �= 5, the system
shows either an AF or a ferromagnetic behavior depending on the position of EF

with respect to E(dN ) or E(dN+1).
Finally, for an AF exchange interaction we expect to have a Kondo resonance in

the electronic density of states as shown in Fig. 2.4 [12]; we have also analyzed the
Kondo temperature associated with that resonance and have found that it decreases
exponentially with the total spin of the normal atomic state [13, 24].
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